
Undergraduate Lecture Notes in Physics

Wolfram Schmidt
Marcel Völschow

Numerical
Python in
Astronomy and
Astrophysics
A Practical Guide to Astrophysical
Problem Solving

Undergraduate Lecture Notes in Physics

Series Editors

Neil Ashby, University of Colorado, Boulder, CO, USA

William Brantley, Department of Physics, Furman University, Greenville, SC, USA

Matthew Deady, Physics Program, Bard College, Annandale-on-Hudson, NY, USA

Michael Fowler, Department of Physics, University of Virginia, Charlottesville,
VA, USA

Morten Hjorth-Jensen, Department of Physics, University of Oslo, Oslo, Norway

Michael Inglis, Department of Physical Sciences, SUNY Suffolk County
Community College, Selden, NY, USA

Barry Luokkala , Department of Physics, Carnegie Mellon University, Pittsburgh,
PA, USA

https://orcid.org/0000-0001-5012-3816

Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts
covering topics throughout pure and applied physics. Each title in the series is
suitable as a basis for undergraduate instruction, typically containing practice
problems, worked examples, chapter summaries, and suggestions for further reading.

ULNP titles must provide at least one of the following:

• An exceptionally clear and concise treatment of a standard undergraduate
subject.

• A solid undergraduate-level introduction to a graduate, advanced, or
non-standard subject.

• A novel perspective or an unusual approach to teaching a subject.

ULNP especially encourages new, original, and idiosyncratic approaches to physics
teaching at the undergraduate level.

The purpose of ULNP is to provide intriguing, absorbing books that will continue
to be the reader’s preferred reference throughout their academic career.

More information about this series at http://www.springer.com/series/8917

http://www.springer.com/series/8917

Wolfram Schmidt • Marcel Völschow

Numerical Python
in Astronomy
and Astrophysics
A Practical Guide to Astrophysical Problem
Solving

123

Wolfram Schmidt
Hamburg Observatory
University of Hamburg
Hamburg, Germany

Marcel Völschow
Hamburg University of Applied Sciences
Hamburg, Germany

ISSN 2192-4791 ISSN 2192-4805 (electronic)
Undergraduate Lecture Notes in Physics
ISBN 978-3-030-70346-2 ISBN 978-3-030-70347-9 (eBook)
https://doi.org/10.1007/978-3-030-70347-9

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-70347-9

Preface

Over the last decades the work of astronomers and astrophysicists has undergone
great changes. Making observations is an essential part of astronomy, but most
researchers do not operate instruments directly any longer. Most of the time they
receive huge amounts of data from remote or even space-bound telescopes and
make heavy use of computing power to filter, process, and analyse these data. This
requires sophisticated algorithms and, these days, increasingly utilizes machine
learning. On the theoretical side of astrophysics, making important discoveries just
with pencil and paper belongs to the past (with the occasional exception from the
rule). Scientific questions in contemporary astrophysics are often too complex to
allow for analytic solutions. As a consequence, numerical computations with a great
wealth of physical details play a major role in research now. Back-of-the-envelope
calculations still serve their purpose to guide researchers, but at the end of the day it
is hardly possible to make progress without writing and running code on computers
to gain a deeper understanding of the physical processes behind observed
phenomena.

In this regard, it is surprising that the education of students at the undergraduate
level is still largely focused on traditional ways of problem solving. It is often
argued that being able to program comes along the way, for example, when students
engage with their research project for a Bachelor’s thesis. It is said that problems in
introductory courses can be solved mostly with analytic techniques, and there is no
need to bother students with programming languages. However, we are convinced
that there is a great deal of computer-based problem solving that can be done right
from the beginning. As a result, connections to contemporary science can be made
earlier and more lively. One of the obvious merits of becoming acquainted with a
programming language is that you can learn how to address a question by devel-
oping and implementing an algorithm that provides the answer.

There are two major avenues toward learning a programming language. One
follows the systematic teaching model, where the language is laid out in all details
and you are guided step by step through its elements and concepts. Surely, this is
the preferable method if you want to master a programming language. For the
beginner, however, this can become tiresome and confusing, especially since the

v

relevance of most of the stuff you learn becomes clear only later (if at all). The
alternative approach is to learn mainly from examples, to grasp the language in an
intuitive way and to gradually pick up what you need to know for practical
applications. We believe that Python is quite suitable for this approach. Of course,
there is always a downside. This textbook is far from covering everything there is to
know about Python. We focus on numerical computation and data analysis and
make use of libraries geared toward these applications.

Problem solving is an art that requires a lot of practice. The worked-out
examples in this book revolve around basic concepts and problems encountered in
undergraduate courses introducing astronomy and astrophysics. The complete
source code is provided on the web via uhh.de/phy-hs-pybook. We briefly reca-
pitulate essential formulas and basic knowledge, but our recaps are by no means
intended to replace lecture courses and textbooks on astronomy and astrophysics.
This is highlighted by frequently referring to introductory textbooks for further
reading. Our book is mainly intended for readers who want to learn Python from
scratch. In the beginning, code examples are explained in detail, and exercises start
at a rather elementary level. As topics become more advanced, you are invited to
work on problems that require a certain amount of effort, time, and innovative
thinking. If you have already experience with programming and know some
Python, you can concentrate on topics you are interested in. Our objective is that
examples as well as exercises not only help you in understanding and using Python
but also offer intriguing applications in astronomy and astrophysics.

Hamburg, Germany Wolfram Schmidt
December 2020 Marcel Völschow

vi Preface

http://uhh.de/phy-hs-pybook

Acknowledgements

This book was inspired by introductory courses on astronomy and astrophysics at
the University of Hamburg. We incorporated Python on the fly into problem classes
accompanying the lectures. We thank Robi Banerjee, Jochen Liske, and Francesco
de Gasperin for supporting this learning concept, and we are very grateful for the
enthusiasm and feedback of many students. Special thanks goes to Bastian R.
Brückner, Henrik Edler, Philipp Grete, and Caroline Heneka for reading and
commenting the manuscript. Moreover, we thank Bastian R. Brückner for drawing
numerous illustrative figures that are invaluable for explaining important concepts
in the book.

vii

Contents

1 Python Basics . 1
1.1 Using Python . 1
1.2 Understanding Expressions and Assignments 3
1.3 Control Structures . 8
1.4 Working with Modules and Objects . 14

2 Computing and Displaying Data . 19
2.1 Spherical Astronomy . 19

2.1.1 Declination of the Sun . 20
2.1.2 Diurnal Arc . 27
2.1.3 Observation of Celestial Objects . 35

2.2 Kepler’s Laws of Planetary Motion . 42
2.3 Tidal Forces . 47

3 Functions and Numerical Methods . 55
3.1 Blackbody Radiation and Stellar Properties 55

3.1.1 Stefan–Boltzmann Law . 56
3.1.2 Planck Spectrum . 62

3.2 Physics of Stellar Atmospheres . 77
3.2.1 Thermal Excitation and Ionization 78
3.2.2 The Balmer Jump . 84

3.3 Planetary Ephemerides . 94

4 Solving Differential Equations . 105
4.1 Numerical Integration of Initial Value Problems 105

4.1.1 First Order Differential Equations 105
4.1.2 Second Order Differential Equations 116

4.2 Radial Fall . 126
4.3 Orbital Mechanics . 136
4.4 Galaxy Collisions . 151

ix

4.5 Stellar Clusters . 167
4.6 Expansion of the Universe . 175

5 Astronomical Data Analysis . 185
5.1 Spectral Analysis . 185
5.2 Transit Light Curves . 188
5.3 Survey Data Sets . 194
5.4 Image Processing . 202
5.5 Machine Learning . 207

5.5.1 Image Classification . 208
5.5.2 Spectral Classification . 216

Appendix A: Object-Oriented Programming in a Nutshell 225

Appendix B: Making Python Faster . 233

References . 243

Index . 245

x Contents

Chapter 1
Python Basics

Abstract This chapter explains basic programming concepts. After an overview of
common Python distributions, we show how to use Python as a simple calculator. As
a first step toward programming, variables and expressions are introduced. The arith-
metic series and Fibonacci numbers illustrate the concepts of iteration and branching.
We conclude this chapter with a program for the computation of a planet’s orbital
velocity around the Sun, using constants and functions from libraries and giving a
small glimpse at objects in Python.

1.1 Using Python

There is quite a variety of Python installations. Depending on the operating system
of your computer, you might have some basic Python preinstalled. Typically, this is
the case on Linux computers. However, you might find it rather cumbersome to use,
especially if you are not well experienced with writing source code in elementary
text editors and executing the code on the command line. What is more, installing
additional packages typically requires administrative privileges. If you work, for
example, in a computer lab it is likely that you do not have the necessary access rights.
Apart from that, Python version 2.x (that is major version 2 with some subversion
x) is still in use, while this book is based on version 3.x.

Especially as a beginner, youwill probably find it convenient to workwith a a GUI
(graphical user interface). Two popular choices for Python programming are Spyder
and Jupyter. Spyder (www.spyder-ide.org) is a classical IDE (integrated development
environment)which allows you to edit code, execute it and view the output in different
frames. Jupyter (jupyter.org) can be operated via an arbitrary web browser. It allows
you to run an interactive Python session with input and output cells (basically, just
like the console-based ipython). Apart from input cells for typing Python source
code, there are so-called markdown cells for writing headers and explanatory text.
This allows you to use formatting similar to elementary HTML for webpages. A
valuable feature is the incorporation of LaTeX to display mathematical expressions.
The examples in this book can be downloaded as Jupyter notebooks and Python
source code in zipped archives from uhh.de/phy-hs-pybook.

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70347-9_1&domain=pdf
https://www.spyder-ide.org/
https://jupyter.org/
http://uhh.de/phy-hs-pybook
https://doi.org/10.1007/978-3-030-70347-9_1

2 1 Python Basics

Since it depends on your personal preferenceswhich software suits you best,we do
not presume a particular GUI or Python distribution here. If you choose to work with
Spyder or Jupyter, online documentation and tutorials will help you to install the soft-
ware and to get started (browse the official documentation under docs.spyder-ide.org
and jupyter-notebook.readthedocs.io/en/stable). For a comprehensive guideline, see
also [1, appendices A and B]. A powerful all-in-one solution is Anaconda, a Python
distribution and package manager that can be installed under Windows, macOS or
Linux by any user (see docs.anaconda.com for more information). Anaconda pro-
vides a largely autonomous environment with all required components and libraries
on a per-user basis. Of course, this comes at the cost of large resource consumption
(in particular, watch your available disk space).

As a first step, check if you can run the traditional “Hello, World!” example with
your favorite Python installation. Being astronomers, we use a slightly modified
version:

1 print("Hello, Universe!")

In this book Python source code is listed in frames with lines numbered on the left (in
the above example, there is just one line). Although these line numbers are not part
of the source code (that’s why they are shown outside of the frame), they are useful
for referring to particular parts of a code example. You might be able to display line
numbers in your code editor (in Jupyter notebooks, for example, line numbering can
be switched on and off in the Viewmenu), but you should not confuse these numbers
with the line numbers used in this book. Usually we will continue the numbering
over several frames if the displayed pieces of code are related to each other, but we
also frequently reset line numbers to 1 when a new program starts or a new idea is
introduced. Whenever you encounter a code line with number 1 it should alert you:
at this point something new begins.

After executing the print statement in line 1 above, you should see somewhere on
your screen the output1

Hello, Universe!

The quotes in the source code are not shown in the output. They are used to signify
that the enclosed characters form a string. As youmight have guessed, theprint()
function puts the string specified in parentheses on the screen (more precisely, in a
window or frame that is used by Python for output).2

1How to execute Python code depends on the software you are using (consult the documentation).
In a notebook, for example, all you need to do is to simultaneously press the enter and shift keys of
your keyboard in the cell containing the code.
2Enclosing the string in parentheses is obligatory in Python 3. You may find versions of “Hello,
World!” without parentheses on the web, which work only with Python 2.

https://docs.spyder-ide.org/
https://jupyter-notebook.readthedocs.io/en/stable/
https://docs.anaconda.com/

1.2 Understanding Expressions and Assignments 3

1.2 Understanding Expressions and Assignments

Apart from printing messages on the screen, which is not particularly exciting by
itself, Python can be used as a scientific calculator. Let us begin right away with an
example from astronomy. Suppose we want to calculate the velocity at which Earth
is moving along its orbit around the Sun. For simplicity, we treat the orbit as circular
(in fact, it is elliptical with a small eccentricity of 0.017). From the laws of circular
motion it follows that we can simply calculate the velocity as the circumference 2π r
of the orbit divided by the period P , which happens to be one year for Earth. After
having looked up the value of π, the orbital radius r (i.e. the distance to the Sun) in
km, and the length of a year in seconds,3 we type

1 2*3.14159*1.496e8/3.156e7

and, once evaluated by Python, we obtain

29.783388086185045

for the orbital velocity in km/s. Line 1 is an example for a Python expression con-
sisting of literal numbers and the arithmetic operators * and / for multiplication
and division, respectively. The factor of two in the formula for the circumference
is simply written as the integer 2, while the number π is approximately expressed
in fixed-point decimal notation as 3.14159.4 The radius r = 1.496 × 108 km is
expressed as 1.496e8, which is a so-called floating point literal . The character
e followed by an integer indicates the exponent of the leading digit in the decimal
system. In this case, e8 corresponds to the factor 108. Negative exponents are indi-
cated by a minus sign after e. For example, 10−3 can be expressed as 1.0e-3 or
just 1e-3 (inserting + for positive exponents is optional).

Of course, there is much more to Python than evaluating literal expressions like
a calculator. To get an idea how this works, we turn the example shown above into a
little Python program:

1 radius = 1.496e8 # orbital radius in km
2 period = 3.156e7 # orbital period in s
3

4 # calculate orbital velocity
5 velocity = 2*3.14159*radius/period

Lines 1, 2, and 5 are examples for assignments. Each assignment binds the value of
the expression on the right-hand side of the equality sign = to a name on the left-hand
side. A value with a name that can be used to refer to that value is in essence what is

3Strictly speaking, the time needed by Earth to complete one revolution around the Sun is the
sidereal year, which has about 365.256d. One day has 86400s.
4In many programming languages, integers such as 2 are treated differently than floating point
numbers. For example, using 2.0 instead of the integer 2 in a division might produce a different
result. In Python 3, it is usually not necessary to make this distinction. Alas, Python 2 behaves
differently in this respect.

4 1 Python Basics

called a variable in Python.5 In line 5, the variables radius and period are used
to compute the orbital velocity of Earth from the formula

v = 2π r

P
(1.1)

and the result is in turn assigned to the variable velocity. Any text between the
hash character # and the end of a line is not Python code but a comment explaining
the code to someone other than the programmer (once in a while, however, even
programmers might be grateful for being reminded in comments about code details
in long and complex programs). For example, the comments in line 1 and 2 provide
some information about the physical meaning (radius and period of an orbit) and
specify the units that are used (km and s). Line 4 comments on what is going on in
the following line.

Now, if you execute the code listed above, you might find it surprising that there
is no output whatsoever. Actually, the orbital velocity is computed by Python, but
assignments do not produce output. To see the value of the velocity, we can append
the print statement

6 print(velocity)

to the program (since this line depends on code lines 1–5 above, we continue the
numbering andwill keep doing so until an entirely new program starts), which results
in the output6

29.783388086185045

This is the same value we obtained with the calculator example at the beginning of
this section.

However, we can do a lot better than that by using further Python features. First
of all, it is good practice to print the result of a program much in the same way as,
hopefully, you would write the result of a handwritten calculation: It should be stated
that the result is a velocity in units of km/s. This can be achieved quite easily by using
string literals as in the very first example in Sect. 1.1:

7 print("orbital velocity =", velocity, "km/s")

producing the output

orbital velocity = 29.783388086185045 km/s

5The concept of a variable in Python is different from variables in programming languages such as
C, where variables have a fixed data type and can be declared without assigning a value. Basically, a
variable in C is a placeholder in memory whose size is determined by the data type. Python variables
are objects that are much more versatile.
6In interactive Python, just writing the variable name in the final line of a cell would also result in
its value being displayed in the output.

1.2 Understanding Expressions and Assignments 5

It is important to distinguish between the word ‘velocity’ appearing in the string
"orbital velocity =" on the one hand and the variable velocity sepa-
rated by commas on the other hand. In the output produced by print the two strings
are concatenated with the value of the variable. Using such a print statement may
seem overly complicated because we know, of course, that the program computes
the orbital velocity and, since the radius is given in km and the period in seconds, the
resulting velocity will be in units of km/s. However, themeaning of a numerical value
without any additional informationmight not be obvious at all in complex, real-world
programs producing a multitude of results. For this reason, we shall adhere to the
practice of precisely outputting results throughout this book. The simpler version
shown in line 6 may come in useful if a program does not work as expected and you
want to check intermediate results.

An important issue in numerical computations is the precision of the result. By
default, Python displays a floating point value with machine precision (i.e. the maxi-
mal precision that is supported by the way a computer stores numbers in memory and
performs operations on them). However, not all of the digits are necessarily signifi-
cant. In our example, we computed the orbital velocity from parameters (the radius
and the period) with only four significant digits, corresponding to a relative error
of the order 10−4. Although Python performs arithmetical operations with machine
precision, the inaccuracy of our data introduces a much larger error. Consequently,
it is pointless to display the result with machine precision. Insignificant digits can be
discarded in the output by appropriately formatting the value:

8 print("orbital velocity = {:5.2f} km/s".format(velocity))

Let us see how this works:

• The method format() inserts the value of the variable in parentheses into the
preceding string (mind the dot in between). You will learn more about methods in
Sect. 1.4.

• The placeholder {:5.2f} controls where and in which format the value of the
variable velocity is inserted. The format specifier 5.2f after the colon :
indicates that the value is to be displayed in fixed-point notation with 5 digits
altogether (including the decimal point) and 2 digits after the decimal point. The
colon before the format specifier is actually not superfluous. It is needed if several
variables are formatted in one print statement (examples will follow later).

Indeed, the output now reads

orbital velocity = 29.78 km/s

Optionally, the total number of digits in the formatting command can be omitted.
Python will then just fill in the leading digits before the decimal point (try it; also
change the figures in the command and try to understand what happens). A fixed
number of digits can be useful, for example, when printing tabulated data.

As the termvariable indicates, the value of a variable can be changed in subsequent
lines of the program by assigning a new value. For example, you might want to

6 1 Python Basics

calculate the orbital velocity of a hypothetical planet at ten times the distance of
the Earth from the Sun, i.e. r = 1.496 × 109 km. To that end, we could start with
the assignment radius=1.496e9. Alternatively, we can make use of the of the
current value based on the assignment in line 1 and do the following:

9 radius = 10*radius
10 print("new orbital radius = {:.3e} km".format(radius))

Although an assignmentmay appear as the equivalent of amathematical equality, it is
of crucial importance to understand that it is not. Transcribing line 9 into the algebraic
equation r = 10r is nonsensebecauseonewouldobtain 1 = 10 after dividing through
r , which is obviously a contradiction. Keep in mind:

The assignment operator = in Python means set to, not is equal to.

The code in line 9 thus encompasses three steps:

(a) Take the value currently assigned to radius,
(b) multiply this value by ten
(c) and reassign the result to radius.

Checking this with the print statement in line 10, we find that the new value of the
variable radius is indeed 10 times larger than the original value from line 1:

new orbital radius = 1.496e+09 km

The radius is displayed in exponential notation with three digits after the decimal
point, which is enabled by the formatting type e in place of f in the placeholder
{:.3e} for the radius (check what happens if you use type f in line 10). You must
also be aware that repeatedly executing the assignment radius = 10*radius
in interactive Python increases the radius again and again by a factor of 10, which is
possibly not what you might want. However, repeated operation on the same variable
is done on purpose in iterative constructions called loops (see Sect. 1.3).

After having defined a new radius, it would not be correct to go straight to the
computation of the orbital velocity since the period of the orbit changes, too. The
relation between period and radius is given byKepler’s third law of planetarymotion,
whichwill be covered inmore detail in Sect. 2.2. For a planet in a circular orbit around
the Sun, this relation can be expressed as7

P2 = 4π2

GM
r3 , (1.2)

7Here it is assumed that the mass of the planet is negligible compared to the mass of the Sun. For
the general formulation of Kepler’s third law see Sect. 2.2.

1.2 Understanding Expressions and Assignments 7

where M=1.989 × 1030 kg is the mass of the Sun andG=6.674 × 10−11 N kg−2 m2

is the gravitational constant. To calculate P for given r , we rewrite this equation in
the form

P = 2π (GM)−1/2 r3/2.

This formula can be easily turned into Python code by using the exponentiation
operator ** for calculating the power of an expression:

11 # calculate period in s from radius in km (Kepler’s third law)
12 period = 2*3.14159 * (6.674e-11*1.989e30)**(-1/2) * \
13 (1e3*radius)**(3/2)
14 # print period in yr
15 print("new orbital period = {:.1f} yr".format(period/3.156e7))
16
17 velocity = 2*3.14159*radius/period
18 print("new orbital velocity = {:.2f} km/s".format(velocity))

The results are

new orbital period = 31.6 yr

new orbital velocity = 9.42 km/s

Hence, it would take more than thirty years for the planet to complete its orbit around
the Sun, as its orbital velocity is only about one third of Earth’s velocity. Actually,
these parameters are quite close to those of the planet Saturn in the solar system.
The backslash character \ in line 12 is used to continue an expression that does not
fit into a single line in the following line (there is no limitation on the length of a
line in Python, but code can become cumbersome to read if too much is squeezed
into a single line). An important lesson taught by the code listed above is that you
always need to be aware of physical units when performing numerical calculations.
Since the radius is specified in km, we obtain the orbital velocity in km/s. However,
the mass of the Sun and the gravitational constants in the expression for the orbital
period in lines 12–13 are defined in SI units. For the units to be compatible, we
need to convert the radius from km to m. This is the reason for the factor 103 in the
expression (1e3*radius)**(3/2). Of course, this does not change the value of
the variable radius itself. To avoid confusion, it is stated in the comment in line 11
which units are assumed.Another unit conversion is appliedwhen the resulting period
is printed in units of a year in line 15, where the expression period/3.156e7 is
evaluated and inserted into the output string via format. As you may recall from
the beginning of this section, a year has 3.156 × 107 s.

Wrong unit conversion is a common source of error, which may have severe con-
sequences. A famous example is the loss of NASA’s Mars Climate Orbiter due to
the inconsistent use of metric and imperial units in the software of the spacecraft.8

As a result, more than $100 million were quite literally burned on Mars. It is there-
fore extremely important to be clear about the units of all physical quantities in a

8See mars.jpl.nasa.gov/msp98/orbiter/.

https://mars.jpl.nasa.gov/msp98/orbiter/

8 1 Python Basics

program. Apart from the simple, but hardly foolproof approach of using explicit con-
version factors and indicating units in comments, you will learn different strategies
for ensuring the consistency of units in this book.

1.3 Control Structures

The computation of the orbital velocity of Earth in the previous section is a very
simple example for the implementation of a numerical algorithm in Python.9 It
involves the following steps:

1. Initialisation of all data needed to perform the following computation.
2. An exactly defined sequence of computational rules (usually based on mathe-

matical formulas), unambiguously producing a result in a finite number of steps
given the input from step 1.

3. Output of the result.

In our example, the definition of the variables radius and period provides the
input, the expression for the orbital velocity is a computational rule, and the result
assigned to the variable velocity is printed as output.

A common generalization of this simple scheme is the repeated execution of the
same computational rule in a sequence of steps, where the outcome of one step is
used as input for the next step. This is called iteration and will be explained in the
remainder of this section. The independent application of the same operations to
multiple elements of data is important when working with arrays, which will be
introduced in Chap. 2.

Iteration requires a control structure for repeating the execution of a block of
statements a given number of times or until a certain condition is met and the iteration
terminates. Such a structure is called a loop. For example, let us consider the problem
of summing up the first 100 natural numbers (this is a special case of an arithmetic
series, in which each term differs by the previous one by a constant):

sn ≡
n∑

k=1

k = 1 + 2 + 3 + . . . + n . (1.3)

9The term algorithm derives from the astronomer and mathematician al-Khwarizmi whose name
was transcribed to Algoritmi in Latin (cf. [2] if you are interested in the historical background).
al-Khwarizmi worked at the House of Wisdom, a famous library in Bagdad in the early 9th century.
Not only was he the founder of the branch of mathematics that became later known as algebra, he
also introduced the decimal system including the digit 0 in a book which was preserved until the
modern era only in a Latin translation under the title Algoritmi de numero Indorum (this refers to
the origin of the number zero in India). The digit 0 is quintessential to the binary system used on
all modern computers.

1.3 Control Structures 9

Fig. 1.1 Illustration of the
computation of the sum s100
defined by Eq. (1.3) via a
for loop. The box on the
top of the figure contains the
initialization statement prior
to the loop (sum is set to
zero). The middle box shows
iterations of sum in the body
of the for loop with the
counter k, resulting in the
sum shown at the bottom.
The arrows indicate how
values from one iteration are
used in the next iteration.
Values of the loop counter
are shown in red

k=3 sum=3+3 = 6

k=2 sum=1+2 = 3

k=1 sum=0+1 = 1

k=99 sum=4851+99 = 4950

sum=4950+100 = 5050k=100

..
.

..
.

..
.

sum=5050

sum=0
Initialization

Iteration

Result

where n = 100. In Python, we can perform the summation using a for loop:

1 sum = 0 # initialization
2 n = 100 # number of iterations
3

4 for k in range(1,n+1): # k running from 1 to n
5 sum = sum + k # iteration of sum
6

7 print("Sum =", sum)

The result is

Sum = 5050

The keywords for and in indicate that the loop counter k runs through all integers
defined by range(1,n+1), which means the sequence 1, 2, 3, . . . , n in mathe-
matical notation. It is a potential source of confusion that Python includes the start
value 1, but excludes the stop value n+1 in range(1,n+1).10

The indented block of code following the colon is executed subsequently for each
value of the loop counter. You need to be very careful about indentations in Python!
They must be identical for all statements in a block, i.e. you are not allowed to use
more or less white space or mix tabs and white spaces. We recommend to use one tab
per indentation. The block ends with the first non-indented statement. In the example
above, only line 5 is indented, so this line constitutes the body of the loop, which
adds the value of the loop counter to the variable sum. The initial value of summust
be defined prior to the loop (see line 1). Figure1.1 illustrates how the variables are
iterated in the loop.

10There is a reason for the stop value being excluded. The default start value is 0 and range(n)
simply spans the n integers 0, 1, 2, . . . , n − 1.

10 1 Python Basics

Actually, our Python program computes the sum exactly in the way intended by
the teacher of nine-year old Carl Friedrich Gauss11 in school, just by summing up the
numbers from 1 to 100. However, Gauss realized that there is a completely different
solution to the problem and he came up with the correct answer much faster than
expected by his teacher, while his fellow students were still tediously adding up
numbers. The general formula discovered by Gauss is (the proof can be found in any
introductory calculus textbook or on the web):

sn =
n∑

k=1

k = n(n − 1)

2
. (1.4)

We leave it as an exercise to check with Python that this formula yields the same
value as direct summation.

A slightlymore demanding example is the calculation of the Fibonacci sequence12

using the recursion formula

Fn+1 = Fn + Fn−1 for n ≥ 1, (1.5)

with the first two elements
F1 = 1 , F0 = 0 . (1.6)

Themeaning of Eq. (1.5) is that any Fibonacci number is the sumof the two preceding
ones, starting from 0 and 1. The following Python program computes and prints the
Fibonacci numbers F1, F2, . . . , F10 (or as many as you like):

1 # how many numbers are computed
2 n_max = 10
3

4 # initialize variables
5 F_prev = 0 # 0. number
6 F = 1 # 1. number
7

8 # compute sequence of Fibonacci numbers
9 for n in range(1,n_max+1):
10 print("{:d}. Fibonacci number = {:d}".format(n,F))
11

12 # next number is sum of F and the previous number
13 F_next = F + F_prev
14

11German mathematician, physicist, and astronomer who is known for the Gauss theorem, the
normal distribution, and many other import contributions to algebra, number theory, and geometry.
12Named after Leonardo dePisa, also knownasFibonacci,who introduced the sequence toEuropean
mathematics in the early 13th century. However, the Fibonacci sequence was already known to
ancient Greeks. It was used to describe growth processes and there is a remarkable relation to the
golden ratio.

1.3 Control Structures 11

15 # prepare next iteration
16 F_prev = F # first reset F_prev
17 F = F_next # then assign next number to F

The three variables F_prev, F, and F_next correspond to Fn−1, Fn , and Fn+1,
respectively. The sequence is initialized in lines 5 and 6 (definition of F0 and F1).
The recursion formula (1.5) is implemented in line 13. Without lines 16 and 17,
however, the same value (corresponding to F0 + F1) would be assigned again and
again to F_next. For the next iteration, we need to re-assign the values of F (Fn)
and F_next (Fn+1) to F_prev (Fn−1) and F (Fn), respectively. The loop counter
n merely controls how many iterations are executed. Figure1.2 shows a schematic
view of the algorithm (you can follow the values of the variables in the course of the
iteration by inserting a simple print statement into the loop). The output produced
by the program is13

1. Fibonacci number = 1

2. Fibonacci number = 1

3. Fibonacci number = 2

4. Fibonacci number = 3

5. Fibonacci number = 5

6. Fibonacci number = 8

7. Fibonacci number = 13

8. Fibonacci number = 21

9. Fibonacci number = 34

10. Fibonacci number = 55

Since two variables are printed, we need two format fields where the values of the
variables are inserted (see line 10). As an alternative to using format(), the same
output can be produced by means of a formatted string literal (also called f-string)14:

print(f"{n:d}. Fibonacci number = {F:d}")

Here, the variable names are put directly into the string. The curly braces indicate
that the values assigned to the names n and F are to be inserted in the format defined
after the colons (in this example, as integers with arbitrary number of digits). This is a
convenient shorthand notation. Nevertheless, wemostly use format() in this book
because the syntax maintains a clear distinction between variables and expressions
on the one hand and formatted strings on the other hand. If you are more inclined to
f-strings, make use of them as you please.

Suppose we would like to know all Fibonacci numbers smaller than, say, 1000.
We can formally write this as Fn < 1000. Since it is not obvious howmany Fibonacci
numbers exist in this range, we need a control structure that repeats a block of code

13As you can see from Fig. 1.2, F11 is computed as final value of F_next. But it is not used. You
can try to modify the program such that only 9 iterations are needed to print the Fibonacci sequence
up to F10.
14This feature was introduced with Python 3.6.

12 1 Python Basics

Fig. 1.2 Illustration of the
recursive computation of the
Fibonacci sequence (see
Eq.1.5). In each iteration of
the loop, the sum of
F_prev and F is assigned to
the variable F_prev. The
resulting number is shown in
the rightmost column. For
the next iteration, this
number is re-assigned to F,
and the value of F to
F_prev, as indicated by the
arrows

F=55

F=1
Initialization

Iteration

Result

F_prev=0

F=2 F_next=1+2 = 3

F=1 F_next=1+1 = 2

F=1 F_next=0+1 = 1

F=34 F_next=21+34 = 55

F_next=34+55 = 89F=55

..
.

..
.

..
.

F_prev=0n=1

F_prev=1n=2

F_prev=1n=3

F_prev=21n=9

F_prev=34n=10

..
.

..
.

as long as a certain condition is fulfilled. In such a case, it is preferable to work with
a while loop. This type of loop enables us to modify our program such that all
Fibonacci numbers smaller than 1000 are computed, without knowing the required
number of iterations:

1 # initialize variables
2 F_prev = 0 # 0. number
3 n,F = 1,1 # 1. number
4
5 # compute sequence of Fibonacci numbers smaller than 1000
6 while F < 1000:
7 print("{:d}. Fibonacci number = {:d}".format(n,F))
8
9 # next number is sum of F and the previous number
10 F_next = F + F_prev
11
12 # prepare next iteration
13 F_prev = F # first reset F_prev
14 F = F_next # then assign next number to F
15 n += 1 # increment counter

The resulting numbers are:

1. Fibonacci number = 1

2. Fibonacci number = 1

3. Fibonacci number = 2

4. Fibonacci number = 3

5. Fibonacci number = 5

6. Fibonacci number = 8

7. Fibonacci number = 13

1.3 Control Structures 13

8. Fibonacci number = 21

9. Fibonacci number = 34

10. Fibonacci number = 55

11. Fibonacci number = 89

12. Fibonacci number = 144

13. Fibonacci number = 233

14. Fibonacci number = 377

15. Fibonacci number = 610

16. Fibonacci number = 987

Of course, the first ten numbers are identical to the numbers from our previous
example. If you make changes to a program, always check that you are able to
reproduce known results!

The loop header in line 6 of the above listing literallymeans: Perform the following
block of code while the value of F is smaller than 1000. The expression F<1000 is
an example of a Boolean (or logical) expression. The operator < compares the two
operands F and 1000 and evaluates to True if the numerical value of F is smaller
than 1000. Otherwise, the expression evaluates to False and the loop terminates.
Anything that is either True or False is said to be of Boolean type. In Python, it
is possible to define Boolean variables.

Awhile loop does not comewith a counter. To keep track of howmanyFibonacci
numbers are computed (in other words the index n of the sequence Fn), we initialize
the counter n along with F in the multiple assignment in line 3. This is equivalent to

n = 1
F = 1

Python allows you to assign multiple values separated by commas to multiple vari-
ables (also separated by commas) in a single statement, where the ordering on the
left corresponds to the ordering on the right. We will make rarely use of this feature.
While it is useful in some cases (for example, to swap variables15 or for functions
returningmultiple values), multiple assignments are rather difficult to read and prone
to errors, particularly if variables are interdependent.

While the loop counter of a for loop is automatically incremented, we need to
explicitly increase our counter in the example above at the end of each iteration. In
line 15, we use the operator += to increment n in steps of one, which is equivalent
to the assignment n=n+1 (there are similar operators -=, *=, etc. for the other basic
arithmetic operations).

Let us try to be even smarter and count howmany even and odd Fibonacci numbers
below a given limit exist. This requires branching, i.e. one block of code will be
executed if some condition is met and an alternative block if not (such blocks are
also called clauses). This is exactly the meaning of the if and else statements
in the following example:

15 Another application in our Fibonacci program would be the merging of lines 13 and 14 into the
multiple assignment F_prev,F = F,F_next.

14 1 Python Basics

1 # initialize variables
2 F_prev = 0 # 0. number
3 F = 1 # 1. number
4 n_even = 0
5 n_odd = 0
6
7 # compute sequence of Fibonacci numbers smaller than 1000
8 while F < 1000:
9 # next number is sum of F and the previous number
10 F_next = F + F_prev
11
12 # prepare next iteration
13 F_prev = F # first reset F_prev
14 F = F_next # then assign next number to F
15
16 # test if F is even (divisible by two) or odd
17 if F%2 == 0:
18 n_even += 1
19 else:
20 n_odd += 1
21
22 print("Found {:d} even and {:d} odd Fibonacci numbers".\
23 format(n_even,n_odd))

Instead of a single counter, we need two counters here, n_even for even Fibonacci
numbers and n_odd for the odd ones. The problem is to increment n_even if the
value of F is an even number. To that end the modulo operator % is applied to get
the remainder of division by two. If the remainder is zero, then the number is even.
This is tested with the comparison operator == in the Boolean expression following
the keyword if in line 17. If this expression evaluates to True, then the counter
for even numbers is incremented (line 18). If the condition is False, the else
branch is entered and the counter for odd numbers is incremented (line 20). You
must not confuse the operator ==, which compares variables or expressions without
changing them, with the assignment operator =, which sets the value of a variable.
The program reports (we do not bother to print the individual numbers again):

Found 5 even and 11 odd Fibonacci numbers

Altogether, there are 5 + 11 = 16 numbers. You may check that this is in agreement
with the listed numbers.

1.4 Working with Modules and Objects

Python offers a collection of useful tools in the Python Standard Library (see
docs.python.org/3/library). Functions such as print() are part of the Standard
Library. They are called built-in functions. Apart from that, many more optional

https://docs.python.org/3/library/

1.4 Working with Modules and Objects 15

libraries (also called packages) are available. Depending on the Python distribution
you use, you will find that some libraries are included and can be imported as shown
below, while you might need to install others.16 Python libraries have a hierarchical
modular structure. This means that you do not necessarily have to load a complete
library, but you can access some part of a library, which can be a module, a submod-
ule (i.e. a module within a module) or even individual names defined in a module.
To get started, it will be sufficient to consider a module as a collection of definitions.
By importing a module, you can use variables, functions, and classes (see below)
defined in the module.

For example, important physical constants and conversion factors are defined
in the constants module of the SciPy library (for more information, see
www.scipy.org/about.html). A module can be loaded with the import command:

1 import scipy.constants

To view an alphabetically ordered list of all names defined in this module, you can
invoke dir(scipy.constants) (this works only after a module is imported).
By scrolling through the list, you might notice the entry
’gravitational_constant’. As the name suggests, this is the gravitational
constant G. Try

2 print(scipy.constants.gravitational_constant)

which displays the value of G in SI units:

6.67408e-11

The same value is obtained via scipy.constants.G. Even so, an identifier
composed of a library name in conjunction with a module and a variable name is
rather cumbersome to use in programs. Alternatively, a module can be accessed via
an alias:

3 import scipy.constants as const
4

5 print(const.G)

also displays the value of G. Here, const is a user-defined nickname for
scipy.constants.

It is also possible to import names from a module directly into the global name-
space of Python. The variables we have defined so far all belong to the global name-
space. The syntax is as follows:

6 from scipy.constants import G
7

8 print(G)

16See, for example, packaging.python.org/tutorials/installing-packages
and docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html.

https://www.scipy.org/about.html
https://packaging.python.org/tutorials/installing-packages/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html

16 1 Python Basics

In this case, only G is imported, while in the examples above all names from
scipy.constants are made available. Importing names via the keyword from
should be used with care, because they can easily conflict with names used in assign-
ments elsewhere. Python does not treat this as an error. Consequently, you might
accidentally overwrite a module variable such as G with some other value.

By using constants from Python libraries, we can perform computations without
looking up physical constants on theweb or in textbooks and inserting them as literals
in the code. Let us return to the example of a planet at 10 times the distance of Earth
from the Sun, i.e. r = 10 au (see Sect. 1.2). Here is an improved version of the code
for the computation of the orbital period and velocity:

1 from math import pi,sqrt
2 from astropy.constants import M_sun
3 from scipy.constants import G,au,year
4
5 print("1 au =", au, "m")
6 print("1 yr =", year, "s")
7
8 radius = 10*au
9 print("\nradial distance = {:.1f} au".format(radius/au))
10
11 # Kepler’s third law
12 period = 2*pi * sqrt(radius**3/(G*M_sun.value))
13 print("orbital period = {:.4f} yr".format(period/year))
14
15 velocity = 2*pi * radius/period # velocity in m/s
16 print("orbital velocity = {:.2f} km/s".format(1e-3*velocity))

The output of this program is

1 au = 149597870691.0 m

1 yr = 31536000.0 s

radial distance = 10.0 au

orbital period = 31.6450 yr

orbital velocity = 9.42 km/s

We utilize the value of π and the square-root function defined in the mathmodule,
which is part of the standard library. The function sqrt() imported from math is
called in line 12 with the expression radius**3/(G*M_sun.value) as argu-
ment. This means that the number resulting from the evaluation of this expression is
passed as input to sqrt(), which executes an algorithm to compute the square root
of that number. The result returned by the function and is then multiplied with 2*pi
to obtain the orbital period. Moreover, we use constants and conversion factors from
the SciPy and Astropy libraries. For instance, au is one astronomical unit in m and
year is one year in s. The values are printed in lines 5 and 6. These conversion
factors enable us to conveniently define the radius in astronomical units (line 8) and,
after apply Kepler’s third law in SI units, to print the resulting orbital period in years
(lines 12 and 13). When printing the radius in line 9, the newline character ’\n’
at the beginning of the string inserts a blank line. Other than in Sect. 1.2, the orbital

1.4 Working with Modules and Objects 17

velocity assigned to velocity is in m/s. So we need to multiply by a factor of 10−3

to obtain the velocity in units of km/s in the final print statement.
In contrast to the gravitational constantG, which is simply a floating point number,

the mass of the Sun defined in astropy.constants is a more complex object.
In computer science, the term object has a specific meaning and refers to the object-
oriented programming (OOP) paradigm. You can go a long way in Python without
bothering about object-oriented programming. Nevertheless, you will find it helpful
if you are aware of a few basic facts:

1. Everything in Python is an object.
2. An object contains a particular kind of data.
3. Objects have methods to manipulate the object’s data in a controlled way.
4. A method can change an object or create a new object.

This implies thatG is also an object, albeit a rather simple one. If you printM_sun,
you will find quite a bit more information in there, such as the uncertainty of the
value and its physical unit:

Name = Solar mass

Value = 1.9884754153381438e+30

Uncertainty = 9.236140093538353e+25

Unit = kg

Reference = IAU 2015 Resolution B 3 + CODATA 2014

Particular data items are called object attributes. For example, the value of the solar
mass is an attribute of M_sun. You can fetch an attribute by joining the names of the
object and the attribute with a dot.We refer to the attributevalue in line 12 to obtain
a pure number that can be combined with other numbers in an arithmetic expression.
To list attributes belonging to an object, you can use dir(), just like for modules,
or search the documentation. Attributes and methods are defined in classes. While
objects belonging to the same class may contain different data, they have the same
attributes and methods. For example, M_earth from astropy.constants has
a value attribute just like M_sun, but the value behind this attribute is Earth’s mass
instead of the mass of the Sun. Both objects belong to the class Quantity. You can
take a glimpse behind the curtain in Appendix A, where you are briefly introduced
to writing your own classes.

Since everything in Python is an object, so is a string. Now you are able to better
understand the meaning of format() being a method. It is a method allowing you
to insert formatted numbers into a string.17 While methods are relatives of Python
functions, a method always has to be called in conjunction with a particular object.
In the print statements in lines 9, 13, and 16, the objects are string literals. The

17Since strings are immutable objects, the method does not change the original string with place-
holders. It creates a new string object with the formatted numbers inserted.

18 1 Python Basics

syntax is similar to accessing object attributes, except for the arguments enclosed in
parentheses (here, the variables holding the numbers to be inserted). In general, you
can call methods on names referring to objects – in other words, Python variables.
This will be covered in more detail in the next chapter.

Chapter 2
Computing and Displaying Data

Abstract NumPy arrays are the workhorses of numerics in Python, extending it by
remarkable numerical capabilities. For example, they can be used just like simple
variables to evaluate an arithmetic expression for many different values without pro-
gramming a loop. In the first section, we combine the power of NumPy and Astropy
and compute the positions of objects on the celestial sphere. Moreover, we introduce
Matplotlib to produce plots from array data. Further applications are shown in the
context of Kepler’s laws and tidal forces, for example, printing formatted tables and
plotting vector maps.

2.1 Spherical Astronomy

In astronomy, the positions of stars are specified by directions on the sky, i.e. two
angular coordinates. The radial distance of the star from Earth would be the third
coordinate, but distances are not known for all astronomical objects. As long as
distances do not matter, all astronomical objects can be projected in radial directions
onto a sphere with Earth at its center (the size of the sphere does not matter, but you
can think of it as a distant spherical surface). This is the so-called celestial sphere.1

For an observer on Earth, the position of astronomical objects depends on geo-
graphical latitude and longitude and varies with the time of day. To specify positions
independent of the observer, angular coordinateswith respect to fixed reference direc-
tions are used. In the equatorial coordinate system, one reference direction is given
by Earth’s rotation axis (or, equivalently, the orientation of the equatorial plane). The
orientation of the rotation axis is fixed because of angular momentum conservation.2

The angular distance of a star from the equatorial plane is called declination and
denoted by δ. The other reference direction is defined by the intersection between

1In ancient and medieval times, it was thought that there is actually a physical sphere with the
stars attached to it and Earth at its center. This is known as geocentric world view. The celestial
sphere inmodern astronomy ismerely a useful mathematical constructionwith no physical meaning
whatsoever.
2This is not exactly true since other bodies in the solar system cause perturbations, but changes are
sufficiently small over a human’s lifetime.

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70347-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-70347-9_2

20 2 Computing and Displaying Data

Fig. 2.1 Celestial sphere
with coordinates α (right
ascension) and δ

(declination) of a stellar
object. Earth’s orbital plane
(ecliptic) intersects the
sphere along the red circle,
which is inclined by the
angle ε0 (obliquity) with
respect to the celestial
equator. The celestial
equator is the outward
projection of Earth’s equator
onto the celestial sphere. The
intersection points of the
ecliptic and the celestial
equator are the two
equinoxes

ecliptic
vernal
equinox

autumnal
equinox

celestial equator



celestial pole

south
celestial pole

0

north



the equatorial plane and the plane of Earth’s orbital motion around the Sun. The fixed
orientation of the orbital plane,which is called ecliptic, is also a consequence of angu-
lar momentum conservation (in this case the angular momentum of orbital motion).
The second coordinate in the equatorial system, which is called right ascension α, is
the angle measured from one of the two points where the celestial sphere is pierced
by the line of intersection of the equatorial an orbital planes. The zero point for the
right ascension is known as vernal equinox, the opposite point as autumnal equinox.
If all of this sounds rather complicated, it will become clear from the illustration in
Fig. 2.1. See also [3, Sect. 2.5].

2.1.1 Declination of the Sun

While the declination of stars is constant, the position of the Sun changes in the
equatorial system over the period of a year. This is a consequence of the inclination
of Earth’s rotation axis with respect to the direction perpendicular to the ecliptic,
which is equal to ε0 = 23.44◦. The angle ε0 is called obliquity of the ecliptic. The
annual variation of the declination of the Sun is approximately given by3

δ� = − arcsin

[
sin ε0 cos

(
360◦

365.24
(N + 10)

)]
(2.1)

3See en.wikipedia.org/wiki/Position_of_the_Sun.

https://en.wikipedia.org/wiki/Position_of_the_Sun

2.1 Spherical Astronomy 21

where N is the difference in days starting from 1st January. So the first day of the year
corresponds to N = 0, and the last to N = 364 (unless it is a leap year). The fraction
360◦/365.24 equals the change in the angular position of Earth per day, assuming a
circular orbit. This is just the angular velocity ω of Earth’s orbital motion around the
Sun in units of degrees per day.4

The Sun has zero declination at the equinoxes (intersection points of celestial
equator and ecliptic) and reaches ±ε0 at the solstices, where the rotation axis of
the Earth is inclined towards or away from the Sun. The exact dates vary somewhat
from year to year. In 2020, for instance, equinoxes were on 20th March and 22nd
September and solstices on 20th June and 21st December (we neglect the exact times
in the following). In Exercise 2.2 you are asked to determine the corresponding values
of N . For example, the 20th of June is the 172nd day of the year 2020. Counting
from zero, we thus expect the maximum of the declination δ� = ε0 (first solstice) for
N = 171. Let us see if this is consistent with the approximation (2.1). The following
Python code computes the declination δ� based on this formula for a given value of N :

1 import math
2
3 N = 171 # day of 1st solstice
4 omega = 2*math.pi/365.24 # angular velocity in rad/day
5 ecl = math.radians(23.44) # obliquity of the ecliptic
6
7 # approximate expression for declination of the Sun
8 delta = -math.asin(math.sin(ecl)*math.cos(omega*(N+10)))
9 print("declination = {:.2f} deg".format(math.degrees(delta)))

The result

declination = 23.43 deg

is close to the expected value of 23.44◦. To implement Eq. (2.1), we use the sine,
cosine, and arcsine functions from the math library. The arguments of these
functions must be specified in radians. While the angular velocity is simply given
by 2π/365.24 rad/d (see line 4), ε0 is converted into radians with the help of
math.radians() in line 5. Both values are assigned to variables, which allows
us to reuse them in subsequent parts of the program. Since the inverse function
math.asin() returns an angle in radians, we need to convert delta into degrees
when printing the result in line 9 (‘deg’ is short for degrees).

To calculate the declination for the second solstice and also for the equinoxes,
we need to evaluate the code in line 8 for the corresponding values of N . If you
put the code listed above into a Python script, you can change the value assigned to
the variable N and simply re-run the script. While this is certainly doable for a few
different values, it would become too tedious for many values (we will get to that
soon enough). Ideally, we would like to compute the Sun’s declination for several

4The angular velocity in radians per unit time appears as factor 2π/P in Eq. (1.1).

22 2 Computing and Displaying Data

days at once. This can be done by using data structures know as arrays. An array is
an ordered collection of data elements of the same type. Here is as an example:

10 import numpy as np
11

12 # equinoxes and solstices in 2020
13 N = np.array([79, 171, 265, 355])

In contrast to other programming languages, arrays are not native to Python. They
are defined in the module numpy (the library name is also written as NumPy, see
www.numpy.org), which is imported under the alias np in line 10. The function
np.array() takes a list of values in brackets and, if possible, creates an array
with these values as elements. Like an array, a list is also an ordered collection
of data elements. In this book, we will rarely make use of lists (see, for example,
Sect. 5.5). They are more flexible than NumPy arrays, but flexibility comes at the
cost of efficiency. This is demonstrated in more detail in Appendix B.1. On top
of that, NumPy offers a large toolbox of numerical methods which are specifically
implemented to work with arrays.5 The array returned by np.array() is assigned
to the variable N (mark the difference between single value versus array in lines 3
and 13, respectively). Its main properties can be displayed by the following print
statements:

14 print(N)
15 print(N.size)
16 print(N.dtype)

which produces the output

[79 171 265 355]

4

int64

From this we see that N has four elements (the number of elements is obtained with
the .size attribute), which are the integers 79, 171, 256, and 355. The data type
can be displayed with the .dtype attribute (by default, 64-bit integers are used for
literals without decimal point).

How can we work with the values in an array? For example, N[0] refers to the
first element of the array, which is the number 79. Referring to a single element of
an array via an integer in brackets, which specifies the position of the element in the
array, is called indexing. The first element has index 0, the second element index 1
and so on (remember, this is Python’s way of counting). You can also index elements
from the end of the array. The last element has index −1, the element before the last
one has index −2, etc. So, for the array defined above,

17 print(N[1])
18 print(N[-3])

5See also [1] for a comprehensive introduction to arrays.

http://www.numpy.org/

2.1 Spherical Astronomy 23

outputs

171

171

Do you see why the value 171 is printed in both cases? Vary the indices and see for
yourself what you get. Before proceeding, let us summarize the defining properties
of an array:

Every element of an array must have the same data type. Each element is
identified by its index.

Having defined N as an array, we could calculate the declination of the Sun on day
171 (the first solstice) by copying the code from line 8 and replacing N by N[1]in the
expression for delta. Of course, this would not bring us any closer to calculating
the declination of the Sun for all four days at once. With NumPy, it can be done as
follows.

19 delta = -np.arcsin(math.sin(ecl) * np.cos(omega*(N+10)))
20 print(np.degrees(delta))

In short, the expression in line 19 is evaluated for each element of the array N and
the results are stored in a new array that is assigned to delta. The four elements of
delta are the values of the declination for the two equinoxes and solstices:

[-0.9055077 23.43035419 -0.41950731 -23.43978827]

Not perfect (the declination at equinoxes should be zero), but reasonably close. We
use only an approximate formula after all.

To get a better idea of how the code in line 19 works, we expand it into several
steps and use a temporary array calledtmp for intermediate results of the calculation:

21 # add 10 to each element of N
22 tmp = N+10
23 print(tmp)
24 print(tmp.dtype)
25
26 # multipy by omega
27 tmp = omega*tmp
28 print(tmp)
29 print(tmp.dtype)
30
31 # calculate the cosine of each element in the resulting array
32 # and multipy with the sine of the obliquity
33 tmp = math.sin(ecl)*np.cos(tmp)

24 2 Computing and Displaying Data

34 print(tmp)
35
36 # calculate the negative arcsine of each element
37 delta = -np.arcsin(tmp)
38 print(np.degrees(delta))

As you can see, it is possible to perform arithmetic operations on arrays. For
operators such as + and *, the operands must be (see also Fig. 2.2)

• either an array and a single number,
• or two arrays of identical shape (for arrays with only one index this amounts to
the same number of elements).

For example, wemake use of the first option in line 22, where the number 10 is added
to each element of the array N. The resulting integers are assigned element-wise to
the array tmp:

[89 181 275 365]

int64

The next step is an element-wisemultiplicationwithomega (Earth’s angular velocity
defined in line 4). Since the value of omega is a floating point number, the tmp array
is automatically converted from data type integer to float:

[1.53105764 3.11372396 4.73079608 6.27905661]

float64

Now we have the angular positions of Earth on its orbit, from which the vertical
distances of the Sun from the celestial equator can be computed. In line 33, the
NumPy function np.cos() is used to compute the cosine of each value in the tmp
array, while math.sin() can take only a single-valued argument, which is ecl
(the obliquity of the ecliptic). The product is

[0.01580343 -0.39763404 0.00732172 0.39778512]

and, after computing the arcsine of each element with np.arcsin, we finally get
the declinations:

[-0.9055077 23.43035419 -0.41950731 -23.43978827]

While doing things step by step is helpful for beginners, combining all these steps
into the single statement shown in line 19 is extremely useful for themore experienced
programmer. Startingwith the code for a single day (see line 8), the onlymodification
that has to be made is that the mathmodule has to be replaced by numpy whenever
the argument of a function is an array. However, there is small pitfall. By comparing
the code examples carefully, you might notice that the identifiers for the arcsine
function read math.asin() and np.arcsin() in lines 8 and 19, respectively.

2.1 Spherical Astronomy 25

a[0]

a[1]

a[2]

a[n-1]

..
.

=

=

=

=

b[0]

b[1]

b[2]

b[n-1]

..
.

+

+

+

+

c

c

c

c

array array number

a[0]

a[1]

a[2]

a[n-1]

..
.

=

=

=

=

b[0]

b[1]

b[2]

b[n-1]

..
.

