REMARK ON ALGORITHM 246

Graycode [Z]
[J. Boothroyd, Comm. ACM 7, 12 (Dec. 1964), 701]
Jayadev Misra [Recd 13 May 1974 and 28 April 1975]
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712

The following modifications to Algorithm 246 will generate Gray code for any N, with each code word being generated in a bounded amount of time. Let A be a vector of zeros and ones of length N which will be the successive code words. New code words are successively generated by reversing a single bit in A each time. Routine OUTPUT, to be supplied by the user, is called on generation of every new code word.

Initially A contains all zeros. At every odd-numbered step, $A[N]$ is reversed. At every even-numbered step, $A[J-1]$ is reversed, where $A[J]$ is the rightmost one-bit in A. (In case $J=1$, the algorithm terminates.) The positions of all the one-bits are stored in an increasing order in a stack S, from bottom to top. This helps in quickly locating J, the rightmost one-bit.

REFERENCES

1. Ehrlich, G. Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J. ACM 20, 3 (July 1973), 500-513.

REMARK ON ALGORITHM 483

Masked Three-Dimensional Plot Program with Rotations [J6]
[S. L. Watkins, Comm. ACM 17, 9 (Sept. 1974), 520-523]
Robert Feinstein [Recd 28 April 1975]
The Marine Biomedical Institute, The University of Texas Medical Branch at Galveston, 200 University Boulevard, Galveston, TX 77550

In the sample main program of Algorithm 483, line 13 should read:

* BEAMV $* \operatorname{SINC}(7.5 * \operatorname{SINF}((3 * N P O I N T — 93) * 0.017453293))+$

Further, the algorithm does not define subroutine PLOT which is called by FRAMER. Whereas IPLOT accepts coordinates in increments, PLOT accepts coordinates in inches.

I have modified this algorithm to run on a PDP 11/45-GOULD 5000 and would be happy to supply a listing to anyone who desires it.