+

+

+

+

c[0]

c[1]

c[2]

c[n-1]

..
.

array array array
a b c= +

= + = +
a b c= +

Fig. 2.2 Illustration of basic NumPy operations. Adding a number (variable) to an array, means
that the same number is added to each element in the array (left). If two arrays of size n are added,
the operator + is applied element-wise (right)

A likely mistake is to replace math.asin() by np.asin(), which would cause
Python to throw the following error message:

AttributeError: module ’numpy’ has no attribute ’asin’

Sincemath andnumpy are independentmodules, you cannot expect that the naming
of mathematical functions is always consistent.

Printing an array, results in all elements of the array being displayed in some
default format. Now, suppose we want to format the elements nicely as we did at the
beginning of this section before introducing arrays. Formatted printing of a particular
element of an array is of course possible by indexing the element. For example,

39 print("declination = {:.2f} deg".
40 format(math.degrees(delta[1])))

produces the same output as line 9 (where delta is a simple variable):

declination = 23.43 deg

To display all elements in a formatted table, we need to loop through the array.
Actually, we have already worked with such loops, for example, in line 19. Loops of
this type are called implicit. The following example shows an explicit for loop:

41 for val in delta:
42 print("declination = {:6.2f} deg".
43 format(math.degrees(val)))

The loop starts with the first element in the array delta, assigns its value to the
variable val, which is the loop variable (similar to the loop counter introduced in
Sect. 1.3), and then executes the loop body. The loop in the example above encom-
passes only a single print statement. After executing this statement, the loop contin-
ues with the next element and so on until the end of the array (the highest index) is
reached:

26 2 Computing and Displaying Data

declination = -0.91 deg

declination = 23.43 deg

declination = -0.42 deg

declination = -23.44 deg

However, the output is not really satisfactory yet. While repeatedly printing
declination is redundant, important information for understanding the data is
missing. In particular, the days to which these values refer are not specified. A bet-
ter way of printing related data in arrays is, of course, a table. In order to print the
days and the corresponding declinations, we need to simultaneously iterate through
the elements of N and delta. One solution is to define a counter with the help of
Python’s enumerate() function:

44 print("i day delta [deg]")
45 for i,val in enumerate(delta):
46 print("{1:d} {2:3d} {0:8.2f}".\
47 format(math.degrees(val),i,N[i]))

Compared to the for loops discussed in Sect. 1.3, the range of the counter i is
implicitly given by the size of an array: It counts through all elements of delta
and, at the same time, enables us to reference the elements of N sequentially in the
loop body. Execution of the loop produces the following table:

i day delta [deg]

0 79 -0.91

1 171 23.43

2 265 -0.42

3 355 -23.44

Here, the arguments offormat() are explicitly ordered. The placeholder {1:d} in
line 46 indicates that the second argument (index 1 before the colon) is to be inserted
as integer at this position. The next placeholder refers to the third argument (index 2
before the colon) and the last one to the first argument. The format specifiers ensure
sufficient space between the columns of numbers (experiment with the settings). The
header with labels for the different columns is printed in line 44 (obviously, this has
to be done only once before the loop begins).

Surely, instead of enumerating delta, you could just as well enumerate N. Is
it possible to write a loop that simultaneously iterates both arrays without using
an explicit counter? Actually, this is the purpose of the zip() function, which
aggregates elements with the same index from two or more arrays of equal length.
In this case, the loop variable is a tuple containing one element from each array.
We will take a closer look at tuples below. All you need to know for the moment is
that the tuple row in the following code example contains one element of N and the
corresponding element of delta, forming one row of the table we want to print.
Tuple elements are indexed like array elements, so row[0] refers to the day and
row[1] to the declination for that day.

2.1 Spherical Astronomy 27

48 print("day delta [deg]")
49 for row in zip(N,delta):
50 print("{0:3d} {1:8.2f}".
51 format(row[0],math.degrees(row[1])))

Apart from the index column, we obtain the same output as above:

day delta [deg]

79 -0.91

171 23.43

265 -0.42

355 -23.44

If you replace lines 50–51 by the unformatted print statement print(row), you
will get:

(79, -0.01580409076383853)

(171, 0.40893682550286947)

(265, -0.007321783769611206)

(355, -0.4091014813515704)

While brackets are used for lists and arrays, tuples are enclosed by parentheses.
The most important difference is that tuples are immutable, i.e. it is not possible
to add, change or remove elements. For example, the tuples shown above are fixed
pairs of numbers, similar to coordinates (x, y) for points in a plane. Suppose you
want to change day 355 to 364. While it is possible to modify array N by setting
N[3] = 364, you are not allowed to assign a value to an individual element in a
tuple, such as row[0]. You can only overwrite the whole tuple by a new one (this
is what happens in the loop above).

2.1.2 Diurnal Arc

From the viewpoint of an observer on Earth, the apparent motion of an object on
the celestial sphere follows an arc above the horizon, which is called diurnal arc
(see Fig. 2.3). The time-dependent horizontal position of the object is measured by its
hour angle h. An hour angle of 24h corresponds to a full circle of 360◦ parallel to the
celestial equator (an example is the complete red circle in Fig. 2.3). For this reason,
h is can be equivalently expressed in degrees or radians. However, as we will see
below, an hour angle of 1h is not equivalent to a time difference of one solar hour. By
definition the hour angle is zero when the object reaches the highest altitude above
the horizon (see also Exercise 2.4 and Sect. 2.1.3). The hour angle corresponding to
the setting time, when the object just vanishes beneath the horizon, is given by6

6See [3, Sect. 2.6] if you are interested in how this equation comes about.

28 2 Computing and Displaying Data

ce
lst
ial
eq
ua
to
r

N S





W

E

celestial m
eridian

ce
les
tia
l p

ole

no
rth

cel
est

ial
po
le

so
uth

hset

hrise

Fig. 2.3 Diurnal arc of a star moving around the celestial sphere (thick red circle) in the horizontal
system (see Sect. 2.1.3) of an observer at latitude φ (the horizontal plane is shown in grey). Since the
equatorial plane is inclined by the angle 90◦ − φ against the horizontal plane, the upper culmination
of the star at the meridian is given by amax = 90◦ − φ + δ, where δ is the declination. In the co-
rotating system, the star rises at hour angle hrise, reaches its highest altitude when it crosses the
meridian at h = 0, and sets at the horizon at hset = −hrise

cos hset = − tan δ tan φ , (2.2)

where δ is the declination of the object (see Sect. 2.1) and φ the latitude of the
observer’s position on Earth. As a consequence, the variable T = 2hset measures the
so-called sidereal time for which the object is in principle visible on the sky (stars
are of course outshined by the Sun during daytime). It is also known as length of the
diurnal arc.

For example, let us consider the star Betelgeuse in the constellation of Orion.
It is a red giant that is among the brightest stars on the sky. Its declination can be
readily found with the help of astropy.coordinates, which offers a function
that searches the name of an object in online databases:

1 from astropy.coordinates import SkyCoord, EarthLocation
2

3 betelgeuse = SkyCoord.from_name(’Betelgeuse’)
4 print(betelgeuse)

When you are confronted with the output for the first time, it might require a little
bit of deciphering:

<SkyCoord (ICRS): (ra, dec) in deg

(88.79293899, 7.407064)>

2.1 Spherical Astronomy 29

This tells us that the right ascension (ra) and declination (dec) of the object named
Betelgeuse were found to be 88.79◦ and 7.41◦, respectively.7 The variable
betelgeuse defined in line 3 represents not only an astronomical object; it is
a Python object, more specifically an object belonging to the class SkyCoord (see
Sect. 1.4 for objects in a nutshell). The attribute dec allows us to directly reference
the declination:

5 delta = betelgeuse.dec
6 print(delta)

The declination is conveniently printed in degrees (d), arc minutes (m) and arc sec-
onds (s), which is the preferred format to express angular coordinates in astronomy:

7d24m25.4304s

i.e. δ ≈ +07◦ 24′ 25′′, where 1′ = (1/60)◦ and 1′′ = (1/60)′.
Suppose we want to determine the length of Betelgeuse’s diurnal arc as seen from

Hamburg Observatory (φ ≈ +53◦ 28′ 49′′). In addition to the star’s declination,
we need the position of the observer. The counterpart of SkyCoord for celestial
coordinates is EarthLocation (also imported in line 1), which allows us to set
the geographical latitude and longitude of a location on Earth:

7 import astropy.units as u
8
9 # geographical position of the observer
10 obs = EarthLocation(lat=53*u.deg+28*u.arcmin+49*u.arcsec,
11 lon=10*u.deg+14*u.arcmin+23*u.arcsec)
12
13 # get latitude
14 phi = obs.lat

In the expressions above,u.deg is equivalent to 1◦,u.arcmin is 1′, andu.arcsec
is 1′′. The units module from astropy implements rules to carry out computa-
tions in physical and astronomical unit systems. You will learn more about AstroPy
units in Sect. 3.1.1.

Next we compute h with the help of trigonometric functions from the math
module:

15 import math
16
17 h = math.acos(-math.tan(delta.radian) * math.tan(phi.radian))

It is necessary to convert the angles δ and φ to radians before applying the tangent
function math.tan(). With Astropy coordinates, all we need to do is to use the
radian attribute of an angle.8 To obtain T in hours, it is important to keep in mind

7ICRS means International Celestial Reference System.
8You could also work with the SkyCoord object defined in line 3 and use
betelgeuse.dec.radian as argument of math.tan(). betelgeuse.dec is an
Angle object. So there are objects within objects. However, the function math.radians() for
converting from degrees to radians is not compatible with Angle objects.

30 2 Computing and Displaying Data

that an angle of 360◦ (one full rotation of Earth) corresponds to a sidereal day,
which is about 4 min shorter than a solar day. As explained in [3, Sect. 2.13], this
is a consequence of the orbital motion of Earth. The conversion is made easy by the
units module (see also Exercise 2.5 for a poor man’s calculation):

18 T = (math.degrees(2*h)/360)*u.sday
19 print("T = {:.2f}".format(T.to(u.h)))

First T is defined in sidereal days (u.sday), which is equivalent to 24h or 360◦.
Then we convert to solar hours (u.h) by applying the method to() in line 19. The
result is

T = 13.31 h

If it were not for the Sun, Betelgeuse could be seen 13h at theObservatory. Of course,
the star will be visible only during the overlap between this period and the night,
which depends on the date. We will return to this question in the following section.

The diurnal arc of the Sun plays a central role in our daily life, as it determines the
period of daylight. In Sect. 2.1.1, we introduced an approximation for the declination
δ� of the Sun. By substituting the expression (2.1) for δ� into Eq. (2.2), we can
compute how the day length varies over the year. First we need to compute δ� for N
ranging from 0 to 364. Using NumPy, this is very easy. In the following example, the
expression np.arange(365) fills an array with the sequence of integers starting
from 0 up to the largest number smaller than 365, which is 364.9 Apart from that, the
code works analogous to the NumPy-based computation for equinoxes and solstices
in Sect. 2.1.1. Since a new task begins here, the line numbering is reset to 1, although
we make use of previous assignments (an example is the latitude phi). In other
words, you would need to add pieces from above to make the following code work
as an autonomous program (you might want to try this).

1 import numpy as np
2
3 N = np.arange(365) # array with elements 0,1,2,...,364
4 omega = 2*math.pi/365.24 # Earth’s angular velocity in rad/day
5 ecl = math.radians(23.44) # obliquity of the ecliptic
6
7 # calculate declination of the Sun for all days of the year
8 delta = -np.arcsin(math.sin(ecl) * np.cos(omega*(N+10)))

Now we can compute the day length T for all values in the array delta using
functions from the numpymodule (compare to the code example for Betelgeuse and
check which changes have been made):

9Just like range() in for loops, the general form is np.arange(start, stop, step),
where a start value different from 0 and a step other than 1 can be specified as optional arguments.

2.1 Spherical Astronomy 31

9 # calculate day length in solar hours
10 h = np.arccos(-np.tan(delta) * math.tan(phi.radian))
11 T = (np.degrees(2*h)/360) * u.sday.to(u.h)

Here, phi is still the latitude of Hamburg Observatory defined above. Of course, T
is now an array with 365 elements. Since we want the day length in solar hours, we
multiply right away with u.sday.to(u.h), which is the length of a sidereal day
in solar hours.

When dealing with large data sets (i.e. more than a few values), it is most of the
time preferable to extract some statistics or to display the data in graphical form. To
show the annual variation of the day length, producing a plot of T versus N is the
obvious thing to do. The Python library matplotlib (see matplotlib.org) provides
a module called pyplot for plotting data in arrays:

12 import matplotlib.pyplot as plt
13 %matplotlib inline
14

15 plt.plot(N, T)
16 plt.xlabel("Day")
17 plt.ylabel("Day length [hr]")
18 plt.savefig("day_length.pdf")

The function plt.plot(), where plt is a commonly used alias for
matplotlib.pyplot, produces a plot showing data points (x, y) given by the
arrays N (x axis) and T (y axis). By default, the points are joined by lines to produce a
continuous graph. Axes labels are added in lines 16 and 17. The plot is then saved to
a file called day_length.pdf in PDF format. The location of the file depends on
the directory in which you started your Python session. You can specify full path if
you want to store the plot somewhere else). You can also use other graphics formats,
such as PNG or JPG, by specifying the corresponding extension in the filename (e.g.
day_length.png).10 In line 13, you can see a so-called magic command (indi-
cated by % at the beginning of the line). It enables inline viewing of plots in IPython
and Jupyter notebooks.11

The graph can be seen as solid line in Fig. 2.4 (the dot-dashed line will be added
below). As expected, the day length is short in January, reaches a maximum at the
first solstice (N = 171) and then decreases until the second solstice is reached at
N = 355. The minimal and maximal day length can be inferred with the help of
min() and max() methods for NumPy arrays12:

19 print("Minimum day length = {:5.2f} h".format(T.min()))
20 print("Maximum day length = {:5.2f} h".format(T.max()))

10PDF has the advantage of containing the plot as a vector graphics: The number of pixels is not
fixed and, as a result, lines and fonts appear smooth evenwhen viewed at higher graphical resolution.
11Depending on your Python environment, it might be necessary to add the line plt.show() at
the bottom.
12Functions such as np.arange() or np.tan() are called with an array as argument, whereas
min() and max() are methods called on a specific object (here, the array T).

https://matplotlib.org/

32 2 Computing and Displaying Data

Fig. 2.4 Annual variation of the day length in Hamburg following from an approximate Eq. (2.1)
for the declination of the Sun

We get

Minimum day length = 7.20 h

Maximum day length = 16.73 h

The difference between minimal and maximal day length increases with latitude.
Beyond the polar circles (φ = ±66◦ 33′), the day length varies between 0 and 24h.
An example is Longyearbyen located at φ = +78◦ 13′ on the Norwegian island
Spitsbergen in the far North. As we only need to know φ within an arc minute
(accuracy is limited by the approximate declination anyway), a full specification of
the geographical position using EarthLocation would rather overdo it. Instead
we simply use 1′ = (1/60)◦ and immediately convert into radians:

21 phi = math.radians(78+13/60) # latitude of Longyearbyen
22

23 h = np.arccos(-np.tan(delta)*math.tan(phi))
24 T = (np.degrees(2*h)/360) * u.sday.to(u.h)

When you execute this code, you will get a

RuntimeWarning: invalid value encountered in arccos

It turns out that Python is able to handle this, but we should nevertheless try to
understand what is wrong here. Remember that the range of the declination of the
Sun is −ε0 ≤ δ� ≤ ε0. Considering Eq. (2.2), you can convince yourself that the
right-hand side becomes smaller than −1 or greater than 1 if |φ| ≥ 90◦ − ε0, i.e. if
the location is in the polar regions. In this case, Eq. (2.2) has no solution because

2.1 Spherical Astronomy 33

the arccosine is undefined if the absolute value of its argument is greater than unity.
This corresponds to the polar night or polar day during which the Sun never rises or
sets. This can be fixed by setting cos hset equal to ±1 whenever the right-hand side
of Eq. (2.2) falls outside of the interval [−1, 1]. Using Numpy, this is easily achieved
by means of the np.clip() function:

24 tmp = np.clip(-np.tan(delta)*math.tan(phi), -1.0, 1.0)
25 h = np.arccos(tmp)
26 T = (np.degrees(2*h)/360) * u.sday.to(u.h)

Assigning the clipped right-hand side of Eq. (2.2) to a temporary array is only
intended to highlight this step. We leave it as a little exercise for you to combine
lines 24 and 25 into a single line of code and to produce and view the resulting graph
for the day length. As expected, you will find that people on Longyearbyen have to
cope with a polar night (all day dark) during winter, and a polar day lasting 24h in
summer.

Having computed the day length for Hamburg and Longyearbyen, it would be
instructive to compare the graphs in a single plot. Obviously, we need the data for
both locations at the same time, but in the example above the data for Hamburg
were overwritten by the computation for Longyearbyen. A straightforward way of
resolving this problem would be to use differently named array, but in Python there
is a more elegant and convenient alternative. Apart from arrays in which items
are referenced by index, data can be collected in a Python dictionary. Similar to a
dictionary in the conventional sense, data items in a dictionary are referenced by
keywords rather than a numerical index. The data items of the dictionary can be just
anything, including arrays. Let us set up a dictionary associating locations with their
latitudes:

27 phi = { ’Hamburg’ : obs.lat.radian,
28 ’Longyearbyen’ : math.radians(78 + 13/60) }

In Python, a dictionary is defined by pairs of keywords and items enclosed in curly
braces. Each keyword, which has to be a string (e.g. ’Hamburg’), is separated
by a colon from the corresponding item (the expression obs.lat.radian in the
case of Hamburg) followed by a comma. How are individual items accessed? For
example,

29 print(phi[’Hamburg’])

prints the the latitude of Hamburg in radians. The syntax is similar to accessing
array elements, except for the key word instead of an index. Adding new items to a
dictionary is very easy. For example, the following assignments add New York and
Bangkok to our dictionary:

30 phi[’New York’] = math.radians(40 + 43/60)
31 phi[’Bangkok’] = math.radians(13 + 45/60)

Indeed, the dictionary now has four items, which can be checked by printing
len(phi).

34 2 Computing and Displaying Data

The following code prints all items, computes the day length for each location,
and combines them in a single plot:

32 for key in phi:
33 print(key + ": {:.2f} deg".format(math.degrees(phi[key])))
34
35 h = np.arccos(np.clip(-np.tan(delta)*math.tan(phi[key]),
36 -1.0, 1.0))
37 T = (np.degrees(2*h)/360) * u.sday.to(u.h)
38
39 plt.plot(N, T, label=key)
40
41 plt.xlabel("Day")
42 plt.xlim(0,364)
43 plt.ylabel("Day length [hr]")
44 plt.ylim(0,24)
45 plt.legend(loc=’upper right’)
46 plt.savefig("daylength.pdf")

The graphical output for the places

Hamburg: 53.48 deg

Longyearbyen: 78.22 deg

New York: 40.72 deg

Bangkok: 13.75 deg

can be seen in Fig. 2.5. As expected, the day length in Longyearbyen varies between
0 and 24 h, while people in Bangkok, which is in the tropics, experience a day length
around 12 h over the whole year. The day length in the temperate zones increases by
several hours from winter to summer.

Fig. 2.5 Annual variation of the day length at different places in the world

2.1 Spherical Astronomy 35

To understand how this output is produced, let us go through the code step by
step:

1. The code begins with afor loop iterating the dictionaryphi. At first glance, this
looks exactly like a loop through an array (see Sect. 2.1.1). However, there is an
important difference. When iterating an array, the loop variable runs through the
elements of the array. In contrast, the loop variable key runs through keywords,
not the dictionary items themselves. Since the keyword is the analogue of the
index, this loop resembles more an enumeration. The items are referenced by
phi[key] in the loop body.

2. In line 33, the + operator concatenates two strings. The first string is a keyword,
i.e. the name of a location, the second string is a formatted latitude.

3. Lines 35 to 37 correspond to lines 24–26 with the noticeable difference that
phi[key] instead of phi refers to a particular latitude.

4. The last statement in the loop body (line 39) adds the graph for the current array
T, which changes with each iteration, to the plot. This means that plt.plot()
called inside a loop does not produce several plots, but accumulates graphs within
a single plot. The optional argument label=key sets the graph’s label to the
keyword. The labels are used in the legend of the plot (see below).

5. Once the loop is finished, the plot is configured by the statements in lines 41–45:
Axes are labeled, their range is limited by plt.xlim() and plt.ylim(),
and labels for the different graphs are shown in a legend in the upper right corner
of the plot.

6. Finally, the plot is saved to a PDF file. This will overwrite the previously saved
file, unless you choose a different file name.

If you are unsure about any of the steps explained above, make changes to the code
and see for yourself what happens and whether it meets your expectations.

2.1.3 Observation of Celestial Objects

While it is important to be able to specify the positions of celestial objects in a
coordinate system that is independent of time and the observer’s location, at the
end of the day you want to know where on the sky you can find the object. To that
end, the so-called horizontal coordinate system is used, which is based on an imag-
inary plane that is oriented tangential to the surface of Earth at the location of the
observer. The angular position measured in normal direction from the horizon is the
altitude a, and the angular separation from some reference direction (usually, the
North direction) parallel to the horizon is the azimuth of the object.13 This is why
the horizontal system also goes under the name of alt-azimuth system. The module
astropy.coordinates offers a powerful framework for working with celestial

13The azimuth measured from North corresponds to the compass direction.

36 2 Computing and Displaying Data

coordinates (for more information, see docs.astropy.org/en/stable/coordinates). Sim-
ilar to SkyCoord for coordinates in the equatorial system, the alt-azimuth system
is represented by the class AltAz. In this section, we will utilize AltAz to infer
the time of observability of the star Betelgeuse. In the course of doing so, we will
touch upon some advanced aspects of Python. If you find it too complicated at this
point, you can skip over this section and return later if you like.

To begin with, we define once more the position of the observer (see also
Sect. 2.1.2). You are invited to adjust all settings to your own location and time.

1 import astropy.units as u
2 from astropy.coordinates import \
3 SkyCoord, EarthLocation, AltAz, get_sun
4
5 # geographical position of the observer
6 obs = EarthLocation(lat=53*u.deg+28*u.arcmin+49*u.arcsec,
7 lon=10*u.deg+14*u.arcmin+23*u.arcsec)
8
9 # get latitude
10 phi = obs.lat

Astropy also has a module to define time in different formats.14 By default, Time()
sets the coordinated universal time (UTC).15 To define, for example, noon in the
CEST time zone (two hours ahead of UTC) on July 31st, 2020, we shift the time by
an offset of two hours:

11 from astropy.time import Time
12

13 utc_shift = 2*u.hour # CEST time zone (+2h)
14

15 noon_cest = Time("2020-07-31 12:00:00") - utc_shift

Printing noon_cest shows the UTC time corresponding to 12am CEST. The shift
to UTC is necessary because AltAz expects UTC time.

With time and location, we can define our horizontal coordinate system. We want
to follow the star’s position over a full 24h period and determine the time window
for observation during night. Since altitude and azimuth are time dependent, we
need to create a sequence of frames covering a whole day (frame is synonymous to
coordinate system):

16 import numpy as np
17

18 # time array covering next 24 hours in steps of 5 min
19 elapsed = np.arange(0, 24*60, 5)*u.min
20 time = noon_cest + elapsed
21

14See docs.astropy.org/en/stable/time.
15The coordinated universal time (UTC) is an international standard for time. It is close (within a
second) to the universal time that is related to Earth’s rotation relative to distant celestial objects.

https://docs.astropy.org/en/stable/coordinates/
https://docs.astropy.org/en/stable/time/

2.1 Spherical Astronomy 37

22 # sequence of horizontal frames
23 frame_local_24h = AltAz(obstime=time, location=obs)

In lines 19–20, a time sequence is created, starting from noon (CEST) in steps of
five minutes covering an interval of 24h. Let us look at this in more detail. First
np.arange() creates an array of numbers (0, 5, 10, . . .). Calling

type(np.arange(0, 24*60, 5))

informs us that the type of the object returned by np.arange() is

numpy.ndarray

What is the type of an object? It is just the class to which the object belongs.
Do not confuse this with the data type of the array (i.e. the type of its elements;
see Sect. 2.1.1). As we shall see, the initially created NumPy array undergoes quite
a metamorphosis. To define the time elapsed since noon in minutes, the array is
multiplied with u.min. While multiplication with a number does not affect the
type,

type(elapsed)

returns

astropy.units.quantity.Quantity

As mentioned in Sect. 1.4, quantities with units are instances of the Quantity
class, which is defined in the submodule astropy.units.quantity. On the
other hand, when printing elapsed, you will probably conclude that it pretty much
looks like an array. Can we confirm this? The function isinstance() tells you if
something belongs to a certain class (this is what instance means). While an object
is of course an instance of the class defining its type,16 it can also belong to other
classes. Indeed,

isinstance(elapsed, np.ndarray)

yields True, i.e. elapsed is an array of sorts. Astropy supports arrays with units,
which are a subclass of NumPy arrays. A subclass can extend attributes andmethods
of an existing base class, here numpy.ndarray. This is known as inheritance.

Now you might guess that time is also an array, created by adding a fixed value
to the elements of elapsed (see line 20). But no,

isinstance(time, np.ndarray)

returns

16You can check this with isinstance(elapsed, u.quantity.Quantity). It is impor-
tant to correctly reference the class in your namespace. Sincewe importedastropy.units using
the alias u, we need to use the name u.quantity.Quantity. However, the function type()
always returns the class in the generic module namespace.

38 2 Computing and Displaying Data

False

Without going into too much detail, time has some array-like features, but it is not
derived from NumPy. And it has its own way of treating units (basically, it replaces
the notion of units by time formats). In general, it cannot be used in place of an array,
such as elapsed. The reason we need it is to create frames by means of AltAz()
(see line 23).

After this little detour to classes and inheritance, we retrieve Betelgeuse’s coordi-
nates as shown in Sect. 2.1.2 and then transform it to the observer’s horizontal frame
for the times listed in time.

28 # star we want to observe
29 betelgeuse = SkyCoord.from_name(’Betelgeuse’)
30
31 betelgeuse_local = betelgeuse.transform_to(frame_local_24h)

The method transform_to() turns the declination and right ascension of the
star into altitudes and azimuths for the time sequence of frames defined in line 23
above.Modern telescopes are controlled by software,making it relatively easy for the
observer to direct a telescope to a specific celestial object. Basically, the software uses
something like Astropy’s transform_to() andmoves the telescope accordingly.
Historical instruments, such as the 1 m reflector shown in Fig. 2.6, are a different
matter. They are operated manually and the observer needs to know the position of
an object on the sky.

To determine the phases of daylight, we need to determine the Sun’s position in
the same frames. Since the position of the Sun changes not only in the horizontal,
but also in the equatorial coordinate system, Astropy offers a special function for the
Sun:

32 # time-dependent coordinates of the Sun in equatorial system
33 sun = get_sun(time)
34
35 sun_local = sun.transform_to(frame_local_24h)

This completes the preparation of the data.
Now let us plot the altitude of Betelgeuse and the Sun for the chosen time interval

and location:

36 import matplotlib.pyplot as plt
37 %matplotlib inline
38

39 elapsed_night = elapsed[np.where(sun_local.alt < 0)]
40 betelgeuse_night = \
41 betelgeuse_local.alt[np.where(sun_local.alt < 0)]
42

43 plt.plot(elapsed.to(u.h), sun_local.alt,
44 color=’orange’, label=’Sun’)
45 plt.plot(elapsed.to(u.h), betelgeuse_local.alt,
46 color=’red’, linestyle=’:’,

2.1 Spherical Astronomy 39

Fig. 2.6 Hamburg Observatory’s 1 m reflector. When the instrument was commissioned in 1911, it
was the fourth largest reflector worldwide. In the first half of the 20th century, the astronomerWalter
Baade used the telescope to observe a great number of star clusters, gas nebulae, and galaxies. For
further information, see www.physik.uni-hamburg.de/en/hs/outreach/historical/instruments.html
(Image credit: Markus Tiemann, Martiem Fotografie)

47 label=’Betelgeuse (daylight)’)
48 plt.plot(elapsed_night.to(u.h), betelgeuse_night,
49 color=’red’, label=’Betelgeuse (night)’)
50

51 plt.xlabel(’Time from noon [h]’)
52 plt.xlim(0, 24)
53 plt.xticks(np.arange(13)*2)
54 plt.ylim(0, 60)
55 plt.ylabel(’Altitude [deg]’)
56 plt.legend(loc=’upper center’)
57 plt.savefig("Betelgeuse_obs_window.pdf")

Let us begin with the plot statement in lines 43–44. We plot the altitude of the Sun
(sun_local.alt) as a function of the time elapsed since noon in hours. Rather
than using default colors, we set the line color to orange (color=’orange’).
The graph for the altitude of Betelgeuse has two components. We use a dotted line
(linestyle=’:’) in red to plot the altitude over the full 24 hour interval (lines
45–47). Since the star is only observable during night, the dotted line is overplotted
by a solid line for those times where the altitude of the Sun is negative, i.e. below
the horizon—that is basically the definition of night. How do we do that? You find
the answer in lines 39–41, where the expression

https://www.physik.uni-hamburg.de/en/hs/outreach/historical/instruments.html

40 2 Computing and Displaying Data

Fig. 2.7 Altitude of the Sun and the star Betelgeuse as seen from Hamburg Observatory on July
31st, 2020

np.where(sun_local.alt < 0)

appears like an index in brackets. The function np.where() identifies those ele-
ments of sun_local.alt which are less than zero and returns their indices
(remember that array elements are identified by their indices). These indices in turn
can be applied to select the corresponding elements in elapsed and
betelgeuse_local.alt, producing masked arrays. This is equivalent
to looping through the arrays, where any element elapsed[i] and
betelgeuse_local.alt[i] for which sun_local.alt[i] is not
smaller than zero (Sun above the horizon) is removed. In Exercise 2.4, you will
learn how np.where() can be utilized to choose between elements of two arrays
depending on a condition. This can be regarded as the array version of branching.

The result can be seen in Fig. 2.7. Since objects with negative altitude are invisible
for the observer, only positive values are shown (see line 54).Moreover, the tick labels
for time axis are explicitly set with plt.xticks() in line 53. Night is roughly
between 9 pm and 6 am (18h counted from noon on the previous day).17 Betelgeuse
rises around 4 o’clock in the morning and there only two hours left before sunrise.
This is the interval for which the solid red line plotted in lines 48–49 is visible in
the plot. Actually, the observation window is even narrower. Dawn is rather long
at a latitude of 53◦. The period of complete darkness, the so-called astronomical
night, is defined by δ� ≤ −18◦. Although Betelgeuse is a very bright star, Hamburg
is definitely not the optimal place to observe the star in summer (see Exercise 2.7).

17You might be surprised that the Sun does not reach its highest altitude at noon. One obvious
reason is that summer time shifts noon (12 pm) by one hour. Moreover, depending on the longitude
of the observer, time zones are not perfectly aligned with the Sun’s culmination.

2.1 Spherical Astronomy 41

Exercises

2.1 Compute the Sun’s declination for the equinoxes and solstices using only
trigonometric functions from the math module in an explicit for loop. Print the
results and check if they agree with the values computed with NumPy in this section.
This exercise will help you understand what is behind an implicit loop.

2.2 The day count N in Eq. (2.1) can be calculated for a given date with the help
of the module datetime. For example, the day of the vernal equinox in the year
2020 is given by

vernal_equinox = datetime.date(2020, 3, 20) - \
datetime.date(2020, 1, 1)

Then vernal_equinox.days evaluates to 79. Define the array N (equinoxes
and solstices) using datetime.

2.3 A more accurate formula for the declination of the Sun takes the eccentricity
e = 0.0167 of Earth’s orbit into account18:

δ� = − arcsin

[
sin(ε0) cos

(
360◦

365.24
(N + 10) + e

360◦

π
sin

[
360◦

365.24
(N − 2)

])]

Compute the declination assuming a circular orbit (Eq. 2.1), the declination result-
ing from the above formula, the difference between these values, and the relative
deviation of the circular approximation in % for equinoxes and solstices and list
your results in a table. Make sure that an adequate number of digits is displayed to
compare the formulas.

2.4 The highest altitude amax (also know as upper culmination) of a star measured
from the horizontal plane19 of an observer on Earth is given by

amax =
{
90◦ − φ + δ if φ ≥ δ,

90◦ + φ − δ if φ ≤ δ,
(2.3)

where φ is the latitude of the observer and δ the declination of the star. Calculate
amax at your current location for the following stars: Polaris (δ = +89◦ 15′ 51′′),
Betelgeuse (δ= + 07◦ 24′ 25′′), Rigel (δ = −08◦ 12′ 15′′), and Sirius A (δ= −
16◦ 42′ 58′′). To distinguish the two cases in Eq. (2.3), use the where() function
from numpy. For example, the expression

np.where(phi <= delta, phi-delta, phi+delta)

18See en.wikipedia.org/wiki/Position_of_the_Sun#Calculations.
19The horizontal plane is tangential to Earth’s surface at the location of the observer, assuming that
the Earth is a perfect sphere.

https://en.wikipedia.org/wiki/Position_of_the_Sun#Calculations

42 2 Computing and Displaying Data

compares phi and delta element by element and returns an array with elements
of phi-delta where the condition phi <= delta is true and elements of
phi+delta where it is false. Print the results with the appropriate number of
significant digits together with the declinations.

2.5 A sidereal day is about 3min 56 s shorter than a solar day (24 h). Show that
this implies 1h ≈ 0.9973 h. How would you need to modify the definition of T in
Sect. 2.1.2 to make use of this factor without utilizing Astropy units?

2.6 Compute and plot the annual variation of the day length at your geographical
location using both the formula with eccentricity correction from Exercise 2.3 and
get_sun() from SkyCoord. How large is the deviation? How does your result
compare with other places shown in Fig. 2.5?

2.7 Determine the observation window for Betelgeuse at New Year’s Eve. Begin
with the location of Hamburg Observatory (see Sect. 2.1.3). How many hours is the
star observable during astronomical night, i.e. when the Sun is at least 18◦ below the
horizon? Change to your location and compute the altitudes of Polaris, Betelgeuse,
and Sirius A for the upcoming night. Produce plots similar to Fig. 2.4. Provided the
sky is clear, which stars would you be able to see?

2.2 Kepler’s Laws of Planetary Motion

The fundamental laws of planetary motion were first formulated by the astronomer
Johannes Kepler on the basis of empirical data in the early 17th century. Kepler
used the most accurate measurements of planetary positions available at that time.
Particularly for the planet Mars, he noticed that its apparent motion on the sky can
be explained by assuming that the planet follows an elliptical orbit around the Sun.
This was quite a revolutionary proposition, as the motion of planets was considered
to be circular (more precisely, a combination of circular motions in the Ptolemaic
system), with Earth residing at the centre of the Universe. Although the differences
were rather minute, Kepler concluded from his analysis that the planets move on
elliptical orbits, where the Sun is located in one focal point (first law) and, in modern
language, the area swept by the radial vector from the Sun to a planet is proportional
to the elapsed time (second law). Later he found a relation between the semi-major
axes (the line segment from the center through the focus to the perimeter of an ellipse)
and the orbital periods, which today is known as Kepler’s third law. Isaac Newton
found a theoretical explanation for Kepler’s laws of planetary motion by applying
his universal law of gravity and angular momentum conservation (see [4, Chap. 2]
for a detailed derivation and discussion). We will return to the first and second law
in Sect. 4.3, when numerical integration is applied to solve the equations of motion
for the two-body problem (Sun and planet).

The general formulation for the period P of a planet moving on an elliptical orbit
around a star reads

2.2 Kepler’s Laws of Planetary Motion 43

P2 = 4π2

G(M + m)
a3 , (2.4)

where a is the semi-major axis of the orbit, G the gravitational constant, M the
mass of the star, and m the mass of the planet. In Sect. 1.2, we used an approximate
expression (1.2), which is applicable if the planet’s mass is negligible, i.e. m � M ,
and the orbit is circular (in this case, a is equal to the radius r).

The following program computes the orbital period given by Eq. (2.4) for the
eight planets of the solar system. In fact, this is also an approximation because the
mutual influence of planets is neglected. In other words, Kepler’s third law assumes a
two-body system (the Sun and a single planet). It is more accurate than the test-mass
approximation (m = 0) though. The code compares the periods resulting from the
two-body and test-mass formulas.

1 import math
2 import numpy as np
3 from scipy.constants import year,hour,au,G
4 from astropy.constants import M_sun
5

6 M = M_sun.value # mass of the Sun in kg
7

8 # orbital parameters of planets
9 # see https://nssdc.gsfc.nasa.gov/planetary/factsheet/
10 # mass in kg
11 m = 1e24 * np.array([0.33011, 4.8675, 5.9723, 0.64171,
12 1898.19, 568.34, 86.813, 102.413])
13 # semi-major axis in m
14 a = 1e9 * np.array([57.9, 108.21, 149.60, 227.92,
15 778.57, 1433.53, 2872.46, 4495.06])
16

17 # use Kepler’s third law to calculate period in s
18 T_test_mass = 2*math.pi * (G*M)**(-1/2) * a**(3/2)
19 T_two_body = 2*math.pi * (G*(M + m))**(-1/2) * a**(3/2)
20

21 print("T [yr] dev [hr] dev rel.")
22 for val1,val2 in zip(T_test_mass,T_two_body):
23 dev = val1 - val2
24 if dev > hour:
25 line = "{0:6.2f} {1:<7.1f} {2:.1e}"
26 else:
27 line = "{0:6.2f} {1:7.4f} {2:.1e}"
28 print(line.format(val2/year, dev/hour, dev/val1))

We use scipy.constants for the gravitational constant G and the definition of
the mass of the Sun from astropy.constants (see Sect. 1.4). The masses of
the planets and the semi-major axis of their orbits around the Sun are taken from

44 2 Computing and Displaying Data

NASA’s website (see comment). Calculations in the program above are based on the
SI unit system. To express the results in years and astronomical units, we use unit
conversion factors from scipy.constants. This factors are just numbers. For
example, year is one year in seconds and au is one astronomical unit in meters. In
Sect. 3.1, youwill learn how touseAstropy’s unitmodule to carry out unit conversions
with the help of methods (a first taste was given in the previous section).

The orbital periods defined by Eq. (2.4) and the test-mass approximation, where
the planet mass is neglected, are computed in lines 18 and 19, respectively, using
array operations. The results are printed in the for loop in lines 22–28 (see Sect. 2.1
for an explanation of the zip() function), where the first column lists the periods
given byEq. (2.4), the second column the deviation from the test-mass approximation
in hr, and the third column the relative deviation:

T [yr] dev [hr] dev rel.

0.24 0.0002 8.3e-08

0.62 0.0066 1.2e-06

1.00 0.0132 1.5e-06

1.88 0.0027 1.6e-07

11.88 49.6 4.8e-04

29.68 37.2 1.4e-04

84.20 16.1 2.2e-05

164.82 37.2 2.6e-05

While Mercury revolves around the Sun four times a year, it takes Neptune well
above a century to complete its orbit. To print the period in years, we need to divide
the value computed in SI units (s) by the conversion factor year (see line 28). The
deviation from the test-mass approximation is larger for the outer planets (Jupiter,
Saturn, Uranus, and Neptune), as they are much more massive than the inner planets
(Mercury, Venus, Earth, and Mars). Nevertheless, the relative error of the orbital
period is small. To align the values in the second column at the decimal point, an
if-else clause is used to define the format of a line depending on whether the
absolute deviation is larger or smaller than one hour (hour is one hour in seconds).
The column width is 7 digits in both cases, but the values for the outer, more massive
planets are printedwith only one digit after the decimal point and shifted to the left by
inserting the character < in the format specifier in line 25 (experiment with different
formats to understand how they work).

Power laws, such as P ∝ a2/3, appear as straight lines with slope equal to the
exponent in a double-logarithmic diagram:

log P = 2

3
log a + const. (2.5)

We can plot our results in log-log scaling by applying the function loglog() from
the pyplot module:

2.2 Kepler’s Laws of Planetary Motion 45

Fig. 2.8 Orbital periods of the planets in the solar system computed with Kepler’s third law

29 import matplotlib.pyplot as plt
30 %matplotlib inline
31
32 plt.loglog(a/au, T_test_mass/year, ’blue’, linestyle=’--’,\
33 label=’test mass’)
34 plt.loglog(a/au, T_two_body/year, ’ro’, label=’planets’)
35 plt.legend(loc=’lower right’)
36 plt.xlabel("semi-major axis [AU]")
37 plt.ylabel("orbital period [yr]")
38 plt.savefig("kepler_third_law.pdf")

This graphical output is shown in Fig. 2.8. Plotting the period in hr versus the semi-
major axis in AU is simply a matter of dividing the arrays by the scipy unit conver-
sion factors hr (s to hr) and au (m to AU), respectively. The test-mass data, which
obey the power law exactly, are displayed as blue dashed line, while the elements
in T_two_body are plotted as red dots (‘ro’ is the short notation for red circle).20

The keyword color (see Sect. 2.1.3) can be omitted if it is the third argument after
the two data arrays that specifies the color of the graph. This type of argument is
called positional argument, as opposed to an argument identified by a keyword such
as linestyle. Different types of arguments will be covered in more detail in
Sect. 3.1.2, when you learn how to define functions in Python.

Exercises

2.8 In addition to the eight planets in the solar system, there are several dwarf
planets. Examples are Pluto (a = 39.48 AU), which was formerly considered as

20See https://matplotlib.org/stable/api/colors_api.html and
https://matplotlib.org/stable/api/markers_api.html for available colors and markers, respectively.

https://matplotlib.org/stable/api/colors_api.html
https://matplotlib.org/stable/api/markers_api.html

46 2 Computing and Displaying Data

ninth planet,21 Ceres (a = 2.7675 AU) in the asteroid belt, and the trans-Neptunian
object Eris (a = 67.781 AU). Compute the corresponding orbital periods (the mass
of the dwarf planets is negligible) and plot the results together with the orbital data
of the planets using different markers and an additional label in the legend for the
dwarf planets.

2.9 Since the discovery of the first exoplanets (extrasolar planets) in the mid-
nineties, many more have been identified. An important class are the so-called
hot Jupiters. These objects have high mass, but unlike the gas giants in the solar
system, they are much closer to their parent star. Typically, the orbital period of a hot
Jupiter is only a few days (compared to almost twelve years for Jupiter in the solar
system). Table 2.1 lists a sample of hot Jupiters discovered with the transient method.
The planet mass is often a lower bound, as it depends on the unknown inclination of
the orbit relative to the line of sight.

(a) Compute the semi-major axis a in AU for these exoplanets using the planet mass
m and the mass of the star M as parameters and plot the orbital period P versus
a and plot your results.

(b) You can use the NumPy function polyfit() to determine a linear fit to the
logarithmic data. Call polyfit() with the logarithm of P in days as first
argument (x-data), the logarithm of a in AU as second argument (y-data), and
degree of the polynomial function that is fitted to the data as third argument.
Here, the degree is 1 for a linear function y = c1x + c0. polyfit() returns
the fit parameters c0 and c1. Compare to the logarithmic formulation (2.5) of
Kepler’s third law. Why is the slope not exactly reproduced? Display the orbital
period following from the fit as a line in the plot from (a).

2.10 Imagine a manned spaceship is sent to Mars. Let us assume that the spaceship
follows a Hohmann transfer trajectory (see Fig. 2.9). This is the most energy saving
(i.e. requiring the least amount of propellant), albeit not the fastest option to reach
Mars. The trajectory is formed by one half of an elliptical orbit around the Sun
touching the orbits of Earth and Mars at its perihelion and aphelion, respectively.22

In basic calculations, the planetary orbits are assumed to be circular, with radii
r♁ = 1 AU (Earth) and r♂ = 1.524 AU (Mars). In this case, the radial distances
of the perihelion and aphelion are rp = r♁ and rp = r♂, respectively. After launch,
thrusters push the spaceship from Earth’s orbit to the transfer trajectory. Compute
the semi-major axis aH of the elliptical transfer orbit and the velocity difference
�v = vp − v♁, where vp is the velocity required to enter the orbit at perihelion and
v♁ is the orbital velocity of Earth. (Apply vis-viva Eq. (4.46) to compute vp; see also

21Pluto was degraded to a dwarf planet in 2006, after new criteria for the definition of a planet were
accepted by the International Astronomical Union. However, the debate whether Pluto is a planet
or not has gained momentum again, particularly after the New Horizons space mission delivered
fascinating images of this icy world at the outskirts of the solar system.
22The term orbit usually refers to a special kind of trajectory, namely the path of periodic motion
around a gravitational center.

https://solarsystem.nasa.gov/missions/new-horizons/in-depth/

2.2 Kepler’s Laws of Planetary Motion 47

Table 2.1 List of orbital and stellar parameters for a sample of hot Jupiters from exoplanets.org.
The name of the exoplanet is derived from a stellar catalogue or from the discovering instrument
(the letter ‘b’ always indicates the first exoplanet in the system of the parent star), P is the orbital
period in days, and m its mass in units of the Jupiter mass, MJ = 1.898 × 1027 kg. The mass M of
the parent star is specified in units of the solar mass (M� = 1.988 × 1030 kg)

Exoplanet P/day m/MJ M/M�
CoRoT-3 ba 4.257 22 1.37

Kepler-14 b 6.790 8.4 1.51

Kepler-412 b 1.721 0.94 1.17

HD 285507 b 6.088 0.92 0.73

WASP-10 b 3.093 3.19 0.79

WASP-88 b 4.954 0.56 1.45

WASP-114 b 1.549 1.77 1.29
aWith a mass larger than 13MJ, CoRoT-3 b is a brown dwarf

Fig. 2.9 Schematic view of
a Hohmann transfer
trajectory (solid black) from
the Earth orbit (blue) to the
Mars orbit (red). The
perihelion and aphelion
velocity at the vertex points
are vp and va, respectively.
The positions of the planets
at launch time are indicated
by E and M, the final position
by M ′. The angle δ is the
initial angular separation of
Earth and Mars and �ϕ is
the angle swept by Mars over
the transfer time tH



vpE M

M´va



[4, Chap. 2] for important equations and relations.) How long is the transit time tH to
the orbit of Mars? Which condition for the angular separation δ of Earth and Mars
(i.e. the angle between the position vectors r♁ and r♂) at launch time must be met
for the spaceship to actually rondezvous with Mars at aphelion (assuming that Mars
moves on a circular orbit)?

2.3 Tidal Forces

The orbital motion of two bodies is governed by Newton’s law of gravitation for
point masses. However, the dependence of the gravitational force on distance gives

http://exoplanets.org
http://exoplanets.org/detail/CoRoT-3_b
http://exoplanets.org/detail/Kepler-14_b
http://exoplanets.org/detail/Kepler-412_b
http://exoplanets.org/detail/HD_285507_b
http://exoplanets.org/detail/WASP-10_b
http://exoplanets.org/detail/WASP-88_b
http://exoplanets.org/detail/WASP-114_b

48 2 Computing and Displaying Data

rise to tidal forces between different parts of an extended body, such as a planet,
in the gravitational field of another body. Let us consider a small test mass m in the
gravitational field g = (GM/r2)er of a distant body of mass M (er = r/r is the unit
vector in radial direction from the center of that body). The difference between the
gravitational forces exerted on the test mass at neighboring points r and r + dr can
be expressed by the field gradient:

dF = m∇g · dr = −2GMm

r3
dr . (2.6)

Now, if we think of different parts of a planet rather than a testmass placed at different
positions, the tidal force is given by the force difference with respect to the center of
mass.

Virtually everybody knows about the tides due to the gravity of the Moon exerted
on Earth. Consider a point P at distance R ≤ RE from the center C of Earth (see
Fig. 2.10). The approximate force difference is given by

�F ≡ (�Fx ,�Fy) = FPM − FCM

� GMmR

r3
(2 cos θ,− sin θ) ,

(2.7)

where r
 R is the distance of Earth from the Moon (see [4, Sect. 19.2] for a
derivation). The force component �Fx is directed along the line connecting the
centers of mass C and M (dot-dashed line in Fig. 2.10) and �Fy is perpendicular to
that line. The magnitude of the tidal force increases with the distance from Earth’s
center. It has a maximum both in the direction toward the Moon (θ = 0) and in the
opposite direction (θ = π). It is sometimes conceived as counter-intuitive that tidal
forces are strongest and directed outwards and, thus, producing high tides both at the
nearest and the farthest side. However, this follows from the fact that tidal forces are
differential forces.

M
C

R

P FPM

FCM

r

x R cos

y R sin

Fig. 2.10 Illustration of local gravitational forces exerted by the Moon (M) at the center of Earth
(C) and at some point at the surface (P). The difference between the forces is the tidal force given
by Eq. (2.7)

2.3 Tidal Forces 49

The following program computes the tidal force per unit mass, atidal = �F/m,
for a grid of points with equal spacing along the x- and y-axes within a circle of
radius R = RE:

1 import numpy as np
2 from scipy.constants import g,G
3 from astropy.constants import R_earth,M_earth
4
5 M = 0.07346e24 # mass of the moon in kg
6 r = 3.844e8 # semi-major axis of moon orbit in m
7
8 coeff = G*M/r**3
9 accel_scale = 2*coeff*R_earth.value
10 print("tidal acceleration = {:.2e} m/s^2 = {:.2e} g".\
11 format(accel_scale,accel_scale/g))
12
13 h = 15*M*R_earth.value**4/(8*M_earth.value*r**3)
14 print("size of tidal bulge = {:.2f} m".format(h))
15
16 # array of evenly spaced grid points along x- and y-axis
17 X = np.linspace(-1.1, 1.1, num=23, endpoint=True)
18 Y = np.linspace(-1.1, 1.1, num=23, endpoint=True)
19 print(X)
20
21 # create two-dimensional mesh grid scaled by Earth radius
22 R_x, R_y = np.meshgrid(R_earth.value*X, R_earth.value*Y)
23 print(R_x.shape)
24 print(R_x[11,21],R_y[11,21])
25
26 # radial distances of mesh points from (0,0)
27 R = np.sqrt(R_x*R_x + R_y*R_y)
28
29 # components of tidal acceleration field within Earth radius
30 accel_x = np.ma.masked_where(R > R_earth.value, 2*coeff*R_x)
31 accel_y = np.ma.masked_where(R > R_earth.value, -coeff*R_y)

The magnitude of atidal for R = RE along the axis connecting the centers of
Earth and Moon (i.e. for θ = 0) defines the scale 2GMRE/r3 of the tidal accel-
eration. Its numerical value is calculated in lines 8 and 9 with constants from
astropy.constants and data for the Moon23:

tidal acceleration = 1.10e-06 m/sˆ2 = 1.12e-07 g

Relative to the gravity of Earth, g ≈ 9.81 m/s2 (we use the constant g defined in
scipy.constants), the tidal acceleration is very small. Otherwise tidal forces
would have much more drastic effects on Earth. In line 13, we calculate the height
of the tidal bulge of Earth caused by the Moon, using an approximate formula
neglecting the rigidity of Earth [5]:

23nssdc.gsfc.nasa.gov/planetary/factsheet.

https://nssdc.gsfc.nasa.gov/planetary/factsheet/

50 2 Computing and Displaying Data

h = 3MR4
E

4MEr3
ζ, where ζ � 5/2. (2.8)

The result is indeed comparable to the high tides in the oceans24:

size of tidal bulge = 0.67 m

The next step is the discretization of x and y coordinates by introducing grid points
xn = n�x and yn = n�y along the coordinate axes. In lines 17 and 18, NumPy
arrays of grid points are produced with np.linspace(). This function returns
a given number of evenly spaced points in the interval specified by the first two
arguments. We use dimensionless coordinates normalized by Earth’s radius, so that
we do not need to worry about actual distances. Since we want to cover a region
somewhat larger than Earth, which has a diameter of 2.0 in the normalized coordinate
system,we subdivide the interval [−1.1, 1.1] into 23 points including both endpoints.
This implies�x = �y = 2.2/(23 − 1) = 0.1, corresponding to a physical length of
0.1RE. The print statement in line 19 shows that the resulting elements of X:

[-1.1 -1. -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1]

For a representation of the vector field atidal(R), we need to to construct a
two-dimensional mesh of position vectors R = (Rx , Ry) ≡ (x, y) in the xy plane.
Owing to the rotation symmetry of the Earth-Moon system, we can disregard the z-
component. A two-dimensional mesh grid of points can be constructed from all
possible combinations of xn and ym with independent indices n and m. This is
the purpose of the NumPy function meshgrid() called in line 22. To obtain
physical distances, the normalized coordinates are scaled with the radius of Earth
(imported from astropy.constants). Since X and Y each have 23 elements,
np.meshgrid() returns two-dimensional arrays defining the components Rx and
Ry for a mesh grid consisting of 23 × 23 = 529 points. Here, multiple return values
(in this case, arrays) are assigned tomultiple variables (R_x andR_y). You can think
of a two-dimensional array as a matrix, in this case with 23 rows and 23 columns.
This can be seen by printing the shape of R_x (see line 23), which is

(23, 23)

To get a particular element, you need to specify two indices in brackets, the first
being the row index and the second the column index. For example, the values of
R_x[11,21] and R_y[11,21] printed in line 24 are

6378100.0 0.0

24Tides becomemuch higher in coastal waters and the tides produced by the Sun amplify or partially
compensate the lunar tides depending on the alignment with the Moon.

2.3 Tidal Forces 51

x = [-3, -2, -1, 0, 1, 2, 3] y = [-3, -2, -1, 0, 1, 2, 3]

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

3 3 3 3 3 3 3

2 2 2 2 2 2 2

1 1 1 1 1 1 1

0 0 0 0 0 0 0

-1 -1 -1 -1 -1 -1 -1

-2 -2 -2 -2 -2 -2 -2

-3 -3 -3 -3 -3 -3 -3

R_x R_y

3210-3 -2 -1

3
2
1
0

-3
-2
-1

Fig. 2.11 Illustration of the construction of a mesh grid from one-dimensional arrays X and Y (top).
The two-dimensional arrays R_x and R_y (middle) represent the coordinates of all points on the
mesh (bottom). As examples, the coordinates of red and green dots are highlighted in the arrays
R_x and R_y

i.e. the position is R = (RE, 0). To understand how this comes about, it might help
to consider a simpler example with a smaller number of points and without scal-
ing. Figure2.11 shows how a mesh grid consisting of 7 × 7 points is constructed
from one-dimensional arrays of size 7. The green dot, for example, has coordinates
(1,−3), which are given by R_x[0,4] and R_y[0,4] (see green squares in the
two arrays in the middle of the figure). As you can see, the x-coordinate changes
with the column index and the y-coordinate with the row index. You may wonder
why the two-dimensional arrays R_x and R_y are required. They are just redundant
representations, are they not? After all, the rows of R_x are identical and so are the
columns of R_y. However, the two-dimensional arrays allow us to immediately infer
the components of the position vector (or some other vector) for all points on the
mesh. In effect, this is a discrete representation of a vector field, where a vector is
attached to each point in space (the field of position vectors is just a special case).

For a given position (Rx , Ry), the tidal acceleration atidal = �F/m follows from
Eq. (2.7), where R cos θ = Rx and R sin θ = Ry . Thus,

52 2 Computing and Displaying Data

atidal(R) = GM

r3
(2Rx ,−Ry) . (2.9)

This is done in lines 30 and 31 usingNumPy arithmetics. To constrain the acceleration
field to a circular area of radius RE, we define masked arrays, A mask flags each
element of an array with 0 or 1. If an element is flagged with 1, its value becomes
invalid and will not be used in subsequent array operations. Since masked elements
are not removed from an array (they can be unmasked later), all unmasked elements
with flag 0 are accessible via the same indices as in the original array. For most
practical purposes, arrays can be masked with the help of functions defined in the
module numpy.ma (an alternative method is explained in Sect. 2.1.3). Here, we
make use of masked_where(). This functions masks all elements of an array
for which which a logical condition evaluates to True. Since we want to exclude
positions outside of the Earth, we apply the condition R > R_earth.value,
where the radial distance R is defined in line 27, to mask the arrays accel_x and
accel_y.

After having computed the data, the acceleration field can be visualized by rep-
resenting vectors graphically as arrows:

32 import matplotlib.pyplot as plt
33 from matplotlib.patches import Circle
34 %matplotlib inline
35
36 fig, ax = plt.subplots(figsize=(6,6))
37 ax.set_aspect(’equal’)
38
39 # plot vector field
40 arrows = ax.quiver(X, Y, accel_x, accel_y, color=’blue’)
41 ax.quiverkey(arrows, X=0.1, Y=0.95, U=accel_scale,
42 label=r’$1.1\times 10^{-6}\;\mathrm{m/s}^2$’,
43 labelpos=’E’)
44
45 # add a circle
46 circle = Circle((0, 0), 1, alpha=0.2, edgecolor=None)
47 ax.add_patch(circle)
48
49 ax.set_xlabel(r’x/R_{E}’, fontsize=12)
50 ax.set_ylabel(r’y/R_{E}’, fontsize=12)
51
52 plt.show()
53 plt.savefig("tidal_accel_earth.pdf")

A field of arrows can be produced with the method quiver(), which is called on
an axes object in line 40. This object is created by invoking plt.subplot() (see
line 36).25 In line 37, the aspect ratio of the x and y-axes is set to unity to produce
a quadratic plot. The call of quiver() requires the grid points X and Y along the
coordinate axes and themeshgrid valuesaccel_x andaccel_y of the acceleration

25Usually the function plt.subplots() is applied to produce multiple plots in a single figure,
see https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html and Sect. 4.2.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html

2.3 Tidal Forces 53

Fig. 2.12 Tidal acceleration field inside Earth due to the Moon’s gravity

field as arguments. While X and Y determine the arrow positions (the meshgrid
is constructed implicitly), their length and orientation is given by accel_x and
accel_y. The arrow color can be specified by an optional argument, similar to the
line color inplt.plot(). Thequiverkey() method (line 41) displays an arrow
labeled with the value corresponding to the length of the arrow at the coordinates
specified in the argument list. This arrow is not part of the vector field we want to
visualize; it is only meant to show the scale of the acceleration field. The interior of
Earth is highlighted with the help of Circle() from matplotlib.patches.
In our example, it produces a filled circle with unit radius (remember that coordinates
in X and Y are normalized by Earth’s radius) centered at position (0, 0). Experiment
with the arguments of this function to see how they affect the appearance of the
circle. To display the circle, add_patch() (line 47) has to be called on ax. This
method inserts flat geometric objects into a plot (such objects are called patches in
matplotlib). The resulting plot is shown in Fig. 2.12. It shows the typical pattern
resulting in tidal bulges at opposite sides along the line between Earth and Moon.
Since Earth is approximately a rigid body, bulges are induced only in the water of
the oceans, giving rise to flood and low tide.

Exercises

2.11 Not only causes the Moon tidal forces on Earth, but also vice versa. Compare
the tidal effect of Jupiter (mass and radius are defined in astropy.constants

54 2 Computing and Displaying Data

on its moon Io (M = 8.9319 × 1022 kg, R = 1822 km, mean orbital radius r =
4.217 × 105 km) to the Earth-Moon system. How large are the tidal bulges of Io and
the Moon? Plot the ratio of the magnitude of the tidal acceleration atidal defined by
Eq. (2.9) to the local gravity g at the surface as a function of θ .26

2.12 The tensile force experienced by a cylindrical rod of length l and mass m
directed in radial direction toward a gravitating body of mass M is found by inte-
grating Eq. (2.7) using l � r .

(a) Estimate the tensile force acting on a rod of length l = 1 m at the surface of
Earth, the surface of a white dwarf of one solar mass, and at the event horizon
of a black hole with mass M = 10M�, assuming that the formula based on
Newtonian gravity can be used (the radius of the event horizon is given by the
Schwarzschild radius RS = 2GM/c2, where c is the speed of light).

(b) At which radial distance from the black whole is it going to be torn apart by
tidal forces if the rod has a diameter of 5 cm and is made of steel with density
ρ = 7.8 g cm−3 and yield strength σ = 5 × 108 Pa (i.e. the maximum force the
rod can resist is σ times the cross section area). Also estimate how close a human
being could approach the black whole until it would experience a tensile force
comparable to the weight of a 100 kg mass on Earth (imagine such a weight
being attached to your body).

(c) Since any object falling toward a black hole and passing the event horizon will
sooner or later experience extreme tidal forces, the radial stretching and compres-
sion in transversal directions would result in “spaghettification”. Solid bodies,
however,will be torn into ever smaller pieces due their limited deformability. Pro-
duce a plot similar to Fig. 2.12, showing the tidal acceleration field acting on the
rod at the critical distance determined in (b). Use the function Rectangle()
from matplotlib.patches to show the cross section of the rod along its
axis.

26The surface gravity of a spherical body of mass M and radius R is given by g = GM/r2.

Chapter 3
Functions and Numerical Methods

Abstract Topics such as black body radiation and Balmer lines set the stage for
defining your own Python functions. You will learn about different ways of passing
data to functions and returning results. Understanding how to implement numerical
methods is an important goal of this chapter. For example, we introduce different
algorithms for root finding and discuss common pitfalls encountered in numerics.
Moreover, basic techniques of numerical integration and differentiation are covered.
Generally, it is a good idea to collect functions in modules. As an example, a module
for the computation of planetary ephemerides is presented.

3.1 Blackbody Radiation and Stellar Properties

Paradoxical as it may sound, the light emitted by a star is approximately described
by the radiation of a black body.1 This is to say that stars emit thermal radiation
produced in their outer layers, which have temperatures between a few thousand
and tens of thousands of K, depending on the mass and evolutionary stage of the
star. The total energy emitted by a black body per unit time is related to its surface
area and temperature. This relation is called the Stefan–Boltzmann law. The spectral
distribution of the emitted radiation is given by Planck function. See Sect. 3.4 in [4]
for a more detailed discussion of the physics of black bodies. In this section, Python
functions are introduced to perform calculations based on the Stefan–Boltzmann law
and the Planck spectrum and to discuss basic properties of stars.

1The term black body refers to its property of perfectly absorbing incident radiation at all wave-
lengths. At the same time, a black body is an ideal emitter of thermal radiation.

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70347-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-70347-9_3

56 3 Functions and Numerical Methods

3.1.1 Stefan–Boltzmann Law

A star is characterised by its effective temperature Teff and luminosity L (i.e. the total
energy emitted as radiation per unit time). The effective temperature corresponds to
the temperature of a black body radiating the same energy per unit surface area and
unit time over all wavelengths as the star. This is expressed by the Stefan–Boltzmann
law:

F = σT 4
eff , (3.1)

where σ = 5.670 × 10−8 Wm−2 K−4 is the Stefan–Boltzmann constant. The radia-
tive flux F is the net energy radiated away per unit surface area and unit time.
Integrating the radiative flux over the whole surface of a star of radius R, we obtain
the luminosity

L = 4πR2σT 4
eff . (3.2)

Suppose you want to compute the luminosity of a star of given size and effective
temperature. You could do that by writing a few lines of Python code, just like the
computation of the orbital velocity in Chap. 1. However, it is very common to write
a piece of code in such a way that is re-usable and can perform a particular action or
algorithm for different input data. This can be achieved by defining a Python function.
We have already introduced many library functions, so you should be familiar with
using functions by now. A new function can be defined with the keyword def
followed by a name that identifies the function and a list of arguments in parentheses.
Similar to loops, the function header ends with a colon and the indented block of
code below the header comprises the body of the function. In the function body, the
arguments are processed and usually, but not always, a result is returned at the end.
As an example, consider the following definition of the function luminosity().

1 from math import pi
2 from scipy.constants import sigma # Stefan-Boltzmann constant
3
4 def luminosity(R, Teff):
5 """
6 computes luminosity of a star
7 using the Stefan-Boltzmann law
8
9 args: R - radius in m
10 Teff - effective temperature in K
11
12 returns: luminosity in W
13 """
14 A = 4*pi * R**2 # local variable for surface area
15 return A * sigma * Teff**4

3.1 Blackbody Radiation and Stellar Properties 57

The function is explained by a comment enclosed in triple quotes, which is more
convenient for longer comments and is used as input for help() to display infor-
mation about functions, particularly if they are defined inside modules. The idea is
that somebody who wants to apply the function, can type help(luminosity)
to get instructions.2 The variables R and Teff are called formal arguments because
their values are not specified yet. The definition of the function applies to any values
for which the arithmetic expressions in the function body can be evaluated.

A function is executed for particular data in a function call. As you know from
previous examples, a function call can be placed on the right side of an assignment
statement. For example, the function defined above is used in the following code to
compute the luminosity of the Sun.

16 from astropy.constants import R_sun, L_sun
17
18 Teff_sun = 5778 # effective temperature of the Sun in K
19
20 print("Solar luminosity:")
21
22 # compute luminosity of the Sun
23 L_sun_sb = luminosity(R_sun.value, 5778)
24 print("\t{:.3e} W (Stefan-Boltzmann law)".format(L_sun_sb))
25
26 # solar luminosity from astropy
27 print("\t{:.3e} ({:s})".format(L_sun,L_sun.reference))

Here, the actual arguments R_sun.value (the value of the solar radius defined
in astropy.constants) and Teff_sun (the effective temperature of the Sun
defined in line 18) are passed to the function luminosity() and the code in the
function body (lines 14 to 15) is executedwith actual arguments in place of the formal
arguments. After the expression following the keyword return in line 15 has been
evaluated, the resulting value is returned by the function and assigned to L_sun_sb
in line 23. For comparison, the observed luminosity from the astropy library is
printed together with the luminosity resulting from the Stefan–Boltzmann law:

Solar luminosity:

3.844e+26 W (Stefan-Boltzmann law)

3.828e+26 W (IAU 2015 Resolution B 3)

The values agree within 1%. The reference for the observed value is printed in the
above example with the help of the attribute reference of L_sun.

The variable A defined in the body of the function luminosity() is a local
variable, which is not part of Python’s global namespace. It belongs to the local

2Of course, for a single function, the user could just as well look at the code defining the function.
But for a module containing many different functions, using help() is more convenient.

58 3 Functions and Numerical Methods

namespace of a function, which exists only while a function call is executed. If you
try to print its value after a function call, you will encounter an error because its
scope is limited to the function body:

28 print(A)

reports

NameError: name ’A’ is not defined

In contrast, variable names such as L_sun_sb or sigma in the above example are
defined in the global namespace and can be used anywhere, including the body of a
function. However, referencing global variables within a function should generally
be avoided. It obscures the interface between data and function, makes the code
difficult to read and is prone to programming errors. Data should be passed to a
function through its arguments. A common exception are constant parameters from
modules. For example, we importsigma fromscipy.constants into the global
namespace and then use it inside of the function luminosity() in line 13. To sum
up3:

Python functions have a local namespace. Normally, a function receives data
from the global namespace through arguments and returns the results it pro-
duces explicitly.

Perhaps you noticed that the unit of the solar luminosity is printed for both vari-
ables, although the character W (for Watt) is missing in the output string in line 27.
This can be understood by recalling that L_sun is an Astropy object which has a
physical unit incorporated (see Sect. 2.1.2). Although the format specifier refers only
to the numeric value, somemagic (i.e. clever programming) built intoformat() and
print() automatically detects and concatenates the unit to the formatted numerical
value.

In the example above, we definedL_sun_sb as a simple float variable. Bymeans
of theunitsmodulewecan assigndimensional quantities to variables in the likeness
of Astropy constants. To obtain the same output as above without explicitly printing
the unit W, we just need to make a few modifications:

3The preferred way of implementing Python functions we recommend in this book is in accordance
with call by value. This is not built into the language. It is a choice that is up to the programmer.
In fact, if a mutable object is passed to a function, any changes made inside the function via object
methods will persist outside (call by object reference). In particular, this applies to array elements.
However, this kind of manipulation can become quite confusing and is prone to errors unless you
are an experienced Python programmer. Appendix A explains how to use calls by object reference
in object-oriented programming.

3.1 Blackbody Radiation and Stellar Properties 59

1 from astropy.constants import R_sun, L_sun, sigma_sb
2 import astropy.units as unit
3
4 def luminosity(R, Teff):
5 """
6 function computes luminosity of star
7 using the Stefan-Boltzmann law with units
8
9 args: dimensinoal variables based on astropy.units
10 R - radius
11 Teff - effective temperature
12
13 returns: luminosity
14 """
15 A = 4*pi * R**2 # local variable for surface area
16 return sigma_sb * A * Teff**4
17
18 Teff_sun = 5778*unit.K
19
20 # compute luminosity from dimensional variables
21 L_sun_sb = luminosity(R_sun, Teff_sun)
22 print("\t{:.3e} (Stefan-Boltzmann law)".format(L_sun_sb))

First,sigma_sb fromastropy.constantsdefines theStefan–Boltzmanncon-
stant with units (simply print sigma_sb). Second, a physical unit is attached to the
variable Teff_sun by multiplying the numerical value 5778 with unit.K in
line 17. Then luminosity() is called with the full object R_sun rather than
R_sun.value as actual argument. Arithmetic operators also work with dimen-
sional quantities in place of pure floating point numbers. However, the flexibility has
a downside: there is no safeguard against combining dimensional and dimensionless
variables and you might end up with surprising results if you are not careful.

As introduced in Sect. 2.1.2, the method to() allows us to convert between units.
For example, we can print the luminosity in units of erg/s without bothering about
the conversion factor:

23 # convert from W to erg/s
24 print("\t{:.3e} (Stefan-Boltzmann law)".
25 format(L_sun_sb.to(unit.erg/unit.s)))

This statement prints

3.844e+33 erg / s (Stefan-Boltzmann law)

It is even possible to combine different unit systems. Suppose the radius of the
Sun is given in units of km rather than m:

26 # compute luminosity with solar radius in km
27 L_sun_sb = luminosity(6.957e5*unit.km, Teff_sun)

60 3 Functions and Numerical Methods

28 print("\t{:.3e} (Stefan-Boltzmann law)".
29 format(L_sun_sb.to(unit.W)))

It suffices to convert the result into units of W without modifying the function
luminosity() at all (also check what you get by printing L_sun directly):

3.844e+26 W (Stefan-Boltzmann law)

Nevertheless, complications introduced by Astropy units might sometimes out-
weigh their utility. As inmany examples throughout this book, youmight find it easier
to standardize all input data and parameters of a program to a fixed unit system such
as SI units. In this case, dimensional quantities are implied, but all variables in the
code are of simple floating point type. Depending on your application, you need to
choose what suits you best.

Having defined the functionluminosity(), we can calculate the luminosity of
any starwith given radius and effective temperature.4 Wewill perform this calculation
for a sample of well known stars, namely Bernard’s Star, Sirius A and B, Arcturus,
and Betelgeuse. The straightforward way would be to define variables for radii and
temperatures and then call luminosity() with these variables as arguments. In
the following, this is accomplished by a more sophisticated implementation that
combines several Python concepts:

30 def stellar_parameters(*args):
31 ’’’
32 auxiliary function to create a dictionary
33 of stellar parameters in SI units
34
35 args: (radius, effective temperature)
36 ’’’
37 return { "R" : args[0].to(unit.m),
38 "Teff" : args[1].to(unit.K) }
39
40 # dictionary of some stars
41 stars = {
42 ’Bernard\’s Star’ :
43 stellar_parameters(0.196*R_sun, 3.13e3*unit.K),
44 ’Sirius A’ :
45 stellar_parameters(1.711*R_sun, 9.94e3*unit.K),
46 ’Sirius B’ :
47 stellar_parameters(5.8e3*unit.km, 2.48e4*unit.K),
48 ’Arcturus’ :
49 stellar_parameters(25.4*R_sun, 4.29e3*unit.K),
50 ’Betelgeuse’ :
51 stellar_parameters(6.4e8*unit.km, 3.59e3*unit.K)

4Usually, this works the other way around: the radius can be calculated if the luminosity and the
temperature of a star are known from observations; see Exercise 3.1.

3.1 Blackbody Radiation and Stellar Properties 61

52 }
53
54 print("Luminosities of stars (relative to solar luminosity):")
55 for name in stars:
56 stars[name][’L’] = \
57 luminosity(stars[name][’R’], stars[name][’Teff’])
58 print("\t{:15s} {:.1e} ({:.1e}) ".format(name, \
59 stars[name][’L’], stars[name][’L’]/L_sun))

First turn your attention to the dictionary defined in lines 41–52 (dictionaries are intro-
duced in Sect. 2.1.2). The keywords are the names of the stars. The items belonging
to these keys are returned by the function stellar_parameters() defined at
the beginning of the program. As you can see in lines 37–38, the function returns
a dictionary, i.e. each item of the dictionary stars is in turn a dictionary. Such a
data structure is called a nested dictionary. As with any dictionary, new items can be
added to the subdictionaries. This is done when the luminosity is calculated for each
star by iterating over the items of stars and adding the result as a new subitem
with the key ’L’ (lines 56–57). Items and subitems in nested dictionaries are refer-
enced by keys in concatenated brackets (this syntax differs from multidimensional
NumPy arrays). For example,stars[’Sirius B’][’R’] is the radius of Sirius
B and stars[’Sirius B’][’L’] its luminosity (print some items to see for
yourself). The whole dictionary of stellar parameters for Sirius B is obtained with
stars[’Sirius B’].

Before we look at the results, let us take a closer look at the function
stellar_parameters(). In contrast to the function luminosity(), which
has an explicit list of named arguments,stellar_parameters() can receive an
arbitrary number of actual arguments. The expressionargs* just serves as a dummy.
Such arguments are known as variadic arguments andwill be discussed inmore detail
in Sect. 4.1.2. The function stellar_parameters() merely collects values in
a dictionary provided that the number of arguments in the function call matches the
number of keys (no error checking is made here because it serves only as an auxiliary
for constructing thestars dictionary). Individual variadic arguments are referenced
by an index. The first argument (args[0]) defines the radius and the second one
(args[1]) the effective temperature of the star. Both values are converted into SI
units. This implies that the function expects dimensional values as arguments, which
is indeed the case in subsequent calls of stellar_parameters(). Generally,
using an explicit argument list is preferable for readability, but in some cases a flex-
ible argument list can be convenient. In particular, we avoid duplicating names in
keys and arguments and new parameters and can be added easily.

The results are listed in the following table (name is printed with the format
specifier 15s, meaning a string with 15 characters, to align the names of the stars).

Luminosities of stars (relative to solar luminosity):

Bernard’s Star 1.3e+24 W (3.3e-03)

Sirius A 9.9e+27 W (2.6e+01)

62 3 Functions and Numerical Methods

Sirius B 9.1e+24 W (2.4e-02)

Arcturus 7.5e+28 W (2.0e+02)

Betelgeuse 4.8e+31 W (1.3e+05)

We print both the luminosities in W and the corresponding values of L/L� (identify
the corresponding expressions in the code). Bernard’s Star is a dim M-type star in
the neighbourhood of the Sun. With a mass of only 0.14M�, it is small and cool. In
contrast, Sirius A is a main sequence star with about two solar masses and spectral
type A0. Thus, it is much hotter than the Sun. Since the luminosity increases with
the fourth power of the effective temperature, its luminosity is about 26 times the
solar luminosity. The luminosity of the companion star Sirius B is very low, yet its
effective temperature 2.5 × 104 K is much higher than the temperature of Sirius A.
Astronomers were puzzled when this property of Sirius B was discovered by Walter
Adams in 1915. A theoretical explanation was at hand about a decade later: Sirius B
is highly compact star supported only by its electron degeneracy pressure. The size
of such a white dwarf star is comparable to size of the Earth,5 while its mass is about
the mass of the Sun. Owing to its small surface area (see Eq.3.2), Sirius B has only
a few percent of the solar luminosity even though it is a very hot star. According to
the Stefan–Boltzmann law, luminous stars must be either hot or large. The second
case applies to giant stars. Arcturus, for example, is in the phase of hydrogen shell
burning and evolves along the red-giant branch. With 25 solar radii, its luminosity is
roughly 200 times the solar luminosity. At a distance of only 11.3 pc, it appears as
one of the brightest stars on the sky. Betelgeuse is a red supergiant with an enormous
diameter of the order of a billion km, but relatively low effective temperature (thus the
red color; see the parameters defined in our stars dictionary). In the solar system,
Betelgeuse would extend far beyond the orbit of Mars, almost to Jupiter. It reaches
the luminosity of a hundred thousand Sun-like stars.

3.1.2 Planck Spectrum

The energy spectrumof a black body of temperature T is given by the Planck function

Bλ(T) = 2hc2

λ5

1

exp(hc/λkT) − 1
, (3.3)

where λ is the wavelength, h is Planck’s constant, k the Boltzmann constant and
c the speed of light. The differential Bλ(T) cos θ d� dλ is the energy emitted per
unit surface area and unit time under an angle θ to the surface normal into the solid
angle d� = sin θ dθ dφ (in spherical coordinates) with wavelengths ranging from λ

5The radius of Sirius B is 5800 km; see [6].

3.1 Blackbody Radiation and Stellar Properties 63

to λ + dλ. Integration over all spatial directions and wavelengths yields the Stefan–
Boltzmann law for the energy flux6:

F ≡ π

∫ ∞

0
Bλ(T)dλ = σT 4 . (3.4)

We continue our discussion with producing plots of the Planck spectrum for the
stars discussed in Sect. 3.1.1 and, additionally, the Sun. The first step is, of course, the
definition of a Python functionplanck_spectrum() to compute Bλ(T). To avoid
numbering of code lines over too many pages, we reset the line number to 1 here.
However, be aware that the code listed below nevertheless depends on definitions
from above, for example, the stars dictionary.

1 import numpy as np
2 from scipy.constants import h,c,k
3
4 def planck_spectrum(wavelength, T):
5 """
6 function computes Planck spectrum of a black body
7
8 args: numpy arrays
9 wavelength - wavelength in m
10 T - temperature in K
11
12 returns: intensity in W/m^2/m/sr
13 """
14 return 2*h*c**2 / (wavelength**5 *
15 (np.exp(h*c/(wavelength*k*T)) - 1))

The expression in the function body corresponds to formula (3.3). We use the expo-
nential function from the NumPy library, which allows us to call
planck_spectrum()with arrays as actual arguments. This is helpful for produc-
ing a plot of the Planck spectrum from an array of wavelengths. Moreover, physical
constants are imported from scipy.constants. Consequently, we do not make
use of dimensional quantities here.

The next step is to generate an array of temperatures for the different stars and
and a wavelength grid to plot the corresponding spectra. To that end, we collect the
values associated with the key ’Teff’ in our dictionary. A wavelength grid with a
given number of points between minimum and maximum values is readily generated
with np.linspace() introduced in Sect. 2.3.

6Planck’s formula thus resolved a puzzle of classical physics which is known as ultraviolet catastro-
phe (the integrated intensity of black body radiation in a cavity would diverge according to the laws
of classical physics). It is not only of fundamental importance in astrophysics but also paved the way
for the development of quantum mechanics when Planck realized in 1900 that black body radiation
of frequency ν = c/λ can be emitted only in quanta of energy hν. Owing to the exponential factor
in Eq. (3.3), emission of radiation with frequency higher than kT/h is suppressed. This resolves
the ultraviolet catastrophe.

64 3 Functions and Numerical Methods

16 # initialize array for temperatures
17 T_sample = np.zeros(len(stars) + 1)
18

19 # iterate over stellar temperatures in dictionary
20 for i,key in enumerate(stars):
21 T_sample[i] = stars[key][’Teff’].value
22 # add effective temperature of Sun as last element
23 T_sample[-1] = 5778
24

25 # sort temperatures
26 T_sample = np.sort(T_sample)
27

28 # uniformly spaced grid of wavenumbers
29 n = 1000
30 lambda_max = 2e-6
31 wavelength = np.linspace(lambda_max/n, lambda_max, n)

Remember that the loop variable of a for loop through a dictionary runs through
the keys of the dictionary (see Sect. 2.1.2). Here, key runs through the names of
the stars. By using enumerate(), we also have an index i for the correspond-
ing elements of the array T_sample, which is initialized as an array of zeros in
line 17. The array length is given by the length of the dictionary, i.e. the num-
ber of stars, plus one element for the Sun. After the loop, the NumPy function
sort() sorts the temperatures in ascending order. The minimum wavelength is
set to lambda_max/n corresponding to the subdivision of the interval [0, λmax]
with λmax = 2 × 10−6 m into 1000 equidistant steps. Although the Planck function
is mathematically well defined even for λ = 0, the numerical evaluation poses a
problem because Python computes the different factors and exponents occurring in
our definition of the function planck_spectrum() separately (you can check
this by calling planck_spectrum() for wavelength zero). For this reason, zero
is excluded.

The following code plots the Planck spectrum for the different temperatures using
a color scheme that mimics the appearance of stars (or any black body of given
temperature) to the human eye. To make use of this scheme, you need to import
the function convert_K_to_RGB() from a little module that is not shipped with
common packages such as NumPy, but is shared as GitHub gist on the web.7 The
colors are based on the widely used RGB color model to represent colors in computer
graphics.AparticularRGBcolor is defined by three (integer) values ranging from0 to
255 to specify the relative contributions of red, green, and blue.8 White corresponds
to (255, 255, 255), black to (0, 0, 0), pure red to (255, 0, 0), etc. This model allows
for the composition of any color shade.

7Download the module from gist.github.com/petrklus/b1f427accdf7438606a6 and place the file in
the directory with your source code or notebook.
8Integers in this range correspond to 8 bit values.

https://gist.github.com/petrklus/b1f427accdf7438606a6

3.1 Blackbody Radiation and Stellar Properties 65

32 import matplotlib.pyplot as plt
33 from rgb_to_kelvin import convert_K_to_RGB
34 %matplotlib inline
35
36 plt.figure(figsize=(6,4), dpi=100)
37
38 for T in T_sample:
39 # get RGB color corresponding to temperature
40 color = tuple([val/255 for val in convert_K_to_RGB(T)])
41
42 # plot Planck spectrum (wavelength in nm,
43 # intensity in kW/m^2/nm/sr)
44 plt.semilogy(1e9*wavelength, \
45 1e-12*planck_spectrum(wavelength, T), \
46 color=color, label="{:.0f} K".format(T))
47
48 plt.xlabel("λ [nm]")
49 plt.xlim(0,1e9*lambda_max)
50 plt.ylabel("$B_\lambda(T) $" + \
51 "[$\mathrm{kW\,m^{-2}\,nm^{-1}\, sr^{-1}}$]")
52 plt.ylim(0.1,5e4)
53 plt.legend(loc="upper right", fontsize=8)
54 plt.savefig("planck_spectrum.pdf"

We use semilogy() from pyplot for semi-logarithmic scaling because the
Planck functions for the different stars vary over several orders of magnitude. While
convert_K_to_RGB() returns three integers, a tuple of three floats in the range
from 0 to 1 is expected as color argument in line 46. As an example of somewhat
more fancy Python programming, the conversion is made by an inline loop through
the return values (see line 40), and the resulting RGB values are then converted into a
tuple via the built-in function tuple(). To show formatted mathematical symbols
in axes labels, it is possible to render text with LaTeX.We do not cover LaTeX here,9

but examples can be seen in lines 48 and 50–51. For instance, the greek letter λ in
the x-axis label is rendered with the LaTeX code λ, and Bλ(T) for the y
axis is coded as $B_\lambda(T)$.

The resulting spectra are shown in Fig. 3.1. The temperatures are indicated in the
legend. The color changes from orange at temperatures around 3000 K to bluish
above 10000 K. Our Sun with an effective temperature of 5778 K appears nearly
white with a slightly reddish tinge, in agreement with our perception.10 You can also
see that the curves for different temperatures do not intersect, i.e. Bλ(T2) > Bλ(T1)
for T2 > T1. Equation (3.4) implies that the radiative flux F (the total area under the
Planck spectrum) is larger for higher temperatures. In other words, a hotter surface
emits more energy. Moreover, Fig. 3.1 shows that the peak of the spectrum shifts
with increasing temperature to shorter wavelengths. This is, of course, related to the

9There are plenty of tutorials on the web, for example,
www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes.
10Of course, our definition of “white” light originates from the adaption of human eyes to daylight.

https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

66 3 Functions and Numerical Methods

Fig. 3.1 Planck spectra for effective temperatures of different stars

overall color (a larger fraction of short wavelengths corresponds to bluer color). The
hottest star in our sample, which is the white dwarf Sirius B, even emits most of its
radiation in the UV (below 400 nm).

The position of the maximum of Bλ(T) is described byWien’s displacement law:

λmax = b

T
, (3.5)

where b ≈ hc/(4.965114 k) = 0.002897772 mK. To determine the maximum of
Bλ(T) for a given temperature, we need to find the roots of the first derivative with
respect to λ:

∂Bλ(T)

∂λ
= 0 ,

which implies
hc

λkT

exp(hc/λkT)

exp(hc/λkT) − 1
− 5 = 0 .

This is a transcendent equation that can be solved only numerically. The equation
can be simplified with the substitution x = hc/λkT . After rearranging the terms, the
following equation in terms of x is obtained:

f (x) := (x − 5)ex + 5 = 0 . (3.6)

To match Wien’s displacement law (3.5), the solution should be x ≈ 4.965114.
We apply an algorithm which is known as bisection method to find the roots

of the function f (x) defined by the left-hand side of Eq. (3.6). The idea is really

3.1 Blackbody Radiation and Stellar Properties 67

simple. It is known from calculus that a continuous real function f (x)11 has at
least one root x ∈ [a, b] if f (a) f (b) < 0, i.e. the function has opposite sings at the
endpoints of the interval [a, b] and, consequently, crosses zero somewhere within
the interval. This property can be used to find approximate solutions of f (x) = 0
by splitting the interval [a, b] at its midpoint x = (a + b)/2 into two subintervals
[a, x] and [x, b] (thus the name bisection) and checking which subinterval in turn
contains a root. This procedure can be repeated iteratively. Since the interval length
|a − b| decreases by a factor after each iteration, the iteration ends once |a − b|
becomes smaller than a given tolerance ε, corresponding to the desired accuracy of
the numerical approximation. This means that the final approximation x does not
deviate by more than ε from the exact root.

The bisection method is implemented in the following Python function. As you
know already frommany examples, a Python function is generally not equivalent to a
function in the mathematical sense, such as planck_spectrum(). It is similar to
what is called a subprogramor subroutine in other programming languages, providing
awell defined interface to an algorithmwith various elements of input (the arguments
of the function) and output (data returned by the function):

1 def root_bisection(f, a, b, eps=1e-3, verbose=False):
2 """
3 bisection algorithm for finding the root of a function f(x)
4
5 args: f - function f(x)
6 a - left endpoint of start interval
7 b - right endpoint of start interval
8 eps - tolerance
9 verbose - print additional information if true
10
11 returns: estimate of x for which f(x) = 0
12 """
13 i = 0 # counter of number of iterations
14
15 # iterate while separation of endpoints
16 # is greater than tolerance
17 while abs(b-a) > eps:
18
19 if verbose:
20 print(f"{a:6.3f} {f(a):10.3e}",
21 f"{b:6.3f} {f(b):10.3e}")
22
23 # new midpoint
24 x = 0.5*(a+b)
25

11Continuous means that the function has no jumps or poles.

68 3 Functions and Numerical Methods

26 # check if function crosses zero in left subinterval
27 # and reset endpoint
28 if f(a)*f(x) < 0:
29 b = x
30 else:
31 a = x
32
33 # increment counter
34 i += 1
35
36 print("tolerance reached after {:d} iterations".format(i))
37 print("deviation: f(x) = {:.3e}".format(f(x)))
38
39 return x

Let us first look at the different arguments. The first argument is expected to
be a function (more precisely, the name of a function) that can be called inside
root_bisection(). As we shall see shortly, it is an extremely useful feature of
Python that functions can be passed as arguments to other functions.12 The following
two arguments, a and b, are simple variables for the two endpoints of the initial inter-
val. The remaining arguments are optional, which is indicated by assigning default
values in the definition of the function. This allows the user to omit actual argu-
ments in place of eps and verbose when calling root_bisection(). Unless
an optional argument is explicitly specified, its default value will be assumed, for
example, 1e-3 for the tolerance eps and False for verbose.

The bisection algorithm is implemented in the while loop starting at line 17. The
loop continues as long as abs(b-a), where abs() returns the absolute value, is
larger than the tolerance eps. In lines 28–29, the subinterval [a, x] is selected if the
function has opposite signs at the endpoint a and the midpoint x = (a + b)/2. In this
case, the value ofx defined in line 24 is assigned to the variableb for the next iteration
(recall the difference between an assignment and equality in themathematical sense).
Otherwise variable a is set equal to x, corresponding to the subinterval [x, b] (lines
30–31). Once the tolerance is reached, the loop terminates and the latest midpoint is
returned as final approximation.

Before applying root_bisection() to the Planck spectrum, it is a good idea
to test it for a simple function with known roots. Let us try the quadratic polynomial

f (x) = x2 − x − 2

12Like variables, a function is just an object in Python. From this point of view, there is actually
nothing unusual about passing functions as arguments to other functions.

3.1 Blackbody Radiation and Stellar Properties 69

with roots x1 = −1 and x2 = 2. In Python, we can define this function as

40 def quadratic(x):
41 return x**2 - x - 2

Using interactive Python, the call

42 root_bisection(quadratic, 0, 5, verbose=True)

produces the following output (the return value is printed automatically in an output
cell):

0.000 -2.000e+00 5.000 1.800e+01

0.000 -2.000e+00 2.500 1.750e+00

1.250 -1.688e+00 2.500 1.750e+00

1.875 -3.594e-01 2.500 1.750e+00

1.875 -3.594e-01 2.188 5.977e-01

1.875 -3.594e-01 2.031 9.473e-02

1.953 -1.384e-01 2.031 9.473e-02

1.992 -2.338e-02 2.031 9.473e-02

1.992 -2.338e-02 2.012 3.529e-02

1.992 -2.338e-02 2.002 5.863e-03

1.997 -8.780e-03 2.002 5.863e-03

2.000 -1.465e-03 2.002 5.863e-03

2.000 -1.465e-03 2.001 2.198e-03

tolerance reached after 13 iterations

deviation: f(x) = 3.662e-04

2.0001220703125

Bycallingroot_bisection()with the identifierquadratic as first argument,
the bisection method is applied to our test function quadratic() defined in lines
40–41 in place of the generic function f(). In the same way, any other function with
an arbitrary name can be used. This is why specifying the function for which wewant
to compute a root as an argument of root_bisection() is advantageous. While
the optional argument eps is skipped in the example above, setting the verbosity flag
verbose=True allows us to see how the endpoints a and b of the interval change
with each iteration. The Boolean variable verbose controls additional output in
lines 20–21, which comes in useful if something unexpected happens and one needs
to understand in detail how the code operates. The argument name verbose is also
called a keyword in this context. As expected, the function always has opposite signs
at the endpoints and the root x2 = 2 is found within a tolerance of 10−3 after 13
bisections of the initial interval [0, 5]. So far, everything works fine.

70 3 Functions and Numerical Methods

However, try

43 root_bisection(quadratic, -2, 0, verbose=True)

The output is

-2.000 4.000e+00 0.000 -2.000e+00

-1.000 0.000e+00 0.000 -2.000e+00

-0.500 -1.250e+00 0.000 -2.000e+00

-0.250 -1.688e+00 0.000 -2.000e+00

-0.125 -1.859e+00 0.000 -2.000e+00

-0.062 -1.934e+00 0.000 -2.000e+00

-0.031 -1.968e+00 0.000 -2.000e+00

-0.016 -1.984e+00 0.000 -2.000e+00

-0.008 -1.992e+00 0.000 -2.000e+00

-0.004 -1.996e+00 0.000 -2.000e+00

-0.002 -1.998e+00 0.000 -2.000e+00

tolerance reached after 11 iterations

deviation: f(x) = -1.999e+00

-0.0009765625

Obviously, the algorithm does not converge to the solution x1 = −1 for the start
interval [−2, 0].13 The problem can be spotted in the second line of output (i.e.
the second iteration). At the left endpoint a = −1, we have f (a) = 0. However,
root_bisection() tests whether f (a) f (x) < 0 in line 28. Since the product of
function values is zero in this case, the else clause is entered and the left endpoint is
set to themidpoint x = −0.5, as can be seen in the next line of output. As a result, our
current implementation of the algorithm misses the exact solution and ends up in an
interval that does not contain any root at all (the signs at both endpoints are negative)
and erroneously concludes that the variable x contains an approximate solution after
the interval has shrunk enough.

Fortunately, this can be easily fixed by testing whether f (x) happens to be zero
for some given x . The improved version of root_bisection() is listed in the
following (the comment explaining the function is omitted).

1 def root_bisection(f, a, b, eps=1e-3, verbose=False):
2 i = 0 # counter of number of iterations
3
4 # iterate while separation of endpoints
5 # is greater than tolerance
6 while abs(b-a) > eps:
7
8 if verbose:

13If we had chosen e.g. [−5, 0], this problem would not occur. But the algorithm must yield a
correct answer for every choice that meets the criteria for applying the bisection method.

3.1 Blackbody Radiation and Stellar Properties 71

9 print(f"{a:6.3f} {f(a):10.3e}",
10 f"{b:6.3f} {f(b):10.3e}")
11
12 # new midpoint
13 x = 0.5*(a+b)
14
15 # check if function crosses zero in left subinterval
16 # and reset endpoint unless x is exact solution
17 if f(x) == 0:
18 print("found exact solution " + \
19 "after {:d} iteration(s)".format(i+1))
20 return x
21 elif f(a)*f(x) < 0:
22 b = x
23 else:
24 a = x
25
26 # increment counter
27 i += 1
28
29 print("tolerance reached after {:d} iterations".format(i))
30 print("deviation: f(x) = {:.3e}".format(f(x)))
31
32 return x

The keyword elif introduces a third case between the if and else clauses. The
if statement in line 17 checks if the value of x is an exact root. If this is the case, the
current value will be returned immediately, accompanied by a message. As you can
see, a return statement can occur anywhere in a function, not only at the end. Of
course, this makes sense only if the statement is conditional, otherwise the remaining
part of the function body would never be executed. If the condition f(x) == 0
evaluates to False, the algorithm checks if the function has opposite signs at the
endpoints of the subinterval [a, x] (elif statement in line 21) and if that is not case
either (else statement), the right subinterval [x, b] is selected for the next iteration.

To test the modified algorithm, we first convince ourselves that answer for the
initial interval [0, 5] is the same as before:

33 root_bisection(quadratic, 0, 5)

prints (verbose set to False by default)

tolerance reached after 13 iterations

deviation: f(x) = 3.662e-04

2.0001220703125

72 3 Functions and Numerical Methods

Now let us see if we obtain the root x1 for the start interval [−2, 0]:
34 root_bisection(quadratic, -2, 0)

Indeed, our modification works:

found exact solution after 1 iteration(s)

-1.0

To obtain a more accurate approximation for x2, we can prescribe a lower tolerance:

35 root_bisection(quadratic, 0, 5, 1e-6)

In this case, it is not necessary to explicitly write eps=1e-6 in the function call
because the actual argument 1e-6 at position four in the argument list corresponds
to the fourth formal argument eps in the definition of the function. Arguments
that are uniquely identified by their position in the argument list are called posi-
tional arguments. If an argument is referred by its name rather than position (like
verbose=True in the examples above), it is called a keyword argument (the key-
word being the nameof the corresponding formal argument). In particular, an optional
argument must be identified by its keyword if it occurs at a different position in the
function call.14 The result is

tolerance reached after 23 iterations

deviation: f(x) = -3.576e-07

1.9999998807907104

So far, the initial interval [a, b]was chosen such that it contains only one root and
the solution is unambiguous. However, what happens if root_bisection() is
executed for, say, the interval [−5, 5]? The bisection method as implemented above
returns only one root, although both x1 and x2 are in [−5, 5]. It turns out that

36 root_bisection(quadratic, -5, 5)

converges to x1:

tolerance reached after 14 iterations

deviation: f(x) = 1.099e-03

-1.0003662109375

We leave it as an exercise to study in detail how this solution comes about by using
the verbose option. Basically, the reason for obtaining x1 rather than x2 is that
we chose to first check whether f (a) f (x) < 0 rather than f (b) f (x) < 0. In other

14In principle, you can also pass non-optional arguments as keyword arguments at arbitrary posi-
tions, but this is unnecessary and should be avoided.

3.1 Blackbody Radiation and Stellar Properties 73

words, the answer depends on our specific implementation of the bisection method.
This is not quite satisfactory.

Is it possible at all to implement a more robust algorithm that does not depend
on any particular choices? The trouble with the bisection method is that there is no
unique solution for any given interval [a, b] for which f (a) f (b) < 0. If the function
happens to have multiple roots, the bisection method will converge to any of those
roots, but it is unclear to which one. The only way out would be to make sure that
all of them are found. This can indeed be accomplished by means of a recursive
algorithm. In Python, recursion means that a function repeatedly calls itself. As
with loops, there must be a condition for termination. Otherwise an infinite chain
of function calls would result. In the case of the bisection method, this condition is
f (a) f (b) ≥ 0 or |b − a| < ε (where “or” is understood as the inclusive “or” from
logic), i.e. the function stops to call itself once the endpoint values for any given
interval have equal signs or at least one of the two values is zero or the tolerance for
the interval length is reached.

The following listing shows how to find multiple roots through recursion.

1 def root_bisection(f, a, b, roots, eps=1e-3):
2 """
3 recursive bisection algorithm for finding multiple roots
4 of a function f(x)
5
6 args: f - function f(x)
7 a - left endpoint of start interval
8 b - right endpoint of start interval
9 roots - numpy array of roots
10 eps - tolerance
11
12 returns: estimate of x for which f(x) = 0
13 """
14 # midpoint
15 x = 0.5*(a+b)
16
17 # break recursion if x is an exact solution
18 if f(x) == 0:
19 roots = np.append(roots, x)
20 print("found {:d}. solution (exact)".
21 format(len(roots)))
22 # break recursion if tolerance is reached
23 elif abs(b-a) <= eps:
24 roots = np.append(roots, x)
25 print("found {:d}. solution,".format(len(roots)),
26 "deviation f(x) = {:6e}".format(f(x)))
27 # continue recursion if function crosses zero
28 # in any subinterval
29 else:
30 if f(a)*f(x) <= 0:
31 roots = root_bisection(f, a, x, roots, eps)
32 if f(x)*f(b) <= 0:

74 3 Functions and Numerical Methods

33 roots = root_bisection(f, x, b, roots, eps)
34
35 return roots

To understand the recursive algorithm, consider an arbitrary interval [a, b] with
f (a) f (b) < 0 and midpoint x = (a + b)/2. We can distinguish the following four
cases:

1. If f (x) = 0, then x is an exact solution.
2. If |a − b| ≤ ε, then x is an approximate solution within the prescribed tolerance.
3. If |a − b| > ε and f (a) f (x) < 0, then there is at least one root in the open

interval x ∈]a, x[.
4. If |a − b| > ε and f (x) f (b) < 0, then there is at least one root in the open

interval x ∈]x, b[.15
The nested control structure beginning in line 18 implements the corresponding
courses of action. First the code checks if x is an exact solution or if the tolerance
is already reached (cases 1. and 2.). In both cases, the value of the local variable x
(i.e. the exact or approximate root) is added to the array roots before the algorithm
terminates. We utilize the NumPy function append() to add a new element to an
existing array. The resulting array is then re-assigned to roots. Only if x is neither
an exact nor an approximate root of sufficient accuracy, root_bisection()will
be called recursively for one or both subintervals (lines 30–33). This is different
from the iterative algorithms discussed at the beginning of this section, where only
a single subinterval is selected in each iteration step. Depending on whether only
case 3. or 4. or both cases apply, the recursive algorithm progresses like the iterative
algorithm toward a single root or branches to pursue different roots. The algorithmcan
branch an arbitrary number of times. Each call of root_bisection() returns an
array (see line 35) containing roots appended at deeper recursion levels (the recursion
depth increases with the number of recursive functions calls). Since np.append()
generates a new object rather than modifying an existing object, the arrays returned
by the calls in lines 31 and 33 have to be re-assigned to roots in the namespace
of the calling instance. It does not matter that the name roots is used both for the
array received as argument and for the array returned by the function. We use the
same name only to highlight the recursive nature of the algorithm.

As a first test,

36 x0 = root_bisection(quadratic, -2, 0, [])
37 print(x0)

should find the solution x1 = −1 as in the example above. This is indeed the case:

found 1. solution (exact)

[-1.]

15An open interval]a, b[contains all values a < x < b, i.e. the endpoints are excluded.

3.1 Blackbody Radiation and Stellar Properties 75

The value returned by root_bisection() is now printed in brackets, which
indicates an array. We started with an empty array [] (technically speaking, an
empty list that is automatically converted into an array) in the initial function call
and obtained an array x0with a single element, namely−1. This array can in turn be
passed as actual argument to another call of root_bisection() for a different
start interval:

38 x0 = root_bisection(quadratic, 0, 5, x0)
39 print(x0)

The array returned by the second call of root_bisection() is re-assigned to
x0 and now contains both roots:

found 2. solution, deviation f(x) = -5.492829e-04

[-1. 1.99981689]

Try to figure out how the code determines that this is the second solution (as indicated
by “found 2. solution” in the output).

Of course, we would not gain anything compared to the iterative implementation
if it were not for the possibility of computing all roots at once. For example, with

40 x0 = root_bisection(quadratic, -5, 5, [])
41 print(x0)

we receive the output

found 1. solution, deviation f(x) = 1.831092e-04

found 2. solution, deviation f(x) = -5.492829e-04

[-1.00006104 1.99981689]

In this case, the first root is also approximate because the bisection starts with the
left endpoint a = −5 instead of −2 and the resulting midpoints do not hit the exact
solution x1 = −1. As a small exercise, you may modify the recursive function to
print detailed information to see how the intervals change with increasing recursion
depth.

After having carried out various tests, we are now prepared to numerically solve
Eq. (3.6). First we need to define the function f (x) corresponding to the left-hand
side of the equation:

42 def f(x):
43 return (x-5)*np.exp(x) + 5

Since the solution of f (x) = 0 is somenumber x ∼ 1 (for large x , exponential growth
would rapidly dominate), let us try the start interval [0, 10]:

44 x0 = root_bisection(f, 0, 10, [])
45 print(x0)

76 3 Functions and Numerical Methods

The recursive bisection method finds two solutions

found 1. solution, deviation f(x) = -1.220843e-03

found 2. solution, deviation f(x) = -2.896551e-02

[3.05175781e-04 4.96490479e+00]

The first solution is actually the endpoint a = 0 for which f (a) = 0. The second
solution≈ 4.965 is approximately the solution we know fromWien’s law (youmight
want to plot f (x) using pyplot to get an impression of the shape of the function).
You can improve the accuracy by specifying a smaller tolerance eps and check
the agreement with the value cited above. If you compare the conditions for zero-
crossings in the iterative and recursive implementations, you might wonder why the
operator < is used in the former and <= (smaller or equal to) in the latter. Replace
<= by < in the checks of both subintervals in the recursive function and see what
happens if you repeat the execution for the start interval [0, 10]. The output will
change drastically. Try to figure out why.16

The workflow with several cycles of programming and testing is typical for the
implementation of a numerical method. The first implementation never works per-
fectly. This is why simple test cases for which you know the answer beforehand are
so important to validate your code. Frequently, youwill notice problems you have not
thought of in the beginning and sometimes you come to realize there is an altogether
better solution.

Exercises

3.1 Extend the function stellar_parameters() to add stellar masses to the
dictionary stars. For the stars discussed in Sect. 3.1.1, the masses in units of the
solar mass are 0.144, 2.06, 1.02, 1.1, and 12 (from Bernard’s Star to Betelgeuse).
Moreover, write a Python function that calculates the radius for given luminosity and
effective temperature. Use this function to add Aldebaran (L = 4.4 × 102 L�, Teff =
3.9 × 103 K, M = 1.2M�) and Bellatrix (L = 9.21 × 102 L�, Teff = 2.2 × 104 K,
M = 8.6M�) to the dictionary and carry out the following tasks.

(a) Print a table of the stellar parameters M , R, Teff , and L aligned in columns.
(b) Plot the luminosities versus the effective temperatures in a double-logarithmic

diagram using different markers for main-sequence stars, white dwarfs, and red
giants. In other words, produce a Herztsprung–Russell diagram for the stars in
the dictionary.

(c) Produce a plot of luminosity vs mass in double-logarithmic scaling. Which type
of relation is suggested by the data points?

16The recursive algorithm is still not foolproof though. For example, if a start interval is chosen
such that the initial midpoint happens to be a root, recursion will stop right at the beginning and
other zeros inside the start interval will be missed. Fixing such a special case without entailing other
problems is somewhat tricky.

3.1 Blackbody Radiation and Stellar Properties 77

3.2 In astronomy, the observed brightness of an object on the sky is specified on a
logarithmic scale that is based on flux ratios [3, Chap. 4]17:

m = M − 2.5 log10

(
F

F0

)
.

The convention is to define F0 = L/4πr20 as the radiative flux at distance r0 = 10 pc.
While the absolutemagnitudeM is a constant parameter for a star of given luminosity
L , the star’s apparent magnitude m depends on its distance r The relation F ∝ 1/r2

for the radiative flux implies

m − M = 5 log10

(
r

10 pc

)
.

Hence, the distance of the star can be determined if both the apparent and absolute
magnitude are known. However, extinction due to interstellar dust modifies this
relation:

m − M = 5 log10

(
r

10 pc

)
+ kr , (3.7)

Although the extinction varies significantly within the Galaxy, the mean value k =
2 × 10−3 pc−1 can be assumed for the extinction per unit distance [3, Sect. 16.1].

Compute and plot r in units of pc for B0 main sequence stars with and absolute
magnitude M = −4.0 and apparent magnitudes m in the range from −4.0 to 6.0
in the visual band.18 How are the distances affected by extinction? To answer this
question, you will need to solve Eq. (3.7) numerically for each data point. To be able
to plot a graph, it is advisable to create an array of closely spaced magnitudes.

3.2 Physics of Stellar Atmospheres

To a first approximation, the radiation of stars is black body radiation. However,
observed stellar spectra deviate from the Planck function. The most important effect
is the absorption of radiation from deeper and hotter layers of a star by cooler gas in
layers further outside. The outermost layers which shape the spectrum of the visible
radiation of a star are called stellar atmosphere.

Although hydrogen is the most abundant constituent, other atoms and ions play an
important role too, especially in stars of loweffective temperature. For amore detailed
discussion of the physics, see Chaps. 8 and 9 in [4]. As a consequence, modeling
the transfer of radiation in stellar atmospheres is extremely complex and requires

17The factor−2.5 is of ancient origin and dates back to the scale introduced by theGreek astronomer
Hipparchus to classify stars that are visible by eye.
18Magnitudes are usually measured for a particular wavelength band, see Sect. 4.3 in [3].

78 3 Functions and Numerical Methods

numerical computations using databases for a huge number of line transitions for
a variety of atoms, ions, and molecules. You will see an application of such model
atmospheres in Sect. 5.5.2.

In the following, we will consider some basic aspects of the physical processes
in stellar atmospheres. An important source of absorption in stellar atmospheres are
transitions from lower to higher energy levels (also known as bound-bound transi-
tions). For hydrogen, the energy difference between levels defined by the principal
quantum numbers n1 and n2 > n1 is given by

�E = −13.6 eV

(
1

n2
− 1

n1

)
. (3.8)

A photon can be absorbed if its energy matches the energy difference between the
two levels:

�E = hc

λ
(3.9)

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of the
photon. For a hydrogen atom in the ground state, n1 = 1, the wavelength associated
with the transition to the next higher level, n2 = 2, is λ = 121.6 nm and even shorter
for higher levels. Emission or absorption lines at these wavelengths, which are all
ultraviolet, are called the Lyman series. One might expect that the Lyman series can
be seen in the light emitted by hot stars. However, the fraction of hydrogen atoms
in the ground state rapidly decreases with increasing temperature. It turns out that
transitions from the first excited state, n1 = 2, to levels n2 > 2 give rise to prominent
absorption lines in stellar spectra, which are known as Balmer lines. To understand
how this comes about, we need to apply two fundamental equations from statistical
physics, namely the Boltzmann and Saha equations, to compute the fraction of atoms
in excited states and the fraction that is ionized at a given temperature.

3.2.1 Thermal Excitation and Ionization

Collisions between atoms excite some of them into a higher energy state, while others
lose energy. The balance between these processes is described by the Boltzmann
distribution. If the gas is in thermal equilibrium, the ratio of the occupation numbers
N2 and N1 of levels n2 and n1, respectively, is given by

N2

N1
= g2

g1
e−(E2−E1)/kT (3.10)

where g1 and g2 are the statistical weights of the energy levels (i.e. the number of
possible quantum states with the same energy) and T is the temperature of the gas.
For the hydrogen atom, the nth energy level is degenerate with weight gn = 2n2 (the

3.2 Physics of Stellar Atmospheres 79

energy of a state is independent of the spin and the angular momentum quantum
numbers).

As an example, let us compute N2/N1 for the first excited state of hydrogen for
the stars defined in the dictionary stars in Sect. 3.1.1:

1 import numpy as np
2 from scipy.constants import k,physical_constants
3
4 # ionization energy of hydrogen
5 chi = physical_constants[’Rydberg constant times hc in J’][0]
6
7 # energy levels
8 n1, n2 = 1, 2
9
10 print("T [K] N2/N1")
11 for T in T_sample:
12 print("{:5.0f} {:.3e}".format(T,
13 (n2/n1)**2 * np.exp(chi*(1/n2**2 - 1/n1**2)/(k*T))))

The occupation numbers of the first excited state (n2 = 2) relative to the ground
state (n1 = 1) are printed for the effective temperatures in the array T_sample (see
Sect. 3.1.2). The Boltzmann equation (3.10) is implemented inline as an expression
in terms of the variables n1, n2, and Teff. Line 5 defines the ionization energy
χ ≡ E∞ − E1 in terms of the Rydberg constant R:

χ = hcR = 13.6 eV . (3.11)

This allows us to express the energy difference �E between the two states in Boltz-
mann’s equation as

�E = −χ

(
1

n2
− 1

n1

)
. (3.12)

The value ofχ in SI units (J) is available in SciPy’sphysical_constants dictio-
nary, which is imported in line 2. This dictionary allows us to conveniently reference
physical constants via keywords. In the case of χ , the key expresses formula (3.11)
in words. Since each item in physical_constants is a tuple containing the
numerical value, unit, and precision of a constant, we need to assign the first element
of the tuple to the variable chi.

The code listed produces the output

T [K] N2/N1

3130 1.485e-16

3590 1.892e-14

4290 4.115e-12

5778 5.030e-09

9940 2.681e-05

24800 3.376e-02

80 3 Functions and Numerical Methods

While the fraction of hydrogen in the first excited state is very low for cooler stars
and the Sun, it increases rapidly toward the hot end. An easy calculation shows
that N2 = N1 is reached at a temperature of 8.54 × 104 K. This is higher than the
effective temperature of even the hottest stars of class O. Transitions from the first
excited state thus should become ever more important as the effective temperature
increases. However, this is not what is observed: the strongest Balmer absorption
lines are seen in the spectra of stars of spectral class A, with effective temperatures
below 10000 K.

The reason for this is the ionization of hydrogen. Once a hydrogen atom is stripped
of its electron, there are no transitions between energy levels. The temperature-
dependent fraction of ionized hydrogen (HII) can be computed using the Saha equa-
tion:

NII

NI
= 2kT ZII

PeZI

(
2πmekT

h2

)3/2

e−χ/kT . (3.13)

Similar to the Boltzmann equation (3.10), the ratio NII/NI is dominated by the
exponential factor e−χ/kT for low temperature. Here, χ is the ionization energy
defined by Eq. (3.11). An additional parameter is the pressure of free electrons, Pe
(i.e. electrons that are not bound to atoms). The factor kT/Pe equals the inverse
number density of free electrons. If there are more free electrons per unit volume,
recombinations will become more frequent and the number of ions decreases. Apart
from the Boltzmann and Planck constants, the electron mass me enters the equation.
The partition function Z is the effective statistical weight of an atom or ion. It is
obtained by summing over all possible states with relative weights given by the
Boltzmann distribution (3.10):

Z = g1

(
1 +

∞∑
n=2

gn
g1

e−(En−E1)/kT

)
. (3.14)

Since we consider a regime of temperatures for which the thermal energy kT is
small compared to the energy difference En − E1 between the ground state and
higher energy levels (in other words, most of the hydrogen is in its ground state),
the approximation ZI � g1 = 2 can be used. This is consistent with the values of
N2/N1 computed above. The partition function ZII = 1 because a hydrogen ion has
no electron left that could occupy different energy levels.

The Saha equation is put into a Python function to evaluate NII/NI for given
temperature and electron pressure:

14 def HII_frac(T, P_e):
15 """
16 computes fraction of ionized hydrogen
17 using the Saha equation
18

19 args: T - temperature in K
20 P_e - electron pressure in Pa
21

22 returns: HII fraction

3.2 Physics of Stellar Atmospheres 81

23 """
24 E_therm = k*T
25

26 return (E_therm/P_e) * \
27 (2*np.pi*m_e*E_therm/h**2)**(3/2) * \
28 np.exp(-chi/E_therm)

While the local variable E_therm is used for the thermal energy kT of the gas, the
constant ionization energy is defined by the variable chi in the global namespace
(see line 5 above).

To estimate the strength of Balmer lines, we need to compute the number of
neutral hydrogen atoms (HI) in the first excited state relative to all hydrogen atoms
and ions:

N2

NI + NII
� N2

N1 + N2

NI

NI + NII

= N2/N1

1 + N2/N1

1

1 + NII/NI
,

(3.15)

where we used the approximation NI � N1 + N2 (fraction of hydrogen in higher
excited states is negligible). The fractions N2/N1 and NII/NI can be computed using
Eqs. (3.10) and (3.13), respectively.

The electron pressure in stellar atmosphere Pe ranges from about 0.1 to 100 Pa,
where the lower bound applies to cool stars. The following Python code com-
putes and plots N2/(NI + NII) as function of temperature, assuming Pe ≈ 20 Pa
(200 dyne cm−2 in the cgs system) as representative value for the electron pressure.

29 import matplotlib.pyplot as plt
30

31 P_e = 20 # electron pressure in Pa
32

33 # temperature in K
34 T_min, T_max = 5000, 25000
35 T = np.arange(T_min, T_max, 100.0)
36

37 # fraction of HI in first excited state
38 HI2_frac = 4*np.exp(-0.75*chi/(k*T))
39

40 # plot fraction of all hydrogen in first excited state
41 plt.figure(figsize=(6,4), dpi=100)
42 plt.plot(T, 1e5*HI2_frac / &
43 ((1 + HI2_frac)*(1 + HII_frac(T, P_e))))
44 plt.xlim(T_min, T_max)
45 plt.xlabel("T [K]")
46 plt.ylim(0, 0.9)
47 plt.ylabel("$10^5\,N_2/N_{\mathrm{I+II}}$")
48 plt.savefig("hydrogen_frac.pdf")

82 3 Functions and Numerical Methods

Fig. 3.2 Fraction N2/(NI + NII) of hydrogen in the first excited state for constant electron pressure
Pe ≈ 20 Pa as function of temperature

In line 38 the Boltzmann equation is applied to compute the fraction N2/N1 for
an array of temperatures ranging from 5000 to 2.5 × 104 K (variables T_min and
T_max defined in line 34). Expression (3.15) is then used in the call of the plot
function in lines 42–43. The resulting fraction is scaled by a factor of 105 to obtain
numbers of order unity.

The graph in Fig. 3.2 shows that N2/(NI + NII) peaks at a temperature of about
10000 K in good agreement of the observed strength of Balmer lines in the spectra of
stars. This temperature is significantly lower than the temperature∼105 K for which
most of the hydrogen atoms would be in an excited state. However at such high
temperatures, almost all hydrogen is ionized. As a result, the fraction N2/(NI + NII)

does not exceed ∼10−5 even at the peak. Nevertheless, such a small fraction is
sufficient to produce strongBalmer absorption lines in the atmospheres ofAstars. The
first line in the Balmer series is called Hα line and has a wavelength λ = 656.45 nm,
which is in the red part of the spectrum. Transitions to higher levels (n2 > 3) are
seen as absorption lines Hβ, Hγ, etc. at wavelengths ranging from blue to ultraviolet.
Observed spectra of stars of different spectral classes can be found in [3, Sect. 9.2]
and [4, Sect. 8.1].

So far, we have ignored the dependence on electron pressure. Since high electron
pressure suppresses ionization, it appears possible that we overestimated the decline
of N2/(NI + NII) toward high temperature. To investigate the dependence on both
parameters (temperature and electron pressure), it is helpful to produce a three-
dimensional surface plot:

49 from mpl_toolkits.mplot3d import Axes3D
50 from matplotlib.ticker import LinearLocator
51
52 fig = plt.figure(figsize=(6,4), dpi=100)

3.2 Physics of Stellar Atmospheres 83

53 ax = plt.axes(projection=’3d’)
54
55 P_min, P_max = 10, 100
56
57 # create meshgrid
58 # (x-axis: temperature, y-axis: electron pressure)
59 T, P_e = np.meshgrid(np.arange(T_min, T_max, 200.0),
60 np.arange(P_min, P_max, 1.0))
61
62 # fraction of HI in first excited state
63 HI2_frac = 4*np.exp(-0.75*chi/(k*T))
64
65 # create surface plot
66 surf = ax.plot_surface(T, P_e,
67 1e5*HI2_frac/((1 + HI2_frac)*(1 + HII_frac(T, P_e))),
68 rcount=100, ccount=100,
69 cmap=’BuPu’, antialiased=False)
70
71 # customize axes
72 ax.set_xlim(T_min, T_max)
73 ax.set_xlabel("T [K]")
74 ax.xaxis.set_major_locator(LinearLocator(5))
75 ax.set_ylim(P_min, P_max)
76 ax.set_ylabel("P_{e} [Pa]")
77
78 # add color bar for z-axis
79 cbar = fig.colorbar(surf, shrink=0.5, aspect=5)
80 cbar.ax.set_ylabel("$10^5 N_2/N_{\mathrm{I+II}}$")
81
82 plt.savefig("hydrogen_frac_3d.png")

Surface plots can be produced with pyplot using the mplot3d toolkit. In line 53,
a three-dimensional axes object is created (this is based on Axes3D imported in
line 49). To define the data points from which the surface is rendered, we need a
two-dimensional array of points in the xy-plane and the corresponding z-values (in
our example, N2/(NI + NII) as function of T and Pe). The x- and y-coordinates
are defined by one-dimensional arrays of temperatures and pressures in steps of
200 K and 1 Pa, respectively. The function np.meshgrid(), which you know
from Sect. 2.3, generates a meshgrid of coordinate pairs in the xy-plane. The result-
ing two-dimensional arrays followed by the corresponding values of N2/(NI + NII)

defined by Eq. (3.15) are passed as arguments in the call of ax.plot_surface()
in lines 66–67. As in the two-dimensional plot above, we scale the z-axis by a factor
of 105. The optional argument cmap=’BuPu’ in line 69 specifies a colormap,19 and
further arguments control how the surface is rendered and displayed. The coloring

19See matplotlib.org/3.1.1/tutorials/colors/colormaps.html for further details and available col-
ormaps.

https://matplotlib.org/3.1.1/tutorials/colors/colormaps.html

84 3 Functions and Numerical Methods

Fig. 3.3 The same quantity
as in Fig. 3.2 shown as
function of temperature and
electron pressure

of the surface corresponds to the height in z-direction, i.e. the function value, as
indicated by the colorbar created in lines 79–80.

After rendering the surface, further methods are called to customize the axes.
For example, ax.set_xlim() sets the plot range along the x-axis. The method
xaxis.set_major_locator() can be used to set the major ticks labeled
by numbers along the x-axis. Tick locating and formatting is defined in
matplotlib.ticker (see line 50). In line 74, the tick locator is informed to
use five evenly spaced ticks along the x-axis. This prevents the axis from becom-
ing too crowed by numbers (experiment with the settings to see for yourself how
the appearance of the plot is affected). All of this might sound rather complicated,
but you will easily get accustomed to making such plots by starting from examples
without worrying too much about the gory details.

The graphical output is shown in Fig. 3.3. It turns out that the maximal fraction
of excited hydrogen increases with electron pressure (this is expected because ion-
ization is reduced), but the location of the peak is shifted only slightly from lower
to higher temperature. Even for the upper bound of Pe in stellar atmospheres (about
100 Pa), the increase is quite moderate (little more than a factor of two compared
to Fig. 3.2). Of course, Pe and T are not really independent variables. Conditions
in stellar atmospheres will roughly follow a diagonal cut through the surface shown
in Fig. 3.3 from low Pe in cool stars toward higher Pe in hot stars. Computing Pe
requires a detailed model of the stellar atmosphere. For this purpose, researchers
have written elaborate codes.

3.2.2 The Balmer Jump

Balmer lines result from absorbed photons that lift electrons from the first excited
state of hydrogen, n1 = 2, to higher energy levels, n2 > 2. If a photon is sufficiently
energetic, it can even ionize a hydrogen atom. The condition for ionization from the

3.2 Physics of Stellar Atmospheres 85

state n1 = 2 is
hc

λ
≥ χ2 = 13.6 eV

22
= 3.40 eV . (3.16)

The correspondingmaximal wavelength is 364.7 nm. Like the higher Balmer lines, it
is in the ultraviolet part of the spectrum. Since ionizing photons can have any energy
above χ2, ionization will result in a drop in the radiative flux at wavelengths shorter
than 364.7 nm rather than a line. This is called the Balmer jump.

To estimate the fraction of photons of sufficient energy to ionize hydrogen for a
star of given effective temperature, let us assume that the incoming radiation is black
body radiation. From the Planck spectrum (3.3), we can infer the flux below a given
wavelength:

Fλ≤λ0 = π

∫ λ0

0

2hc2

λ5

1

exp(hc/λkT) − 1
dλ . (3.17)

Since we know that the total radiative flux integrated over all wavelengths is given
by Eq. (3.4), the fraction of photons with wavelength λ ≤ λ0 is given by Fλ≤λ0/F .

Since the integral in Eq. (3.17) cannot be solved analytically, we apply numerical
integration.20 The definite integral of a function f (x) is the area below the graph
of the function for a given interval x ∈ [a, b]. The simplest method of numerical
integration is directly based on the notion of the Riemann integral:

∫ b

a
f (x)dx = lim

N→∞

N∑
n=1

f (xn−1/2)�x , (3.18)

where �x = (b − a)/N is the width of the nth subinterval and xn−1/2 = a + (n −
1/2)�x is its midpoint. The sum on the right-hand sidemeans that the area is approx-
imated by N rectangles of height f (xn) and constant width�x . If the function meets
the basic requirements of Riemann integration (roughly speaking, if it has no poles
and does not oscillate within arbitrarily small intervals), the sum converges to the
exact solution in the limit N → ∞. In principle, approximations of arbitrarily high
precision can be obtained by using a sufficient number N of rectangles. This is called
rectangle or midpoint rule.

More efficient methods use shapes that are closer to the segments of the function
f (x) in subintervals. For example, the trapezoidal rule is based on a piecewise
linear approximation to the function (i.e. linear interpolation between subinterval
endpoints). In this case, the integral is approximated by a composite of N trapezoids,
as illustrated in Fig. 3.4. The resulting formula for the integral can be readily deduced
from the area (f (xn − 1) + f (xn))�x/2 of the nth trapezoid:

∫ b

a
f (x)dx �

(
1

2
f (a) +

N−1∑
n=1

f (xn) + 1

2
f (b)

)
�x , (3.19)

20See also [7, Chap. 9] for numerical integration using Python.

86 3 Functions and Numerical Methods

y

x
1xa 2x N-1x b

f(x)

nx... ...

Fig. 3.4 Numerical integration of a function using the trapezoidal rule

where xn = a + n�x for 0 ≤ n ≤ N are the subinterval endpoints (in particular,
x0 = a and xN = b).

The error of the approximations can be further reduced by quadratic interpolation
of function values. This is the underlying idea of Simpson’s rule, which can be
expressed as

∫ b

a
f (x)dx �

(
f (a) + 2

N/2−1∑
k=1

f (x2k) + 4
N/2∑
k=1

f (x2k−1) + f (b)

)
�x

3
. (3.20)

Here, the summation index k is mapped to even and odd numbers in the first and
second sum, respectively. As a result, we have the terms f (x2), f (x4), . . . , f (xN−2)

in the first sum and f (x1), f (x3), . . . , f (xN−1) in the second sum.
We will now put these methods into practice, starting with the trapezoidal rule.

Here is a straightforward implementation of Eq. (3.19) using NumPy arrays:

1 def integr_trapez(f, a, b, n):
2 """
3 numerical integration of a function f(x)
4 using the trapezoidal rule
5

6 args: f - function f(x)
7 a - left endpoint of interval
8 b - right endpoint of interval
9 n - number of subintervals
10

11 returns: approximate integral
12 """
13

14 # integration step
15 h = (b - a)/n

3.2 Physics of Stellar Atmospheres 87

16

17 # endpoints of subintervals between a+h and b-h
18 x = np.linspace(a+h, b-h, n-1)
19

20 return 0.5*h*(f(a) + 2*np.sum(f(x)) + f(b))

The subintervalwidth�x is commonly denoted by h and called integration step in the
numerical context. Subinterval endpoints xn (excluding x0 and xN) are organized in
an array that is passed as argument to a generic function f(). We implicitly assume
thatf() accepts array-like arguments, such asroot_bisection() in Sect. 3.1.2.
The array of function values returned by f() is in turn passed to the NumPy function
sum() to sum up all elements. Thus, the expression np.sum(f(x)) in line 20
corresponds to the sum in Eq. (3.19).

As a simple test case, let us apply the trapezoidal rule to the integral

∫ π/2

0
sin(x) dx = 1

We can use the sine function from NumPy:

21 print(" n integr")
22 for n in range(10,60,10):
23 print("{:2d} {:.6f}".format(n,
24 integr_trapez(np.sin, 0, np.pi/2, n)))

The output demonstrates that our implementation works and N = 20 subdivisions
of the integration interval are sufficient to reduce the numerical error below 10−3:

n integr

10 0.997943

20 0.999486

30 0.999772

40 0.999871

50 0.999918

It is also clear that increasing N further results only in minor improvements of the
accuracy of the result.

Before continuingwith Simpson’s rule, imagine for amoment you had chosen zero
as start valueofrange in line 22.Thiswouldhave thrownaZeroDivisionError
in the first iteration and the remainder of the loop would not have been executed
(try it). The error is caused by the division through n in line 15 in the body of
integr_trapez(). A detailed error message will point you to this line and you
would probably be able to readily fix the problem. To prevent a program from crash-
ing in the first place, Python offers a mechanism to continue with execution even in
the case of an error. This is known as exception handling. In Python, exception han-
dling can be implemented via a try clause followed by one or more exception
clauses. They work similar to if and else clauses. Instead of evaluating a Boolean

88 3 Functions and Numerical Methods

expression, Python checks if any of the exceptions specified in the exception
clauses occur when the block in the try clause is executed. If so, some measures are
taken to handle the error. Otherwise, program execution continues without further
ado.

In our function for the trapezoidal rule, we can simply add ZeroDivision
Error as an exception and print an error message without interrupting execution
(explanation of function interface is omitted here):

1 def integr_trapez(f, a, b, n):
2

3 # integration step with exception handling
4 try:
5 h = (b - a)/n
6 except ZeroDivisionError:
7 print("Error: n must be non-zero")
8 return None
9

10 # endpoints of subintervals between a+h and b-h
11 x = np.linspace(a+h, b-h, n-1)
12

13 return 0.5*h*(f(a) + 2*np.sum(f(x)) + f(b))
14

15 print(" n integr")
16 for n in range(0,60,10):
17 print("{:2d}".format(n), end=" ")
18

19 intgr = integr_trapez(np.sin, 0, np.pi/2, n)
20

21 if intgr != None:
22 print("{:.6f}".format(intgr))

Now we get the same output as above with an additional line indicating that zero
subdivisons is not an allowed:

n integr

0 Error: n must be non-zero

10 0.997943

20 0.999486

30 0.999772

40 0.999871

50 0.999918

This is accomplished by calculating the subinterval width in the try clause in lines
4–5. If n is zero, a ZeroDivisionError is encountered as exception (lines 6–8).
After printing an error message, the function immediately returns None, indicating
that the function did not arrive at a meaningful result for the actual arguments of

3.2 Physics of Stellar Atmospheres 89

the function call. To place the error message in a single line right after the value of
n in the table, we split the print statement. First, the number of integration steps is
printed with end=" " in line 17. This replaces the default newline character by
two whitespaces, which separate the table columns. Then the value of the integral is
printed only if the call of integr_trapez() in line 19 returns a value that is not
None. Otherwise, the error message will appear.

We can even get more sophisticated though. In fact, only positive integers are
allowed for the number of subintervals. In a language such as C a variable of type
unsigned integer could be used and checking for zero values would be all that is
needed. Since a function argument in Python does not have a particular data type,
we need to convert n to an integer (assuming that the actual argument is at least a
number) and check that the result is positive.

1 def integr_trapez(f, a, b, n):
2 n = int(n)
3
4 # integration step with exception handling
5 try:
6 if n > 0:
7 h = (b - a)/n
8 else:
9 raise ValueError
10 except ValueError:
11 print("Invalid argument: n must be positive")
12 return None
13
14 # endpoints of subintervals between a+h and b-h
15 x = np.linspace(a+h, b-h, n-1)
16
17 return 0.5*h*(f(a) + 2*np.sum(f(x)) + f(b))

After chopping off any non-integer fraction with the help of int() in line 2, the
integration interval is subdivided in the try clause provided that n is greater than
zero (lines 6–7). If not, a ValueError is raised as exception. The programmer can
raise a specific exception via the keyword raise. We leave it as a little exercise for
you to test the function and to see what happens for arbitrary values of the argument
n. This kind of error checking might appear somewhat excessive for such a simple
application, but it can save you a lot of trouble in complex programs performing
lengthy computations. Making use of exception handling is considered to be good
programming practice and important for code robustness.

For Simpson’s rule (3.20), we need to ensure that the number of subintervals, N , is
an even integer≥2. The following implementation of Simpson’s rule simply converts
any numeric value of the argument n into a number that fulfils the requirements of
Simpson’s rule. Since the user of the function might not be aware of the assumptions
made about the argument, implicit changes of arguments should be used with care.
In contrast, the rejection of invalid arguments via exception handling usually tells
the user what the problem is. The downside is that exception handling takes more

90 3 Functions and Numerical Methods

effort and results in longer code. Here, we just make you aware of different options.
You need to decide which methods is preferable depending on the purpose and target
group of the code you write.

1 def integr_simpson(f, a, b, n):
2 """
3 numerical integration of a function f(x)
4 using Simpson’s rule
5
6 args: f - function f(x)
7 a - left endpoint of interval
8 b - right endpoint of interval
9 n - number of subintervals (positive even integer)
10
11 returns: approximate integral
12 """
13
14 # need even number of subintervals
15 n = max(2, 2*int(n/2))
16
17 # integration step
18 h = (b - a)/n
19
20 # endpoints of subintervals (even and odd multiples of h)
21 x_even = np.linspace(a+2*h, b-2*h, int(n/2)-1)
22 x_odd = np.linspace(a+h, b-h, int(n/2))
23
24 return (h/3)*(f(a) + 2*np.sum(f(x_even)) +
25 4*np.sum(f(x_odd)) + f(b))

In line 15, any numeric value of n is converted into an even integer with a floor of
two (test different values and figure out step by step how the conversion works). The
expressions in lines 24–25 correspond to the terms in Eq. (3.20), with the elements
of x_even being the endpoints x2k with even indices (excluding x0 and xN), and
x_odd containing those with odd indices, x2k−1.

A test of integr_simpson() shows that high accuracy is reached with rela-
tively few integration steps:

26 print(" n integr")
27 for n in range(2,12,2):
28 print("{:2d} {:.8f}".format(n,
29 integr_simpson(np.sin, 0, np.pi/2, n)))

n integr

2 1.00227988

4 1.00013458

6 1.00002631

8 1.00000830

10 1.00000339

3.2 Physics of Stellar Atmospheres 91

The error of Simpson’s rule is the order 10−5 for N = 8 compared to N = 50 for the
trapezoidal rule. Consequently, the slightly more complicated algorithm pays off in
terms of accuracy.

We are almost prepared now to solve the integral in Eq. (3.17) numerically. To
apply numerical integration, we will use a slightly modified Python function for
the Planck spectrum because the factor 1/λ5 and the exponent hc/(λkT) diverge
toward the lower limit λ = 0 of the integral. However, analytically it follows that the
combined factors do not diverge (the exponential function wins against the power
function):

lim
λ→0

Bλ(T) = 0 .

Nevertheless, if you call planck_spectrum() defined in Sect. 3.1.2 for zero
wavelength, you will encounter zero division errors. This can be avoided by shifting
the lower limit of the integral from zero to a wavelength slightly above zero, for
example, λ = 1 nm. Even so, Python will likely report a problem (it is left as an
exercise to check this):

RuntimeWarning: overflow encountered in exp

The reason is that hc/(λkT) is a few times 103 for λ = 1 nm and typical stellar
temperatures. For such exponents, the exponential is beyond themaximum that can be
represented as a floating point number in Python (try, for instance, np.exp(1e3)).

We can make use of the sys module to obtain information about the largest
possible floating point number:

30 import sys
31

32 print(sys.float_info.max)

It turns out to be a very large number:

1.7976931348623157e+308

Since the exponential function increases rapidly with the exponent, we need
to ensure that the argument np.exp() does not exceed the logarithm of
sys.float_info.max, which is just a little above 700 (assuming the value
printed above). For this reason, we use the following definition of the Planck
spectrum, where a cutoff of the exponent at 700 is introduced with the help of
np.minimum(). This function compares its arguments element-wise and selects
for each pair the smaller value:

33 def planck_spectrum(wavelength, T):
34 """
35 function computes Planck spectrum of a black body
36 uses cutoff of exponent to avoid overflow
37
38 args: numpy arrays

92 3 Functions and Numerical Methods

39 wavelength - wavelength in m
40 T - temperature in K
41
42 returns: intensity in W/m^2/m/sr
43 """
44 return 2*h*c**2 / (wavelength**5 *
45 (np.exp(np.minimum(700, h*c/(wavelength*k*T))) - 1))

With this modification, the Planck spectrum can be readily integrated in the inter-
val [λmin, λ0], whereλmin = 1 nm andλ0 = 364.7 nmmarks theBalmer jump. There
is still a problem with applying our implementation of Simpson’s rule, though. You
can easily convince yourself that executing

integr_simpson(planck_spectrum, 1e-9, 364.7e-9, 100)

results in an error. To understand the problem you need to recall that
planck_spectrum() is called in place of the generic function f() in the body
of integr_simpson(). As a result, planck_spectrum() will be called
with only one argument (the integration variable), but it expects the temperature
as second argument. To solve this problem, we need to define a proxy function for
planck_spectrum() which accepts the wavelength as single argument. This
can be easily done by means of a Python lambda, which is also known as anonymous
function. In essence, a Python lambda is a shorthand definition of a function, which
can be directly used in an expression (so far, defining a function and calling the
function in an expression have been distinct):

47 print("Teff [K] flux [%]")
48 for Teff in T_sample:
49 frac = np.pi*integr_simpson(
50 lambda x : planck_spectrum(x, Teff),
51 1e-9, 364.7e-9, 100) / (sigma * Teff**4)
52 print("{:5.0f} {:5.2f}".format(Teff, 100*frac))

Instead of a function name, we use the expression beginning with the keyword
lambda in line 50 as actual argument in the call of integr_simpson(). It
defines the Planck spectrum for a given, but fixed temperature as an anonymous
function, whose formal argument is x. For each temperature in T_sample (see end
of Sect. 3.1.2), the result of the numerical intergration is multiplied by the factor
π/σT 4

eff to obtain the fraction Fλ≤λ0/F :

Teff [K] flux [%]

3130 0.13

3590 0.46

4290 1.71

5778 8.43

9940 40.87

24800 89.12

3.2 Physics of Stellar Atmospheres 93

The percentages suggest that the Balmer jump should be prominent in the spectra
of stars similar to our Sun and somewhat hotter. Although the fraction of ionizing
photons increases with temperature, the amount of excited neutral hydrogen dimin-
ishes through thermal ionization at temperatures above 10000 K. This conclusion is
in agreement with observed stellar spectra.

Exercises

3.3 Explain why the so-called Ca II H and K lines produced by singly ionized
calcium in the ground state are so prominent in solar-type spectra, although the
fraction of calcium atoms to hydrogen atoms is only 2 × 10−6. The reasoning is
similar to the analysis of Balmer lines in Sect. 3.2.1 (in fact, you will need results
from this section to compare occupation numbers giving rise to K and H lines and
Balmer lines). The ionization energyof neutral calcium (Ca I) isχ1 = 6.11 eVand the
partition functions are ZI = 1.32 and ZII = 2.30. The energy difference between the
ground state and the first excited state of Ca I is E2 − E1 = 3.12 eV with statistical
weights g1 = 2 and g2 = 4.

3.4 Photons do not move straight through stellar interiors. They move only short
distances before getting absorbed by atoms or ions, which subsequently re-emit
photons. We can therefore think of a photon being frequently scattered in a stellar
atmosphere. This process can be described by a simple model. If we assume that
the photon moves in random direction over a constant length between two scattering
events, its path can be described by a so-called random walk (see also [4], Sect. 9.3):

d = �1 + �2 + · · · + �N

where each step
�n ≡ (�xn,�yn) =
 (cos θn, sin θn)

has length
 and a random angle θn ∈ [0, 2π] (here, we consider only the two-
dimensional case to simplify the model even further). After N steps, the expectation
value for the net distance over which the photon has moved is d =

√
N . Physically

speaking, this is a diffusion process.
By making use of np.random.random_sample(size=N), you can gen-

erate an array of equally distributed random numbers in the interval [0, 1] of size
N. By multiplying these numbers with 2π, you obtain a sequence of random angles
for which you can compute a random walk according to the above formula. Set

 = 1/(ρκ), where ρ is the density and κ the opacity of the gas. This is the mean free
path. The density and opacity in the layers beneath the atmosphere of a solar-mass
star is roughly ρ = 10−6 g cm−3 and κ = 50 cm2 g−1.

(a) Compute a random walk and use plt.plot() with ’o-’ as marker to show
all positions (xn, yn) as dots connected by lines.

(b) Compute a series of random walks with N increasing in logarithmic steps and
determine the distance d = |d| between start end points for each walk. The
function

94 3 Functions and Numerical Methods

curve_fit(func, xdata, ydata)

from scipy.optimize allows you to fit data points given by xdata and
ydata, respectively, to a model that is defined by the Python function func().
Arguments of the function are an independent variable, which corresponds to
xdata, and one or more free parameters. Fitting data to a model means that the
parameters with the smallest deviation between data and model are determined,
which is an optimization problem (we do not worry here about the exact mathe-
matical meaning of deviation).21 To apply curve_fit(), you need to collect
the data for N and d from your random walks in arrays, and define a Python
function for the expectation value d =

√
N with parameter
. How does the

resulting value of
 compare to the mean-free path calculated above? That is to
say if you knew only the random-walk data, would you be able to estimate the
mean-free path from the fit? Plot your data as dots and the resulting fit function
as curve to compare data and model.

(c) The total travel time of the photon over a random walk with N steps is t = N
c,
where c is the speed of light. How long would it take a photon to reach the
photosphere, fromwhich radiation is emitted into space, from a depth of 104 km
(about 1% of the solar radius)?

3.3 Planetary Ephemerides

The trajectory followed by an astronomical object is also called ephemeris, which
derives from the Latin word for “diary”. In former times, astronomers observed
planetary positions on a daily basis and noted the positions in tables. If you think
about the modern numerical computation of an orbit, which will be discussed in
some detail in the next chapter, you can imagine positions of a planet or star being
chronicled for subsequent instants, just like notes in a diary.

In Sect. 2.2, we considered the Keplerian motion of a planet around a star, which
neglects the gravity of other planets. The orbits of the planets in the solar system can
be treated reasonably well as Kepler ellipses, but there are long-term variations in
their shape and orientation induced by the gravitational attraction of the other planets,
especially Jupiter. To compute such secular variations over many orbital periods with
high accuracy, analytical and numerical calculations using perturbation techniques
are applied. An example is the VSOP (Variations Séculaires des Orbites Planétaires)
theory [8]. The solution known as VSOP87 represents the time-dependent heliocen-
tric coordinates X , Y , and Z of the planets in the solar system (including Pluto)
by series expansions, which are available as source code in several programming
languages. We produced a NumPy-compatible transcription into Python.

The Python functions for the VSOP87 ephemerides are so lengthy that it would
be awkward to copy and paste them into a notebook. Amuchmore convenient option

21It might be helpful to study the explanation and examples in
docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

3.3 Planetary Ephemerides 95

is to put the code into a user defined Python module. In its simplest manifestation,
a module is just a file named after the module with the extension .py containing
a collection of function definitions. The file vsop87.py is part of the zip archive
accompanying this chapter. You can open it in any source code editor or IDE. After
a header, you will find definitions of various functions and, as you scroll down,
thousands of lines summing cosine functions of different arguments (since we use
the cosine from numpy, we need to import this module in vsop87.py). As with
other modules, all you need to do to use the functions in a Python script or in a
notebook is to import the module:

1 import vsop87 as vsop

However, this will only work if the file vsop87.py is located in the same directory
as the script or notebook into which it is imported. If this is not the case, you can
add the directory containing the file to the module search path. Python searches
modules in predefined directories listed in sys.path You can easily check which
directories are included by importing the sys module and printing sys.path. If
you want to add a new directory, you need to append it to the environmental variable
PYTHONPATH before starting your Python session. The syntax depends on your
operating system and the shell you are using (search the web for pythonpath followed
by the name of your operating system and you are likely to find instructions or some
tutorial explaining how to proceed).Alternatively, you can always copyvsop87.py
into the directory you are currently working.

Functions such as vsop.Earth_X(), vsop.Earth_Y(), vsop.
Earth_Z() for the coordinates of Earth expect the so-called Julian date as argu-
ment. The Julian date is used by astronomers as a measure of time in units of days
counted from a zero point that dates back to the fifth millennium B.C. (as a conse-
quence, Julian dates for the current epoch are rather large numbers). The following
Python function converts the commonly used date of the Gregorian calendar (days,
months, year) and universal time (UT) to the corresponding Julian date:

2 import math
3
4 def Julian_date(D, M, Y, UT):
5 """
6 converts day, month, year, and universal time into
7 Julian date
8
9 args: D - day
10 M - month
11 Y - year
12 UT - universal time
13
14 returns: Julian date
15 """
16
17 if (M <= 2):
18 y = Y-1
19 m = M+12

96 3 Functions and Numerical Methods

20 else:
21 y = Y
22 m = M
23
24 if (Y < 1582):
25 B = -2
26 elif (Y == 1582):
27 if (M < 10):
28 B = -2
29 elif (M == 10):
30 if (D <= 4):
31 B=-2
32 else:
33 B = math.floor(y/400) - math.floor(y/100)
34 else:
35 B = math.floor(y/400) - math.floor(y/100)
36 else:
37 B = math.floor(y/400) - math.floor(y/100)
38
39 return math.floor(365.25*y) + math.floor(30.6001*(m+1)) + \
40 B + 1720996.5 + D + UT/24

The function math.floor() returns the largest integer less than or equal to a
given floating point number.22

For example, let us the determine the current Julian date:

41 from datetime import datetime
42
43 # get date and UTC now
44 now = datetime.utcnow()
45
46 JD = Julian_date(now.day, now.month, now.year,
47 now.hour + now.minute/60 + now.second/3600)
48
49 # convert to Julian date
50 print("Julian date: {:.4f}".format(JD))

The function datetime.utcnow() returns the coordinated universal time
(see Sect. 2.1.3) at the moment the function is called. From the object now defined
in line 44, we can get the calendar day via the attribute day, the hour of the day via
hour, etc. This is the input we need for converting from UTC to the Julian date.
Since the argument UT of Julian_date() must be the time in decimal repre-
sentation, we need to add the number of minutes divided by 60 and the number of
seconds divided by 3600. When this sentence was written, the result was

Julian date: 2458836.0753

Alternatively, you can use Astropy (see Exercise 3.6).

22This is is not identical to int(), which chops off the non-integer fraction. Apply both functions
to some negative floating point number to see the difference.

3.3 Planetary Ephemerides 97

For a given Julian date, we can easily compute the distance between two planets
by using the VSOP87 coordinate functions of the planets. VSOP87 uses an ecliptic
heliocentric coordinate system with the Sun at the center and the ecliptic being
coplanar with the XY plane (i.e. Earth’s orbit is in the XY plane). For example, the
distance between Earth (♁) and Mars (♂) is given by

d =
√

(X♁ − X♂)2 + (Y♁ − Y♁)2 + (Z♁ − Z♂)2

which translates into the following Python code:

51 def Earth_Mars_dist(JD):
52 delta_x = vsop.Earth_X(JD) - vsop.Mars_X(JD)
53 delta_y = vsop.Earth_Y(JD) - vsop.Mars_Y(JD)
54 delta_z = vsop.Earth_Z(JD) - vsop.Mars_Z(JD)
55 return vsop.np.sqrt(delta_x**2 + delta_y**2 + delta_z**2)

At first glance, you might find it surprising that NumPy’s square root is called as
vsop.np.sqrt() in the last line. But remember that numpy is imported (under
the alias np) inside the module vsop, while the function Earth_Mars_dist()
is is not part of this module.23 For this reason, NumPy functions such as sqrt()
need to be referenced via vsop.np (dotted module names are also used in Python
packages consisting of a hierarchy of modules). Of course, we could import numpy
directly into the global namespace. In this case, each NumPy function would have a
duplicate in vsop.np (check that both variants work).

Now execute Earth_Mars_dist() for your Julian date and print the result:

56 print("distance between Earth and Mars now: {:.3f} AU".\
57 format(Earth_Mars_dist(JD)))

The answer for the Julian date 2458836.0753 is

distance between Earth and Mars now: 2.278 AU

Since VSOP87 computes the coordinates in AU, no unit conversion is required.
A plot showing d for the next 1000 days is easily produced:

58 import matplotlib.pyplot as plt
59 %matplotlib inline
60

61 t = JD + np.arange(1000)
62

63 plt.figure(figsize=(6,4), dpi=100)
64 plt.plot(t, Earth_Mars_dist(t))
65 plt.xlabel("JD [d]")
66 plt.ylabel("d [AU]")

23It is possible to add a new function to the module by inserting it into the file vsop87.py and
reloading the module.

98 3 Functions and Numerical Methods

Fig. 3.5 Distance between Earth and Mars over 1000 days. Time is expressed as Julian date. The
next minimum is indicated by the red dot

Since the Julian data counts days, it is sufficient to add days counting from 0 to 999 to
the current date JD (see line 61). By applying np.arange(), we obtain an array
of dates for which distances can be directly computed and plotted. The resulting
graph will look similar to what is shown in Fig. 3.5 (it will be shifted depending on
the chosen start date). The distance between the two planets varies with their orbital
motion and becomes minimal when Earth is located just in between Mars and Sun
(Mars and Sun are then said to be in opposition as seen from Earth). To determine
the date when this happens, we need to find points where the first derivative with
respect to time, ḋ , vanishes. This brings us back to root finding.

If you look into vsop87.py, you will realize that it would be unpractical to cal-
culate derivatives of the coordinate functions analytically. However, we can approx-
imate the derivatives numerically by finite differences. We concentrate on centered
differences, which are obtained by averaging the forward and backward differences
of a function f (x) for discrete points on the x-axis spaced by �x . To second order
in �x ,24 the derivative is approximated by the centered difference quotient

f ′(x) ≡ d f

dx
� f (x + �x) − f (x − �x)

2�x
. (3.21)

The following Python function implements the centered difference method for a
single point or an array of points (the backward and forward coordinate difference
h = �x is specified as third argument).

24Thismeans that the error decreases with�x2 as�x → 0, provided that the function is sufficiently
smooth to be differentiable.

3.3 Planetary Ephemerides 99

1 def derv_center2(f, x, h):
2 """
3 approximates derivative of a function
4 by second-order centered differences
5

6 args: f - function f(x)
7 x - points for which df/dx is computed
8 h - backward/forward difference
9

10 returns: approximation of df/dx
11 """
12 return (f(x+h) - f(x-h))/(2*h)

As a simple test, we compute the derivative of the sine function. Since the deriva-
tive of sin(x) is cos(x), we can compare the numerical approximation to the analytic
solution:

13 h = 0.1
14 x = np.linspace(0, np.pi, 9)
15

16 print(" analytic cd2")
17 for (exact,approx) in zip(np.cos(x),
18 derv_center2(np.sin, x, h)):
19 print("{:9.6f} {:9.6f}".format(exact,approx))

By passing the NumPy array x defined in line 14 as argument, np.cos() and
derv_center2() return arrays of analytic and approximate values, respectively,
which are zipped andprinted in a table via afor loop. The label cd2 is an abbreviation
for centered differences of second order. In this case, the variable h is not given by
the spacing of the points in the array x (the example above, the spacing is π/8).
Its value is used as an adjustable parameter to control the accuracy of the centered
difference approximation.25 For h = 0.1, the results are:

analytic cd2

1.000000 0.998334

0.923880 0.922341

0.707107 0.705929

0.382683 0.382046

0.000000 0.000000

-0.382683 -0.382046

-0.707107 -0.705929

-0.923880 -0.922341

-1.000000 -0.998334

25In many applications, however, h is equal to the spacing of grid points. This typically occurs when
a function cannot be evaluated for arbitrary x-values, but is given by discrete data.

100 3 Functions and Numerical Methods

You can gradually decrease the value of h to investigate how the finite difference
approximation converges to the derivative (remember that the derivative is defined
by the differential quotient in the limit h → 0).

In order to determinewhether the function f (x) has aminimumor amaximum,we
need to evaluate the second derivative, f ′′(x). The second-order centered difference
approximation,

f ′′(x) � f (x + �x) − 2 f (x) + f (x − �x)

�x2
, (3.22)

is also readily implemented in Python:

20 def dderv_center2(f, x, h):
21 """
22 approximates second derivative of a function
23 by second-order centered differences
24

25 args: f - function f(x)
26 x - points for which df/dx is computed
27 h - backward/forward difference
28

29 returns: approximation of d^2 f/dx^2
30 """
31 return (f(x+h) - 2*f(x) + f(x-h))/h**2

With the help of dderv_center2(), you can elaborate on the example above
and determine points for which the sine function has a minimum, a maximum, or
an inflection point. This is left as an exercise for you (convince yourself that your
numerical results are consistent with the extrema and inflection points following
from analytic considerations).

Returning to our problem of finding the next date when Mars is closest to Earth,
the numerical computation of the second derivative comes in very handy if we apply
yet another method to find the root of a function. This method, which is known
as Newton–Raphson method (or Newton’s method), makes use of tangent lines to
extrapolate from some given point to the point where the function crosses zero. If
f (x) is a linear function and f ′(x) its constant slope, it is a matter of elementary
geometry to show that f (x1) = 0 for

x1 = x − f (x)

f ′(x)
. (3.23)

Of course, we are interested in functions that are non-linear and for which f (x) = 0
cannot be found analytically. Assuming that f (x) has a root in some neighbourhood
of the point x0 and provided that f (x) is differentiable in this neighbourhood, the
formula for a linear function can be applied iteratively:

3.3 Planetary Ephemerides 101

xn+1 = xn − f (xn)

f ′(xn)
. (3.24)

As the root is approached, f (xn) converges to zero and the difference between xn
and xn+1 vanishes. If a function has multiple roots, the result depends on the choice
of the start point x0.

In Python, the algorithm can be implemented as follows:

32 def root_newton(f, df, x0, eps=1e-3, imax=100):
33 """
34 Newton-Raphson algorithm for finding the root
35 of a function f(x)
36
37 args: f - function f(x)
38 df - derivative df/dx
39 x0 - start point of iteration
40 eps - tolerance
41 imax - maximal number of iterations
42 verbose - print additional information if true
43
44 returns: estimate of x for which f(x) = 0
45 """
46
47 for i in range(imax):
48 x = x0 - f(x0)/df(x0)
49
50 if abs(x - x0) < eps:
51 print("tolerance reached after {:d} iterations".
52 format(i+1))
53 print("deviation: f(x) = {:.3e}".format(f(x)))
54 return x
55
56 x0 = x
57
58 print("exceeded {:d} iterations".format(i+1),
59 "without reaching tolerance")
60 return x

The function defined above is similar to the first version of root_bisection()
in Sect. 3.1.2. Instead of the endpoints of the start interval for the bisection method,
a single start point x0 has to be specified, and in addition to the function f() we
need to pass its derivative df() as argument. The body of root_newton() is
quite simple: The iteration formula (3.24) is repeatedly applied in a for loop with
a prescribed maximum number of iterations (optional argument imax). Once the
difference between the previous estimate x0 and the current estimate x is smaller
than the tolerance eps, the execution of the loop stops and x is returned by the
function. Otherwise, the function terminates with an error message.

102 3 Functions and Numerical Methods

To test the Newton–Raphson method, let us return to the quadratic function

61 def quadratic(x):
62 return x**2 - x - 2

which we used as test case for the bisection method. Choosing the start point x0 = 0,

63 root_newton(quadratic, lambda x: 2*x - 1, 0)

we get the first root as solution:

tolerance reached after 5 iterations

deviation: f(x) = 2.095e-09

-1.000000000698492

Here, the derivative
f ′(x) = 2x − 1

is defined in the call of Newton’s method via a Python lambda (see Sect. 3.2.1;
alternvatively, you can define the derivative separately as a named Python function).
For x0 = 10, on the other hand,

64 root_newton(quadratic, lambda x: 2*x - 1, 10)

we get

tolerance reached after 5 iterations

deviation: f(x) = 1.267e-08

2.0000000042242396

Compared to the bisection method, Newton’s method produces highly accurate
approximations after only a few iterations. The downside is that one cannot pre-
dict which root is obtained for a given start point and a recursive variant for multiple
roots as in the case of the bisection method is not possible.

In the example above, the function and its derivative are defined by analytic expres-
sions. For the distance between Earth and Mars, we use centered differences to com-
pute derivatives numerically. By applying the Newton–Raphson method to the first
time derivative of the distance, i.e. ḋ(t) in place of f (x), we get an extremum of d(t).
Instead of f ′(x), the second derivative of the distance d̈(t) is required as input. To
calculate the derivatives, we apply derv_center2() and dderv_center2():

65 delta_t = 0.1
66
67 JD_extrem = root_newton(
68 lambda t : derv_center2(Earth_Mars_dist, t, delta_t),
69 lambda t : dderv_center2(Earth_Mars_dist, t, delta_t),
70 JD+300, eps=delta_t)
71

3.3 Planetary Ephemerides 103

72 print("\ndistance = {1:.3f} AU in {0:.0f} days".\
73 format(JD_extrem-JD, Earth_Mars_dist(JD_extrem)),
74 "({:4.0f}-{:02.0f}-{:02.0f})".\
75 format(vsop.JD_year(JD_extrem),
76 vsop.JD_month(JD_extrem),
77 vsop.JD_day(JD_extrem)))

To understand the call of root_newton(), it is important to keep in mind that
functions with only a single argument are assumed in line 48 in the body of
root_newton(). However,derv_center2() anddderv_center2()have
several arguments (see definitions above). For this reason, we use lambda to define
anonymous functions of the variable t returning centered difference approxima-
tions for a given function (Earth_Mars_dist) and timestep (delta_t). The
Newton–Raphson iteration starts at the current Julian date JD plus 300 days (see line
70). In our example, this results in

tolerance reached after 3 iterations

deviation: f(x) = 6.209e-13

distance = 0.415 AU in 307 days (2020-10-06)

It turns out that the initial guess of 300 days was pretty close. To print the correspond-
ing date in standard format, the Julian date is converted with the help of JD_year,
JD_month, and JD_day from vsop87 (lines 74–77). The solution is shown as red
dot in Fig. 3.5 (we leave it to you to complete the code). It turns out that the distance
to Mars reaches a minimum in October 2020.

The solution you get will depend on your initial date and start point for the
Newton–Raphson method. To verify whether your result is a minimum or a maxi-
mum, evaluate

dderv_center2(Earth_Mars_dist, JD_extrem, delta_t)

If the sign of the second derivative is positive, the distance is minimal, otherwise it is
maximal. At the time of its closet approach, Mars appears particularly bright on the
night sky. If you are enthusiastic about observing the sky, the date following from
your calculation might be worthwhile to note.

Exercises

3.5 Apply centered differences to calculate the fastest change of the day length in
minutes per day at your geographical latitude (see Sect. 2.1.2).

3.6 Planetary ephemerides are included in astropy.coordinates. For exam-
ple, to get the barycentric coordinates of Mars at a particular date,26 you can use the
code

26The origin of barycentric coordinates is the center of mass of the solar system. This coordinate
frame is also known as International Celestial Reference System (ICRS).

104 3 Functions and Numerical Methods

from astropy.time import Time
from astropy.coordinates import solar_system_ephemeris, \

get_body_barycentric

solar_system_ephemeris.set(’builtin’)

get_body_barycentric(’mars’, Time("2019-12-18"))

In this case, the computation is based on Astropy’s built-in ephemeris.27

Rewrite Earth_Mars_dist() using get_body_barycentric() for the
computation of the distance from Earth toMars and produce a plot similar to Fig. 3.5.
For the time axis, you can define an array of days similar to elapsed in Sect. 2.1.3.
When calling Earth_Mars_dist(), you need to add the array to a Time object.
You can express time also as Julian date by using the format attribute.28

3.7 Starting from an initial date of your choice, investigate possible Hohmann trans-
fer orbits to Mars (see Exercise 2.10) over a full orbital period (687 days). For each
day, use trigonometry and the ephemerides of Earth and Mars to compute the angu-
lar separations δ between the two planets at launch time and the angular change
�ϕ = ϕ′ − ϕ in the position of Mars over the transfer time tH. Neglecting the incli-
nation of the orbital plane of Mars against the ecliptic, these two angles should add
up to 180◦ (one half of a revolution) for a Hohmann transfer, i.e. δ + �ϕ = 180◦.
Which launch dates come closest to satisfying this condition? However, the param-
eters of the transfer trajectory are based on the assumption that the orbit of Mars is
circular. In fact, Mars has the highest eccentricity of all planets in the solar system.
Based on radial distances from the Sun, estimate by what distance is the spaceship
going to miss Mars when it reaches the aphelion.29

3.8 From all planets in the solar system, what is the largest distance between two
planets going to be in the course of the next 165 years (the time needed by Neptune
to complete one full revolution around the Sun)?

27There are options for more precise positions; see
docs.astropy.org/en/stable/coordinates/solarsystem.html for further details.
28See docs.astropy.org/en/stable/time.
29Determining a trajectory with sufficient accuracy for a space mission is quite challenging and
requires exact orbital elements and solutions of the equations ofmotion.Moreover, it is a complicated
optimization problem to meet constraints such as fuel consumption and travel time. As a result,
various modifications are made. For example, other types of Hohman transfer trajectories intersect
the orbit of the target prior to or after reaching the aphelion. Many space missions, such as the
famous Voyager missions, utilize the gravity of planets during flybys to alter their trajectories.

https://docs.astropy.org/en/stable/coordinates/solarsystem.html
https://docs.astropy.org/en/stable/time/

Chapter 4
Solving Differential Equations

Abstract Differential equations play a central role in numerics. We introduce basic
algorithms for first and second-order initial value problems. This will allow us to
numerically solve many interesting problems, for instance, a body falling through
the atmosphere, two- and three-body problems, a simple model for galaxy collisions,
and the expansion of the Universe. Apart from learning how to deal with numerical
errors, mastering multi-dimensional arrays and complex operations are important
objectives of this chapter. Moreover, it is shown how to produce histograms and
three-dimensional plots.

4.1 Numerical Integration of Initial Value Problems

From Newton’s laws to Schrödinger’s equation: physics is packed with differen-
tial equations. While the majority are partial differential equations, such as Euler’s
equations of fluid dynamics, Maxwell’s equations for electromagnetic fields, and
Schrödinger’s equation for the wave function in quantum physics, there also are
many applications of ordinary differential equations. In contrast to partial differen-
tial equations, ordinary differential equations determine functions of a single variable.
In this section, you will learn how to solve such equations numerically.

4.1.1 First Order Differential Equations

A differential equation of first order determines a time-dependent function x(t) by
a relation between the function and its first derivative ẋ . An example is the equation
for radioactive decay:

ẋ = λx , (4.1)

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9_4

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70347-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-70347-9_4

106 4 Solving Differential Equations

The solution of this equation is x(t) = x0e−λt , where x0 = x(0) is said to be the initial
value. While it is straightforward to solve a linear differential equation, in which all
terms are linear in x or ẋ , non-linear differential equations are more challenging.

Consider the Bernoulli equation1:

ẋ = α(t)x + β(t)xρ , (4.2)

where α(t) and β(t) are given functions and ρ is a real number. It encompasses
important differential equations as special cases, for example, Eq. (4.1) follows for
α(t) = λ, β(t) = 0, ρ = 0 and the logistic equation describing population dynamics
for α(t) = a, β(t) = b with constants a > 0, b < 0, and ρ = 2 (see Exercise 4.1).
From the viewpoint of numerics, Bernoulli-type equations are interesting because
an analytic solution is known and can be compared to numerical approximations.

In the following, we will attempt to numerically solve an example for a Bernoulli
equation from astrophysics, namely the equation for the radial expansion of a so-
called Strömgren sphere.When a hot, massive star is borne, it floods its surroundings
with strongly ionizing UV radiation. As a result, a spherical bubble of ionized hydro-
gen (HII) forms around the star. It turns out that ionization progresses as ionization
front, i.e. a thin spherical shell propagating outwards (see [4], Sect. 12.3). Inside the
shell, virtually all hydrogen is ionized. The radial propagation of the shell is described
by a differential equation for the time-dependent radius r(t) [9] (convince yourself
that this equation is a Bernoulli differential equation):

ṙ = 1

4πr2n0

(
S∗ − 4π

3
r3n20α

)
(4.3)

Here, S∗ is the total number of ionizing photons (i.e. photons of energy greater
than 13.6 eV; see Sect. 3.2.1) per unit time, n0 is the number density of neutral
hydrogen atoms (HI), andα ≈ 3.1 × 10−13 cm3 s−1 is the recombination coefficient.
Recombinationof ionizedhydrogen and electrons competeswith ionizationof neutral
hydrogen.2

Equation (4.3) can be rewritten in the form

ṙ = n0α
r3s − r3

3r2
(4.4)

where

rs =
(

3S∗
4πn20α

)1/3

(4.5)

1Named after the Swiss mathematician Jakob Bernoulli, one of the pioneers of calculus in the late
17th century.
2The recombination rate is proportional to the product of the number densities of hydrogen ions and
electrons, which is n20 in the case of a fully ionized medium. The total number of recombinations
per unit time is obtained by multiplying with the volume of the sphere.

4.1 Numerical Integration of Initial Value Problems 107

is the Strömgren radius. The speed ṙ approaches zero for r → rs, i.e. the propagation
of the ionization front slows down and stalls at the Strömgren radius.3 How large is
a Strömgren sphere? Let us do the calculation for an O6 star (see also [4], example
12.4):

1 import numpy
2 import astropy.units as unit
3
4 n0 = 5000 * 1/unit.cm**3 # number density of HI
5 S = 1.6e49 * 1/unit.s # ionizing photons emitted per second
6 alpha = 3.1e-13 * unit.cm**3/unit.s # recombination coefficient
7
8 rs = (3*S/(4*np.pi * n0**2 * alpha))**(1/3)
9 print("Strmoegren radius = {:.2f}".format(rs.to(unit.pc)))

The photons emitted by the star per second can be estimated from the luminosity
and the peak of the Planck spectrum for an effective temperature Teff ≈ 4.5 × 104 K.
Astropy’s unitsmodule allows us to express the result in parsec without bothering
about conversion factors (see also Sect. 3.1.1):

Stroemgren radius = 0.26 pc

To integrate Eq. (4.4) in time, we can apply a linear approximation over a small
time interval [t, t + �t] (also called time step):

r(t + �t) � r(t) + ṙ(t)�t (4.6)

In other words, it is assumed that the derivative ṙ changes only little over �t and can
be approximated by the value at time t . For given r(t), we can then substitute the
right-hand side of the differential equation for ṙ(t):

r(t + �t) � r(t) + n0α
r3s − r(t)3

3r(t)2
�t

Starting with an initial value r(0) = r0, this rule can be applied iteratively for tn =
n�t . This is the basic idea of the Euler method.4 For a general first-order differential
equation

ẋ = f (t, x) , (4.7)

it can be written as iterative scheme

xn+1 = xn + f (tn, xn)�t (4.8)

3In fact, the sphere of ionized hydrogen begins to expand once ṙ drops below the speed of sound.
The expansion stops when it reaches pressure equilibrium with the surrounding neutral medium.
4The method was introduced by Leonhard Euler in his influential textbook on calculus from 1768,
long before it was possible to routinely carry out numerical approximations with the help of com-
puters.

108 4 Solving Differential Equations

where xn = x(tn) and n = 0, 1, 2, . . .
In the following code, we iteratively compute the function values rn in a for loop

and collect them in a NumPy array, which is useful for plotting:

10 n0_cgs = n0.value
11 alpha_cgs = alpha.value
12 rs_cgs = rs.value
13

14 # time step in s
15 dt = 100
16 n_steps = 1000
17

18 # intialization of arrays for t and r(t)
19 t = np.linspace(0, n_steps*dt, n_steps+1)
20 r = np.zeros(n_steps+1)
21

22 # start radius in cm
23 r[0] = 1e16
24

25 # Euler integration
26 for n in range(n_steps):
27 rdot = n0_cgs * alpha_cgs * \
28 (rs_cgs**3 - r[n]**3)/(3*r[n]**2)
29 r[n+1] = r[n] + rdot * dt

The loop begins with n=0 and the first array element r[0] defined in line 23. To
compute the next value using the Euler scheme, the time derivativerdot is evaluated
in lines 27–28. The new radius is then assigned to the next element of the array r.
The array length is given by the number of time steps n_steps plus one element for
the initial value (line 20). In lines 10–12, all parameters are converted to pure floating
point numbers because Astropy units cannot be used with individual array elements
(see Sect. 2.1.3). In contrast to Python lists, which support arbitrary elements, array
elements must be floating point numbers without additional attributes. As demon-
strated in Appendix B.1, there is a significant trade-off in terms of computational
efficiency and memory consumption. In the example above, it is understood that all
variables are in cgs units.

Since the right-hand side of Eq. (4.4) diverges for r = 0, the initial radius r0 must
be positive. A reasonable choice is a small fraction of rs, which is of the order of a
parsec (about 3 × 1018 cm). We set r0 = 1016 cm. Given this initial value, what is
an appropriate choice for the time step �t? As a first guess, we set the time step to
100 s (see line 15). The numerical solution for 1000 time steps is plotted with the
following code as dashed line. The plot is shown in Fig. 4.1.

4.1 Numerical Integration of Initial Value Problems 109

Fig. 4.1 Numerical solution of the initial value problem (4.4) for a Strömgren sphere with r0 =
1016 cm using the Euler method (dashed line). The analytic solution for r0 = 0 is shown as solid
line

30 import matplotlib.pyplot as plt
31
32 fig = plt.figure(figsize=(6, 4), dpi=100)
33 plt.plot(t,
34 rs_cgs*(1.0 - np.exp(-n0_cgs*alpha_cgs*(t)))**(1/3),
35 linestyle=’-’ , color=’red’ , label="analytic")
36 plt.plot(t, r, linestyle=’--’ , color=’green’ , label="Euler")
37 plt.legend(loc=’lower right’)
38 plt.xlabel("t [s]")
39 plt.ylabel("r [cm]")
40 plt.savefig("stroemgren_cgs.pdf")

For comparison, the analytic solution [9]

r(t) = rs
(
1 − e−n0αt

)1/3
(4.9)

is plotted in lines 33–35 (see solid line in Fig. 4.1). It agrees quite well with our
numerical solution, except for the discrepancy at early time. Actually, this is mainly
caused by different zero points of the time coordinates. For numerical integration, we
assume the initial value r(0) = r0, while formula (4.9) implies r(0) = 0. This can
be fixed by shifting the time coordinate of the analytic solution such that r(0) = r0.
Solving Eq. (4.9) with r = r0 for time yields

t0 = 1

n0α
log

[
1 − (r0/rs)

3
]

. (4.10)

110 4 Solving Differential Equations

By plotting r(t ′) = r(t − t0), where t ′ ≥ 0 corresponds to the time coordinate used
for numerical integration, you will find that the analytical solution is closely matched
by the numerical solution.

The coefficient 1/n0α appearing in Eq. (4.10) is a time scale, which can be inter-
preted as formation time ts of the Strömgren sphere. By plugging in the numbers,

41 ts = 1/(n0*alpha)
42 print("Time scale = {:.2f}".format(ts.to(unit.yr)))

we find

Time scale = 20.44 yr

For a radius of about 0.3 pc, this is very fast and indicates that the propagation speed
of the ionization front must be quite high (see Exercise 4.2). It turns out that the final
time of our numerical solution (1000 time steps) is only a tiny fraction of ts:

43 t[-1]*unit.s/ts

The output is

0.000155

As a result, we would need roughly 104 × 1000 ∼ 107 time steps to reach ts. This
is a very large number of steps. To compute the time evolution for a longer interval
of time, we can increase the time step �t , which in turn reduces the number of time
steps. However, keep in mind that Eq. (4.8) is an approximation. We need to weigh
the reduction of computational cost (fewer steps) against the loss of accuracy (larger
time step).

For a sensible choice, it is important to be aware of the physical scales char-
acterizing the system. The differential equation for the time-dependent radius of a
Strömgren sphere can be expressed in terms of the dimensionless variables r̃ = r/rs
and t̃ = t/ts:

dr̃

dt̃
= 1 − r̃3

3r̃2
. (4.11)

In this form, it is much easier to choose initial values and an appropriate integration
interval. The initial radius should be small compared to the Strömgren radius, for
example, r̃0 = 0.01. To follow the evolution of the sphere over the time scale ts, we
need to integrate at least over the interval [0, 1]with respect to t̃ (in the example above,
the interval was [0, 0.000155]). Obviously, the times step must be small compared
to ts, i.e. �t/ts ≡ �t̃
 1. The following code computes and plots the numerical
solution for different time steps, starting with �t̃ = 10−3.

4.1 Numerical Integration of Initial Value Problems 111

44 # initial radius (dimensionless)
45 r0 = 0.01
46

47 # analytic solution
48 t0 = np.log(1 - r0**3)
49 t = np.arange(0, 2.0, 0.01)
50

51 fig = plt.figure(figsize=(6, 4), dpi=100)
52 plt.plot(t, (1.0 - np.exp(-t+t0))**(1/3),
53 color=’red’, label="analytic")
54

55 # time step (dimensionless)
56 dt = 1e-3
57 n_steps = 2000
58

59 while dt >= 1e-5:
60 t = np.linspace(0, n_steps*dt, n_steps+1)
61 r = np.zeros(n_steps+1)
62 r[0] = r0
63

64 print("Integrating {:d} steps for dt = {:.0e}".
65 format(n_steps,dt))
66 for n in range(n_steps):
67 rdot = (1 - r[n]**3)/(3*r[n]**2)
68 r[n+1] = r[n] + rdot * dt
69

70 # plot the data
71 plt.plot(t, r, linestyle=’--’ ,
72 label="Euler, Δt = {:.1f}".
73 format(dt*ts.to(unit.hr)))
74

75 # decrease time step by a factor of 10
76 dt *= 0.1
77 n_steps *= 10
78

79 plt.legend(loc=’lower right’)
80 plt.xlabel("t/t_{s}")
81 plt.ylabel("r/r_{s}")
82 plt.ylim(0,1)
83 plt.savefig("stroemgren_dimensionless.pdf")

112 4 Solving Differential Equations

Fig. 4.2 Numerical solutions of the differential equation in dimensionless formulation (4.11) for
different time steps (�t̃ = 10−3, 10−4, and 10−5; the corresponding physical time steps are indi-
cated in the legend). The Strömgren radius and formation time are rs = 0.26 pc and ts = 20.4 yr,
respectively

This examples shows how to plotmultiple graphs fromwithin a loop. The time step
is iterated in a while loop. The nested for loop starting at line 66 applies the Euler
scheme to Eq. (4.11). Here, the arrays t and r contain values of the dimensionless
variables t̃ and r̃ . It is important to create these arrays for each iteration of the outer
loop (see lines 60–61) because the number of time steps and, consequently, the array
size increases. After plotting r versus t, the time step is reduced by a factor of 10
(line 76) and the number of steps increases by a factor of 10 to reach the same end
point (line 77). The while loop terminates if �t̃ < 10−5. The physical time step in
hours is printed in the legend (the label is produced in lines 72–73). Prior to the loop,
we print the analytic solution with the shifted time coordinate defined by Eq. (4.10)
(see lines 48–53). The results are shown in Fig. 4.2.

The largest time step, �t̃ = 10−3 clearly does not work. The initial speed goes
through the roof, and the radius becomes by far too large. The solution for�t̃ = 10−4

improves somewhat, but the problem is still there. Only the smallest time step, �t̃ =
10−5, results in an acceptable approximation with small relative deviation from the
analytic solution. However, 200 000 steps are required in this case. It appears to be
quite challenging to solve this problem numerically. Can we do better than that?

The Euler method is the simplest method of solving a first order differential
equation. There are more sophisticated and more accurate methods. An example
is the Runge-Kutta method, which is a higher-order method.5 This means that the
discretization error for a finite time step �t is of the order �tn , where n > 2. In the

5Adifferent approach are variable step-sizemethods. The idea is to adapt the time step based on some
error estimate. An example is the Bulirsch-Stoer method. Such a method would be beneficial for
treating the initial expansion of a Strömgren sphere. However, with the speed of modern computers,

4.1 Numerical Integration of Initial Value Problems 113

case of the classic Runge-Kutta method, the error is of order�t5. Thus, it is said to be
fourth-order accurate and in short called RK4.6 In contrast, the Euler method is only
first-order accurate. This can be seen by comparing the linear approximation (4.6)
to the Taylor series expansion

r(t + �t) = r(t) + ṙ(t)�t + 1

2
r̈(t)�t2 + . . .

The Euler method follows by truncating all terms of order �t2 and higher. For
this reason, the discretization error is also called truncation error. But how can we
extend a numerical scheme for an initial value problem to higher order? The first
order differential equation (4.7) determines the first derivative ẋ for given t and x ,
but not higher derivatives (do not confuse the order with respect to the truncation
error and the order of the differential equation). Nevertheless, higher-order accuracy
can be achieved by combining different estimates of the slope ẋ at the subinterval
endpoints t and t + �t and the midpoint t + �t/2.

The RK4 scheme is defined by

k1 = f (t, x)�t ,

k2 = f (t + �t/2, x + k1/2)�t ,

k3 = f (t + �t/2, x + k2/2)�t ,

k4 = f (t + �t, x + k3)�t ,

and

x(t + �t) = x(t) + 1

6
[k1 + 2(k2 + k3) + k4] . (4.12)

Here, k1 is the increment of x(t) corresponding to the Euler method, k2/2 is the
interpolated increment for half of the time step, k3/�t is the corrected midpoint
slope based on x + k2/2, and k4/�t the resulting slope at the subinterval endpoint
t + �t . Equation (4.12) combines these estimates in a weighted average.

Let us put this into work. Since we need to compute multiple function values
for each time step, it is convenient to define the RK4 scheme as a Python function,
similar to the numerical integration schemes in Sect. 3.2.2:

1 def rk4_step(f, t, x, dt):
2

3 k1 = dt * f(t, x)
4 k2 = dt * f(t + 0.5*dt, x + 0.5*k1)
5 k3 = dt * f(t + 0.5*dt, x + 0.5*k2)

preference is given to higher-order methods. If you nevertheless want to learn more, you can find a
Fortran version of the Bulirsch-Stoer method in [10].
6The (local) truncation error is an error per time step. The accumulated error or global truncation
error from the start to the endpoint of integration is usually one order lower, i.e. of order �t4 in
the case of the RK4 method.

114 4 Solving Differential Equations

6 k4 = dt * f(t + dt, x + k3)
7

8 return x + (k1 + 2*(k2 + k3) + k4)/6

Here, f() is a Python function corresponding to the right-hand side of Eq. (4.7).
In the following, you need to keep in mind that this function expects both the start
point t and the value x at the start point as arguments.

We can now compute numerical solutions of the initial value problem for the
Strömgren sphere using our implementation of RK4 with different time steps:

9 fig = plt.figure(figsize=(6, 4), dpi=100)
10 plt.plot(t, (1 - np.exp(-t+t0))**(1/3),
11 color=’red’ , label="analytic")
12
13 dt = 1e-3
14 n_steps = 2000
15
16 while dt >= 1e-5:
17 t = np.linspace(0, n_steps*dt, n_steps+1)
18 r = np.zeros(n_steps+1)
19 r[0] = r0
20
21 print("Integrating {:d} steps for dt = {:.0e}".
22 format(n_steps,dt), end=",")
23 for n in range(n_steps):
24 r[n+1] = rk4_step(lambda t, r: (1 - r**3)/(3*r**2),
25 t[n], r[n], dt)
26
27 # plot the new data
28 plt.plot(t, r, linestyle=’--’ ,
29 label="Runge-Kutta, Δt = {:.1f}".
30 format(dt*ts.to(unit.hr)))
31
32 print(" endpoint deviation = {:.2e}".
33 format(r[-1] - (1 - np.exp(-t[-1]+t0))**(1/3)))
34
35 # decrease time step by a factor of 10
36 dt *= 0.1
37 n_steps *= 10
38
39 plt.legend(loc=’lower right’)
40 plt.xlabel("t/t_{s}")
41 plt.ylabel("r/r_{s}")
42 plt.ylim(0,1)
43 plt.savefig("stroemgren_rk4.pdf")

4.1 Numerical Integration of Initial Value Problems 115

Fig. 4.3 Same plot as in Fig. 4.2 with the Runge-Kutta (RK4) method instead of the Euler method

The Runge-Kutta integrator is called iteratively in lines 24–25. The values passed
to rk4_step() are t[n] and x[n]. Moreover, we have to specify the derivate
on the right-hand side of the differential equation. For the Strömgren sphere, the
mathematical definition reads

f (t̃, r̃) = 1 − r̃3

3r̃2
.

This can be easily translated into a Python function. Since we need this function only
as input of rk4_step(), we use an anonymous function rather than a named func-
tion (see Sect. 3.2.2). The only pitfall is that our lambda must accept two arguments
(listed after the keyword lambda), even though only one of them occurs in the
expression following the colon (in other words, f (t̃, r̃) is actually independent of t̃).
Of course, the same would apply if we had used a named function. Both arguments
are necessary because the function is called with these two arguments in the body of
rk4_step() (see lines 3–6). You can try to remove the argument t in line 24 and
take a look at the ensuing error messages.

Compared to the first-order Euler method, the quality of the numerical solutions
computed with RK4 improves noticably. As shown in Fig. 4.3, the analytic solution
is closely reproduced for dt̃ = 10−4 or smaller. The deviation between the numerical
and analytic values at the end of integration is printed for each time step in lines
32–33:

Integrating 2000 steps for dt = 1e-03, endpoint deviation = 2.08e-01
Integrating 20000 steps for dt = 1e-04, endpoint deviation = 2.23e-04
Integrating 200000 steps for dt = 1e-05, endpoint deviation = 2.26e-07

116 4 Solving Differential Equations

The deviation decreases substantially for smaller time steps.Whilemethods of higher
order are more accurate than methods of lower order, they require a larger number
of function evaluations. This may be costly depending on the complexity of the
differential equation. With four function evaluations, RK4 is often considered a
reasonable compromise between computational cost and accuracy. Other variants
of the Runge-Kutta method may require a larger or smaller number of evaluations,
resulting in higher or lower order. In Appendix B.2, optimization techniques are
explained that will enable you to speed up the execution of the Runge-Kutta step.

For the example discussed in this section, we know the analytic solution. This
allows us to test numerical methods. However, if we apply these methods to another
differential equation, canwebe sure that the quality of the solutionwill be comparable
for a given time step? The answer is clearly no. One can get a handle on error
estimation from mathematical theory, but often it is not obvious how to choose an
appropriate time step for a particular initial value problem. For such applications, it
is important to check the convergence of the solution for successively smaller time
steps. If changes are small if the time step decreases, such as in the example above,
chances are good that the numerical solution is valid (although there is no guarantee
in the strict mathematical sense).

4.1.2 Second Order Differential Equations

In mechanics, we typically deal with second order differential equations of the form

ẍ = f (t, x, ẋ) , (4.13)

where x(t) is the unknown position function, ẋ(t) the velocity, and ẍ(t) the acceler-
ation of an object of mass m (which is hidden as parameter in the function f). The
differential equation allows us to determine x(t) for a given initial position x0 = x(t0)
and velocity v0 = ẋ(t0) at any subsequent time t > t0. For this reason, it is called
equation of motion.

A very simple example is free fall:

ẍ = g , (4.14)

where x is the coordinate of the falling mass in vertical direction. Close to the surface
of Earth, g ≈ 9.81 m s−2 and f (t, x, ẋ) = g is constant. Of course, you know the
solution of the initial value problem for this equation:

x(t) = x0 + v0(t − t0) + 1

2
g(t − t0)

2 . (4.15)

For larger distances from ground, however, the approximation f (t, x, ẋ) = g is not
applicable and we need to use the 1/r gravitational potential of Earth. In this case,

4.1 Numerical Integration of Initial Value Problems 117

the right-hand side of the equation of motion is given by a position-dependent func-
tion f (x) and finding an analytic solution is possible, but slightly more difficult. In
general, f can also depend on the velocity ẋ , for example, if air resistance is taken
into account. We will study this case in some detail in Sect. 4.2 and you will learn
how to apply numerical methods to solve such a problem. An example, where f
changes explicitly with time t is a rocket with a time-dependent mass m(t).

To develop the tools we are going to apply in this chapter, we shall begin with
another second order differential equation for which an analytic solution is known.
An almost ubiquitous system in physics is the harmonic oscillator:

mẍ + kx = 0 , (4.16)

which is equivalent to

ẍ = f (x) where f (x) = − k

m
x . (4.17)

The coefficient k is called spring constant for the archetypal oscillation of a mass
attached to a spring. You can easily check by substitution that the position function

x(t) = x0 cos(ω0t) , (4.18)

where ω0 = √
k/m is the angular frequency, solves the initial value problem x(0) =

x0 and ẋ(0) = 0. An example from astronomy is circular orbital motion, for which
the Cartesian coordinate functions are harmonic oscillations with period T = 2π/ω

given by Kepler’s third law.
Similar to a body falling under the influence of air resistance, oscillations can be

damped by friction. Damping can be modeled by a velocity-dependent term7:

mẍ + dẋ + kx = 0 , (4.19)

where d is the damping coefficient. Hence,8

f (x, ẋ) = − d

m
ẋ − k

m
x , (4.20)

This is readily translated into a Python function:

1 def xddot(t, x, xdot, m, d, k):
2 """
3 acceleration function of damped harmonic oscillator
4

7An experimental realization would be a ball attached to a spring residing in an oil bath.
8As a further generalization, a time-dependent, periodic force can act on the oscillator (forced
oscillation). In that case, f depends explicitly on time.

118 4 Solving Differential Equations

5 args: t - time
6 x - position
7 xdot - velocity
8 m - mass
9 d - damping constant
10 k - spring constant
11

12 returns: positions (unit amplitude)
13 """
14 return -(d*xdot + k*x)/m

In the following, we use a unit system that comes under the name of arbitrary units.
This is to say that we are not interested in the specific dimensions of the system,
but only in relative numbers. If you have the impression that this is just what we did
when normalizing radius and time for the Strömgren sphere in the previous section,
then you are absolutely right. Working with arbitrary units is just the lazy way of
introducing dimensionless quantities. From the programmer’s point of view, this
means that all variables are just numbers.

The Euler method introduced in Sect. 4.1.1 can be extended to second order initial
value problems by approximating the velocity difference over a finite time step �t
as

�v = ẍ�t � f (t, x, ẋ)�t

and evaluating f (t, x, ẋ) at time t to obtain

ẋ(t + �t) � ẋ(t) + �v

The forward Euler method is then given by the iteration rules

xn+1 = xn + ẋn�t , (4.21)

ẋn+1 = ẋn + f (tn, xn, ẋn)�t (4.22)

starting from initial data x0 and ẋ0. This is a specific choice. As we will see, there
are others.

To implement this method, we define a Python function similar to rk4_step()
for first-order differential equations:

15 euler_forward(f, t, x, xdot, h, *args):
16 """
17 Euler forward step for function x(t)
18 given by second order differential equation
19
20 args: f - function determining second derivative
21 t - value of independent variable t
22 x - value of x(t)
23 xdot - value of first derivative dx/dt

4.1 Numerical Integration of Initial Value Problems 119

24 h - time step
25 args - parameters
26
27 returns: iterated values for t + h
28 """
29 return (x + h*xdot, xdot + h*f(t, x, xdot, *args))

Compared to rk4_step(), there are two differences. First, the updated position
xn+1 and velocity ẋn+1 defined by Eqs. (4.21) and (4.22), respectively, are returned
as tuple. Second, euler_forward() admits so-called variadic arguments. The
following example shows how to use it:

30 import numpy as np
31
32 # parameters
33 m = 1.
34 d = 0.05
35 k = 0.5
36 x0 = 10
37
38 n = 1000 # number of time steps
39 dt = 0.05 # time step
40 t = np.arange(0, n*dt, dt)
41
42 # intialization of data arrays for numerical solutions
43 x_fe = np.zeros(n)
44 v_fe = np.zeros(n)
45
46 # initial data for t = 0
47 x_fe[0], v_fe[0] = x0, 0
48
49 # numerical integration using the forward Euler method
50 # parameters are passed as variadic arguments
51 for i in range(n-1):
52 x_fe[i+1], v_fe[i+1] = \
53 euler_forward(xddot, t[i], x_fe[i], v_fe[i], dt,
54 m, d, k)

The difficulty in writing a numerical solver in a generic way is that functions such as
xddot() can have any number of parameters. In the case of the damped oscillator,
these parameters arem,d, andk. For some other system, theremight be fewer ormore
parameters or none at all. We faced the same problem when integrating the Planck
spectrum in Sect 3.2.2. In this case, we used a Python lambda to convert a function
with an additional parameter (the effective temperature) to a proxy function with a
single argument (the wavelength, which is the integration variable). This maintains

120 4 Solving Differential Equations

a clear interface since all arguments are explicitly specified both in the definition
and in the calls of a function. A commonly used alternative is argument packing.
In our implementation of the forward Euler scheme, *args is a placeholder for
multiple positional arguments that are not explicitly specified as formal arguments
of the function. In other words, we can pass a varying number of arguments whenever
the function is called.9 For this reason, they are also called variadic arguments. You
have already come across variadic arguments in Sect. 3.1.1. In the example above,
m, d, and k are variadic arguments of euler_forward(). Why do we need them
here? Because xddot() expects these arguments and so we need to to pass them
to its counterpart f() inside euler_forward() (see line 53–54 and line 29 in
the definition above).

The for loop beginning in line 51 iterates positions and velocities and stores the
values after each time step in the arrays x_fe and v_fe. The arrays are initialized
with zeros for a given number of time steps (lines 43–44). The time array t defined in
line 40 is not needed for numerical integration, but for plotting the solution. The result
is shown as dashed line in Fig. 4.4 (the code for producing the plot is listed below, after
discussing further integration methods). Compared to the analytic solution for the
parameters chosen in our example (solid line), the oscillating shape with gradually
decreasing amplitude is reproduced, but the decline is too slow.

Before we tackle this problem, let us first take a look at the computation of the
analytic solution. For x(0) = x0 and ẋ(0) = 0, it can be expressed as

x(t) = x0e
−γ t

[
cos(ωt) + γ

ω
sin(ωt)

]
, (4.23)

where γ = d/2m and the angular frequency is given by ω =
√

ω2
0 − γ 2 (i.e. it is

lower than the frequency of the undamped harmonic oscillator). The solution is a
damped oscillation with exponentially decreasing amplitude only if γ < ω0. Other-
wise, the oscillation is said to be overdamped and x(t) is just an exponential function.
We check for this case and ensure that all parameters are positive by means of excep-
tion handling in a Python function evaluating x(t)/x0:

55 def osc(t, m, d, k):
56 """
57 normalized damped harmonic oscillator
58 with zero velocity at t = 0
59
60 args: t - array of time values
61 m - mass
62 d - damping constant
63 k - spring constant

9Technically speaking, the arguments are packed into a tuple whose name is args (you can choose
any other name). This tuple is unpacked into the individual arguments via the unpacking operator *.
To see the difference, you can insert print statements for both args and *args in the body of
euler_forward() and execute a few steps.

4.1 Numerical Integration of Initial Value Problems 121

Fig. 4.4 Numerical and analytic solutions of differential equation (4.19) for a damped harmonic
oscillator with m = 1, d = 0.05, k = 0.5, x0 = 10, and ẋ0 = 0 (top plot). The relative deviations
from the analytic solution are shown in the bottom plot

64
65 returns: positions (unit amplitude)
66 """
67 try:
68 if m > 0 and d > 0 and k > 0: # positive parameters
69 gamma = 0.5*d/m
70 omega0 = np.sqrt(k/m)
71 if omega0 >= gamma: # underdamped or critical
72 # frequency of damped oscillation
73 omega = np.sqrt(omega0**2 - gamma**2)

122 4 Solving Differential Equations

74 print("Angular frequency = {:.6e}".
75 format(omega))
76 return np.exp(-gamma*t) * \
77 (np.cos(omega*t) +
78 gamma*np.sin(omega*t)/omega)
79 else:
80 raise ValueError
81 else:
82 raise ValueError
83
84 except ValueError:
85 print("Invalid argument: non-positive parameters
86 or overdamped")
87 return None

Invalid arguments are excluded by raising a ValueError as exception (see
Sect. 3.2.2).

All we need to do for a comparison between Eq. (4.23) and our numerical solution
is to call osc() for the time sequence defined by the array t and multiply the
normalized displacements returned by the function with x0:

88 # analytic solution
89 x = x0*osc(t, m, d, k)
90

91 # relative deviation
92 dev_fe = np.fabs((x - x_fe)/x)

When the function osc() is called with valid parameters, it prints the frequency of
the damped oscillation:

Angular frequency = 7.066647e-01

The relative deviation from the solution computed with the forward Euler scheme
is stored in dev_fe and plotted in Fig. 4.4. The accuracy of the numerical solution
is clearly not convincing. The average error increases from a few percent to almost
100% after a few oscillations.

How can we improve the numerical solution? For sure, a smaller time step will
reduce the error (it is left as an exercise, to vary the time step and check how this
influences the deviation from the analytic solution). But we can also try to come
up with a better scheme. It turns out that a small modification of the Euler scheme
is already sufficient to significantly improve the solution for a given time step. The
forward Euler scheme approximates xn+1 and ẋn+1 at time tn + �t by using the
slopes ẋn and f (tn, xn, ẋn) at time tn . This is an example for an explicit scheme:

4.1 Numerical Integration of Initial Value Problems 123

values at later time depend only on values at earlier time. What if we used the new
velocity ẋn+1 rather than ẋn to calculate the change in position? In this case, the
iteration scheme is semi-implicit:

ẋn+1 = ẋn + f (tn, xn, ẋn)�t (4.24)

xn+1 = xn + ẋn+1�t (4.25)

This scheme is also called symplectic Euler method and still a method of first
order. Nevertheless, Fig. 4.4 shows a significant improvement over the forward Euler
method. Most importantly, the typical error does not increase with time. This is a
property of symplectic solvers.10 Moreover, the relative error is smallest near the
minima and maxima of x(t). Owing to divisions by small numbers, the deviation has
peaks close to the zeros of x(t). Basically, this causes only small shifts of the times
where the numerical solution crosses x = 0.

Numerical mathematicians have come up with much more complex methods
to achieve higher accuracy. For example, the Runge-Kutta scheme discussed in
Sect. 4.1.1 can be extended to second-order differential equations. Moreover, it can
be generalized to a class of explicit fourth-ordermethods, which are known asRunge-
Kutta-Nyström (RKN4) methods:

ẋn+1 = ẋn + �t
4∑

i=0

ċi fni , (4.26)

xn+1 = xn + �t ẋn + �t2
4∑

i=0

ci fni , (4.27)

where ci and ċi are method-specific coefficients and fi are evaluations of the accel-
eration functions (4.13) at times, positions, and velocities given by

fn0 = f (tn, xn, ẋn) , (4.28)

fni = f

⎛
⎝tn + αi�t, xn + ẋnαi�t + �t2

i−1∑
j=0

γi j fn j , ẋn + �t
i−1∑
j=0

βi j fn j

⎞
⎠ .

(4.29)

with coefficients αi , γi j and βi j for i = 1, . . . , 4 and j ≤ i . These coefficient vector
and matrices determine the times, positions, and velocities within a particular time
step for which accelerations are evaluated. For an explicit method, the matrices must
be lower triangular. You can think of the expressions for positions and velocities in

10The termsymplectic originates fromHamiltonian systems. In fact, the reformulationof the second-
order differential equation (4.19) as a set of equations for position and velocity is similar to Hamil-
ton’s equations. Symplectic integrators are phase space preserving. This is why the accumulated
error does not grow in time.

124 4 Solving Differential Equations

parentheses and inEqs. (4.26) and (4.26) as constant-acceleration formulas, assuming
different accelerations over the time step �t . The acceleration values fni are similar
to ki/�t in the case of the simple Runge-Kutta method introduced in Sect. 4.1.1.

A particular flavor of the RKN4 method (i.e. with specific choices for the coeffi-
cients) is implemented in a module accompanying this book. Extract numkit.py
from the zip archive for this chapter. In this file you can find the definition of the func-
tion rkn4_step() for the RKN4 method along with other methods, for example,
euler_step() for the symplectic Euler method. Numerical methods form Sect. 3
are also included. To use any of these functions, you just need to import them.

In the code listed below, you can see how rkn4_step() and euler_step()
are applied to the initial value problem for the damped harmonic oscillator. While
the code for the Euler method can be easily understood from Eqs. (4.24) and (4.25),
we do not go into the gory details of the implementation of RKN4 here. Since the
acceleration fni defined by Eq. (4.29) for a given index i depends on the accelerations
fn j with lower indices j (see the sums over j), array operations cannot be used and
elements must be computed subsequently in nested for loops. This can be seen
in the body of rkn4_step() when opening the module file in an editor or using
Jupyter. The coefficients are empirical in the sense that they are chosen depending
on the performance of the numerical integrator in various tests.

93 # apply symplectic Euler and RKN4 schemes
94 from numkit import euler_step, rkn4_step
95
96 x_rkn4 = np.zeros(n)
97 v_rkn4 = np.zeros(n)
98
99 x_se = np.zeros(n)

100 v_se = np.zeros(n)
101
102 x_rkn4[0], v_rkn4[0] = x0, 0
103 x_se[0], v_rkn4[0] = x0, 0
104
105 for i in range(n-1):
106 x_rkn4[i+1], v_rkn4[i+1] = \
107 rkn4_step(xddot, t[i], x_rkn4[i], v_rkn4[i], dt,
108 m, d, k)
109 x_se[i+1], v_se[i+1] = \
110 euler_step(xddot, t[i], x_se[i], v_se[i], dt,
111 m, d, k)
112
113 dev_rkn4 = np.fabs((x - x_rkn4)/x)
114 dev_se = np.fabs((x - x_se)/x)

4.1 Numerical Integration of Initial Value Problems 125

Is a numerical scheme as complicated as RKN4 worth the effort? Let us take a look
a the solutions plotted with the following code (see Fig. 4.4):

115 import matplotlib.pyplot as plt
116 %matplotlib inline
117
118 T = 2*np.pi/7.066647e-01 # period
119
120 fig = plt.figure(figsize=(6, 4), dpi=100)
121 plt.plot(t/T, x, linestyle=’-’ , color=’red’ ,
122 label="analytic")
123 plt.plot(t/T, x_fe, linestyle=’--’ , color=’orange’ ,
124 label="Euler forward")
125 plt.plot(t/T, x_se, linestyle=’--’ , color=’green’ ,
126 label="Euler symplectic")
127 plt.plot(t/T, x_rkn4, linestyle=’--’ , color=’mediumblue’ ,
128 label="RKN4")
129 plt.legend(loc=’upper right’)
130 plt.xlabel("t")
131 plt.ylabel("x")
132 plt.savefig("oscillator.pdf")
133
134 fig = plt.figure(figsize=(6, 4), dpi=100)
135 plt.semilogy(t/T, dev_fe, linestyle=’-’, color=’orange’,
136 label=’Euler forward’)
137 plt.semilogy(t/T, dev_se, linestyle=’-’, color=’green’,
138 label=’Euler symplectic’)
139 plt.semilogy(t/T, dev_rkn4, linestyle=’-’ , color=’mediumblue’,
140 label=’RKN4’)
141 plt.legend(loc=’right’)
142 plt.xlabel("t")
143 plt.ylabel("deviation")
144 plt.savefig("oscillator_delta.pdf")

We have already discussed the two variants of the Euler method (forward and sym-
plectic). If we just look at the plot showing x(t) for the different solvers, it appears
that we do not gain much by using RKN4 instead of the symplectic Euler solver.
However, the relative deviations reveal that the accuracy of the solution improves
by more than six orders of magnitude with the forth-order Runge-Kutta-Nyström
method. Although this method is quite a bit more complicated than the Euler
method, it requires only five function evaluations vs one evaluation. As explained
in Appendix B.1, you can apply the magic command %timeit to investigate how
execution time is affected. Apart from that, one can also see that the errors are phase
shifted compared to the oscillation (i.e. minimal and maximal errors do not coincide
with extrema or turning points of x(t)) and the error gradually increase with time.
In fact, Runge-Kutta-Nyström solvers are not symplectic. As always in numerics,
you need to take the requirements of your application into consideration and weigh
computational costs against gains.

126 4 Solving Differential Equations

Exercises

4.1 An important Bernoulli-type equation is the logistic differential equation

ẋ = kx(1 − x) , (4.30)

with the analytic solution

x(t) = 1

1 − e−kt
(

1
x(0) − 1

) . (4.31)

This function has far reaching applications, ranging from population growth over
chemical reactions to artificial neuronal networks. Compute numerical solutions of
equation (4.30) for k = 0.5, k = 1, and k = 2. Vary the time step in each case and
compare to the analytic solution. Suppose the relative error at the time t = 10/k
should not exceed 10−3. Howmany time steps do you need? Plot the resulting graphs
for the three values of k.

4.2 Plot the propagation speed ṙs of the Strömgren sphere discussed in Sect. 4.1.1
relative to the speed of light (i.e. ṙs/c) in the time interval 0 < t/ts ≤ 2. Which
consequences do you see for the validity of the model at early time?

4.3 Study the dependence of the error on the time step for the differential equa-
tion (4.19), assuming the same initial conditions and parameters as in the example
discussed above. Start with an initial time step �t = T/4, where T = 2π/ω is the
period of the damped oscillation and numerically integrate the initial value problem
over two periods. Iteratively decrease the time step by a factor of two until the relative
deviation of x(t = 2T) from the analytic solution becomes less than 10−3. List the
time steps and resulting deviations in a table for the symplectic Euler and RKN4
methods. Compare the time steps required for a relative error below 10−3. Judging
from the order of the truncation error, what is your expectation?

4.2 Radial Fall

Eyewitnesses observed a bright flash followed by a huge explosion in a remote area
of the Siberian Taiga on June 30, 1908. The destruction was comparable to the blast
of a nuclear weapon (which did not exist at that time). More than a thousand square
kilometers of forest were flattened, but fortunately the devastated area was uninhab-
ited. Today it is known as the Tunguska event (named after the nearby river). What
could have caused such an enormous release of energy? The most likely explanation

4.2 Radial Fall 127

is an airburst of a medium sized asteroid several kilometers above the surface of
the Earth (in a competing hypothesis, a fragment of a comet is assumed) [11]. In
this case, the asteroid disintegrates completely and no impact crater is produced. A
sudden explosion can occur when the asteroid enters the lower atmosphere and is
rapidly heated by friction.

To estimate the energy released by the impact of an asteroid, let us consider the
simple case of radial infall toward the center of the Earth, i.e. in vertical direction
(depending on the origin, infalling asteroids typically follow a trajectory that is
inclined by an angle relative to the vertical). The equation of motion for free fall in
the gravitational potential of Earth is given by

r̈ = −GM⊕
r2

(4.32)

or in terms of the vertical height h = r − R⊕ above the surface:

ḧ = − GM⊕
(R⊕ + h)2

(4.33)

Assuming a total energy E = 0 (zero velocity at infinity), energy conservation
implies

v ≡ −ḣ =
√

2GM⊕
R⊕ + h

, (4.34)

where v is the infall velocity. In particular, the impact velocity at the surface of Earth
(h = 0) is given by v0 = √

2GM⊕/R⊕ ≈ 11.2 km/s (use astropy.constants
to calculate this value). Even for an object following a non-radial trajectory, we
can use the kinetic energy Ekin = 1

2mv20 to estimate the typical energy gained by an
object of massm falling into the gravity well of Earth. It is estimated that the asteroid
causing the Tunguska event was a solid body of at least 50 m diameter and a mass of
the order of 105 metric tons. With the radius and density from [11] a kinetic energy
of 2.3 × 1016 J is obtained. If such an energy is suddenly released in an explosion,
it corresponds to a TNT equivalent of about 5 megatons.11 The air burst that caused
devastation in Siberia in 1908 was probably even stronger because asteroids enter the
atmosphere of Earth at higher velocity (the additional energy stems from the orbital
motion around the Sun).

To compute the motion of an asteroid in Earth’s atmosphere, the following equa-
tion of motion has to be solved (we still assume one-dimensional motion in radial
direction):

11One kilogram of the chemical explosive TNT releases an energy of 4184 kJ. The most powerful
nuclear weapons ever built produced explosions of several 10 megatons.

128 4 Solving Differential Equations

ḧ = − GM⊕
(R⊕ + h)2

+ 1

2m
ρair(h)CDAḣ

2 (4.35)

where A = πR2 is the cross section. In addition to the gravity of Earth (first term
on the right-hand side), the asteroid experiences air resistance proportional to the
square of its velocity (this law applies to fast-moving objects for which the air flowing
around the object becomes turbulent). The asteroid is assumed to be spherical with
radius R. The drag coefficient for a spherical body is CD ≈ 0.5. The dependence of
the density of Earth’s atmosphere on altitude can be approximated by the barometric
height formula:

ρair(h) = 1.3 kg/m3 exp(−h/8.4 km) . (4.36)

Equation (4.35) is a non-linear differential equation of second order, which has to be
integrated numerically.

Let us first define basic parameters and initial data for the asteroid (based on [11]):

1 import numpy as np
2 import astropy.units as unit
3 from astropy.constants import G,M_earth,R_earth
4

5 # asteroid parameters
6 R = 34*unit.m # radius
7 V = (4*np.pi/3) * R**3 # volume
8 rho = 2.2e3*unit.kg/unit.m**3 # density
9 m = rho*V # mass

As start point for the numerical integration of the initial value problem, we choose
the height h0 = 300 km. The internal space station (ISS) orbits Earth 400 km above
ground. The density of Earth’s atmosphere is virtually zero at such altitudes. As a
result, we can initially neglect the drag term and calculate the initial velocity v0 using
Eq. (4.34):

1 h0 = 300*unit.km
2 v0 = np.sqrt(2*G*M_earth/(R_earth + h0))

To apply our Runge-Kutta integrator from numkit, we need to express the second
derivative, ḧ, as function of t , h, and ḣ. In the following code, a Python function with
the formal arguments required by rkn4_step() and additional parameters for the
mass and radius of the asteroid is defined (see Sect. 4.1.2).

4.2 Radial Fall 129

1 from numkit import rkn4_step
2
3 # drag coefficient
4 c_drag = 0.5
5
6 # barometric height formula
7 def rho_air(h):
8 return 1.3*np.exp(-h/8.4e3)
9
10 # acceleration of the asteroid
11 def hddot(t, h, hdot, m, R):
12
13 # air resistance
14 F_drag =0.5*rho_air(h)*c_drag * np.pi*R**2 * hdot**2
15
16 # gravity at height h
17 g_h = G.value * M_earth.value / (R_earth.value + h)**2
18
19 return -g_h + F_drag/m

For the reasons outlined in Sect. 4.1, numerical integration is carried out in a unitless
representation (i.e. all variables are simple floats or arrays of floats). To extract
numerical values of constants fromAstropy, we use thevalue attribute. Parameters
of the problem are defined in SI units or converted to SI units.

The integration of the initial value problem for the asteroid is executed by repeat-
edly calling rkn4_step() in awhile loop until the height becomes non-positive.
We use a two-dimensional array calleddata to accumulate time, height, and velocity
from all integration steps:

20 # initial data
21 data = [[0, h0.to(unit.m).value, -v0.value]]
22
23 # initialization of loop variables
24 t, h, hdot = tuple(data[0])
25 print("Initial acceleration = {:.2f} m/s^2".
26 format(hddot(t, h, hdot, m.value, R.value)))
27
28 # time step
29 dt = 0.1
30
31 while h > 0:
32 h, hdot = rkn4_step(hddot, t, h, hdot, dt,
33 m.value, R.value)
34 t += dt
35 data = np.append(data, [[t, h, hdot]], axis=0)

130 4 Solving Differential Equations

The array data is initialized in line 21 with the initial values, which constitute the
first row of a two-dimensional array.12 Variables for the iteration of t , h, and ḣ are
defined in line 24, where tuple() is used to convert the row data[0] into a
tuple, which can be assigned to multiple variables in a single statement. The while
loop starting at line 31 calls rkn4_step() for the time step dt until h becomes
negative. Go through the arguments in lines 32–33 and check their counterparts in the
definition of rkn4_step(). After incrementing time, the updated variables h and
hdot are appended to the data array in line 35. We have already used the function
np.append() to append elements to a one-dimensional array (see Sect. 3.1.2).
In the case of a two-dimensional array, the syntax is more tricky because there are
different possibilities of joining multi-dimensional arrays. Here, we want to append
a new row. Similar to the initialization in line 21, the row elements have to be
collected in a two-dimensional array (as indicated by the double brackets) which is
then merged into the existing array. To that end, it is necessary to specify axis=0.
This axis is in the direction running through rows of an array (corresponding to the
first array index) and, thus, indicates that rows are to be appended to rows. Ifaxis=0
is omitted, np.append() will flatten the resulting array, i.e. it is converted into a
one-dimensional arraywith all elements in a sequence (see for yourself what happens
to the data array without specifying the axis).13 Since we do not know the number of
time steps in advance, it is convenient to build the data array row by row. However,
this means that a new array is created and the complete data from the previous array
have to be copied for each iteration (the function’s name append is somewhat
misleading in this regard). For large arrays, this requires too much time and slows
down performance of the code. We will return to this issue in Sect. 4.4.

The output produced by the code listed so far is the acceleration ḧ at time t = 0:

Initial acceleration = -8.94 m/sˆ2

Its absolute value is close to Earth’s surface gravity g = 9.81 m/s2. To see how the
motion progresses in time, we plot h(t) as a function of t and ḣ vs h:

36 import matplotlib.pyplot as plt
37

38 plt.figure(figsize=(12,4), dpi=100)
39

40 plt.subplot(121)
41 plt.plot(data[:,0], 1e-3*data[:,1])
42 plt.xlabel("t [s]")
43 plt.ylabel("h [km]")
44

45 plt.subplot(122)

12Strictly speaking, the expression with double brackets is a Python list, not a NumPy array. But
the list is implicitly converted into an array by np.append().
13Arrays can be joined column-wise by using axis=1 provided that the second array is correctly
shaped. A simple example can be found in the notebook for this section.

4.2 Radial Fall 131

46 plt.plot(1e-3*data[:,1], -1e-3*data[:,2])
47 plt.xlim(h0.value+10,-10)
48 plt.xlabel("h [km]")
49 plt.ylabel("-\dot{h} [km/s]")
50 plt.savefig("asteroid.pdf")

The plot particular variables we need to collect elements column-wise. In Python,
there is a simple mechanism for extracting multiple elements from an array, which
is called slicing. A slice of an array is equivalent to an index range. For example,
data[0,1:2] extracts the two elements with row index 0 and column index run-
ning from 1 to 2 (these elements are the height and velocity at time t = 0). To obtain
the data for the first 10 time steps, you would use the expression data[0:9,:].
If no start and end numbers are specified, the index simply runs through all possible
numbers, in this case, from 0 to 2. The first column of the data array, i.e. all time
values, is expressed as data[:,0]. This is the first argument of plt.plot()
in line 41. Can you identify the slices referring to other variables in the example
above? Furthermore, you might find it instructive to experiment with arbitrary slices
by printing them.

The plots shown in Fig. 4.5 are produced with the help of plt.subplot(). To
arrange two plots in a row, the left subplot is positioned with plt.subplot(121)
and the right subplot with plt.subplot(122), where the first digit indicates the
number of plots in vertical direction, the second is the number of plots in a row, and
the third enumerates the subplots starting from 1. At first glance, the numerically
computed solution might appear surprising. The height h(t) is nearly linear although
the asteroid is in free fall. The reason is that the free-fall velocities at radial distances
R⊕ + h0 and R⊕ differ only by a small fraction since the initial height h0 is small
compared to Earth’s radius R⊕ and the asteroid has gained most of its velocity in the
long infall phase prior to our arbitrarily chosen initial point t = 0. The range along
the horizontal axis of the right subplot (velocity vs height) is reverted (see line 47).
As a result, the height decreases from left to right corresponding to the progression

Fig. 4.5 Vertical motion of an asteroid of radius R = 34 m through Earth’s atmosphere. The left
plot shows the altitude h above ground as a function of time. The relation between the asteroid’s
velocity ḣ and h is shown in the right plot

132 4 Solving Differential Equations

Fig. 4.6 Heating rate caused by air resistance in Earth’s atmosphere

of time. As long as the asteroid is nearly in free fall, |ḣ| increases gradually, but then
the downward speed suddenly drops when the asteroid passes through the lower and
much denser layers of the atmosphere. This final phase lasts only a few seconds.

The heating due to air friction equals minus the rate at which kinetic energy is
dissipated per unit time. It can be calculated by multiplying the second term in the
expression for ḧ with the mass m and velocity ḣ (i.e. drag force times velocity):

51 def dissipation(h, hdot, m, R):
52 return -0.5*rho_air(h)*c_drag * np.pi*R**2 * hdot**3

The dissipation rate is plotted against height in Fig. 4.6 (the code producing this
plot can be found in the notebook for this chapter). In the lower layers of Earth’s
atmosphere, the asteroid decelerates and heating rises dramatically.

How much energy does the asteroid lose in total before it hits the ground? To
answer this question, we need to integrate the dissipation rate:

Ediss(t) = −CDA

2

∫ t

0
ρair(h)ḣ3dt ′ . (4.37)

Since the data for h and ḣ are discrete, we can evaluate the function we want to
integrate only for t = n�t (n = 0, 1, 2, . . .), but not for arbitrary t . For this reason,
we need to modify the numerical integration routines from Chap. 3. The following
version of the trapezoidal rule is applicable to an array of function values:

4.2 Radial Fall 133

53 def integr_trapez(y, h):
54 """
55 numerical integration of a function
56 given by discrete data
57

58 args: y - array of function values
59 h - spacing between x values
60

61 returns: approximate integral
62 """
63 return 0.5*h*(y[0] + 2*np.sum(y[1:-1]) + y[-1])

Do not confuse the formal argument h of this function (defined in the local name-
space) with the array h, which is the numerical solution of the initial value problem
for the asteroid.

As a simple test, let us integrate the function y = sin(x):

64 a, b = 0, np.pi/2
65 n = 10
66 x = np.linspace(a, b, n+1)
67 y = np.sin(x)

The array y contains the function values for the chosen subdivision of the integration
interval [0,π/2]. Now we can call integr_trapez() with this array and the
subinterval width (b-a)/n as arguments (compare to Sect. 3.2.2, where np.sin
is passed as argument):

68 integr_trapez(y, (b-a)/n)

The output is

0.9979429863543572

NumPy offers an equivalent library function for numerical integration using the
trapezoidal rule:

69 np.trapz(y, dx=(b-a)/n)

The result agrees within machine precision:

0.9979429863543573

To compute the fraction of kinetic energy that is dissipated by air resistance, we first
extract the data for h and ḣ by slicing the full data array. These data are used as
input to compute discrete values of the dissipation rate, which are in turn integrated
with dt as subinterval width:

70 energy_diss = integr_trapez(
71 dissipation(data[:,1], data[:,2],

134 4 Solving Differential Equations

72 m.value, R.value), dt) * unit.J
73 print("Fraction of dissipated energy = {:.2f} %".
74 format(100*energy_diss/energy_kin.to(unit.J)))

The ratio of the dissipated energy and the impact energy from above (both energies in
units of Joule) is printed as the final result. It turns out that about 5% of the asteroid’s
energy are converted into heat (assuming that the asteroid makes it all the way to the
surface of Earth):

Fraction of dissipated energy = 5.55 %

In absolute terms, this is a sizable amount of energy. Since most of this energy is
released within a few seconds, it is plausible that the rapid heating may cause the
asteroid to disintegrate and burn up, as it likely happened in the Tunguska event.
In Exercise 4.5 you can investigate the much stronger impact of air resistance on
smaller objects called meteoroids.

Exercises

4.4 Rewrite Simpson’s rule (see Sect. 3.2.2) for an array of function values.Compute
the dissipated energy for the asteroid discussed in this section and compare to the
result obtained with the trapezoidal rule.

4.5 The influence of air resistance increases for smaller objects. Solve the differ-
ential equation (4.35) for a meteoroid of radius R = 25 cm (rocky objects of size
smaller than about one meter are called meteoroids rather than asteroids; when mete-
oroids enter Earth’s atmosphere, they become visible as meteors and their remnants
on ground are called meteorites).

1. Plot altitude and velocity of the meteoroid along with the asteroid data from the
example above. Interpret the differences.

2. Print the impact time and speed.
3. Estimate roughlywhen the fallingmeteoroid becomes ameteor (physically speak-

ing, a meteor is a meteoroid heated to high temperatures by friction).

4.6 The Falcon 9 rockets produced by SpaceX14 are famous for their spectacu-
lar landing via a so-called suicide burn. After deploying the payload at the target
orbit, the rocket performs a maneuver that brings it back into Earth’s atmosphere
where the atmospheric drag controls its maximum velocity. Assuming an equilib-
rium between gravity and air resistance, the downward acceleration ḧ approaches
zero and Eq. (4.35) implies that the terminal velocity for an object of mass m, cross-
section A, and drag coefficient cD is given by

vmax =
√

2 gm

ρcDA
, (4.38)

14See www.spacex.com/falcon9.

https://www.spacex.com/falcon9

4.2 Radial Fall 135

where g is the gravitational acceleration. For instance, in the case of the first stage
of a Falcon 9 Full Thrust Block 5 rocket, the cross-section is nearly circular with a
radius of R = 1.83m, a mass of md = 27200 kg (dry mass without propellant), and
CD ≈ 0.5.

1. How fast would the rocket hit the sea if it descends to sea level (h = 0)?
2. For a safe touchdown, the velocity must be limited to a few meters per second,

which is much less than the terminal velocity resulting from atmospheric drag.
The rocket fires its thrusters to eliminate any lateral motion before it performs a
landing burn to decelerate in vertical direction. Since burning propellant reduces
not only the velocity but also the mass of the rocket, which in turn changes the
drag term, the computation is more complicated than in the case of an asteroid.
For a constant propellant burning rate b, the time-dependent rocket mass can be
written as

m(t) = md + mp − b t (4.39)

where mp is the total propellant mass and md the dry mass of the rocket. The
modified height equation for a thrust T produced by the rocket engines reads

ḧ = − GM⊕
(R⊕ + h)2

+ 1

2m(t)
ρair(h)CDAḣ

2 − T

m(t)
. (4.40)

Modify the Python function hddot() defined above such that the ignition thrust
term −T/m(t) is added for t ≥ tignite, where tignite is the ignition time. Include
additional parameters in the argument list.

3. Assume h0 = 150 km and ḣ0 = 2 km/s as initial data (t = 0). Define an array of
ignition times ranging from 50 to 70 s with 0.5 s spacing. For each ignition time,
solve Eq. (4.40) for T = 7.6 × 103 kN,mp = 3.0 × 104 kg, and b = 1480 kg/s.
Terminate integration ifh = 0 is reachedor the propellant is exhausted.Determine
the height at which the velocity ḣ switches signs from negative (descent) to
positive (ascend) as a function of tignite and plot the results.

4. To land the rocket safely, the ignition time must be adjusted such that ḣ is nearly
zero just at sea level. Estimate the optimal ignition time from the plot (it might be
helpful to use plt.xlim() to narrow down the range) and interpolate between
the nearest date points. Determine the touchdown time, speed, and remaining
mass of propellant for the interpolated ignition time.

4.7 How long does it take to fall into a black hole? Well, the answer depends quite
literally on the point of view. Suppose a spaceship is plunging from an initial radial
distance r0 toward a black hole of mass M . For simplicity, we assume that the
spaceship has zero initial velocity and is accelerated by the gravitational pull of the
black hole.We also neglect any orbital angularmomentum. Such initial conditions are
unrealistic, but our assumptions will suffice for argument’s sake. The radial position
r at time t is determined by the following differential equation [12]:

136 4 Solving Differential Equations

dr

dt
= −c

(
1 − RS

r

) (
RS

r
− RS

r0

)1/2 (
1 − RS

r0

)−1/2

, (4.41)

where c is the speed of light and RS = 2GM/c2 is the Schwarzschild radius of the
black hole. In this exercise, we will consider two scenarios: (a) a stellar black hole of
mass M = 10M� and (b) the supermassive black hole at the center of the Milkyway
with M ≈ 4 · 106 M�. As you can see from the right-hand side of the Eq. (4.41), RS

plays a crucial role. Solve the initial value problem for r0 = 100RS and plot r(t).
You will find that the spaceship never crosses the sphere with radius r = RS, which
is called the event horizon of the black hole, but appears to hover just above the
horizon for eternity.

So is there actually nothing to be feared by someone on board of the spaceship,
except being captured in the vicinity of the black hole? In relativity, the progression
of time (i.e. the time interval measured by a clock) depends on the observer’s frame
of reference. The solution following from Eq. (4.41) is what a distant observer far
away from the black hole will witness, where the effects of gravity are negligible. For
the crew of the spaceship, however, a dramatically different chain of events unfolds.
What they read on the starship’s clocks is called proper time τ and, for the crew, the
rate of change of radial position is given by15

dr

dτ
= −c

(
RS

r
− RS

r0

)1/2

. (4.42)

Solve this equation for the same initial conditions as above. At which time would
the spaceship cross the event horizon of the stellar and the supermassive black hole?
In the case of the stellar black hole the spaceship will be torn apart by tidal forces
even before it reaches the horizon (see Exercise 2.12). Putting aside tidal effects, how
long will it take the spaceship until it finally gets crushed by the singularity at r = 0?
The completely different outcome for the crew of the spaceship is a consequence of
gravitational time dilation, which becomes extreme in the case of a black hole.

4.3 Orbital Mechanics

The motion of a planet and a star or two stars around the common center of mass (in
astronomy also called barycenter) is governed by Kepler’s laws. The properties of
the orbits are determined by integrals of motion such as the total energy and orbital
angular momentum. Alternatively, we can solve the equations of motion directly.
For systems composed of more than two bodies interacting with each other, there
is no other way than numerical integration. To begin with, we will apply different

15In the non-relativistic limit, τ � t and you can derive Eq. (4.42) from energy conservation Ekin +
Epot = 0.

4.3 Orbital Mechanics 137

numerical methods to test whether Keplerian orbits can be reproduced by solving
the initial value problem for two bodies numerically.

As an example, let us compute the orbits of the binary stars Sirius A and B (see
also Sect. 3.1.1). In the center-of-mass reference frame (i.e. the center of mass is at
the origin), we have position vectors

r1 = − M2

M1 + M2
d , r2 = M1

M1 + M2
d , (4.43)

where d = r2 − r1 is the distance vector between the two stars. The accelerations
are given by

r̈1 = F12

M1
, r̈2 = F21

M2
, (4.44)

with the gravitational force

F12 = −F21 = GM1M2

d3
d . (4.45)

To define initial conditions, we make use of the vis-viva equation:

v2 = G (M1 + M2)

(
2

d
− 1

a

)
, (4.46)

where v is the modulus of the relative velocity ḋ, G is Newton’s constant, and a
is the semi-major axis of the motion of the distance vector d(t). Remember that
the two-body problem can be reduced to a one-body problem for a body of mass
μ = M1M2/(M1 + M2) moving along an elliptic orbit given by d(t). At the points
of minimal and maximal distance, the velocity vector ḋ is perpendicular to d. At the
periastron, where the two stars are closest to each other, we have

r1(0) =
(

M2

M1 + M2
dp , 0 , 0

)
, (4.47)

r2(0) =
(

− M1

M1 + M2
dp , 0 , 0

)
, (4.48)

assuming that themajor axes of the ellipses are alignedwith the x-axis. For ellipses of
eccentricity e, the periastron distance is given by dp = a(1 − e) and the correspond-
ing relative velocity, vp, is obtained by substituting dp into Eq. (4.46). By orienting
the z-axis perpendicular to the orbital plane, the orbital velocities at the periastron
can be expressed as

138 4 Solving Differential Equations

v1(0) ≡ ṙ1(0) =
(
0 ,− M2

M1 + M2
vp , 0

)
, (4.49)

v2(0) ≡ ṙ2(0) =
(
0 ,

M1

M1 + M2
vp , 0

)
. (4.50)

This completes the initial value problem for the two stars.
To proceed with Python, we first define masses and orbitial parameters:

1 import numpy as np
2 from scipy.constants import G,year,au
3 from astropy.constants import M_sun
4

5 M1 = 2.06*M_sun.value # mass of Sirius A
6 M2 = 1.02*M_sun.value # mass of Sirius B
7

8 a = 2.64*7.4957*au # semi-major axis
9 e = 0.5914

Sirius B is a white dwarf of about one solar mass and Sirius A a more massive
main-sequence star. In line 8, the semi-major axis a ≈ 20 AU is calculated from the
distance of the star system from Earth and its angular size. The orbital eccentricity
of about 0.6 indicates a pronounced elliptical shape. The orbital period follows from
Kepler’s third law:

1 T = 2*np.pi * (G*(M1 + M2))**(-1/2) * a**(3/2)
2

3 print("Orbital period = {:.1f} yr".format(T/year))

Since Sirius A and B orbit each other at relatively large distance, they need years to
complete one orbital revolution:

Orbital period = 50.2 yr

So far, we have solved differential equations for a single function (e.g. the displace-
ment of an oscillator in Sect. 4.1 and the radial coordinate in Sect. 4.2). In the case
of the two-body problem, we are dealing with a system of coupled differential equa-
tions (4.44) for the vector functions r1(t) and r2(t). By reformulating the equations
of motion as a system of first-order differential equations,

v̇1 = GM2

|r2 − r1|3 (r2 − r1) , v̇2 = GM1

|r2 − r1|3 (r1 − r2) , (4.51)

ṙ1 = v1 , ṙ2 = v2 , (4.52)

it is straightforward to generalize the forward Euler method described in Sect. 4.1.2.
First we set the integration interval in units of the orbital period and the number of
time steps. Thenwe initialize arrays for the coordinates and velocity components (the

4.3 Orbital Mechanics 139

orientation of the coordinate frame is chosen such that the orbits are in the xy-plane
and z-coordinates can be ignored):

4 n_rev = 3 # number of revolutions
5 n = n_rev*500 # number of time steps
6 dt = n_rev*T/n # time step
7 t = np.arange(0, (n+1)*dt, dt)
8

9 # data arrays for coordinates
10 x1 = np.zeros(n+1)
11 y1 = np.zeros(n+1)
12 x2 = np.zeros(n+1)
13 y2 = np.zeros(n+1)
14

15 # data arrays for velocity components
16 vx1 = np.zeros(n+1)
17 vy1 = np.zeros(n+1)
18 vx2 = np.zeros(n+1)
19 vy2 = np.zeros(n+1)

Before proceeding with the numerical integration, we need to assign the initial con-
ditions (4.47) to (4.50) to the first elements of the data arrays:

20 # periastron distance and relative velocity
21 d = a*(1 + e)
22 v = np.sqrt(G*(M1 + M2)*(2/d - 1/a)) # vis-viva eq.
23

24 x1[0], y1[0] = d*M2/(M1 + M2), 0
25 x2[0], y2[0] = -d*M1/(M1 + M2), 0
26

27 vx1[0], vy1[0] = 0, -v*M2/(M1 + M2)
28 vx2[0], vy2[0] = 0, v*M1/(M1 + M2)

Time integration is implemented in the following for loop through all time steps:

29 alpha = G*M1*M2
30

31 for i in range(n):
32

33 delta_x = x2[i] - x1[i]
34 delta_y = y2[i] - y1[i]
35

36 # third power of distance
37 d3 = (delta_x**2 + delta_y**2)**(3/2)
38

39 # force components
40 Fx = alpha*delta_x/d3

140 4 Solving Differential Equations

41 Fy = alpha*delta_y/d3
42

43 # forward Euler velocity updates
44 vx1[i+1] = vx1[i] + Fx*dt/M1
45 vy1[i+1] = vy1[i] + Fy*dt/M1
46 vx2[i+1] = vx2[i] - Fx*dt/M2
47 vy2[i+1] = vy2[i] - Fy*dt/M2
48

49 # forward Euler position updates
50 x1[i+1] = x1[i] + vx1[i]*dt
51 y1[i+1] = y1[i] + vy1[i]*dt
52 x2[i+1] = x2[i] + vx2[i]*dt
53 y2[i+1] = y2[i] + vy2[i]*dt

Fig. 4.7 Numerical solution of the two-body problem for the binary stars Sirius A and B computed
with the forward Euler method. The center of mass is located at the origin (black cross)

Figure4.7 shows the resulting orbits (the Python code producing the plot is listed
below). Although the shape resembles an ellipse, they solution is clearly not correct.
The two stars are gradually drifting outwards and their apastrons (most distant points)
are not at the x-axis. As a result, there are no closed orbits. This is in contradiction
with the analytic solution of the two-body problem.

54 import matplotlib.pyplot as plt
55 %matplotlib inline
56

57 fig = plt.figure(figsize=(6, 6*35/55), dpi=100)
58

59 plt.plot([0], [0], ’+k’) # center of mass
60 plt.plot(x1/au, y1/au, color=’red’, label=’Sirius A’)

4.3 Orbital Mechanics 141

61 plt.plot(x2/au, y2/au, color=’blue’, label=’Sirius B’)
62

63 plt.xlabel("x [AU]")
64 plt.xlim(-20,35)
65 plt.ylabel("y [AU]")
66 plt.ylim(-17.5,17.5)
67 plt.legend(loc=’upper left’)
68 plt.savefig("sirius_forward.pdf")

Of course, you know already from Sect. 4.1.2 that the forward Euler method is not
suitable to solve dynamical problems. The numerical solution changes remarkably
with the following simple modification of lines 50–53:

50 x1[i+1] = x1[i] + vx1[i+1]*dt
51 y1[i+1] = y1[i] + vy1[i+1]*dt
52 x2[i+1] = x2[i] + vx2[i+1]*dt
53 y2[i+1] = y2[i] + vy2[i+1]*dt

After re-running the solver, two closed elliptical orbits are obtained (see Fig. 4.8).
Even after three revolutions, there is no noticeable drift. Based on what you learned
in Sect. 4.1.2, you should be able to explain how this comes about (a hint is given in
the caption of the figure).

How can we further improve the accuracy of the solution? Surely, by using
a higher-order scheme. Since the implementation of a Runge-Kutta scheme for
systems of differential equations is a laborious task, we make use of library
functions for solving initial value problems from SciPy. The wrapper function
scipy.integrate.solve_ivp() allows you to solve any system of first-
order ODEs (higher-order systems can be reformulated as first-order systems) with

Fig. 4.8 Same as in Fig. 4.7, but computed with a semi-implicit scheme

142 4 Solving Differential Equations

different numerical integrators.16 Before applying this function, you need to famil-
iarize yourself with the notion of a state vector. Suppose we have a system of ODEs
for N functions sn(t), where n ∈ [1, N]:

ṡ1 = f1(t, s1, . . . , sN) ,

... (4.53)

ṡN = fN (t, s1, . . . , sN) . (4.54)

This can be written in vector notation as

ṡ = f(t, s) , (4.55)

where s = (s1, . . . , sN) and f = (f1, . . . , fN). Equation (4.55) allows us to compute
the rate of change ṡ for any given state s at time t . In the case of the two-body problem,
we can combine Eqs. (4.51), (4.52) into a single equation for an eight-dimensional
state vector (again ignoring z-components):

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1
y1
x2
...

v2x
v2y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and f(t, s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1x
v1y
v2x
...

−F12x/M2

−F12y/M2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.56)

It does not matter how the variables are ordered in the state vector, but it is helpful
to use mnemonic ordering such that the index n can be easily associated with the
corresponding variable. Generally, each component fn of the right-hand side of
Eq. (4.55) may depend on all or any subset of the variables s1, . . . , sN . For example,
f1 is only a function of s5 = v1x , while f8 depends on s1 = x1, s2 = y1, s3 = x2, and
s4 = y2 (see definition of the gravitational force (4.45)).

In Python, state vectors can be defined as NumPy arrays. For example, the initial
state s(0) is given by the following array:

54 from scipy.integrate import solve_ivp
55

56 init_state = np.array([x1[0], y1[0], x2[0], y2[0],
57 vx1[0], vy1[0], vx2[0], vy2[0]])

The array elements (initial positions and velocities of the stars) are defined in lines
24–28. To apply solve_ivp(), we need to define a Python function that evaluates
the right-hand side of Eq. (4.55):

16See docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

4.3 Orbital Mechanics 143

58 def state_derv(t, state):
59 alpha = G*M1*M2
60
61 delta_x = state[2] - state[0] # x2 - x1
62 delta_y = state[3] - state[1] # y2 - y1
63
64 # third power of distance
65 d3 = (delta_x**2 + delta_y**2)**(3/2)
66
67 # force components
68 Fx = alpha*delta_x/d3
69 Fy = alpha*delta_y/d3
70
71 return np.array([state[4], state[5], state[6], state[7],
72 Fx/M1, Fy/M1, -Fx/M2, -Fy/M2])

The elements returned by this function are the components of the vector f(t, s)defined
by Eq. (4.56).

The following call of solve_ivp() computes the solution for the time interval
[0, 3T] starting from init_state:

73 tmp = solve_ivp(state_derv, (0,3*T), init_state,
74 dense_output=True)
75 data = tmp.sol(t)

The keyword argument dense_output=True indicates that the solve_ivp()
returns a Python function with the name sol.17 This function can be used to com-
pute the values of the solution for any given array of time values via polynomial
interpolation. This is what happens in line 75, where the solution is evaluated for the
array t defined above (tmp is a temporary object containing everything returned by
solve_ivp(), including sol()).

The resulting data can be plotted by means of array slicing, where the row index
corresponds to the index of state and the column index is running through values
at subsequent instants:

76 fig = plt.figure(figsize=(6, 6*25/35), dpi=100)
77

78 plt.plot([0], [0], ’+k’) # center of mass
79 plt.plot(data[0,:]/au, data[1,:]/au,
80 color=’red’, label=’Sirius A’)
81 plt.plot(data[2,:]/au, data[3,:]/au,
82 color=’blue’, label=’Sirius B’)
83

84 plt.xlabel("x [AU]")
85 plt.xlim(-12.5,22.5)
86 plt.ylabel("y [AU]")
87 plt.ylim(-12.5,12.5)

17Since a function in Python is an object, a function can be returned by a another function.

144 4 Solving Differential Equations

88 plt.legend(loc=’upper left’)
89 plt.savefig("sirius_scipy.pdf")

The plot is shown in Fig. 4.9. It turns out the orbits are note quite elliptical. The
semi-major axes is slowly shrinking. You might find this surprising, as the docu-
mentation shows that solve_ivp() applies a higher-order Runge-Kutta scheme
by default. However, the time step and error tolerances are adjusted such that the
integrator computes the solution efficiently with a moderate number of time steps. It
is also important to keep in mind that Runge-Kutta methods are not symplectic (see
Sect. 4.1.2). Therefore, the error can grow with time. The lesson to be learned here is
that numerical library functions have to be used with care. They can be convenient
and may offer more sophisticated methods than what you would typically program
yourself. But to some degree you need to be aware of their inner workings and tuning
parameters to avoid results that do not meet your expectation. In Exercise 4.8, you
can further explore solve_ivp() and learn how to improve the accuracy of the
orbits of Sirius A and B.

To conclude our discussion of orbital mechanics, we will solve a special case of
the three-body problem, where two objects are in a close, inner orbit. Together with
a third, more distant object, they follows an outer orbit around the common center
of mass. Such a configuration is found in the triple star system Beta Persei, which is
also known as Algol. Algol Aa1 and Aa2 constitute an eclipsing binary with a period

Fig. 4.9 Same as in Fig. 4.8, but computed with the initial value problem solver from SciPy (fifth-
order Runge-Kutta scheme with fourth-order error estimator)

4.3 Orbital Mechanics 145

of less than three days.18 This binary and a third star, designated Ab, revolve around
each other over a period of 680 days. Here are the orbital parameters of the Algol
system:

1 from scipy.constants import day
2

3 M1 = 3.17*M_sun.value # mass of Algol Aa1
4 M2 = 0.70*M_sun.value # mass of Algol Aa2
5 M3 = 1.76*M_sun.value # mass of Algol Ab
6

7 # inner orbit (Aa1 and Aa2)
8 T12 = 2.867*day
9 e12 = 0
10

11 # outer orbit (Aa and Ab)
12 T = 680.2*day
13 e = 0.227

Since the orbital periods are known with higher precision, we compute the semi-
major axes of the inner and outer orbits using Kepler’s third law, assuming that the
binary Aa and the star Ab can be treated as a two-body systemwith masses M1 + M2

and M3. For the inner orbit (Aa1 and Aa2), the third star can be ignored, similar to
the Earth-Moon system and the Sun:

14 from scipy.constants import day
15
16 a12 = (T12/(2*np.pi))**(2/3) * (G*(M1 + M2))**(1/3)
17 a = (T/(2*np.pi))**(2/3) * (G*(M1 + M2 + M3))**(1/3)
18
19 print("Inner semi-major axis = {:.2e} AU".format(a12/au))
20 print("Outer semi-major axis = {:.2f} AU".format(a/au))

As expected, the size of the inner orbit is much smaller than the outer orbit (less ten
10 million km vs roughly the distance from the Sun to Mars).

Inner semi-major axis = 6.20e-02 AU

Outer semi-major axis = 2.69 AU

This allows us to define approximate initial conditions. First, we define periastron
positions and velocities of Aa1 and Aa2 analogous to Sirius:

21 M12 = M1 + M2
22 d12 = a12*(1 - e12)
23 v12 = np.sqrt(G*M12*(2/d12 - 1/a12))
24

25 x1, y1 = d12*M2/M12, 0

18The term eclipsing binary means that the orbital plane is nearly parallel to the direction of the line
of sight from Earth. For such a configuration, one star periodically eclipses the other star, resulting
in a characteristic variation of the brightness observed on Earth.

146 4 Solving Differential Equations

26 x2, y2 = -d12*M1/M12, 0
27

28 vx1, vy1 = 0, -v12*M2/M12
29 vx2, vy2 = 0, v12*M1/M12

For the next step, think of Aa1 and Aa2 as a single object of total mass M1 + M2

(variable M12) positioned at the binary’s center of mass. By treating the binary and
Ab in turn as a two-body system, we have

30 d = a*(1 - e)
31 v = np.sqrt(G*(M12 + M3)*(2/d - 1/a))
32

33 x1 += d*M3/(M12 + M3)
34 x2 += d*M3/(M12 + M3)
35

36 x3, y3 = -d*M12/(M12 + M3), 0
37

38 vy1 -= v*M3/(M12 + M3)
39 vy2 -= v*M3/(M12 + M3)
40

41 vx3, vy3 = 0, v*M12/(M12 + M3)

In lines 33–34, the x- and y-coordinates are shifted from the center-of-mass frame of
Aa1 and Aa2 to the center-of-mass frame for all three stars. The Keplerian velocities
at the periastron of the outer orbit are added to the velocities from above (lines 38–
39), while Ab moves only with the outer orbital velocity (line 41). As you can see,
two further assumptions are applied here. First of all, all three stars are assumed to
be simultaneously at their periastrons at time t = 0. Generally, periastrons of the
inner and outer orbits do not coincide. Second, the plane of the outer orbit of Algol is
inclined relative to the plane of the inner orbit. As a result, it would be necessary to
treat the motion of the three stars in three-dimensional space. For simplicity’s sake,
we will ignore this and pretend that the orbits are co-planar.

We solve the equations of motion for the full three-body interactions, i.e. the
resulting force acting on each star is given by the sum of the gravitational fields of
the other two stars. For example, the equation of motion of Algol Aa1 reads

r̈1 = F12 + F23

M1
, (4.57)

where

F12 = GM1M2

d3
12

d12 , F13 = GM1M3

d3
13

d13 , (4.58)

and the displacements vectors are given by

d12 = d2 − d1 , d13 = d3 − d1 . (4.59)

4.3 Orbital Mechanics 147

Analogous equations apply to Algol Aa2 and Ab. In terms of the state vector of the
system, which has twelve components (six positional coordinates and six velocity
components), these equations can be implemented as follows.

42 def state_derv(t, state):
43 alpha = G*M1*M2
44 beta = G*M1*M3
45 gamma = G*M2*M3
46
47 delta12_x = state[2] - state[0] # x2 - x1
48 delta12_y = state[3] - state[1] # y2 - y1
49
50 delta13_x = state[4] - state[0] # x3 - x1
51 delta13_y = state[5] - state[1] # y3 - y1
52
53 delta23_x = state[4] - state[2] # x3 - x2
54 delta23_y = state[5] - state[3] # y3 - y2
55
56 # force components
57 F12x = alpha*delta12_x/(delta12_x**2 + delta12_y**2)**(3/2)
58 F12y = alpha*delta12_y/(delta12_x**2 + delta12_y**2)**(3/2)
59
60 F13x = beta*delta13_x/(delta13_x**2 + delta13_y**2)**(3/2)
61 F13y = beta*delta13_y/(delta13_x**2 + delta13_y**2)**(3/2)
62
63 F23x = gamma*delta23_x/(delta23_x**2 + delta23_y**2)**(3/2)
64 F23y = gamma*delta23_y/(delta23_x**2 + delta23_y**2)**(3/2)
65
66 return np.array([state[6], state[7],
67 state[8], state[9],
68 state[10], state[11],
69 (F12x + F13x)/M1, (F12y + F13y)/M1,
70 (-F12x + F23x)/M2, (-F12y + F23y)/M2,
71 (-F13x - F23x)/M3, (-F13y - F23y)/M3])

It is left as an exercise to define the initial state vector for the system and to compute
and plot the solution using solve_ivp().19 Figure4.10 shows the resulting orbits
for the time interval [0, 0.5T]. Algol Aa1 and Aa2 nearly move like a single object
along a Kepler ellipse. In a close-up view the two stars revolve on much smaller
orbits around their center of mass (see Fig. 4.11). Combined with the center-of-mass
motion, the stars follow helix-like paths. Since the period of the binary’s inner orbit
is much shorter, a sufficiently small time step has to be chosen (for the orbits shown

19If this is too time consuming for you, the complete code can be found in the notebook and source
files for this chapter.

148 4 Solving Differential Equations

Fig. 4.10 Orbits of three stars similar to the Algol system

in Figs. 4.10 and 4.11 the time step is 0.1 d). This results in a large number of time
steps if the equations of motion are integrated over a time interval comparable to the
period of the outer orbit. Disparate time scales are a common problem in numerical
computation. Often it is not feasible to follow the evolution of a system from the
smallest to the largest timescales. In the case of the Algol system, for example, an
approximative solution would be to solve the two-body problem for the inner and
outer orbits separately. In order to do this, how would you modify the code listed
above?

Exercises

4.8 Compare different solvers in solve_ivp() for the orbits of Sirius A and
B. The solver can be specified with they keyword argument method. Moreover
investigate the impact of the relative tolerance rtol. See the online documentation
for details.

4.9 Compute the motion of a hypothetical planet in the Sirius system. Apply the
test particle approximation to the planet, i.e. neglect the gravity of the planet in
the equations of motion of the stars, while the planets’s motion is governed by the
gravitational forces exerted by Sirius A and B.

(a) Determine initial data from the apastron of a Kepler ellipse of eccentricity ε =
0.3, assuming a single star of mass M1 + M2 ≈ 3.08M� at the center of mass of
binary. Under which conditions do you expect this to be a good approximation?
Solve the initial value problem for different ratios of the initial distance of the

4.3 Orbital Mechanics 149

Fig. 4.11 Close-up view of
the inner orbits in the
center-of-mass frame of the
Algol system

planet from the barycenter and the semi-major axis of the binary star (a ≈
20 AU).20 In other words, consider cases where the size of the planetary orbit
is comparable to the distance between the two stars and where the planet moves
far away from the binary. How does binary affect the planet’s orbit over several
periods and in which respect does it differ from a Keplerian orbit?

(b) Now assume that the planet follows a close circular orbit around Sirius A (i.e.
the radius of the orbit is small compared to the separation of the binary). Which
approximation can be applied to initialize the orbit in this case? Successively
increase the orbital radius from about 0.1 AU to larger values. At which distance
from Sirius A destabilizes the planetary orbit within several revolutions (i.e.
begins to deviate substantially from the initial elliptical shape)?

4.10 In general, the three-body problemcannot be solved analytically. Inmany cases
motions are chaotic, while stable configurations are rare. Consider a system of three
stars, each with a mass of 1M�. Intialize the spatial coordinates and velocities of

20Another parameter is the relative orientation of the major axes of the orbit of the binary and the
planet’s orbit. You can also vary this parameter if you are interested in its influence.

150 4 Solving Differential Equations

each star with uniformly distributed random numbers. For the coordinates x , y, and z,
generate random numbers in the interval [−1 AU, 1 AU] using the NumPy function
random.uniform(), whose first and second argument are the endpoints of the
interval from which a random number is to be drawn. By setting the third argument
to 3, the function returns three random numbers for the three coordinates. In the
same way, generate random velocity components vx , vy , and vz within the interval
[−vmax, vmax], where vmax = √

GM�/0.01 AU is the orbital velocity around a solar
mass at a distance of 0.01 AU (this is 10 times the orbital velocity of Earth around
the Sun).

(a) Solve the initial value problem for a time interval of at least 10 yr. Plot the
pairwise distances d12, d13, and d23 between the stars as function of time. Repeat
the procedure for several randomly chosen initial conditions and interpret your
results. How can you identify bound orbits? (Think about the time behaviour of
the distance between two stars in a two-body system.)

(b) The displacement vectors d12, d13, and d23 form a triangle with the three stars
at the vertices. Calculate the time-dependent internal angles of the triangle by
applying the law of cosines. If the stars are eclipsing (i.e. they are aligned along
a line), the triangle will degenerate into a line. As a result, you can detect
eclipses by tracking the time evolution of the internal angles. If the configu-
ration approaches an eclipse, the smallest and largest angles will be close to 0
and 180◦, respectively. Can you identify such events in your sample?21

(c) You can draw a triangle that is similar to the displacement tri-
angle (i.e. a triangle with identical internal angles) by utilizing Polygon()
from matplotlib.patches. Position the first star at the origin, align d12

with the horizontal coordinate axis of the plot and place the third vertex of the
triangle such that angles are preserved. What can you deduce from the time
evolution of the shape of the triangle? (Optionally, you can return to this exer-
cise after reading the next section. You will then be able to illustrate the time
evolution of the three-body system by animating the triangle.)

(d) If youwant to optimize the performance of your code to compute larger samples,
you can follow the instructions in Appendix B.2.

21The three-body problem and its rich phenomenology is intriguing for astrophysicists and mathe-
maticians alike. For example, properties of the displacement triangles can be analyzed in an abstract
shape space, which can be mapped to a sphere, the so-called shape sphere. The evolution of any
three-body system is described by a curve on this sphere. Eclipses live on the sphere’s equator. See
[13] and references therein.

4.4 Galaxy Collisions 151

4.4 Galaxy Collisions

In their eloquent article from the 1980s, Schroeder and Comin [14] came up with a
very simple, yet amazingly useful model for interacting disk galaxies. They proposed
to treat a disk galaxy as gravitating point mass surrounded by a disk of test particles
representing stars, assuming that all the mass of a galaxy is concentrated in the center
and gravitational interactions between stars are negligible. There is no dark matter,
no interstellar gas and dust, and stars only experience the gravity of the central mass
(or central masses when dealing with a system of two galaxies). Although this is a
very crude picture, it is able to reproduce some basic properties seen in interacting
galaxies. Of course, it is far from being competitive to a full N-body simulation,
which will be the subject of the next section. Since the computation is so much
cheaper, it nevertheless serves its purpose as a pedagogical model that can be run in
a matter of seconds on any PC or laptop.

In the following, we will reimplement the model of Schroeder and Comin with
some extra features in Python.22 Our version is contained in the module galcol,
which is part of the zip archive for this chapter. As a first step, we need to initialize a
galactic disk. The function galcol.init_disk() listed below accepts a dictio-
nary of basic parameters, which can be generated with galcol.parameters():

1 # excerpt from galcol.py
2 def init_disk(galaxy, time_step=0.1*unit.Myr):
3 ’’’
4 initializes galaxy by setting stars in random positions
5 and Keplerian velocities half a time step in advance
6 (Leapfrog scheme)
7
8 args: dictionary of galaxy parameters,
9 numerical time step
10 ’’’
11
12 # width of a ring
13 dr = (1 - galaxy[’softening’])*galaxy[’radius’]/ \
14 galaxy[’N_rings’]
15 N_stars_per_ring = int(galaxy[’N_stars’]/galaxy[’N_rings’])
16
17 # rotation angle and axis
18 norm = np.sqrt(galaxy[’normal’][0]**2 +
19 galaxy[’normal’][1]**2 +
20 galaxy[’normal’][2]**2)
21 cos_theta = galaxy[’normal’][2]/norm
22 sin_theta = np.sqrt(1-cos_theta**2)
23 u = np.cross([0,0,1], galaxy[’normal’]/norm)
24 norm = np.sqrt(u[0]**2 + u[1]**2 + u[2]**2)
25
26 if norm > 0:

22The original program GC3D (Gallactic Collisions in 3D) was written in BASIC and later adapted
in [4].

152 4 Solving Differential Equations

27 u /= norm # unit vector
28
29 # rotation matrix for coordinate transformation
30 # from galactic plane to observer’s frame
31 rotation = \
32 [[u[0]*u[0]*(1-cos_theta) + cos_theta,
33 u[0]*u[1]*(1-cos_theta) - u[2]*sin_theta,
34 u[0]*u[2]*(1-cos_theta) + u[1]*sin_theta],
35 [u[1]*u[0]*(1-cos_theta) + u[2]*sin_theta,
36 u[1]*u[1]*(1-cos_theta) + cos_theta,
37 u[1]*u[2]*(1-cos_theta) - u[0]*sin_theta],
38 [u[2]*u[0]*(1-cos_theta) - u[1]*sin_theta,
39 u[2]*u[1]*(1-cos_theta) + u[0]*sin_theta,
40 u[2]*u[2]*(1-cos_theta) + cos_theta]]
41
42 # print angels defining orientation of galaxy
43 phi = np.arctan2(galaxy[’normal’][1],
44 galaxy[’normal’][0])
45 theta = np.arccos(cos_theta)
46 print("Plane normal: ",
47 "phi = {:.1f} deg, theta = {:.1f} deg".\
48 format(np.degrees(phi), np.degrees(theta)))
49
50 else:
51 rotation = np.identity(3)
52
53 galaxy[’stars_pos’] = np.array([])
54 galaxy[’stars_vel’] = np.array([])
55
56 # begin with innermost radius given by softening factor
57 R = galaxy[’softening’]*galaxy[’radius’]
58 for n in range(galaxy[’N_rings’]):
59
60 # radial and angular coordinates
61 # in center-of-mass frame
62 r_star = R + \
63 dr * np.random.random_sample(size=N_stars_per_ring)
64 phi_star = 2*np.pi * \
65 np.random.random_sample(size=N_stars_per_ring)
66
67 # Cartesian coordinates in observer’s frame
68 vec_r = np.dot(rotation,
69 r_star*[np.cos(phi_star),
70 np.sin(phi_star),
71 np.zeros(N_stars_per_ring)])
72 x = galaxy[’center_pos’][0] + vec_r[0]
73 y = galaxy[’center_pos’][1] + vec_r[1]
74 z = galaxy[’center_pos’][2] + vec_r[2]
75
76 # orbital periods and angular displacements
77 # over one timestep

4.4 Galaxy Collisions 153

78 T_star = 2*np.pi * ((G*galaxy[’mass’])**(-1/2) * \
79 r_star**(3/2)).to(unit.s)
80 delta_phi = 2*np.pi * time_step.to(unit.s).value / \
81 T_star.value
82
83 # velocity components in observer’s frame
84 # one half of a step in advance (Leapfrog scheme)
85 vec_v = np.dot(rotation,
86 (r_star.to(unit.km)/time_step.to(unit.s)) * \
87 [(np.cos(phi_star) - np.cos(phi_star-delta_phi)),
88 (np.sin(phi_star) - np.sin(phi_star-delta_phi)),
89 np.zeros(N_stars_per_ring)])
90 v_x = galaxy[’center_vel’][0] + vec_v[0]
91 v_y = galaxy[’center_vel’][1] + vec_v[1]
92 v_z = galaxy[’center_vel’][2] + vec_v[2]
93
94 if galaxy[’stars_pos’].size == 0:
95 galaxy[’stars_pos’] = np.array([x,y,z])
96 galaxy[’stars_vel’] = np.array([v_x,v_y,v_z])
97 else:
98 galaxy[’stars_pos’] = \
99 np.append(galaxy[’stars_pos’],

100 np.array([x,y,z]), axis=1)
101 galaxy[’stars_vel’] = \
102 np.append(galaxy[’stars_vel’],
103 np.array([v_x,v_y,v_z]), axis=1)
104
105 R += dr
106
107 # units get lost through np.array
108 galaxy[’stars_pos’] *= unit.kpc
109 galaxy[’stars_vel’] *= unit.km/unit.s
110
111 # typical velocity scale defined by Kepler velocity
112 # at one half of the disk radius
113 galaxy[’vel_scale’] = np.sqrt(G*galaxy[’mass’]/(0.5*R)).\
114 to(unit.km/unit.s)

We follow [14] in subdividing the disk into a given number of rings, galaxy
[’N_rings’]. The radial width of each ring dr is computed from the outer disk
radius galaxy[’radius’] (lines 13–14). The disk also has an inner edge which
is specified as fraction of the disk radius. Since this fraction is used to avoid a bound-
less potential near the center when computing the orbits of test particles, it is called
softening factor. While stars are set at constant angular separation in each ring in the
original model, we place the stars at random positions. This is done in code lines 62
to 65, where the function random_sample() from NumPy’s random module is
used to define the star’s radial and angular coordinates within each ring. The sample
returned by random_sample() is drawn from a uniform distribution in the inter-
val [0, 1] and has to be scaled and shifted to obtain values in the desired range. The
number of random values is of course given by the number of stars per ring defined

154 4 Solving Differential Equations

Fig. 4.12 Schematic view of a disk in a coordinate frame aligned with the disk plane and its
normal (left) and in another frame with arbitrary orientation relative to the disk (right). The frames
are related by a rotation by the angle θ around the axis given by n′ × n (middle)

in line 15. The resulting coordinates are defined in a polar coordinate system in the
disk plane.

The next problem is transferring the polar coordinates of the stars in the disk to
a three-dimensional Cartesian coordinate system (we will refer to this coordinate
system as the observer’s frame) in which the disk can have arbitrary orientation. The
orientation is defined by the normal vector n = (nx , ny, nz) of the galactic plane,
which is defined as a 3-tuple galaxy[’normal’] in the galaxy’s dictionary.
This requires several steps. First we need to convert the polar coordinates (r, φ) into
Cartesian coordinates (x ′, y′, z′), where the x ′ and y′ axes are aligned with the disk
plane and the z′ axis points in the direction perpendicular to the plane (see Fig. 4.12).

x ′ = r cosφ, (4.60)

y′ = r sin φ, (4.61)

z′ = 0 (4.62)

The disk’s normal is given by n′ = (0, 0, 1) in this coordinate system. To align the
coordinate axes with the observer’s frame, the normal direction has to be rotated by
an angle θ given by

cos θ = n′ · n = nz , (4.63)

assuming that |n| = 1. To ensure that n is a unit vector, the vector
galaxy[’normal’] is divided by its length when defining the variable
cos_theta in line 21. The rotation axis is then given by the normalized cross
product

u = n′ × n
|n′ × n| , (4.64)

as shown in the middle of Fig. 4.12. The cross product can be evaluated by applying
the function np.cross() (see line 23). Having defined the rotation angle θ and

4.4 Galaxy Collisions 155

axis u, we obtain the coordinates of a star in the observer’s frame, r = (x, y, z)T,23

by multiplying r′ = (x ′, y′, z′)T with the rotation matrix R, i.e.

r = R · r′ , (4.65)

where

R =
⎡
⎣ u2x (1 − cos θ) + cos θ uxuy(1 − cos θ) − uz sin θ uxuz(1 − cos θ) + uy sin θ

uyux (1 − cos θ) + uz sin θ u2y(1 − cos θ) + cos θ uyuz(1 − cos θ) − ux sin θ

uzux (1 − cos θ) − uy sin θ uzuy(1 − cos θ) + ux sin θ u2z (1 − cos θ) + cos θ

⎤
⎦

This expression is is know as Rodrigues’ rotation formula. The rotation matrix is
defined in lines 31–40 as two-dimensional NumPy array of shape (3,3) provided
that the norm of the cross n′ × n is positive (line 26) and the right-hand-side of
Eq. (4.64) is mathematically defined. If the normal vectors n′ and n are aligned, the
rotation angle is 0 and the rotation matrix is set equal to the identity matrix (line 51).

Equation (4.65) with x ′, y′, and z′ substituted by expressions (4.60)–(4.62) is
coded in lines 68–74, using np.dot()for the product of a matrix and a vector.
Since we work with NumPy arrays of length given by the number of stars per ring,
this is done inside the for loop through all rings beginning in line 58. The advantage
of using dot() is that it can be applied not only to a single vector but also to an array
of vectors. (You might find it instructive to figure out the shapes of the variables in
lines 68–71 for a particular example). Finally, the x , y, and z coordinates are shifted
by the position of the disk center in the observer’s frame (lines 72–74).

In the block of code starting at line 85, the orbital velocities of the stars are
computed through similar transformations as the positions. Since we are going to
solve the equations of motion using a Leapfrog scheme, we need to initialize the
velocity of each star by its Keplerian velocity one half of a time step earlier than the
initial positions. In the Leapfrog scheme, this is the mean velocity v′(t−1/2) over the
time interval [t0 − �t, t0]:

v′(t−1/2) � r′(t0) − r′(t0 − �t)

�t
(4.66)

For an orbital period T given by Kepler’s third law (lines 78–79; see also Sect. 2.2),
the angular shift corresponding to �t is given by (lines 80–81)

�φ = 2π
�t

T
. (4.67)

Thus, the velocity components in the plane of the disk can be expressed as

23The superscript T indicates that r is a column vector, which is important in the context of matrix
multiplication.

156 4 Solving Differential Equations

v′
x = r [cosφ − cos(φ − �φ)] /�t, (4.68)

v′
y = r [sin φ − sin(φ − �φ)] /�t, (4.69)

v′
z = 0 (4.70)

Applying the frame rotation, v = R · v′, and adding the translation velocity of the
disk center yields the velocities in the observer’s frame.

In lines 94–103, the computed stellar positions and orbital velocities are accumu-
lated in the arrays galaxy[’stars_pos’] and galaxy[’stars_vel’],
respectively. Once all rings are filled and the loop terminates, the resulting arrays
have a shape corresponding to three spatial dimensions times the number of stars in
the disk. Finally, Astropy units of kpc and km/s are attached to positions and veloci-
ties, respectively. This is necessary because NumPy’s array() function strips any
units from its argument (the reason is explained in Sect. 2.1.3). To compute numer-
ical values that are consistent with the chosen units, radial distance is converted to
km and time to s in line 86. It is also noteworthy that we make an exception of our
rule of explicitly returning the output of a function here. The position and velocity
data are added as new items to the dictionary galaxy, which is an argument of
galcol.init_disk(). Such changes persist outside of a function call.24 As
a result, there is no need to return a complete copy of galaxy at the end of the
function body.

After having defined initial data, the functions galcol.evolve_disk() and
evolve_two_disks() can be applied to compute the time evolution of a single
disk or a pair of disks, respectively. Studying a single disk is left as an exercise (see
Exercise 4.11). The definition of evolve_two_disks() for the simulation of
collisions of galaxies is listed in the following.

1 # excerpt from galcol.py
2 def evolve_two_disks(primary, secondary,
3 time_step=0.1*unit.Myr,
4 N_steps=1000, N_snapshots=100):
5 ’’’
6 evolves primary and secondary disk
7 using Leapfrog integration
8
9 args: dictionaries of primary and secondary galaxy,
10 numerical timestep, number of timesteps,
11 number of snapshots
12
13 returns: array of snapshot times,
14 array of snapshots
15 (spatial coordinates of centers and stars)
16 ’’’
17 dt = time_step.to(unit.s).value
18
19 r_min1 = primary[’softening’]*primary[’radius’].\

24This is an example for Python’s call by object reference mentioned in Sect. 3.1.2.

4.4 Galaxy Collisions 157

20 to(unit.m).value
21 r_min2 = secondary[’softening’]*secondary[’radius’].\
22 to(unit.m).value
23
24 N1, N2 = primary[’N_stars’], secondary[’N_stars’]
25
26 # mass, position and velocity of primary galactic center
27 M1 = primary[’mass’].to(unit.kg).value
28 X1, Y1, Z1 = primary[’center_pos’].to(unit.m).value
29 V1_x, V1_y, V1_z = primary[’center_vel’].\
30 to(unit.m/unit.s).value
31
32 # mass, position and velocity of secondary galactic center
33 M2 = secondary[’mass’].to(unit.kg).value
34 X2, Y2, Z2 = secondary[’center_pos’].to(unit.m).value
35 V2_x, V2_y, V2_z = secondary[’center_vel’].\
36 to(unit.m/unit.s).value
37
38 # stellar coordinates of primary
39 x = primary[’stars_pos’][0].to(unit.m).value
40 y = primary[’stars_pos’][1].to(unit.m).value
41 z = primary[’stars_pos’][2].to(unit.m).value
42
43 # stellar coordinates of secondary
44 x = np.append(x, secondary[’stars_pos’][0].\
45 to(unit.m).value)
46 y = np.append(y, secondary[’stars_pos’][1].\
47 to(unit.m).value)
48 z = np.append(z, secondary[’stars_pos’][2].\
49 to(unit.m).value)
50
51 # stellar velocities of primary
52 v_x = primary[’stars_vel’][0].to(unit.m/unit.s).value
53 v_y = primary[’stars_vel’][1].to(unit.m/unit.s).value
54 v_z = primary[’stars_vel’][2].to(unit.m/unit.s).value
55
56 # stellar velocities of secondary
57 v_x = np.append(v_x, secondary[’stars_vel’][0].\
58 to(unit.m/unit.s).value)
59 v_y = np.append(v_y, secondary[’stars_vel’][1].\
60 to(unit.m/unit.s).value)
61 v_z = np.append(v_z, secondary[’stars_vel’][2].\
62 to(unit.m/unit.s).value)
63
64 # array to store snapshots of all positions
65 # (centers and stars)
66 snapshots = np.zeros(shape=(N_snapshots+1,3,N1+N2+2))
67 snapshots[0] = [np.append([X1,X2], x),
68 np.append([Y1,Y2], y),
69 np.append([Z1,Z2], z)]
70

158 4 Solving Differential Equations

71 # number of steps per snapshot
72 div = max(int(N_steps/N_snapshots), 1)
73
74 print("Solving equations of motion for two galaxies",
75 "(Leapfrog integration)")
76
77 for n in range(1,N_steps+1):
78
79 # radial distances from centers with softening
80 r1 = np.maximum(np.sqrt((X1 - x)**2 +
81 (Y1 - y)**2 +
82 (Z1 - z)**2), r_min1)
83 r2 = np.maximum(np.sqrt((X2 - x)**2 +
84 (Y2 - y)**2 +
85 (Z2 - z)**2), r_min2)
86
87 # update velocities of stars
88 # (acceleration due to gravity of centers)
89 v_x += G.value * (M1*(X1 - x)/r1**3 +
90 M2*(X2 - x)/r2**3) * dt
91 v_y += G.value * (M1*(Y1 - y)/r1**3 +
92 M2*(Y2 - y)/r2**3) * dt
93 v_z += G.value * (M1*(Z1 - z)/r1**3 +
94 M2*(Z2 - z)/r2**3) * dt
95
96 # update positions of stars
97 x += v_x*dt
98 y += v_y*dt
99 z += v_z*dt

100
101 # distance between centers
102 D_sqr_min = (r_min1+r_min2)**2
103 D_cubed = \
104 (max((X1 - X2)**2 + (Y1 - Y2)**2 + (Z1 - Z2)**2,
105 D_sqr_min))**(3/2)
106
107 # gravitational acceleration of primary center
108 A1_x = G.value*M2*(X2 - X1)/D_cubed
109 A1_y = G.value*M2*(Y2 - Y1)/D_cubed
110 A1_z = G.value*M2*(Z2 - Z1)/D_cubed
111
112 # update velocities of centers
113 # (constant center-of-mass velocity)
114 V1_x += A1_x*dt; V2_x -= (M1/M2)*A1_x*dt
115 V1_y += A1_y*dt; V2_y -= (M1/M2)*A1_y*dt
116 V1_z += A1_z*dt; V2_z -= (M1/M2)*A1_z*dt
117
118 # update positions of centers
119 X1 += V1_x*dt; X2 += V2_x*dt
120 Y1 += V1_y*dt; Y2 += V2_y*dt
121 Z1 += V1_z*dt; Z2 += V2_z*dt

4.4 Galaxy Collisions 159

122
123 if n % div == 0:
124 i = int(n/div)
125 snapshots[i] = [np.append([X1,X2], x),
126 np.append([Y1,Y2], y),
127 np.append([Z1,Z2], z)]
128
129 # fraction of computation done
130 print("\r{:3d} %".format(int(100*n/N_steps)), end="")
131
132 time = np.linspace(0*time_step, N_steps*time_step,
133 N_snapshots+1, endpoint=True)
134 print(" (stopped at t = {:.1f})".format(time[-1]))
135
136 snapshots *= unit.m
137
138 return time, snapshots.to(unit.kpc)

Parameters and initial data of the two galaxies are defined by the arguments
primary and secondary, which have to be dictionaries prepared by
galcol.init_disk(). For the numerical solver in the for loop through all
timesteps (the total number of steps is specified by the optional argumentN_steps),
parameters and data from the dictionaries are converted to simple float values in SI
units (lines 17–62). For example, the coordinates X1, Y1, and Z1 of the center
of the primary galaxy in units of meters are initialized in line 28. The conversion
from Astropy objects to numbers avoids some overhead in the implementation and
improves efficiency of the computation, while we have the full flexibility of using
arbitrary units in the input and output of the function.

The positions of stars in both disks are joined into arrays x, y, and z via
np.append() in lines 39–49. As a result, the length of the three coordinate arrays
equals the total number of stars in the primary and secondary disks. This allows us to
apply operations at once to all stars. The coordinates are updated for each time step
in lines 97–99, where the velocity components are computed from the accelerations
in the gravitational field of the two central masses M1 and M2 (lines 89–94):

x(tn+1) = x(tn) + v(tn+1/2)�t , (4.71)

v(tn+1/2) = v(tn−1/2) + a(tn)�t , (4.72)

where

a(tn) = GM1

r31 (tn)
[X1(tn) − x(tn)] + GM2

r32 (tn)
[X2(tn) − x(tn)] (4.73)

is the gravitational acceleration of a test particle (star) at position x(tn) at time tn =
t0 + n�t . The distances r1,2(tn) from the two central masses are given by (for brevity,
time dependence is not explicitly written here):

r1,2 =
√

(X1,2 − x)2 + (Y1,2 − y)2 + (Y1,2 − y)2 . (4.74)

160 4 Solving Differential Equations

However, in the corresponding code lines 80–85 distances are given by the above
expression only if the resulting distances are greater than some minimal distances
r_min1 and r_min2. NumPy’s maximum() function compares values element-
wise. In this case, it compares each element of the array r1 to r_min1 and returns
the larger value (and similarly for r2). The variables r_min1 and r_min2 are
defined in terms of the disk’s softening factors in lines 19 to 22. This means that in
the close vicinity of the gravitational centers, the potential is limited to the potential
at the minimal distance. Otherwise stellar velocities might become arbitrarily high,
resulting in large errors.

Of course, not only the stars move under the action of gravity, but also the two
central massesM1 andM2. Since the stars are treated as test masses (i.e. the gravity of
the stars is neglected), it is actually a two-body problem that needs to be solved for the
central masses. We leave it as an exercise to study the implementation in lines 101–
121 (see appendix of [4] for a detailed description). The expressions for the velocity
updates of the secondary in lines 114–116 follow from momentum conservation.

The data for the positions of the centers and stars are stored in snapshots, a
three-dimensional array that is initialized with np.zeros() in line 66. Since we
want to record the evolution of the system, we need to store a sufficient number of
snapshots to produce, for instance, an animation of the two disks. The most obvious
choice would be to store the data for all timesteps. However, this would result in a
very large array consuming a lot of memory. Moreover, the production of animations
becomes very time consuming if the total number of frames is too large. The num-
ber of snapshots can be controlled with the optional argument N_snapshots. The
shape of the array snapshots specified in the call of np.zeros() is the number
of snapshots plus one (for the initial data) times the number of spatial dimensions
(three) times the total number of stars plus two (for the two centers). The initial
positions of centers and stars defines the first snapshot snapshots[0], which is
a two-dimensional subarray (lines 67–69). In principle, we could gradually extend
snapshots by applying np.append() for each subsquent timestep, but this
involves copying large amounts of data in memory. As a consequence, the program
would slow down considerably with growing size of snapshots. For this reason,
it is advantageous to define large arrays with their final size (you can check the
size in the examples discussed below) and to successively set all elements in the
aftermath of filling them with zeros. For the default values defined in line 4, one
snapshot will be produced after every cycle of 100 timesteps (the number of steps
per snapshot is assigned to the variable div in line 72). Consequently, we need
to check if the loop counter n (the current number of timesteps in the loop body)
is a multiple of 10. This is equivalent to a zero remainder of division of n by
10. In Python, the remainder is obtained with % operator. Whenever this condition
is satisfied (line 123), the position data are assigned to the snapshot with index
given by n/div (lines 124–127). Remember that an array index must be an integer.
Since Python performs divisions in floating point arithmetic, we need to apply the
conversion functionint() when calculating the snapshot index.After the loop over
all timesteps has finished, snapshots is multiplied by unit.m and converted to
kpc before it is returned. (Do you see why can we not just multiply by unit.kpc?)

4.4 Galaxy Collisions 161

The function also returns an array time with the instants of time corresponding to
the snapshots, which can be used to label visualizations of the snapshots.

Let us do an example:

139 import galcol
140 import astropy.units as unit
141
142 galaxies = {
143 ’intruder’ : galcol.parameters(
144 # mass in solar masses
145 1e10,
146 # disk radius in kpc
147 5,
148 # coordinates (x,y,z) of initial position in kpc
149 (25,-25,-5),
150 # x-, y-, z-components of initial velocity in km/s
151 (-75,75,0),
152 # normal to galactic plane (disk is in xy-plane)
153 (0,0,1),
154 # number of rings (each ring will be randomly
155 # populated with 1000/5 = 200 stars)
156 5,
157 # total number of stars
158 1000,
159 # softening factor defines inner edge of disk
160 0.025),
161 ’target’ : galcol.parameters(
162 5e10, 10, (-5,5,1), (15,-15,0), (1,-1,2**0.5),
163 10, 4000, 0.025),
164 }

First, we need to import the modules galcol and astropy.units. Then an
intruder and a target galaxy are defined as items in the dictionary named galaxies.
To help you keep an overview of the parameters, comments are inserted in the argu-
ment list of galcol.parameters() for the intruder (to see the definition of the
function parameters(), open the file galcol.py with an editor). Compared
to the target, the intruder has a five times smaller mass and is also smaller in size. It
approaches the intruder with a relative velocity of 128 km/s from an initial distance
of 30 kpc under an angle of 45◦ in the xy-plane and a separation of 6 kpc in transver-
sal direction. The initial positions and velocity vectors of the two disks are chosen
such that their center of mass resides at the origin of the coordinate system (since
we are dealing with a two-body problem with central forces, the center of mass is
stationary).

162 4 Solving Differential Equations

Test particles are produced by invokinggalcol.disk_init() for both disks:

165 galcol.init_disk(galaxies[’intruder’])
166 galcol.init_disk(galaxies[’target’])

If you output the contents of galaxies[’intruder’] after the call above, you
will find arrays containing the particle’s initial positions and velocities under the key-
words ’stars_pos’ and ’stars_vel’, respectively (with different numbers
produced by your random number generator):

{’mass’: <Quantity 1.e+10 solMass>,

’radius’: <Quantity 5. kpc>,

’center_pos’: <Quantity [25., -25., -5.] kpc>,

’center_vel’: <Quantity [-75., 75., 0.] km / s>,

’normal’: (0, 0, 1),

’N_rings’: 5,

’N_stars’: 1000,

’softening’: 0.025,

’stars_pos’: <Quantity [[25.27909275, 24.83823236, 25.05526353, ..., 26.70027151,

28.50078551, 22.24242959],

[-25.164745 , -24.60920606, -24.43662745, ..., -21.34249645,

-22.12864831, -20.94120214],

[-5. , -5. , -5. , ..., -5. ,

-5. , -5.]] kpc>,

’stars_vel’: <Quantity [[127.78537167, -374.04767989, -348.54051012, ...,

-168.58250706, -136.72561385, -152.49071953],

[377.39033859, -35.49029092, 108.72755079, ...,

118.65298369, 150.42575762, 22.46279061],

[0. , 0. , 0. , ...,

0. , 0. , 0.]] km / s>,

’vel_scale’: <Quantity 131.16275798 km / s>}

The next step is to compute the time evolution of the combined system of intruder
and target, starting for the initial data produced above:

167 t, data = galcol.evolve_two_disks(
168 galaxies[’target’], galaxies[’intruder’],
169 N_steps=10000, N_snapshots=500,
170 time_step=0.05*unit.Myr)

While the integration proceeds, progress is printed in percent of the total number of
time steps, which is 10000 in this case. This is achieved by a print statement in the
main loop (see line 130 in the code listing of evolve_two_disks()); the format
option end="" prevents a new line after each call and, owing to the carriage return
"r", printing starts over at the beginning of the same line). The function completes
with

Solving equations of motion for two galaxies (Leapfrog integration)
100 % (stopped at t = 500.0 Myr)

The final time t = 500 Myr follows from the chosen timestep,�t = 0.05 Myr, times
the total number of timesteps.

Various options for visualization are available in galcol (in the exercises, you
have the opportunity to explore their capabilities). For example, to produce a three
dimensional scatter plot of the stars for a particular snapshot, you can use

4.4 Galaxy Collisions 163

171 i = 100
172 galcol.show_two_disks_3d(data[i,:,:],
173 galaxies[’target’][’N_stars’],
174 [-15,15], [-15,15], [-15,15], t[i],
175 ’two_disks’)

This call was used to produce the upper left plot for t = 100 Myr in Fig. 4.13. From
the parameters in lines 169–170 you an calculate that the snapshot index i simply
corresponds to the time in Myr. In the call above, the slice data[i,:,:] for the
snapshot with index i is passed as first argument of show_two_disks_3d().
The second argument allows the function to infer the number of stars in the two disks,
which is needed to display stars belonging to the intruder and target galaxies in blue
and red, respectively. The following arguments set the x , y, and z-range of the plot
in units of kpc. The snapshot time t[i] is required for the label on top of the plot (if it
is omitted, no label is produced). The last argument is also optional and specifies the
prefix of the filename under which the plot is saved (the full filename is composed
from the prefix and the snapshot time). The rendering is based on the scatter()
function from pyplot. In contrast to a surface plot (see Sect. 3.2.1), a scatter plot
shows arbitrarily distributed data points. The function scatter() can also be used
for two-dimensional plots, i.e. points in a plane. As you can see from the source code
in the file galcol.py, we use Axes3D from mpl_toolkits.mplot3d to
create three-dimensional coordinate axes.

Figure4.13 shows a sequence of plots illustrating the evolution of the two disks
ranging from t = 100 Myr, where the intruder is still approaching the largely unper-
turbed target, to 450 Myr, where the remnants of the galaxies are moving apart (the
centers of mass follow hyperbolic trajectories). The intruder is strongly disrupted
during its slingshot motion through the potential well of the target’s larger central
mass. The plots in the middle show that a large fraction of the intruder’s stars are
ejected, while the intruder triggers spiral waves in the target disk through tidal forces.
Although some stars in the outer part of the target disk are driven away from the cen-
ter, the effect is less dramatic because the stars are bound more tightly. There is also
function anim_two_disks_3d() for producing an animation of the snapshots
in the module file galcol.py . While we do not discuss the details here, you can
find an example in the online material for this chapter. The animation is saved in
MP4 format and you can view it with common movie players.

The Whirlpool Galaxy M51 is a well known example for a close encounter of
two galaxies (see also Sect. 5.4). There are other types, for example, the Cartwheel
galaxy (see Exercise 4.13). In Fig. 4.14, you can see an optical image of a pair of
galaxies with prominent tidal tails made by the Hubble Space Telescope (HST). Our
simulation resembles such galaxies although the underlying model is very simple
and completely ignores the gas contents of galaxies and the dark matter halos (see
also the discussion in [14]). However, one should keep in mind that it is unrealistic
in some important aspects:

164 4 Solving Differential Equations

Fig. 4.13 Different stages of the collision of two galaxies (time in Myr is indicated on top of each
plot). Stars of the target galaxy are shown in blue, stars of the intruder in red. The target disk has
an inclination of 45◦ relative to the horizontal (xy) plane

4.4 Galaxy Collisions 165

Fig. 4.14 Hubble image of interacting galaxies Arp 87. Image credit: NASA, ESA, and TheHubble
Heritage Team (STScI/AURA)

• The collision of real galaxies is not governed by two-body dynamics. The dark
matter halos with their embedded disks of baryonic matter can even merge into a
single galaxy.25 It is believed that galaxies typically undergo several merges in the
course of cosmic history.

• The ejection of stars through the slingshot effect, which is caused by strong
acceleration during the close flyby of a gravitating center, is prone to numerical
errors. To compute the trajectories more accurately a very low timestep would be
required, which in turn would substantially increase the computing time. You can
investigate the impact of the timestep on different trajectories in Exercise 4.14.

Exercises

4.11 Compute the evolution of an isolated disk in the xy-plane centered at (0, 0, 0)
using galcol.evolve_disk().

1. First consider the case where the center is at rest. Visualize the time evolution
of the disk with galcol.anim_disk_2d(). Does the behaviour of the disk
meet your expectation?

2. Since there are no perturbations of orbitalmotion by a seconddisk, the stars should
follow circular Keplerian orbits. The function galcol.show_orbits()
allows you to plot the numerically computed orbits of individual stars (the indices
of these stars are passed as elements of an array to the function). Choose stars in
the different rings and compare their motion over a given interval of time. Com-
pute the disk evolution with different numerical timesteps. How are the orbits
affected by the timestep, particularly in the innermost ring?

25The term baryonic refers to elementary particles in the atoms of which gas and stars are composed.

166 4 Solving Differential Equations

4.12 The effect of the collision of two galaxies depends mainly on their relative
velocity and the impact parameter b, which is defined as the perpendicular distance
between the path of the intruder galaxy from infinity and the center of the target
galaxy. If the separation of the two galaxies at time t = 0 is large enough, it can be
assumed that the intruder is nearly unaffected by the gravity of the target and moves
along a straight line through its center in the direction of its initial velocity vector.
The impact parameter is then given by the normal distance of this line to the center
of the target.

1. Calculate b in kpc for the scenario discussed in this section. Vary the impact
parameter by changing the initial position of the intruder. Compute the resulting
evolution of the two disks and interpret the results.

2. What is the effect of the relative velocity of the intruder and the target for a given
impact parameter?

3. The relative orientation of the disks and the mass ratio also play a role in the
interaction process. Investigate for one of the scenarios from above orientations
of the target disk ranging from θ = 0◦ (planes of target and intruder are parallel) to
90◦ (target perpendicular to intruder) and compare the mass ratios 1 : 5 (example
above) and 1 : 1 (equal masses). Discuss how the central masses and stars are
affected by these parameters.

4.13 The head-on collision of two disks can result in a Cartwheel-like galaxy [4,
14]. The name refers to the large outer ring which gives the galaxy the appearance of
a wagonwheel. In this case, the intrudermoves in z-direction toward the target and its
normal is aligned with the direction of motion. The plane of the target disk is parallel
to the intruder’s disk. Vary the relative velocity and the impact parameter. Can you
produce a post-collision galaxy of a similar shape as the Carthwheel Galaxy?

4.14 Analyze trajectories of ejected stars in some of the simulations from
Exercise 4.12 or 4.13. Since you cannot predict which star in the initial disks will be
ejected, take random samples of stars and plot their orbits with
galcol.show_orbits_3d().

1. Compute and plot the time-dependent specific orbital energy

ε(t) = 1

2
v(t)2 − GM1

r1(t)
− GM2

r2(t)
, (4.75)

for your sample of stars. The distances r1,2 from the two galaxy centers are defined
by Eq. (4.74). To compute the kinetic energy per unit mass, v2/2, you need to
modify galcol.evolve_two_disks() such that the position and velocity
data are returned for each snapshot. Compare ejected stars to stars that remain
bound to the target galaxy and describe the differences. Why is ε(t) in general
not conserved?

2. How sensitive is ε(t) to the numerical time step?

4.4 Galaxy Collisions 167

4.15 Implement an object-oriented version of galcol.py by defining a disk-
galaxy class that has basic parameters and state data for all particles as attributes.
See Appendix A for an introduction to classes. If you are interested in learning more
about object-oriented programming in Python, we encourage you to study advanced
textbooks on the subject. Here comes a teaser for mastering object-oriented program-
ming: Since the galaxy collision model is derived from the two-body problem, you
can alternatively make use of inheritance and define your galaxy class as a subclass
of the class Body introduced in Appendix A.

4.5 Stellar Clusters

With the advent of increasingly powerful supercomputers, many-body gravitational
systems could be studied in unprecedented detail where earlier generations had to
rely on statistical analysis. Today, even typical desktop computers are capable of
simulating thousands of bodies while the largest computing facilities can deal with
millions or - utilizing numerical approximations - billions of bodies.

The most important application in astrophysics is the dynamics of dark matter
halos in which galaxies, groups of galaxies, or clusters consisting of thousands of
galaxies are embedded. The darkmatter is treated as collisionless gas, where particles
interact only via gravity. In this case, the term particle does not mean an atom or
elementary particle, it just refers to an arbitrary point mass. For a total number of
N particles, ∼N 2 interactions have to be computed to determine the instantaneous
accelerations of all particles directly. Since the particle positions change in time,
the computation of interactions has to be carried out for a larger number of time
steps. This is an intractable task for typical particle numbers N ∼ 109 or even larger
in modern N-body simulations. For this reason, approximations are used. A simple
example is the algorithm for galaxy collisions in the previous section, where the
gravity of stars (“test particles”) was neglected and the acceleration of each particle
has only two terms (see Eq.4.73). Without neglecting the stellar masses, we would
need to sum over N terms, where N is the total number of stars plus the two central
masses.

For amoderate number of particles (N � 103), the solution of theN-body problem
via direct summation over all interactions is feasible on a typical personal computer.
However, it advisable to use compilable codewritten in languages such asCorFortran
for this kind of computation. Since the source code is turned into a machine-readable
program that can be executed without on-the-fly translation by an interpreter, it
usually performs numerical computations more efficiently. Alternatively, compilable
Python modules can be used (see Appendix B.2). The difference is insignificant for
most of the applications in this book, but N-body dynamics is definitely an exception.

In the following, we analyse the motion of stars in a globular cluster. Globular
clusters are stellar clusters of spherical shape. They are found in the halos of a
galaxies and contain hundreds of thousands of stars in a fairly small volume ([3],
Sect. 17.3). Consequently, the density of stars is much higher than in galactic disks.

168 4 Solving Differential Equations

Fig. 4.15 Image of M 13
taken by Walter Baade with
the 1 m reflector of Hamburg
Observatory in 1928. The
image shows the central
section of a photographic
plate, which can be
downloaded in FITS format
(see Chap. 5) from the
Digital Plate Archive of
Hamburg Observatory
(plate-archive.hs.uni-hamburg.de).
Such plates, which are made
of glass covered by a
light-sensitive emulsion,
were widely used in
telescopes before digital
CCD cameras became
available in the 1980s
(Credit: Plate Archive of
Hamburg Observatory,
University of Hamburg)

A prominent globular cluster belonging to the Milkyway Galaxy is Messier 13 (see
Fig. 4.15). As an example, we use data from an N-body simulation of a downsized
cluster with 1000 stars.26 The evolution of the cluster was computed over a period of
100 million years and snapshots of the stellar positions and velocities were recorded
every 200,000 years, resulting in 500 output files. The files can be downloaded as
part of data_files.zip from uhh.de/phy-hs-pybook. After you have downloaded the
archive, extract it into the work directory containing your Python source code or
Jupyter notebooks.

Each output file contains formatted positions and velocities of all stars in a table
that can be loaded from disk and stored in a two-dimensional NumPy array by using
np.loadtxt(). Since we have a large number of output files, we collect the
complete data in a three-dimensional data array, where the first index represents
time, the second index indentifies the star, and the third index runs through the
different variables for each star:

26The simulation code is published by Marcel Völschow on github.com/altair080/nbody.

https://plate-archive.hs.uni-hamburg.de/index.php/en/
http://uhh.de/phy-hs-pybook
https://github.com/altair080/nbody

4.5 Stellar Clusters 169

1 import numpy as np
2
3 n_files = 501
4
5 for n in range(n_files):
6 # load n-th snapshot from file
7 snapshot = np.loadtxt(
8 "data_files/nbody/output_{:d}.dat".format(n),
9 dtype=’float64’)
10
11 if n == 0:
12 # create data array with first snapshot as element
13 data = np.array([snapshot])
14 else:
15 # append further snapshots to data array
16 data = np.append(data, [snapshot], axis=0)

The data files are loaded in lines 7–9, where it is assumed that the files can be found
in the subfolder data_files/nbody/. If the data files are located in some other
folder, you need to adjust the path accordingly. The syntax used aboveworks onLinux
and macOS systems. If you work on a Windows computer, you need to replace / by
the backslash character \. The files are numbered from 0 to 500. For each iteration
in the loop, the file name is generated from the loop index n via .format(n). The
keyword argument dtype=’float64’ indicates that the numbers in the file are
to be interpreted as floating point numbers of double precision (this is the standard
type for floats in Python). The contents loaded from a particular file is first stored in
snapshot (a two-dimensional array) and then appended to the three-dimensional
array data. Let us check whether data has the expected shape:

17 data.shape

outputs

(501, 1000, 8)

We have 501 snapshots (including the initial data) for 1000 stars and 8 entries per
snapshot and star.

To take a look at the initial the distribution of stellar masses, we can load the
required data via array slicing and produce a histogram:

18 import matplotlib.pyplot as plt
19 %matplotlib inline
20

21 plt.figure(figsize=(6,4), dpi=100)
22 plt.hist(data[0,:,1], 20, histtype=’step’, lw=2)
23 plt.xlabel(’M/M_\odot’)
24 plt.ylabel(’N’)
25 plt.savefig(’cluster_hist_mass.pdf’)

170 4 Solving Differential Equations

Fig. 4.16 Histogram of stellar masses in the cluster

The masses are listed in the second column of the initial snapshot. Thus, we plot a
histogram of the slice data[0,:,1] using the hist() function of pyplot. With
the optional argument histtype=’step’, the histogram is displayed as a step
function (see Fig. 4.16). The mass distribution is nearly uniform, which is not quite
the case in real stellar clusters (a uniform distribution is assumed in the simulation
for simplicity). The mean value can be calculated with

26 print("Average mass: {:.3f} solar masses".
27 format(np.mean(data[0,:,1])))

and is close to the center of the mass [0, 10M�]:

Average mass: 4.984 solar masses

Since the stars do not exchangemass, themass distribution is constant in time. But the
positions and velocities evolve under the action of gravity. How does the structure
of the cluster change over time? To answer this questions, we compute the radial
distances of all stars from the center and the and velocity magnitudes. The x , y, and
z coordinates are stored in columns 3, 4, and 5 (array indices 2, 3, and 4) and the
velocity components in the last three columns:

28 from astropy.constants import au,pc
29
30 r = np.sqrt(data[:,:,2]**2 +
31 data[:,:,3]**2 +
32 data[:,:,4]**2) * au/pc
33
34 v = np.sqrt(data[:,:,5]**2 + data[:,:,6]**2 + data[:,:,7]**2)

4.5 Stellar Clusters 171

Fig. 4.17 Histograms of radial distances (blue) and velocities (red) of stars for three different times

In the following, we use pc as unit for radial distances, which is comparable to the
scale of star clusters. Since the N-body code that produced the data uses AU as length
unit, we multiply all radial distances by the conversion factor au/pc in line 32.

Now we can easily produce histograms for different snapshots to study the evo-
lution of the cluster. For example, the following code combines three histograms
for the radial distances at t = 0, 20, and 100 Myr and the corresponding velocity
histograms in a multiple plot (see Fig. 4.17).

35 plt.figure(figsize=(12,8), dpi=200)
36

37 n_bins = 25
38

39 plt.subplot(231)
40 plt.hist(r[0,:], n_bins, range=[0,50],
41 histtype=’step’, lw=2, color=’mediumblue’)
42 plt.xlabel("r [pc]")
43 plt.ylabel("N")
44 plt.ylim(0,250)
45 plt.title("$t=0$")
46

47 plt.subplot(232)
48 plt.hist(r[100,:], n_bins, range=[0,50],
49 histtype=’step’, lw=2, color=’mediumblue’)

172 4 Solving Differential Equations

50 plt.xlabel("r [pc]")
51 plt.ylim(0,250)
52 plt.title("$t={:.0f}\,$Myr".format(100*0.2))
53

54 plt.subplot(233)
55 plt.hist(r[500,:], n_bins, range=[0,50],
56 histtype=’step’, lw=2, color=’mediumblue’)
57 plt.xlabel("r [pc]")
58 plt.ylim(0,250)
59 plt.title("$t={:.0f}\,$Myr".format(500*0.2))
60

61 plt.subplot(234)
62 plt.hist(v[0,:], n_bins, range=[0,3.5],
63 histtype=’step’, lw=2, color=’red’)
64 plt.xlabel("v [km/s]")
65 plt.ylabel("N")
66 plt.ylim(0,120)
67

68 plt.subplot(235)
69 plt.hist(v[100,:], n_bins, range=[0,3.5],
70 histtype=’step’, lw=2, color=’red’)
71 plt.xlabel("v [km/s]")
72 plt.ylim(0,120)
73

74 plt.subplot(236)
75 plt.hist(v[500,:], n_bins, range=[0,3.5],
76 histtype=’step’, lw=2, color=’red’)
77 plt.xlabel("v [km/s]")
78 plt.ylim(0,120)
79

80 plt.savefig("cluster_hist_evol.pdf")

We use subplot() to place plots radial and velocity histograms in the first and
second row, respectively (see also Sect. 4.2). The three columns show the time evo-
lution of the cluster from its initial to the final configuration as indicated by the
labels on top of the plots. As we can see in Fig. 4.17, the initial distribution of stars
is approximately uniform in the radial bins for r ≤ 25 pc and all stars have small
initial velocity. As time goes by, we see a concentration within the central 10 pc,
while a sparse population emerges farther out. The velocity distribution also shifts
and broadens, with a peak at roughly 1 km/s and just a few objects beyond 3 km/s.
Since the cluster is a closed system that can neither gain nor lose energy in total,
gravitational potential energy must have been transformed into kinetic energy in the
process of stars concentrating near the center until an equilibrium is reached.

To examine the evolution in more detail, we compute averaged quantities for all
stars at a given time. In the following, we consider root mean square (RMS) radial
distances and velocities, which are defined by

4.5 Stellar Clusters 173

rRMS = 〈x2 + y2 + z2〉1/2 , (4.76)

vRMS = 〈v2x + v2y + v2z 〉1/2 . (4.77)

The brackets 〈 〉 denote averages over all stars. The RMS velocity is related to mean
kinetic energy, assuming that all stars have the same mass (in Exercise 4.17 you are
asked to compute the mean kinetic energy exactly):

Ekin

N
∼ 1

2
mv1/2RMS .

where Ekin is the total kinetic energy of N stars. The computation of RMS values is
straightforward with NumPy:

81 r_rms = np.sqrt(np.mean(r**2, axis=1))
82 v_rms = np.sqrt(np.mean(v**2, axis=1))

The function mean() with the keyword argument axis=1 computes mean val-
ues across columns (axis 1 refers to the column direction, while axis 0 is the row
direction). Since the rows of r and v contain the data for subsequent snapshots, the
calls of np.mean() in lines 81–82 return arrays of size given by the number of
snapshots. By taking the square root, we get RMS values. For the radial distances, we
also compute the medians, i.e. the value of r for which half of the stars are located
at smaller distances and the other half at larger distance:

83 r_median = np.median(r, axis=1)

The results are readily plotted as functions of time:

84 t = np.linspace(0, 100, n_files)
85

86 plt.figure(figsize=(10.5,3.5), dpi=200)
87

88 plt.subplot(121)
89 plt.plot(t, r_rms, color=’mediumblue’)
90 plt.plot(t, r_median, ls=’dashed’, color=’mediumblue’)
91 plt.xlabel("t [Myr]")
92 plt.ylabel("r_RMS [pc]")
93 plt.ylim(0,30)
94

95 plt.subplot(122)
96 plt.plot(t, v_rms, color="red")
97 plt.xlabel("t [Myr]")
98 plt.ylabel("v_RMS [km/s]")
99 plt.ylim(0,1.8)

100

101 plt.savefig("cluster_evol_rms.pdf")

174 4 Solving Differential Equations

In Fig. 4.18 we see that the cluster contracts for about 25 million years until vRMS

reaches a maximum and bounces back. Around t = 40 Myr, the cluster seems to
have reached an equilibrium with vRMS ≈ 1.3 km/s (this behaviour is similar to a
damped oscillation). Interestingly, rRMS keeps growing, suggesting that the size of
the cluster gradually increases. However, outliers have a relatively strong impact on
RMS values. The increase of rRMS in time does not necessarily mean that the bulk
of stars tends to move at larger distances from the center. Indeed, the median of r
implies that the probability of finding stars within 7 pc stays at about 50% at late
times. Even so, the cluster is only in quasi equilibrium (also keep in mind that neither
rRMS nor the median are directly related to the potential energy ∼1/r). The steady
growth of rRMS is caused by evaporation, i.e. once in a while a star gets kicked out of
the core region and can even escape the potential well of the cluster (see following
exercises).

Exercises

4.16 Compare the median and RMS values of r for the cluster data used in this
section to the maximum and the 90-th percentile (i.e., the value of r below which
90% are found). Also prepare scatter plots of x- and y coordinates of all stars in pc
in steps of 20 Myr (use pyplot’s scatter() function). Does your analysis support
the notion of cluster evaporation?

4.17 Compute the total kinetic and potential energy of the cluster for representative
snapshots ranging from t = 0 to 100 Myr. For N mass points,

Ekin =
N∑
i=1

1

2
miv

2
i , Epot = −

N∑
i=2

∑
j<i

Gmim j

ri j
, (4.78)

where ri j = |ri − r j | is the distance between the mass points with indices i and j .
Compare your results to the relation 2Ekin = −Epot for a system in virial equilibrium.

Fig. 4.18 Temporal evolution of the stellar RMS (solid line) and median (dashed line) distances
to the coordinate center and the RMS velocity

4.5 Stellar Clusters 175

Does the cluster relax toward equilibrium in time? How is the deviation from virial
equilibrium affected if you exclude all stars beyond a certain percentile of r . Based
on your findings, what would you suggest as a definition of the cluster core radius?

4.18 Extend the module nbody from Appendix A by a symplectic N-body solver
using direct force summation. Start with a low number of particles, such as 10,
and set random initial positions and velocities (similar to the cluster discussed in
this section). Measure the performance of your solver using the %timeit tool (see
Appendix B.1). Carefully increase the particle number. How far can you go before
the computation slows down too much and a single integration step takes minutes or
even longer?

4.6 Expansion of the Universe

At the end of this chapter, we return to first-order differential equations. We will
solve an equation that describes the cosmological expansion of the Universe. This
will allow us to determine the Hubble parameter H(t), which is defined by ([4],
Chap. 29)

H(t) = ȧ

a
(4.79)

where a is the time-dependent scale factor of the Universe and ȧ its time derivative.
The scale factor basically describes how themean distance between galaxies changes
due the expansion of the Universe, assuming a constant population of galaxies in a
homogeneous and isotropic Universe. It is normalized to unity at present time. As
we look back in cosmic history, the scale factor becomes smaller and smaller and
vanishes at the Big Bang. For example, a scale factor a = 0.5 at some earlier time
indicates that galaxies were typically closer by a factor of two at that time.

The expansion rate of the Universe is not constant.27 The time evolution of the
scale factor is governed by the Friedmann equation28:

ȧ = H0

√
�M,0

a
+ �rad,0

a2
+ ��,0a2 + 1 − �0 , (4.80)

where H0 is the current value of the Hubble parameter and the parameters �M,0,
�rad,0, and ��,0 measure the matter and energy content relative to the so-called
critical density (this is the density for which the Universe just continues to expand

27As a result, the Hubble parameters changes in time. For this reason, the commonly used term
Hubble constant is misleading. The Hubble parameter is only constant in space.
28While Einstein was convinced that the Universe must be static, the Russian physicist Alexander
Friedmann derived the equation for the scale factor and found analytical solutions in the case
��,0 = 0. His conclusion that the Universe is expanding was confirmed a few years later by Edwin
Hubble.

176 4 Solving Differential Equations

forever and has a spatially flat geometry). More specifically, �M,0 is the total matter
density,�rad,0, the radiation density, and��,0 the density of dark energy (also called
cosmological constant �). The subscript 0 indicates that the densities are measured
at current time. The density parameters are dimensionless quantities. Cosmological
observations indicate the total density is very close to the critical density, i.e.

�0 = �M,0 + �rad,0 + ��,0 � 1 .

Measurements of the cosmicmicrowave background (CMB) by the Planck spacecraft
imply�M,0 ≈ 0.309,��,0 ≈ 0.691, and H0 ≈ 67.7 km s−1Mpc−1 [15].29 This is the
foundation of the so-called �CDM model (CDM is the abbreviation for cold dark
matter), which is the currently accepted standard model of cosmology.

In the following example, the Hubble constant is defined with the help of Astropy
units. We collect the cosmological parameters for different scenarios in a dictionary.
In addition to the �CDM model with the keyword ’standard’, we have matter-
dominated models with �0 < 1, �0 = 1, and �0 > 1:

1 import numpy as np
2 import astropy.units as unit
3 from numkit import rk4_step
4

5 # Hubble constant with astropy units
6 H0 = 67.7*unit.km/unit.s/unit.Mpc
7 print("H0 = {:.2e}".format(H0.to(1/unit.Gyr)))
8

9 # dictionary of cosmological models
10 cosmology = {
11 ’standard’ : (0.309, 1e-5, 0.691),
12 ’matter sub’ : (0.309, 0, 0),
13 ’matter crit’ : (1, 0, 0),
14 ’matter super’ : (2, 0, 0),
15 }

Expressed in units of 1/Gyr, the Hubble constant (i.e. the current value of the Hubble
parameter) is

H0 = 6.92e-02 1 / Gyr

The Friedmann equation is a first-order differential equation of the form ȧ = f (t, a),
where f (t, a) is defined by the right-hand side of Eq. (4.80):

29The unit of H0 originates from the Hubble law, which relates the distance (Mpc) and recession
speed (km s−1) of an object due to the cosmological expansion. Other measurements of H0, e.g.
based on distant supernovae, indicate a somewhat higher value above 70 km s−1Mpc−1. The cause
of this discrepancy is not fully understood yet.

4.6 Expansion of the Universe 177

16 def dota(t, a, OmegaM, OmegaR, OmegaL, H0):
17 Omega0 = OmegaM + OmegaR + OmegaL
18 return H0 * (OmegaM/a + OmegaR/a**2 + OmegaL*a**2 +
19 1 - Omega0)**(1/2)

As preparation for the numerical integration of the Friedmann equation, we check
the convergence of the value of the scale factor with decreasing time step. The
characteristic time scale is the Hubble time

tH = 1/H0 . (4.81)

This is roughly the time after which the Universe has expanded to the current scale
factor a(t0) = 1, i.e. tH ∼ t0 ∼ 10 Gyr. For our convergence test, we integrate the
standard model from t = 0 to tmax = 0.1tH and compare the final values of the scale
factor obtained with different time steps.

20 # numerical values (time in units of Gyr)
21 H0_num = H0.to(1/unit.Gyr).value
22 t_H = 1/H0_num
23

24 t_max = 0.1*t_H
25 n = 10
26

27 while n <= 1000:
28 t, a = 0, 0.01 # initial values
29 dt = t_max/n # time step
30

31 # numerical integration from 0 to t_max
32 for i in range(n):
33 a = rk4_step(dota, t, a, dt,
34 *cosmology[’standard’], H0_num)
35 t += dt
36

37 print("{:4d} {:.8e}".format(n,a))
38 n *= 2

We express time in units of Gyr and start with a time step of 0.1tmax (10 time steps).
The Friedmann equation is solved by means of the Runge-Kutta method introduced
in Sect. 4.1.1. Here, the implementation fromnumkit is applied. The density param-
eters from the dictionary and the Hubble parameter (in units of 1/Gyr) are passed as
variadic arguments via the argument list of rk4_step() to the function dota()
for the calculation of the time derivative of the scale factor (see lines 33–34). The
tuple cosmology[’standard’] is split by the unpacking operator *, which is
equivalent to the call

178 4 Solving Differential Equations

rk4_step(dota, t, a, dt,
cosmology[’standard’][0], cosmology[’standard’][1],
cosmology[’standard’][2], H0_num)

The number of time steps is doubled after each iteration of the outer loop (see line
38) and terminates once the number exceeds 1000. The resulting scale factors at time
t_max are:

10 1.93079317e-01

20 1.92796594e-01

40 1.92753019e-01

80 1.92748144e-01

160 1.92747742e-01

320 1.92747714e-01

640 1.92747713e-01

Since RK4 is a higher-order method, the result converges fast (the relative preci-
sion is ∼10−8 for 640 time steps). How far should we go? Since the uncertainty of
the cosmological parameters is about 10−3, it is reasonable to reach a comparable
precision. Our test suggests that about 50 time steps will be sufficient.

Now we proceed to compute the evolution of the scale factor for all models from
t = 0 to 2tH. Since this time interval is 20 times longer, we need 1000 time steps.
For each set of parameters, the Friedmann equation is numerically integrated and the
resulting data for the scale factor are plotted:

42 import matplotlib.pyplot as plt
43 %matplotlib inline
44

45 fig = plt.figure(figsize=(6,4), dpi=100)
46

47 n = 1000
48 dt = 2*t_H/n
49 t = np.linspace(0, 2*t_H, n+1)
50

51 for model in cosmology:
52 a = np.zeros(n+1)
53 a[0] = 1e-2
54

55 # numerical integration of the model
56 for i in range(n):
57 a[i+1] = rk4_step(dota, t[i], a[i], dt,
58 *cosmology[model], H0_num)
59

60 # plot the scale factor as function of time
61 label = "$\Omega_{\mathrm{M}}=$"
62 label += "{:.1f}, $\Omega_\Lambda=${:.1f}".\

4.6 Expansion of the Universe 179

63 format(cosmology[model][0],cosmology[model][2])
64 if model == "standard":
65 plt.plot(t, a, label=label)
66 else:
67 plt.plot(t, a, ls=’dashed’, label=label)
68

69 plt.xlabel("t / Gyr")
70 plt.ylabel("a")
71 plt.legend()
72 plt.savefig("scale_fct_evol.pdf")

In Fig. 4.19, the �CDM model is shown as solid line and the matter-dominated
models as dashed lines. The main difference between the models is that dark energy
causes an accelerated expansion when the term ��,0a2 under the square root in
Eq. (4.80) dominates. In the other cases, the expansion decelerates. If the total density
parameter,�0, is below unity, the universe will keep expanding forever, but at an ever
decreasing rate. For �0 < 1, on the other hand, the scale factor reaches a maximum
and then the universe begins to collapse until it finally ends in a Big Crunch.

In the presence of dark energy, there is a turning point where the slope ȧ switches
from decreasing to increasing. The condition for this is ä = 0. At which time did the
transition occur in our Universe? To answer this question, we need to find the time
when ä vanishes. The simplest method is to compute the second derivate from our
data for the scale factor in a loop. Once the sign switches from negative (decelerating)
to positive (accelerating), we have found the turning point:

Fig. 4.19 Evolution of the cosmological scale factor for models with different matter and dark
energy density parameters. The solid line corresponds to our Universe (based on data from the
Planck mission)

180 4 Solving Differential Equations

73 n = int(t_H/dt)
74 a = np.zeros(n+1)
75 a[0] = 1e-2
76

77 for i in range(n):
78 a[i+1] = rk4_step(dota, i*dt, a[i], dt,
79 *cosmology[’standard’], H0_num)
80

81 # compute second derivative of scale factor
82 # and terminate if sign reverses
83 i = 0
84 ddota = -1 # arbitrary start value
85 while ddota < 0 and i < n:
86 i += 1
87 # second-order centered differences
88 ddota = (a[i+1] - 2*a[i] + a[i-1])/dt**2
89

90 if ddota >= 0:
91 print("Transition time = {:.2f} Gyr".format(i*dt))
92 else:
93 print("Transition time not reached")

The answer is

Transition time = 7.63 Gyr

The accuracy is limited by the time step dt, which is roughly 0.01 Gyr. Since we
did not bother to store the data for all models, we need to re-compute the scale factor
for the standard model (lines 77–79), assuming that one Hubble time will suffice to
find the turning point of a(t). Why do we not apply one of our root finders here to
determine the zero of the function ä? Well, if there is no analytic expression for the
function, we have to work with discrete data. In this case, the data are computed by
means of centered differences (see line 88). Since we can monitor the sign while
computing the function values, there is no need to apply a root finder to the complete
array of function values afterwards. In other words, we can test in a while loop
whether ddota is still negative and terminate as soon as ddota becomes positive.
Since the current age of the Universe is 13.8 Gyr (see Exercise 4.19), the result
indicates that we have already entered the phase of accelerated expansion. It was
one of the most surprising and spectacular discoveries of the last decades when
astronomers realized in 1998 for the first time that the expansion of our Universe is
accelerating [16]. This discovery was made possible through observations of distant
supernovae.

Before the role of dark energy was recognized, it appeared more likely that our
Universe should bematter dominated. For comparison, Fig. 4.19 shows the expansion
history of an alternative universe with the same matter content, but no dark energy

4.6 Expansion of the Universe 181

(radiation is also neglected, but this makes a difference only in the very early phases
with a
 1). In this case, the expansion rate becomes asymptotically constant:

ȧ � H0

√
1 − �0 for a → ∞ .

For�0 = �M,0 = 0.3, the asymptotic value is≈ 0.55H0. If the total density is critical
(�0 = 1), then ȧ will stagnate at zero. For even higher matter density, the expansion
reverses at a maximum scale factor

amax = �M,0

�0 − 1
.

This formula yields amax = 2 for the model with the keyword "matter super".
How long does it take such a universe to reach amax? The answer is obtained by

integrating the differential equation dt = da/ȧ, where ȧ is given by Eq. (4.80):

tmax =
∫ amax

0

da

ȧ
. (4.82)

The time of the Big Crunch is 2tmax because expansion and collapse are symmetric
with respect to t = tmax. For arbitrary density parameters, the integral can be solved
numerically. The following code utilizes the function integrate.quad() from
SciPy,30 which can handle the divergent expansion rate at a = 0. In Exercise 4.19,
you are asked to solve the integral alternativelywith our implementation of Simpson’s
rule. Since integrate.quad() does not support variadic arguments, we use a
Python lambda with fixed density parameters:

94 from scipy import integrate
95
96 OmegaM, OmegaR, OmegaL = cosmology[’matter super’]
97 Omega0 = OmegaM + OmegaR + OmegaL
98
99 tmp = integrate.quad(

100 lambda a: (OmegaM/a + OmegaR/a**2 + OmegaL*a**2 +
101 1 - Omega0)**(-1/2),
102 0, 2)
103
104 t_crunch = 2*tmp[0]/H0_num
105 print("Time of Big Crunch: {:.1f} Gyr".format(t_crunch))

Thematter-dominated model universe with twice the critical density needs 45 billion
years to reach its maximum expansion and it finally perishes at

Time of Big Crunch: 90.7 Gyr

30See docs.scipy.org/doc/scipy/reference/integrate.html for more information about numerical inte-
gration with SciPy. The name quad comes from the term “quadrature” that is sometimes used for
integration.

https://docs.scipy.org/doc/scipy/reference/integrate.html

182 4 Solving Differential Equations

Exercises

4.19 Compute the current age (a = 1) of our Universe from Eq. (4.82). How
old would the Universe be if there was no cosmological constant? Use both
integrate.quad() from scipy and integr_simpson() from numkit
and compare the results.

4.20 Apply integrate.solve_ivp() (see Sect. 4.3) to solve the Friedmann
equation. How large is the deviation from the solution computed with the Runge-
Kutta integrator applied in this section? Can you reduce the deviation? Study the
outcome for ��,0 smaller and greater than the value in our Universe.

4.21 Owing to the cosmological expansion, distant galaxies move away from us
and appear red-shifted. The light we observe now was emitted in the past, when the
Universe was younger and the scale factor smaller. As a consequence, the cosmo-
logical redshift z of a distant galaxy is related to the scale factor a by a = 1/(1 + z).
By substituting this relation into the Friedmann equation, we obtain an equation for
the redshift-dependent Hubble parameter:

H(z) = H0

√
�M,0(1 + z)3 + �rel,0(1 + z)4 + ��,0 + (1 − �0)(1 + z)2

This allows us to compute the distance d0 of a galaxy with redshift z ([4], Sect. 29.4):

d0 = c
∫ z

0

dz′

H(z′)

where c is the speed of light. Compute d0 for galaxies observed at z = 1 in the
universes investigated in Exercise 4.20 (i.e. for different dark energy densities).

The distance d0 is a so-called proper distance. For observations, astronomers use
the luminosity distance of a galaxy. It is defined by the ratio of the luminosity of a
galaxy to the observed radiative flux:

d2
L := L

4πF

Since cosmological expansion affects the propagation of light, it is related to proper
distance by dL = (1 + z)d0.31 Compute the luminosity distance as a function of
redshift, dL(z), for 30 logarithmically spaced points in the interval 0.01 < z < 10.

• Verify the observational Hubble law dL = cz/H0z for small redshifts (z
 1).
• Plot the distance modulus (see Exercise 3.2)

31This follows fromgeneral relativity.Apart from redshifting (stretchingof thewavelength), photons
travelling from distant galaxies to Earth experience time dilatation, which in turn alters the energy
received per unit time compared to smaller, non-cosmological distances.

4.6 Expansion of the Universe 183

m − M = 5 log10

(
dL

10 pc

)

as a function of z (logarithmic scale). This relation was used to deduce the accel-
erated expansion of our Universe from observations of supernovae of type Ia in
distant galaxies [16]. At which redshifts do you see significant differences depend-
ing on the dark energy density ��,0? How large is the difference in magnitudes
for z = 1?

Chapter 5
Astronomical Data Analysis

Abstract Astronomy and astrophysics are highly data-driven research fields:
Hypotheses are built upon existing data, models are used to make predictions and
discrepancies between theory and observation drive scientific progress, forcing us
to either modify existing models or come up with new solutions. In this chapter, we
discuss techniques for analysing a variety of data, ranging from individual stellar
spectra and light curves to large surveys, such as GAIA. Naturally, file input and
output are an important prerequisite for data processing. We conclude with a brief
introduction to convolutional neural networks and their application to image data
and spectra.

5.1 Spectral Analysis

In Chap.3, we discussed how stars can be classified by spectral properties. Modern
spectrographs can produce spectra with highwavelength resolution, which allows for
the detailed analysis of absorption lines. As an example, the online material for this
book (uhh.de/phy-hs-pybook) includes an optical spectrum of the star ζ Persei taken
with the Ultraviolet and Visual Echelle Spectrograph (UVES) of ESO. The spectrum
is stored in the FITS file format, which can be considered a de-facto standard for
astronomical data. In contrast to plain text (ASCII) based formats, FITS files are
binary, which reduces the operational overhead during read and write processes.
Furthermore, every FITS file contains a header with a detailed description of the
data and its format. This is information is called metadata.

Thanks to the Astropy library, FITS files can be accessed with just a few lines of
code. Tools for handling FITS files are provided by the module astropy.io:

1 from astropy.io import fits
2 import matplotlib.pyplot as plt
3 import numpy as np

After specifying the path and name of the FITS file, we can load its contents with
the open() function and display some basic properties:

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9_5

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70347-9_5&domain=pdf
http://uhh.de/phy-hs-pybook
https://doi.org/10.1007/978-3-030-70347-9_5

186 5 Astronomical Data Analysis

4 file = "data_files/ADP.2014-10-29T09_42_08.747.fits"
5 fits_data = fits.open(file)
6 fits_data.info()

This code prompts the metadata of the file (last line abbreviated):

Filename: ADP.2014-10-29T09_42_08.747.fits
No. Name Ver Type Cards Dimensions Format
0 PRIMARY 1 PrimaryHDU 788 ()
1 SPECTRUM 1 BinTableHDU 71 1R x 6C [134944D, 134944E, ..., 134944E]

In the table, the HDUs (Header Data Units) of the file are listed. The second HDU
contains the full spectrum, which is tabulated in six columns. For a more detailed
description of the columns, for example, the physical units of the quantities, we
can execute the print(fits_data[1].columns) command, leading to the
following output:

ColDefs(
name = ’WAVE’; format = ’134944D’; unit = ’Angstrom’
name = ’FLUX_REDUCED’; format = ’134944E’; unit = ’adu’
name = ’ERR_REDUCED’; format = ’134944E’; unit = ’adu’
name = ’BGFLUX_REDUCED’; format = ’134944E’; unit = ’adu’
name = ’FLUX’; format = ’134944E’; unit = ’10ˆ-16 erg/cmˆ2/s/Angstrom’
name = ’ERR’; format = ’134944E’; unit = ’10ˆ-16 erg/cmˆ2/s/Angstrom’

)

Specifically, we are interested in columns 0 and 4, i.e. the wavelength and flux.
The entire spectrum is accessible via fits_data[1]. To work with the data, we
first extract the full spectrum and dump it into a new array, after which the FITS file
can be closed:

7 scidata = fits_data[1].data
8 fits_data.close()

It is important that scidata has a FITS-specific type that is inherited from numpy.
You can check with type() and isinstance(), as described in Sect. 2.1.3.
Formally, scidata is defined as an array with just one row and six columns. For
the sake of easy referencing, we further extract the desired columns and copy them
into one-dimensional NumPy arrays:

9 wavelength = scidata[0][0]
10 flux = scidata[0][4]

As we do not require absolute spectral flux values, we normalize the spectrum by
dividing through the peak value. Moveover, we convert wavelengths from Angstrom
to nanometers:

11 norm = np.max(flux)
12 flux = flux/norm
13 wavelength = wavelength*0.1

Now we are prepared to display the data. The code

5.1 Spectral Analysis 187

Fig. 5.1 Helium and sodium absorption lines in spectrum of ζ Persei

14 %matplotlib inline
15
16 plt.plot(wavelength, flux, linestyle=’-’ , color=’navy’)
17 plt.xlabel("λ / nm")
18 plt.ylabel("Flux / ADU")
19 plt.xlim(587,590)
20
21 plt.savefig("spectrum_full.pdf")

produces Fig. 5.1. The plot shows the spectrum of ζ Persei in the wavelength range
from 587 to 590 nm.One can see two very distinct types of absorption features. Since
ζ Persei is a B-type supergiant with an effective temperature of 20 800 K, helium
absorption lines such as the broad line at 587.6 nm can be seen. However, observers
noticed already int the early 20th century that distant stars tend to show unexpected
features in their spectra that are unlikely to originate from a stellar photosphere. This
led to the discovery of matter between the stars, the so-called interstellar medium
(ISM). An example are the two narrow lines at 589.0 and 589.6 nm, which originate
from sodium in the ISM. These lines were discovered in spectroscopic binary stars
by Mary L. Heger in 1919. She realised that their width was at odds with the broad
appearance of other absorption lines in the stellar spectrum. You can further explore
these lines and the spectrum of ζ Persei in the following exercises.

Exercises

5.1 Investigate the spectrumof ζ Persei in thewavelength range from480 to 660 nm.
Use plt.axvline() to mark the Balmer absorption lines Hα and Hβ at wave-
lengths 656.3 and 486.1 nm, respectively, by vertical dashed lines (see theMatplotlib
online documentation and the next section for examples). You can label the lines with
the help of plt.text(). In addition to the Balmer lines, try to identify the absorp-

188 5 Astronomical Data Analysis

tion lines of He I at wavelengths 471.3, 492.1, 501.6, 504.7, 587.6, and 667.8 nm
and mark them by dashed lines in a different color.

5.2 Devise an algorithm to estimate the full width at half-maximum, λ1/2, of the
helium and sodium absorption lines in Fig. 5.1. λ1/2 measures the width of a spectral
line at half its depth [4, Sect. 9.5]. Assuming that the line broadening is caused by
thermal Doppler broadening, we have

λ1/2 = 2λ

c

√
2kT log 2

m
,

where k is the Boltzmann constant, c the speed of light, andm the mass of the atoms.
Since both stellar atmospheres and the ISM are mainly composed of hydrogen, you
can assume m ≈ mH. Which temperatures are implied by your estimates of λ1/2 and
what do your results suggest about the origin of the sodium lines?

5.2 Transit Light Curves

The last three decades have seen a dramatic revolution in our understanding of plan-
etary systems and, thanks to ever-decreasing instrumental thresholds, the detection
of exoplanetary systems has become daily routine. As of fall 2020, about 4,300 con-
firmed exoplanets in more than 3,000 stellar systems have been found, including
planets around binary or even tertiary stars.1 The most surprising discovery have
been so-called Hot Jupiter systems which contain at least one Jovian planet in close
proximity to a star. In the scatter diagram shown Fig. 5.2, hot Jupiters are found in
the left upper region (small-major axis and large mass; see also Exercise 2.9).

The majority of confirmed planetary systems has been detected via planetary
transits or periodic variations of a star’s radial velocity. In the following, we will
focus on the transit method. When the orbital plane of an exoplanet happens to be
nearly aligned with the line of sight from Earth, the exoplanet passes between us
and its hosting star, causing it to block a fraction of the light emitted by the star and
reducing the measured flux (see Fig. 5.3).

Assuming a uniform surface brightness and given the stellar and planetary radius
RS and RP, respectively, the fraction of blocked light can be estimated via

�F

F
= 4πR2

P

4πR2
S

=
(
RP

RS

)2

. (5.1)

For a Jovian planet orbiting a solar-like star, we have RP/RS ≈ 0.1 implying that
only 1% of the star’s light will be blocked by the planet. Things get even worse for
an Earth-like planet where we have RP/RS ≈ 0.01, i.e. only 0.01% blocked light.

1Resource for current data are exoplanets.nasa.gov and www.exoplanet.eu.

https://exoplanets.nasa.gov/
http://www.exoplanet.eu/

5.2 Transit Light Curves 189

Fig. 5.2 Distribution of (confirmed) exoplanet masses as a function of the orbit’s semi-major axis
(Diagram generated with interactive website www.exoplanet.eu/diagrams)

Fig. 5.3 Illustration of an exoplanet transit (Image credit: Hans Deeg, commons.wikimedia.org)

While the detection of terrestrial planets requires both large telescopes and excep-
tional atmospheric conditions, which are only achieved at today’s top astronomical
facilities, hot Jupiter systems are routinely detected by smaller telescopes with lim-
ited seeing.

http://www.exoplanet.eu/diagrams/
https://commons.wikimedia.org/wiki/File:Exoplanet_transit_detection.png

190 5 Astronomical Data Analysis

In the online resources, we provide a light curve of the TrES-2 system taken
by the 1.2 m Oskar-Lühning-Teleskop in Hamburg in June 2013.2 The ASCII file
tres2_data.dat contains three columns, namely themodified Julian dateMJD,3

the relative flux and the flux error. A light curve is the time-dependent record of
the incident flux received from an object. First, we’ll load the data using NumPy’s
loadtxt() function and then slice the columns into separate arrays:

1 import numpy as np
2

3 data = np.loadtxt("tres2_data.dat")
4

5 mjd = data[:,0]
6 flux = data[:,1]
7 err = data[:,2]

We can use errorbar() from pyplot to plot the data points with error bars
indicating the error of the measurement:

8 import matplotlib.pyplot as plt
9 %matplotlib inline
10
11 plt.errorbar(mjd, flux, yerr=err, ecolor=’steelblue’,
12 linestyle=’none’, marker=’o’, color=’navy’)
13 plt.xlabel("MJD")
14 plt.ylabel("Flux / ADU")
15
16 plt.savefig("tres2_lightcurve.pdf")

This gives us Fig. 5.4. We can clearly see a dip in the light curve that spans about
100 min (the Julian date is in units of days), which is caused by the object known
as TrES-2b or Kepler-1b.4 However, the refractive nature of Earth’s atmosphere in
combination with temperature fluctuations and turbulent motions causes a significant
jitter and scatter in the data we have to deal with.

For scientific analysis, one would fit complex transit models to the data. Here, we
will identify basic properties by means of visual inspection and elementary calcula-
tions. First of all, we estimate the beginning of the transit, when the exoplanet just
begins to move over the edge of the stellar disk (ingress), and the end, when it moves
outside of the disk (egress)5:

2Named after Oskar Lühning, who was killed as a young man in World War II before he could see
his wish to study astrophysics come true. The telescope was funded by a donation of Oskar’s farther
in memory of his son.
3The Julian date with the first two digits removed; see also Sect. 3.3.
4It was originally discovered in 2006. The naming convention for exoplanets is to add a lowercase
letter to the name of the star system, which is often derived from an observational campaign. The
letter ‘b’ indicates the first exoplanet detected in the system.
5The time interval [T1, T4] covers the full length of the transit, while [T2, T3] is the period when
the exoplanet is entirely inside the stellar disk.

5.2 Transit Light Curves 191

Fig. 5.4 Light curve of a transit of TrES-2b observed from Hamburg on July 6th, 2013

17 T1 = 5.645e4 + 0.445
18 T4 = 5.645e4 + 0.520

We can use these times to calculate a normalization factor from all flux values outside
of the transit. NumPy allows us to perform this task effortlessly by selecting array
values from flux based on a condition such as mjd<T1 (conditional indexing):

19 norm1 = np.mean(flux[mjd<T1]) # before transit
20 norm2 = np.mean(flux[mjd>T4]) # after transit
21 norm = 0.5*(norm1+norm2)
22

23 print(f"Flux normalization factor: {norm:.3f}")
24

25 # normalize fluxes
26 flux /= norm
27 err /= norm

In the last two lines, both the flux and the flux error are normalized by

Flux normalization factor: 1.509

To determine the transit depth, which in turn allows us to calculate the size of
the exoplanet, we need to find a statistical value of the minimum flux, despite the
fluctuations in the measurements. A relatively simple method to smooth the light
curve is a moving average. Let us denote the i th measurement of the flux in the
time series by Fi . We can smooth the flux by averaging over a given number, N , of
neighbouring data points:

192 5 Astronomical Data Analysis

F (n)
i = 1

N + 1

N/2∑
n=−N/2

Fi+n (5.2)

With increasing i , the window over which the average is taken slides along the light
curve.6 This is readily implemented by means of array slicing:

28 # width and offset of sample window
29 offset = 7
30 width = 2*offset + 1
31

32 # compute moving average
33 flux_smoothed = np.ones(flux.size - width + 1)
34 for i,val in enumerate(flux_smoothed):
35 flux_smoothed[i] = np.sum(flux[i:i+width])/width
36

37 flux_min = np.min(flux_smoothed)
38 print(f"Minimum flux: {flux_min:.3f}")

The variables offset and width correspond to N/2 and N + 1 in Eq. (5.2). In
our example, we have N = 15, i.e. each smoothed value is an average over 15 data
points. The minimum of the smoothed flux will be used below:

Minimum flux: 0.985

Let us plot now the smoothed light curve on top of the data point:

39 plt.errorbar(mjd, flux, yerr=err, ecolor=’steelblue’,
40 linestyle=’none’, marker=’o’, color=’navy’,
41 zorder=1)
42 plt.xlim(np.min(mjd), np.max(mjd))
43 plt.xlabel("MJD")
44 plt.ylabel("rel. flux")
45
46 # smoothed flux
47 plt.plot(mjd[offset:-offset], flux_smoothed,
48 lw=2, color=’orange’, zorder=2)
49
50 # ingress, egress, and minimum flux
51 plt.axvline(T1, color=’crimson’, lw=1, linestyle=’:’)
52 plt.axvline(T4, color=’crimson’, lw=1, linestyle=’:’)
53 plt.axhline(flux_min, lw=1, linestyle=’--’, color=’black’)
54
55 plt.savefig("tres2_lightcurve_smooth.pdf")

The outcome can be seen in Fig. 5.5. The array flux_smoothed is plotted in line
47. We have to take into account that this array has less elements and its index has an

6This is a variant of the simplemoving average (SMA),which calculates an average from N previous
measurements. In general, moving averages are defined by convolution over a window function of
prescribed width and shape.

5.2 Transit Light Curves 193

Fig. 5.5 Smoothed light curve computed from the data points plotted in Fig. 5.4. The vertical dotted
lines indicate the duration of the transit and the horizontal dashed line the maximal reduction of the
star’s flux

offset by N/2 compared to the original data array. For this reason, we need to take
the slice mjd[offset:-offset] from the time array. The keyword argument
zorder in lines 41 and 48 brings the orange curve on top of the data points with
error bars. In lines 51–52, the beginning of the ingress, T1, and the end of the egress,
T4, are marked by vertical lines. Moreover, the minimum flux calculated above is
shown as horizontal dashed line. Our result,�F/F ≈ 1 − 0.985 = 0.015, allows us
to calculate the star-planet radius ratio. From Eq. (5.1), it follows that RP/RS ≈ 0.12,
which is typical for a Jovian planet orbiting a sun-like star.

Since the duration of the transit, Ttrans = T4 − T1, depends on the orbital velocity
and distance of the exoplanet from the star, it is possible to derive the size of the
exoplanet through geometric reasoning and Kepler’s third law. Assuming that the
orbital plane is exactly aligned with the line sight, i.e., the exoplanet transits the
center of the stellar disk, it follows that

sin

(
π Ttrans

P

)
= RS + RP

a

where P is the orbital period and a the semi-major axis of the exoplanet. The orbital
period is also observable with the transit method: It is just the time between two
subsequent transits (P = 2.47063 d for TrES-2b). Since Ttrans/P is relatively small,
we can apply the small-angle approximation. By rewriting the above equation in
terms of the flux deficiency�F/F , the following approximate relation for the planet
radius is obtained:

RP � a
π Ttrans

P

(
1 +

√
F

�F

)−1

(5.3)

194 5 Astronomical Data Analysis

Neglecting the planetary mass, the semi-major axis a is related to the orbital period
P by

a

1 AU
=

(
MS

M�

)1/3 (
P

365.25 d

)2/3

(5.4)

The mass of the star can be determined independently: MS = 0.98M�, implying
a = 0.0355 AU. Substitution of all parameters into Eq. (5.3) yields RP ≈ 0.8 RJup.
By using a more accurate model (see Exercise 5.4), RP ≈ 1.27 RJup is obtained.
Thus, we can classify TrES-2b as a typical hot Jupiter.

Exercises

5.3 The estimate of �F/F from the smoothed light curve depends on several
choices. Apart from T1 and T4, it is mainly the width of the moving average, N ,
that determines the outcome. For our analysis of the TrES-2 transit, these parameters
can be regarded as tuning parameters. For a more systematic analysis, write a Python
function that performs the computation form code line 19 to 37 for given start and
end times of the transit and window width. The function should return the smoothed
flux and its minimum.

(a) Vary the tuning parameters within reasonable bounds and analyse the sensitivity
of �F/F . Apply the law of error propagation to estimate how this affects the
planet radius following from Eq. (5.3).

(b) Figure5.5 suggests a relatively strong impact of outliers such as the very low flux
value close to the halftime of the transition.Can you think of a criterion to exclude
extreme outliers from the data? Check whether this reduces the sensitivity on
tuning parameters.

5.4 If the orbital plane is not exactly aligned with the line of sight, the transit model
becomes more complicated because Ttrans also depends on the inclination i of the
system. In the general case, it can be shown that

RP = a

√
1 − sin i cos

(
2πTtrans

P

) (
1 +

√
F

�F

)−1

(5.5)

The inclination can be obtained from a detailed analysis of the ingress and egress
phases of the transit. In the case of the TrES-2 system, it was determined to be
i = 83.6◦. Apply the improved model in combination with the transit depth resulting
from Exercise 5.3 to compute RP.

5.3 Survey Data Sets

In the last decades, huge surveys of astronomical objects have been carried out,
particularly by space telescopes. For example, the most exhaustive census of the

5.3 Survey Data Sets 195

galactic solar neighbourhood is made by the GAIA mission.7 Basic properties of
more than a billion stars have been accurately measured, representing roughly 1% of
all starswithin our galaxy.Most notably,GAIAmeasured stellar parallaxes, providing
insight into the three-dimensional structure of the Milky Way.

The survey data can be accessed online via the GAIA archive.8 In the archive’s
search menu, queries can be made by submitting ADQL commands under the tab
Advanced (ADQL). ADQL extends the SQL database language by various numeri-
cal commands and routines that are commonly used in astronomy. A typical query
consists of three lines selecting data columns from a particular catalog and extracting
data items where certain Boolean conditions are met:

SELECT l, b, parallax, parallax_over_error, radial_velocity, phot_g_mean_mag

FROM gaiadr2.gaia_source

WHERE phot_g_mean_mag<12 AND ABS(radial_velocity)>0 AND parallax>=1.0 AND parallax_over_error>=10

In this query, we choose the individual source catalogue of the GAIA Data Release
2. From the catalog, we select the galactic longitude l and latitude b, the parallax
and its relative error, the radial velocity along the line of sight, and the mean G band
magnitude as stellar properties. The meaning of galactic coordinates is explained in
Fig. 5.6. In the last line, we apply several filters. First, we limit the number of objects
by considering only stars brighter than 12th magnitude. Moreover, we only allow
for objects with valid radial velocity values, parallaxes ≥ 1 mas (corresponding to
distances smaller than 1 kpc) and relative parallax errors smaller than 10% in our
sample. After processing our query the system reports that a total of 1,386,484
objects have been selected from the catalogue. You can submit this query yourself
and download the resulting sample. We recommend using the CSV format (you can
choose via the pulldown menu download format). The size is about 130 MB, so this
might take a little while.

Once you have downloaded the data file, you can load into a NumPy array:

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 data = np.loadtxt("gaia_12mag_1kpc-result.csv",
5 dtype=’float64’, usecols=(0, 1, 2, 4),
6
7 delimiter=’,’, skiprows=1)

In the following, we will only make use of the galactic longitude and latitude, the
parallax, and the radial velocity. For this reason, only columns 0, 1, 2, and 4 are used.
Since the data file starts with a comment line with a leading # character,9 which

7Mission website: sci.esa.int/web/gaia.
8Archive website: gea.esac.esa.int/archive.
9On Linux or Mac computers, you can easily check this on the shell with the help of the head
command.

https://sci.esa.int/web/gaia
https://gea.esac.esa.int/archive/

196 5 Astronomical Data Analysis

Fig. 5.6 Illustration of the
galactic coordinate system.
The galactic longitude l is
the angle between the line of
sight to a distant object
projected into the galactic
midplane (solid line) and the
reference direction from the
Sun to the centre of the
Milky Way (dashed line).
The latitude b is the angular
distance measured from the
galactic midplane

cannot be interpreted as a row of float numbers by np.loadtext(), we need to
skip the first row. This is indicated by the keyword argument skiprows, which
specifies the number of rows to be skipped (not to be confused with the index of
the first row, which is zero). Moreover, np.loadtext() expects whitespaces as
delimiters between columns by default. In the CVS table, however, comas are used.
This needs to be specified by delimiter=’,’.

What are the dimensions of the array data?

8 print(data.shape)

prints

(1386484, 3)

Even thoughwe applied several filters, the data set is still fairly largewith roughly 1.4
million rows and 3 columns. Histograms are a simple means of displaying statistical
properties of such data samples. For a start, let us plot the distribution of stellar
distances. The distance can be directly computed from the measured parallax π :

d

1 pc
= 1′′

π
(5.6)

Since we have parallaxes in microarcseconds (mas), we get the distance in units of
kpc by inverting the parallaxes:

9 d = 1/data[:,2]
10

5.3 Survey Data Sets 197

Fig. 5.7 Distribution of distances in a sample of 1.4 million stars from the GAIA archive

11 fig = plt.figure(figsize=(6, 4), dpi=300)
12

13 plt.hist(d, 100)
14 plt.xlabel(’d / kpc’)
15 plt.ylabel(’N’)
16 plt.savefig(’d_histogram.png’)

The histogram is shown in Fig. 5.7. For 100 bins (see line 12), the bin size is
1 kpc/100 = 10 pc. In the close neighbourhood of the Sun, the number of stars
per distance bin increases up to a maximum located roughly at 0.3 kpc. Beyond that,
the number of stars per bin decreases with distance. The histogram is shaped by
several factors:

• Assuming a nearly constant star density, the number of stars dN in a spherical
shell of thickness dr around the Sun scales with distance as dN ∝ r2 dr . This
determines the growth of N for small distances.

• Since our galaxy has a disk-like geometry with an average thickness of about
0.3 kpc in the solar vicinity, the slope of the histogram decreases beyond 0.15 kpc
as the shells increasingly overlap with regions outside of the galactic disk. Apart
from that, the stellar density decreases away from the central plane of the Milky
Way.

• An additional factor is that faint stars at the lower end of the main sequence,
which are most abundant in galaxy’s stellar population, fall below the limit of 12th
magnitude imposed in our sample and, ultimately, below the detection limit of the
GAIA telescope.

• Owing to the increasing density of stars towards the galactic center, the number
of stars per bin saturates at distances larger than 1 kpc.

198 5 Astronomical Data Analysis

Having explained the spatial distribution of the stars in our data set, we can move
on to the radial velocity distribution. This time, we explicitly define the edges of the
bins, starting from the left edge of the first bin and ending at the right edge of the last
bin, in an array named bins. The bin width is 2.5 km/s and the left- and rightmost
edges limiting the range or radial velocities are −140 and 140 km/s, respectively:

17 bin_width = 2.5 # in km/s
18 rv_lim = 140 # upper limit
19 bins = np.arange(-rv_lim, rv_lim+bin_width, bin_width)
20

21 fig = plt.figure(figsize=(6, 4), dpi=300)
22

23 rv_histogram = plt.hist(data[:,3], bins=bins)
24 plt.xlabel(’radial velocity / km/s’)
25 plt.ylabel(’N’)
26 plt.savefig(’rv_histogram.png’)

Figure5.8 shows that the radial velocity distribution appears remarkably like a Gaus-
sian distribution (also called normal distribution) of the form

y(x) = y0 exp

(
(x − x0)2

2σ 2

)
(5.7)

with an amplitude y0, mean value x0, and standard deviation σ . The function y(x) is
a so-called probability density function, i.e. it specifies the differential probability of
finding thevalueof the randomvariable in the infinitesimal interval [x, x + dx]. Since
the probability that x assumes any value must be unity, normalization of the integral
of y(x) implies y0 = 1/σ

√
2π. In our case, the random variable x corresponds to

the radial velocity. However, the histogram data are not normalized to the total size
of the sample. For this reason, we treat y0 as a free parameter.

In order to verify that the data follow a Gaussian distribution, we compute a fit
based on the model given by Eq. (5.7). To that end, we need the bin centers, which
can be obtained by shifting the left edges by half of the bin width:

27 x = bins[:-1] + bin_width/2
28 y = rv_histogram[0]

The bin counts are returned in a row by plt.hist() (see line 22). You can easily
check that the arrays x and y have the same size and x runs in steps of 2.5 km/s
from −138.75 to +138.75 km/s:

By applying curve_fit() form scipy.optimize, we can find which set
of parameters y0, x0, and σ fits the data best:

29 import scipy.optimize as opt
30
31 # definition of fit function
32 def gaussian(x, y0, x0, sigma_sqr):
33 return y0*np.exp(-(x-x0)**2/(2*sigma_sqr))

5.3 Survey Data Sets 199

Fig. 5.8 Radial velocity distribution

34
35 params, params_covariance = opt.curve_fit(gaussian, x, y)
36 print("Parameters best-fit:", params)

Using

Parameters best-fit: [4.85506870e+04 -8.95860537e-01 7.59083786e+02]

we can plot the data together with the fit function:

37 y_gauss = gaussian(x, params[0], params[1], params[2])
38

39 fig = plt.figure(figsize=(6, 4), dpi=300)
40

41 plt.hist(data[:,3], bins=bins)
42 plt.plot(x, y_gauss, color=’red’)
43 plt.xlim(-100,100)
44 plt.xlabel(’radial velocity / km/s’)
45 plt.ylabel(’N’)
46 plt.savefig(’rv_histo_fit.png’)

The resulting fit function, which is shown in Fig. 5.9, appears to be in good agreement
with the data. Looking closer, you might notice that the core of the distribution
is slightly narrower, while the so-called tails toward extreme velocities tend to be
broader than the fit function.

Are these deviations just by chance or systematic? Drawing further conclusions
requires the application of statistical tests. A common method of calculating the
probability that two sets of data, such as observed values and theoretical predictions,
follow the same underlying distribution is the Kolmogorov–Smirnov test. This test
is implemented in the scipy.stats module:

200 5 Astronomical Data Analysis

Fig. 5.9 Radial velocity distribution and best-fit Gaussian (red line)

47 from scipy.stats import ks_2samp
48

49 ks_2samp(y, y_gauss)

And the result is

KstestResult(statistic=0.29464285714285715, pvalue=0.00010829928148128113)

The famous p-value (printed pvalue) is an important measure for statistical signif-
icance. In short, assuming that the data follow a given statistical distribution—this is
the so-called null hypothesis—the p-value quantifies the probability that a random
sample drawn from the distribution is at least as extreme as the observed data. A very
small p-value indicates that such an outcome is very unlikely if the null hypothesis
were actually true. As a consequence, the null hypothesis can be rejected if the p-
value is very small.10 In our case, the null hypothesis is that the data are Gaussian.
Since the data appear to deviate from a Gaussian distribution, we test the statistical
significance of our observation. Indeed, we have a p-value as low as 0.01%, which is
well below the commonly used threshold of 5%. Therefore, we can conclude that the
distribution of radial velocities in the GAIA data does not strictly follow a Gaussian
distribution, but shows systematic deviations. Gaussian distributions are observed
whenever a certain variable is the result of a superposition of a large number of
random processes. For the solar neighbourhood, the radial velocity of a star relative
to the Sun is determined by many different factors, including the dynamics of the
star-forming region the star originated from or close encounters with other stars. As
we go to larger scales, the contribution of the global galactic rotation profile becomes
more and more important.

10It is important to be aware that the p-value does not allow us draw conclusions about the likelihood
of any alternative hypothesis.

5.3 Survey Data Sets 201

Galactic dynamics starts to shine through when we take a look at the spatial
distribution of radial velocities. We start by dividing the data into two subarrays.
Stars with positive radial velocities, which appear red-shifted, are separated from
blue-shifted stars with negative radial velocity by means of conditional indexing:

50 rv = data[:,3]
51 redshift, blueshift = data[rv > 0], data[rv <= 0]
52

53 print("Redshifted stars:", len(redshift))
54 print("Blueshifted stars:", len(blueshift))

Redshifted stars: 675676
Blueshifted stars: 710808

The number of blueshifted stars is slightly larger than the number of redshifted stars,
which suggests a slightly asymmetric distribution.

For a more detailed picture, we produce a scatter plot of red- and blueshifted stars
in the plane spanned by the galactic longitude l and latitude b (see Fig. 5.6):

55 fig = plt.figure(figsize=(10, 10*60/360+1), dpi=300)
56 ax = fig.add_subplot(111)
57
58 step = 10
59
60 plt.scatter(blueshift[::step,0], blueshift[::step,1],
61 s=1, marker=’.’, color=’blue’, alpha=0.1)
62 plt.scatter(redshift[::step,0], redshift[::step,1],
63 s=1, marker=’.’, color=’red’, alpha=0.1)
64 plt.xlabel(’longitude [deg]’)
65 plt.ylabel(’lat. [deg]’)
66 plt.xlim(0,360)
67 plt.ylim(-30,30)
68
69 # set ticks on axis in 30 degree intervals
70 plt.xticks([30*n for n in range(13)])
71 plt.yticks([-30, 0, 30])
72
73 # ensure that degrees are displayed equally along both axes
74 ax.set_aspect(’equal’)
75
76 plt.savefig(’rv_map.png’)

We plot only every tenth star. Otherwise the plot would become too crowded with
dots.By setting the aspect ratio to ’equal’ (the axis object is defined in line 55),
we ensure that longitudes and latitudes are shown in proportion. We also set the ticks
on the two axes explicitly (see lines 69–70). The plot is shown in Fig. 5.10. You can
see that stars tend to be redshifted or blueshifted depending on galactic longitude,
while they are randomly scattered along the galactic latitude. The explanation for this
variation can be found in the disk-like structure of the Milky Way, with modulations

202 5 Astronomical Data Analysis

Fig. 5.10 Distribution of blue- and redshifted stars in the l-b-plane

caused by its spiral arms. In the following exercise, you are asked to analyse the
dependence on longitude quantitatively.

Exercises

5.5 Use the data set discussed in this section to compute mean values and standard
deviations of the radial velocity for 5◦ bins of the galactic longitude and plot your
results. If you assume that the galactic rotation curve in the solar neighbourhood is
flat, i.e. the magnitude of the orbital velocity is constant, and the averaged radial
velocities mainly reflect the orbital motions of stars around the center of the galaxy,
which trends do you expect? Keep in mind that the radial velocity is the component
of the velocity difference between a star and the Sun in the direction from the Sun
to the star.

5.6 For distances d
 R0, where R0 ≈ 8.5 kpc is the distance between the Sun and
the center of the Milky way, the radial velocity is approximately given by Oort’s
formula vr

d
= A sin(2l) , (5.8)

where A = 14.8 km s−1 kpc−1 [4, Sect. 25.3].

(a) Create a scatter plot of vrad/d versus galactic longitude l for those stars in the
GAIA data set that are closer than 0.05R0.

(b) Fit Eq. (5.8) to the data from (a) and determine the best-fit value of A. Add the
resulting curve to the scatter plot and discuss your results.

5.4 Image Processing

Online access to large collections of images from space telescopes is provided by the
Barbara A. Mikulski Archive for Space Telescopes (MAST) of NASA,11 including
the legacy archive of the famousHubble Space Telescope (HST).12 For example, you
can search for images of the Whirpool Galaxy M51 and download images taken in

11Archive website: archive.stsci.edu.
12See hubblesite.org and www.spacetelescope.org. An example image is shown in Fig. 4.14.

https://archive.stsci.edu/
https://hubblesite.org/
https://www.spacetelescope.org

5.4 Image Processing 203

several different wavelength bands from archive.stsci.edu/prepds/m51/datalist.html.
These images are available in the FITS file format, which is not only used for data
such as spectra, but also for astronomical images. Per se, the CCD cameras used in
astronomical telescopes are colour-blind. Every pixel simply counts the number of
electrons created by incident photons, regardless of their wavelength. However, the
sensitivity of the device is wavelength-dependent.

In order to reconstruct a color image, we need at least three images taken with
different wavelength filters. In the following, we select the image data from the blue
(435 nm), green/visual (555 nm), and red/Hα (658 nm) filters (in the following also
called channels).Youneed todownload thefilesh_m51_b_s20_drz_sci.fits,
h_m51_b_s20_drz_sci.fits, and h_m51_b_s20_drz_sci.fits from
the aforementioned URL. We start by reading the FITS header of the red-channel
image:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from astropy.io import fits
4

5 m51r_file = "h_m51_h_s20_drz_sci.fits"
6 m51r = fits.open(m51r_file)
7 m51r.info()

Theinfo()method shows that the file contains an array of 2150 times 3050 floating
point numbers:

Filename: h_m51_h_s20_drz_sci.fits
No. Name Ver Type Cards Dimensions Format

0 PRIMARY 1 PrimaryHDU 1691 (2150, 3050) float32

After copying the data form the primary HDU (see also Sect. 5.1), we can close the
file.

8 m51r_data = m51r[0].data
9 m51r.close()

It is helpful to create a histogram of the image data by flattening m51r_data
to a one-dimensional array, i.e. by re-arranging the two-dimensional array of image
values in a linear sequence:

10 plt.hist(m51r_data.flatten(), log=True, bins=100)
11 plt.xlabel(’Signal’)
12 plt.ylabel(’N’)
13 plt.savefig(’m51_histogram.png’, dpi=300)

Since the bin counts N differ by orders of magnitude, we use a logarithmic scale.
The histogram shows that by far the largest number of pixels has a signal close to
0, with just a small number of individual readings larger than 5 (see Fig. 5.11). This
reason for this becomes clear by viewing the image.

https://archive.stsci.edu/prepds/m51/datalist.html

204 5 Astronomical Data Analysis

Fig. 5.11 Distribution of values in the M51 red-channel image

To produce a picture, we have to map array values to some color scheme. This
is done by the function imshow() from pyplot. By default, the range between
the minimum and maximum is mapped to colors. This would result in an entirely
black image as most values are small. For this reason, we set reasonable limits
with clim(). The upper bound is about ten time the median value, which you can
calculate by utilizing NumPy.

14 plt.imshow(m51r_data, cmap=’gray’)
15 plt.clim(0,0.1)
16 plt.colorbar()
17 plt.savefig(’m51r.pdf’)

The image that begins to emerge in Fig. 5.12 is arguably one of the most popular
images of a spiral galaxy, sharingmany similaritieswith our own home galaxy, except
for the small companion that causes some tidal disruption of the outer spiral arms.
However, it still lacks the beautiful light blue of its spiral arms, interlaced by dark
dust lanes and reddish star-forming regions.

The image data from the three filters allow us to compose an image using the RGB
color system. In this system, colors are represented by a combination of 8-bit values
ranging form 0 to 255 for red, green, and blue. First, we complement the image data
by loading the green and blue channels:

18 m51g_file = "h_m51_v_s20_drz_sci.fits"
19 m51g = fits.open(m51g_file)
20 m51g_data = m51g[0].data
21 m51g.close()
22

23 m51b_file = "h_m51_b_s20_drz_sci.fits"

5.4 Image Processing 205

Fig. 5.12 Monochromatic
image of M51 in the red
(Hβ) channel. The vertical
and horizontal axes indicate
pixel positions and the color
bar on the right shows the
mapping of the signal
strength to a gray scale

24 m51b = fits.open(m51b_file)
25 m51b_data = m51b[0].data
26 m51b.close()

The next step is to convert the data into 8-bit values. Since most values are clustered
around the mean, we divide the arrays by the mean values in the three channels and
multiply by 255. Moreover, we incorporate a factor alpha that allows us to shift all
channels at once, allowing us to control the brightness of the image.

27 alpha = 0.15
28
29 m51rgb = np.zeros([2150, 3050, 3])
30
31 m51rgb[:,:,0] = m51r_data.transpose() / np.mean(m51r_data)
32 m51rgb[:,:,1] = m51g_data.transpose() / np.mean(m51g_data)
33 m51rgb[:,:,2] = m51b_data.transpose() / np.mean(m51b_data)
34
35 m51rgb *= 255*alpha

The RGB data are collected in a new, three-dimensional array, where the third dimen-
sion spans the red, green, and blue channels. The first two indices specify the position
of a pixel, where we have swapped the horizontal and vertical directions by trans-
posing the two-dimensional arrays containing the raw data. As a final step, we cut
off at 255 using np.where():

36 m51rgb = np.where(m51rgb > 255, 255, m51rgb)

206 5 Astronomical Data Analysis

Fig. 5.13 RGB image of M51 composed from HST image data from three different filters
(archive.stsci.edu/prepds/m51/datalist.html)

Now we have values in the appropriate range. To stack them and turn them into
an image, we are going to use the Python Imaging Library (Pillow).13 The library is
important under the name ofPIL. Among various tools for basic imagemanipulation
and analysis, it provides the function Image.fromarray() to create an image
object that canbe saved in any any commongraphics format, such asPNG.SinceRGB
values must be specified as 8-bit unsigned integers, we apply themethod astype()
to change the array data type from float to np.uint8 when passing m51rgb as
argument.

37 from PIL import Image
38
39 # convert to 8-bit unsigned integers and turn array into image
40 img = Image.fromarray(m51rgb.astype(np.uint8))
41 img.show()
42 img.save(’m51rgb.png’)

If everything works, you will be greeted by the picture shown in Fig. 5.13. Keep in
mind that astronomoical images are to some degree artificial. They do not exactly
correspond to the impression the human eye would have if they could see these
objects. Even so, they help us to reveal structures such as the prominent star forming
regions in M51.

13For online documentation, see pillow.readthedocs.io/en/stable/handbook/overview.html.

https://archive.stsci.edu/prepds/m51/datalist.html
https://pillow.readthedocs.io/en/stable/handbook/overview.html

5.4 Image Processing 207

Exercises

5.7 Experiment with the fudge factor alpha and the normalization of the image
data in the red, green, and blue channels. How does it affect the resulting image
of M51? In addition, you can find more image material for merging galaxies under
archive.stsci.edu/prepds/merggal.

5.5 Machine Learning

Apart from basic image processing and composition as shown in the previous section,
astronomical images are systematically analyzed to infer properties of objects and
to classify them. Although humans are very good in recognizing patterns, they are
also easily misled by prejudices. To a certain extent, the same could be said about
a novel approach to image analysis that, broadly speaking, has become popular
under the name of machine learning. Machine learning is based on artificial neural
networks (ANNs). In loose analogy to the workings of neurons in a human brain,
ANNs are algorithms that can be trained by presenting data to them. The training
process enables the network to find features, correlations, structures, etc. when it is
confronted with new data. Today, such algorithms are nearly ubiquitous and have
become an indispensable tool for the analysis of scientific data, too. The simple use
cases demonstrated in this section will hopefully motivate you to seek out other
resource to learn more.14

A neural network starts with an input layer defining the signals that will be pro-
cessed by the network. For example, when dealing with image data, the input layer
consists of pixel values, such as the 8-bit RGB values introduced in the previous
section. In convolutional neural networks (CNNs), which are an advanced type of
ANNs, the input layer is followed by a number of convolutional layers in which
convolution filters are applied. You can think of them as small windows sliding
through an image, combining pixels, and creating feature maps of the inputs (see
also Fig. 5.14).

The convolutional layers are so-called hidden layers whose output can be fed to
further hidden layers, such as fully connected dense layers performing tasks similar to
regression analysis, or to an output layer. A hidden layer consists of artificial neurons
that transform an input vector through weights and an activation function into output
signals. The weights modulate the signal strength and are adjusted in the process of
training the network. The activation function mimics the response of real neurons by
introducing non-linearities. A commonly used activation function in multi-layered
networks is the rectified linear unit (ReLU), which sets the output signal equal to
the weighted sum of the inputs and cuts off at zero. The signals from the last hidden
layer are sent to the output layer. The number of neurons in this layer depends on
the number of classes that can be identified by the neural network. Machine learning

14A comprehensive introduction for students is the Deep Learning textbook [17]. It is available
online: www.deeplearningbook.org.

https://archive.stsci.edu/prepds/merggal/
https://www.deeplearningbook.org/

208 5 Astronomical Data Analysis

driven by networks that have arbitrarily complex hidden layers between input and
output layer is known as deep learning. It has revolutionized pattern recognition and
classification tasks in recent years.

While classical approaches require the programmer to write explicit code for the
analysis of specific features, a neural network is trainedwith large amounts of labelled
data and learns to discriminate between different classes of features on its own. This
is accomplished by a process called backpropagation: The output the network yields
for the training data is compared with the expected output via a loss function, which
is a very important choice in the training. Backpropagation calculates the gradient
of the loss function with respect to network parameters such as the weights in the
hidden layers. The aim is to minimize the loss function by iteratively adjusting the
parameters in a number of training epochs. Finally, the network’s performance is
assessed for independent data sets.

At the end of the day, neural networks boil down to a series of linear and non-
linear transformations that are applied to an input vector to turn it into a new vector
whose components tell us to which class the input belongs. Thanks to modern APIs
such as TensorFlow and Keras,15 setting up a neural network in Python only takes a
few lines of code.16

5.5.1 Image Classification

Convolutional neural networks are particularly well suited for the classification of
images. An important problem in astronomy is the morphological classification of
galaxies. In the following, we will consider only three basic types of galaxies: ellip-
tical, spiral, and irregular.17 Our goal is to train a CNN using a convolutional layer
from the EFIGI catalogue of nearby galaxies so that it will be able to tell us to which
of these three classes an arbitrary galaxy belongs [19].

We begin by importing the libraries we will use throughout this section, including
the TensorFlow library18:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from PIL import Image as image
4 import tensorflow as tf
5 from tensorflow import keras

15API stands for application programming interface. It is something like a construction kit that
makes the programming of applications easier for you.
16See [18] for a practical, Python-based guide to machine learning.
17A more detailed morphological classification scheme for galaxies is the so-called Hubble
sequence.
18A good start point is www.tensorflow.org/lite/guide. TensorFlow is not a standard pack-
age in Python distributions. In Anaconda, for example, you need to run conda install
tensorflow before you can use the package.

https://www.tensorflow.org/lite/guide

5.5 Machine Learning 209

All informationwe need toworkwith the sample of EFIGI galaxy images is stored
in the efigi.dat file. The first column contains the filename of every single image
and the second column the morphological class it belongs to. Here, we use Python
lists and the built-in function open():

6 data = open("data_files/galaxies/efigi.dat","r")
7

8 names = []
9 types = []
10

11 for line in data:
12 fields = line.split(" ")
13 names.append(fields[0])
14 types.append(fields[1])
15

16 nData = len(names)
17 imgSize = 64

The lists names and types are created as empty lists, i.e. initially they have no
elements. With each iteration of the subsequent loop, a line is read from the file and
the extracted name and type are appended as new elements to the lists.

The original images are 255×255 pixels in size, but we will scale them down
to imgSize to reduce the computational cost. The galaxies are stored in a multi-
dimensional array whose first dimension is nData (number of images), the second
and third dimensions are both imgSize (corresponding to 64 × 64 pixel values),
and the fourth dimension corresponds to the three color channels of an RGB image
(see Sect. 5.4):

18 galaxies = np.zeros((nData, imgSize, imgSize, 3))
19 labels = np.zeros(nData, dtype=’int’)
20

21 for i in range(nData):
22 # load image
23 img = image.open("data_files/galaxies/png/" +
24 str(names[i]) + ".png")
25

26 # resize to imgSize
27 imgResized = img.resize(size=(imgSize,imgSize))
28

29 galaxies[i,:,:,:] = np.array(imgResized)/255
30 labels[i] = types[i]

In line 23, the image files are opened using the module Image form PIL. Each
image is rescaled to the size given by imgSize, converted to a numpy array, and
its pixel values are normalized to unity.

In addition to a training set, we need two smaller convolutional layers for validat-
ing and testing the network performance. Validation proceeds parallel to the training

210 5 Astronomical Data Analysis

process and helps to cross-check whether the network tends to memorize special fea-
tures of the training data, while failing to identify general features in an independent
data set. The test convolutional layer is used for a final performance test. To avoid any
biases, we need to make sure that the three convolutional layers are random samples
of the available data. For this reason, we first split the data into a training set, which
usually encompasses about 70% of all data, and then subdivide the remainder into a
validation and a test set:

31 import random
32
33 # generate random sample of unique indices
34 size = labels.size
35 sample = random.sample([n for n in range(size)], int(0.3*size))
36
37 # split into training and other set otherLabels = labels[sample]
38 otherGalaxies = galaxies[sample,:,:,:] trainLabels =
39 np.delete(labels, sample) trainGalaxies = np.delete(galaxies,
40 sample, axis=0)
41
42 print(otherLabels.size, trainLabels.size)
43 print(otherGalaxies.shape, trainGalaxies.shape)

By means of random.sample(), we randomly select 30% of all indices of the
labels array without duplicates. The resulting list can be used for indexing.19

For example, otherLabels defined in line 38 is an array containing only those
elements of labels with indices included in the list sample. This is similar to
extracting elements by slicing, except for specifying a list of indices instead of
an index range. The complement is obtained by deleting all elements indexed by
sample (see line 40). We are left with two arrays of sizes

322 754

The same operations are applied to axis 0 (i.e. the first dimension running through all
images) of the galaxies array, producing two arrays with the following shapes:

(322, 64, 64, 3) (754, 64, 64, 3)

These arrays are in turn split into the validation and test samples, each containing
one half of the elements (or 15% with respect to the original size):

44 size = otherLabels.size
45 subsample = random.sample([n for n in range(size)],
46 int(size/2))
47
48 # split into validation and test sets
49 valdLabels = otherLabels[subsample]
50 valdGalaxies = otherGalaxies[subsample,:,:,:]
51 testLabels = np.delete(otherLabels, subsample)
52 testGalaxies = np.delete(otherGalaxies, subsample, axis=0)

19Alternatively, an array may be indexed with an integer array.

5.5 Machine Learning 211

You may want to check that the samples have similar distributions of ellipticals,
spirals, and irregulars by plotting histograms of the three label arrays.

The next step is to create the network. The architecture of a neural network that fits
a given problem is—to a certain degree—the result of a trial and error process. Is a
single hidden layer sufficient or do we needmore than one? Howmany convolutional
layers of what size do we need? For some problems, working networks have already
been proposed and can be used as a starting point.20 Let us try the relatively simple
network illustrated in Fig. 5.14:

53 galNet = keras.Sequential([
54 keras.layers.Conv2D(96, (8,8), activation=’relu’,
55 input_shape=(imgSize,imgSize,3)),
56 keras.layers.MaxPooling2D(pool_size=(4,4)),
57 keras.layers.Flatten(),
58 keras.layers.Dense(30, activation=’relu’),
59 keras.layers.Dense(3, activation=’softmax’)
60])

The network is created by the Sequential function defined in the keras mod-
ule.21 The individual layers are specified in the argument list. The first layer creates
96 feature maps by applying convolution filters to image arrays with dimensions
defined by input_shape. The kernel of each filter is given by a matrix with 8 × 8
elements. To reduce the amount of data generated by this process, the convolutional
layer is followed by a pooling layer that reduces the size of the data by downsam-
pling the feature maps. This completes the feature extraction. The resulting data
must be flattened into a one-dimensional vector before they can be processed by
a fully-connected dense layer consisting of 30 neurons. The term fully-connected
refers to the property of all inputs being connected to every neuron. The signals from
the neurons are distributed to three output nodes that represent the three classes we
are dealing with. By using the so-called softmax activation, we obtain probabilistic
results. The network structure is summarized by galNet.summary():

Layer (type) Output Shape Param #
===
conv2d_6 (Conv2D) (None, 57, 57, 96) 18528

max_pooling2d_6 (MaxPooling2 (None, 14, 14, 96) 0

flatten_6 (Flatten) (None, 18816) 0

dense_12 (Dense) (None, 30) 564510

dense_13 (Dense) (None, 3) 93
===
Total params: 583,131
Trainable params: 583,131
Non-trainable params: 0

20For example, see arxiv.org/abs/1709.02245 for a simple application of CNNs to galaxy classifi-
cation.
21See www.tutorialspoint.com/tensorflow/tensorflow_keras.htm.

https://arxiv.org/abs/1709.02245
https://www.tutorialspoint.com/tensorflow/tensorflow_keras.htm

212 5 Astronomical Data Analysis

Fig. 5.14 Schematic view of a convolutional neural network (Galaxy image from the EFIGI cata-
logue [19])

At the bottom, you can see that a total number of 583,131 parameters have to be
optimized!

Before we can train our network to learn which input signals are typical for which
output class, we need to compile it:

61 galNet.compile(optimizer=’adam’,
62 loss=’sparse_categorical_crossentropy’,
63 metrics=[’accuracy’])

The optimizer keyword specifies the numerical optimization algorithm that will
be used to adjust the weights in the process of training the network. The sparse
categorical crossentropy loss function we are going to use is a standard choice when
dealing with categorical data, where every item belongs to one category. The third
argument, with the keyword metrics, indicates that we will use the fraction of
correctly classified training images to score the performance of the network.

Now we are all set to train the network by applying the fit() method to the
training sample for a given number of epochs. The validation sample can be passed
as optional argument with the keyword validation_data:

64 results = galNet.fit(trainGalaxies, trainLabels, epochs = 40,
65 validation_data=(valdGalaxies,
66 valdLabels))

On a present-day PC, the training process should not take more than a few minutes.
Oncewe are through,we can take a look at the evolution of the network’s performance
as a function of the number of training epochs (i.e. the number of iterations). The
losses of the two samples are returned as items in the history dictionary:

67 plt.figure(figsize=(6,4), dpi=100)
68

69 plt.plot(results.history[’loss’], color=’green’,

5.5 Machine Learning 213

70 label=’training’)
71 plt.plot(results.history[’val_loss’], color=’red’,
72 label=’validation’)
73 plt.xlabel("Epochs")
74 plt.ylim(0,1)
75 plt.ylabel("Loss")
76 plt.legend()
77 plt.savefig("galnet_loss.pdf")

As expected, the loss curve for the training data set descends with the number of
epochs (see Fig. 5.15). However, the loss for the validation set levels off and even
increases after 20 or so epochs. This is a symptom of overfitting: Under certain
conditions, the network does not recognize general features that characterize a class,
but simply memorizes every specific element in the training data set. This is also
reflected by the accuracies at the end of the training:

78 print(f"{results.history[’accuracy’][-1]:.4f} "
79 f"{results.history[’val_accuracy’][-1]:.4f}")

0.9947 0.8634

Hence, labels in the training sample aremuch better reproduced than in the validation
sample.

Overfitting happens when a network has too many parameters. In other words, it
is too complex in relation to the size and diversity of the data. There are several ways
how to avoid overfitting. The most obvious is to collect more data for the training
of the network. If we need to content ourselves with the data we have, we can try to
reduce the number of parameters, e.g. by using a smaller number of feature maps.
Another option is to reduce the number of fully connected neurons. However, rather
than just reducing the number of neurons it is often preferable to insert a so-called
dropout layer that randomly deactivates neurons:

80 galNet = keras.Sequential([
81 keras.layers.Conv2D(32, (8,8), activation=’relu’,
82 input_shape=(imgSize,imgSize,3)),
83 keras.layers.MaxPooling2D(pool_size=(4,4)),
84 keras.layers.Flatten(),
85 keras.layers.Dropout(0.3),
86 keras.layers.Dense(24, activation=’relu’),
87 keras.layers.Dense(3, activation=’softmax’)
88])

The summary shows that the number of parameter is reduced considerably:

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 57, 57, 32) 6176

214 5 Astronomical Data Analysis

max_pooling2d_1 (MaxPooling2 (None, 14, 14, 32) 0

flatten_1 (Flatten) (None, 6272) 0

dropout (Dropout) (None, 6272) 0

dense_2 (Dense) (None, 24) 150552

dense_3 (Dense) (None, 3) 75
===
Total params: 156,803
Trainable params: 156,803
Non-trainable params: 0

After compiling the network and runninggalNet.fit() again, we can investigate
the loss curves. The results are shown in Fig. 5.15. The divergence between the
training and validation losses is reduced and the accuracies after the final training
epoch are not as far apart as before:

0.9735 0.8882

You can try to further improve the network (see Exercise 5.8).
We finish the training at this point and evaluate the accuracy for the test data set:

89 loss, acc = galNet.evaluate(testGalaxies, testLabels)

The result for our sample (value of acc) shows that the network is capable of
classifying 86% of all test images correctly. This is a really good score for a rather
simple CNN and a data set of moderate size. Although the accuracy has not improved
significantly compared to the validation of the larger network, the smaller network
has the advantage of being computationally less expensive. This means it is adequate
for the given data set.

Now that our network is trained, we can use the predict() method to query
individual images or batches of images. As an example, we load an HST image of
NGC 1232 and convert it into an image array22:

90 img = image.open("data_files/galaxies/NGC_1232.jpg")
91

92 imgResized = img.resize(size=(imgSize,imgSize))
93

94 imgArr = np.array(imgResized)/255

Since predict() expects an array whose shape matches the training data set
(except for the size of the data set), we need to expandimgArr to a four-dimensional
array, i.e. an array with four indices, by inserting a new axis:

22You can download the image from commons.wikimedia.org/wiki/File:NGC_1232.jpg.

https://commons.wikimedia.org/wiki/File:NGC_1232.jpg

5.5 Machine Learning 215

Fig. 5.15 Loss curves of simple galaxy classification networks with 96 feature maps (top) and 32
feature maps as well as a dropout layer (bottom) for training and validation data

95 imgArrExp = np.expand_dims(imgArr, axis=0)
96 print(imgArrExp.shape)

(1, 64, 64, 3)

Since we have only one image, the expanded array has, of course, only one element
along the new axis. Let us see what we get:

97 pred = galNet.predict(imgArrExp)
98

99 label = ["elliptical", "spiral", "irregular"]
100 for i,p in enumerate(pred.flatten()):
101 print(f"{label[i]:10s} {p:.4e}")

216 5 Astronomical Data Analysis

The network is almost 100% confident that NGC 1232 belongs to class of spirals
(second label), which is indeed the case:

elliptical 3.0359e-10
spiral 9.9963e-01
irregular 3.6675e-04

5.5.2 Spectral Classification

In the previous section, we have set up a network that can classify two-dimensional
inputs such as images. Naturally, neural networks can also be applied to one-
dimensional data, such as time series or spectra. We will show you how to build
a network that can derive the effective temperature of a star from its spectrum. This
would be an easy task if stellar spectra were exact Planck black-body spectra (see
Sect. 3.1). However, amultitude of absorption processes in stellar atmospheresmakes
real spectra much more complicated [3, Chap. 9]. To train our network, we are going
to use a large set of nearly 80,000 synthetic spectra with overlaid noise,23 each one
stored in a separate file containing 8,500 spectral flux density values in the wave-
length range between 585 and 670 nm. This amounts to more than 2 GB of data,
which is too large for download via the URL from which source code and the other
data files used in this book are available. However, the data can be obtained from the
authors on request.

In the following, we assume that the data files for the training are located under the
path specnet/training relative to the work directory.24 The os library enables
us to scan the path with the help of listdir() and add the names of all files to a
list:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import tensorflow as tf
4 from os import listdir
5 from os.path import isfile, join
6
7 path = "specnet/training"
8 specnames = [f for f in listdir(path) if isfile(join(path, f))]
9
10 n_spectra = len(specnames)
11 print("Total number of training spectra:", n_spectra)

In line 8, the file list is generated with an inline loop combined with a conditional
statement that checks whether an entry found by listdir() is a file or not. The
number of files corresponds to the number of different spectra:

23Synthetic spectra are computed using stellar atmosphere codes. The spectra in our training set
were produced from a small sample of computed spectra, which were overlaid with a large number
of different realizations of random noise to mimic instrumental noise in observed spectra. The
original synthetic spectra were produced with the Spectroscopy Made Easy (SME) package [20].
24It might be necessary to adjust the path depending on your operating system and the location of
the specnet directory on your computer.

5.5 Machine Learning 217

Total number of training spectra: 79200

The file names (e.g. 5800_1_65999_177.97.npz) contain the effective tem-
peratures of the stars, defining the data labels for the training of the network. For this
reason, we extract the first four digits from each file name and save them in the list
temp. As each temperature occurs many times, we create an ordered list of unique
temperature classes (in the astrophysical sense) by applying a combination of the
functions set() (creates an unordered set of items), list() (converts back to a
list), and sorted() (arranges the list elements in ascending order):

12 temp = np.zeros(n_spectra, dtype=’int’)
13
14 for i,spec in enumerate(specnames):
15 temp[i] = int(spec[0:4])
16
17 temp_class = sorted(list(set(temp)))
18 n_labels = len(temp_class)
19
20 print("Total number of temperature classes:", len(temp_class))
21 print("List of temperatures:", temp_class)

Here we go:

Total number of temperature classes: 11

List of temperatures: [4000, 4200, 4400, 4600, 4800, 5000, 5200, 5400, 5600, 5800, 6000]

Thus, our data set encompasses spectra for effective temperatures in the range from
4000 to 6000 K, corresponding to stars in the spectral classes K and G [4, 21].

Let us take a closer look at the individual spectra. The suffix .npz implies that we
are dealingwith zipped binaryNumPy arrays. They can be loadedwithnp.load().
In the following code example, an arbitrarily chosen spectrum is loaded into an array:

22 spectrum_file = join(path, "5800_1_65999_177.97.npz")
23

24 spec_arr = np.load(spectrum_file)
25 print(spec_arr.files)

The output from the last lines shows that the file contains just a single array, which
is referenced by the keyword "arr_0":

[’arr_0’]

For simple use, we slice spec_arr into two new arrays, namely wave representing
the wavelengths and flux holding the spectral flux densities

26 wave = spec_arr["arr_0"][:,0]
27 flux = spec_arr["arr_0"][:,1]
28

29 print("Wavelength range:", np.min(wave), np.max(wave))
30

31 spec_size = len(flux)
32

33 print("Number of values per spectrum:", spec_size)

218 5 Astronomical Data Analysis

Fig. 5.16 Section of a synthetic spectrum for Teff = 6000 K. The small fluctuations in the contin-
uum between absorption lines stem from overlaid noise

Wavelength range: 5850.0 6700.0
Number of values per spectrum: 8500

Figure5.16 shows the spectrum in the wavelength range from 650 to 660 nm (wave-
lengths printed above are in angstrom).Are you able to identify the prominent absorp-
tion line at about 656 nm?

All in all we are confronted with a total of 672,800,000 spectral data points. This
is a huge number. For computational purposes, we subdivide the wavelength range
into 20 channels of equal size:

34 n_channels = 20
35 channel_length = int(spec_size/n_channels)
36

37 print("Values per channel:", channel_length)

Values per channel: 425

Since TensorFlow expects all of our input data to be contained in a single array, we
need to iterate through the file list and successively store the spectral data in an array
whose first dimension equals the number of spectra. The sequential data for each
spectrum are reshaped so that the second index of the data array runs through the
channel specified by the third index.Moreover, we create an array in which the labels
will be stored. Since the class labels must be specified as integers, the temperature
class of each spectrum is mapped to an index via the index()method (see line 42).
A word of caution: You need a computer with sufficient main memory and speed to
proceed from here on.

38 labels = np.zeros(n_spectra, dtype=’int’)
39 spectra = np.zeros((n_spectra, channel_length, n_channels),
40 dtype=’float64’)
41

5.5 Machine Learning 219

42 for i in range(n_spectra):
43 labels[i] = temp_class.index(temp[i])
44
45 spectrum_file = join(path, specnames[i])
46 spec_arr = np.load(spectrum_file)
47
48 flux = spec_arr["arr_0"][:,1]
49 flux_2d = np.reshape(flux, (-1,n_channels))
50
51 spectra[i,:,:] = flux_2d
52
53 print(spectra.shape)

After loading all data, we have an impressive array with the following dimensions:

(79200, 425, 20)

Similar to the CNN for image classification in the previous section, we can set
up a network to classify the spectra, with the important difference of using one-
dimensional convolutional layers:

54 specNet = tf.keras.models.Sequential([
55 tf.keras.layers.Conv1D(24, 4, activation=’relu’,
56 input_shape=(channel_length, n_channels)),
57 tf.keras.layers.Conv1D(120, 10, activation=’relu’),
58 tf.keras.layers.Flatten(),
59 tf.keras.layers.Dense(n_labels, activation=’softmax’),
60])
61
62 print(specNet.summary())

The input_shape parameter of the first layer is given by the channel length (i.e.
number of wavelength bins per channel) and the number of channels. Nevertheless,
the first convolutional layer is one-dimensional, as indicated by Conv1D(), and the
kernel has only a single dimension. In addition, we use a second convolutional layer
with a larger number of filters, but there is no dense layer apart from the output layer.
All the magic happens in the convolutional layers. Here is a summary of the chosen
CNN:

Model: "sequential"

Layer (type) Output Shape Param #
===
conv1d (Conv1D) (None, 422, 24) 1944

conv1d_1 (Conv1D) (None, 413, 120) 28920

flatten (Flatten) (None, 49560) 0

dense (Dense) (None, 11) 545171
===
Total params: 576,035
Trainable params: 576,035
Non-trainable params: 0

220 5 Astronomical Data Analysis

Unfortunately, there is no general recipe how to build a network. It requires intuition
and repeated cycles of training, performance evaluation, and parameter tuning.

The network defined above is compiled just like in the previous section:

63 specNet.compile(optimizer=’adam’,
64 loss=’sparse_categorical_crossentropy’,
65 metrics=[’accuracy’])

Owing the very large data size, we go only through four training cycles25:

66 specNet.fit(spectra, labels, epochs=4)

Epoch 1/4

2475/2475 [=========================] - 29s 12ms/step - loss: 0.3448 - accuracy: 0.8878

Epoch 2/4

2475/2475 [=========================] - 29s 12ms/step - loss: 0.0927 - accuracy: 0.9755

Epoch 3/4

2475/2475 [=========================] - 29s 12ms/step - loss: 0.0516 - accuracy: 0.9972

Epoch 4/4

2475/2475 [=========================] - 29s 12ms/step - loss: 0.0013 - accuracy: 1.0000

As you can see from the output, four epochs are sufficient to reach a very high
accuracy. However, we left out validation (see Exercise 5.9).

The test data set under the path specnet/training can be loaded analogous
to the training data set (the code is omitted here). How does our network perform?

67 loss, acc = specNet.evaluate(spectra_test, labels_test)
68

69 print(f"Accuracy: {acc:.4f}")

It turns out that the result is perfect:

Accuracy: 1.0000

After learning the main features of the 11 temperature classes, the network is able to
correctly classify 100% of our test data. We can take a closer look on the network’s
classification confidence by inspecting the prediction for a single spectrum:

70 i_test = 4000
71 print("Name of the spectrum:", specnames_test[i_test], "\n")
72
73 spec = spectra_test[i_test]
74
75 spec_exp = np.expand_dims(spec,0)
76
77 guess = specNet.predict(spec_exp)
78
79 for i in range(n_labels):
80 print("{:4d} K {:6.2f} %".
81 format(temp_class[i], 100*guess[0,i]))

25Timings are from a run using an Intel i7 CPU.We also used a Nvidia Titan V graphics card (GPU)
to accelerate the training (see Exercise 5.9 for GPU offloading). This allowed us to complete the
training in less than 40s.

5.5 Machine Learning 221

Name of the spectrum: 4200_1_1101_698.97.npz

4000 K 0.00 %
4200 K 100.00 %
4400 K 0.00 %
4600 K 0.00 %
4800 K 0.00 %
5000 K 0.00 %
5200 K 0.00 %
5400 K 0.00 %
5600 K 0.00 %
5800 K 0.00 %
6000 K 0.00 %

The network finds by far the highest probability for the correct answer: 4200 K.
It is good practice to save the model, i.e. the trained network with all parameters,

so that it can be used anytime later without repeating the training all over again:

82 SpecNet.save(’data_files/specnet_model.tf’, save_format=’tf’)

This file is part of this chapter’s online material. You can restore the network with

83 specNet = tf.keras.models.load_model(’data_files/specnet_model.tf’)

Since we used synthetic spectra for training and testing, the crucial question is
whether the network will work with real data from observations. As a demonstration,
let us apply our network to the solar spectrum:

84 spectrum_file = "data_files/sun_spec.npz"
85

86 spec_arr = np.load(spectrum_file)
87 wave = spec_arr["arr_0"][:,0]
88 flux = spec_arr["arr_0"][:,1]
89

90 flux_2d = np.reshape(flux, (-1,n_channels))

If you like you can plot the spectrum. Now let us see what specNet’s guess is:

91 guess = specNet.predict(np.expand_dims(flux_2d, axis=0))
92
93 for i in range(n_labels):
94 print("{:4d} K {:6.2f} %".
95 format(temp_class[i], 100*guess[0,i]))
96
97 print("\nEffective temperature estimate: {:.0f} K".
98 format(np.average(temp_class, weights=guess.flatten())))

222 5 Astronomical Data Analysis

Table 5.1 Spectral classes and effective temperatures of G- and K-type main sequence stars

Class Teff [K]
G0 5980

G2 5800

G5 5620

G9 5370

K0 5230

K1 5080

K3 4810

K4 4640

K5 4350

K7 4150

4000 K 0.00 %
4200 K 0.00 %
4400 K 0.00 %
4600 K 0.00 %
4800 K 0.00 %
5000 K 0.00 %
5200 K 0.00 %
5400 K 0.00 %
5600 K 1.15 %
5800 K 98.81 %
6000 K 0.03 %

Effective temperature estimate: 5798 K

The weighted average of 5798 K closely matches the Sun’s effective temperature
of 5780 K. Our network has indeed learned to estimate the effective temperature of
a star from its spectrum.

From the use cases discussed in this section, image-based galaxy classification
and spectral classification of stars, you can guess how powerful CNNs are. But we
have only scratched at the surface of machine learning. By now, there is a plethora
of applications in astrophysics. It is up to you to explore these topics further.

Exercises

5.8 Are you able to improve galNet? Vary the network parameters of the con-
volution and dropout layers. If your computer permits, you can also attempt to use
a larger image size for the training or experiment with an additional convolutional
layer. Once you are finished with validation and testing, search for galaxy images on
the web and feed them into your network.

5.9 Instead of temperatures, use the spectral classes according to the Morgan–
Keenan system to label your data (see Table 5.1). For example, the spectral class

5.5 Machine Learning 223

of the Sun is G2. Label each synthetic spectrum with the class that is closest to its
effective temperature (the lowest temperatures fall in the same class). Train the net-
work to identify these classes and investigate the sensitivity on the filter parameters
of the second convolutional layer. With the keyword validation_split you
can use a fraction of the training data set as validation data to compare losses in the
training epochs.

If you have a powerful graphics card, you can try to offload the training by using
TensorFlow’s device() function:

with tf.device(’/gpu:0’):
specNet.fit(spectra, labels, epochs=4)

The with statement creates a so-called context manager for the execution of the
training on the GPU of your computer (see also Appendix B.3 and the tutorial
www.tensorflow.org/guide/gpu).

https://www.tensorflow.org/guide/gpu

Appendix A
Object-Oriented Programming in a Nutshell

Classical programming languages, such as Fortran or C, are procedural languages:
Especially in low-level languages like C, every statement corresponds to one or
several lines of assembly,whichwill in turn be translated into a number of nativeCPU
instructions. Variables and functions (subroutines) acting on variables are strictly
distinct concepts: The former are basically locations in memory, the latter collections
of instructions that can be called repeatedly.

The late 20th century has seen the rise of a new programming paradigm: Object-
oriented programming (OOP) languages aim at bringing together data and functions
by introducing the concept of classes. A class is a blueprint for objects (also known
as instances) containing specific data and functions to manipulate the data in a con-
trolled way. Thus, data are encapsulated in objects, making code easier to read and
to understand. Generally, object-oriented languages are well suited for developing
complex applications that do not crave for every single bit of performance and do
not require low-level access to hardware. Python is not a purely object-oriented pro-
gramming language (you can write embarrassingly procedural code in Python), but
it supports the basic concepts of OOP. Apart from encapsulation, these are inheri-
tance, abstraction, and polymorphism. While we briefly touch upon inheritance in
Sect. 2.1.3, abstraction and polymorphism are not covered by this book.

Let us consider an example: In Sect. 4.5, we analyze data from an N-body sim-
ulation of a stellar cluster. The basic entities in a gravitational N-body code are the
bodies, i.e. point particles of a certain mass that reside at some position and move
with some velocity. Mass, position, and velocity are attributes of the particles. Given
these data, we can evaluate the instantaneous gravitational forces between the bodies
and change their position and velocities using a numerical integration scheme for dif-
ferential equations. In a more advanced code, bodies may have additional attributes,
for example, a finite radius for Roche limit calculations. We will not go into the
difficulties of implementing full N-body code here, but we will consider the simplest
case, namely the two body-problem, to explain some of the basic ideas.

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9

225

https://doi.org/10.1007/978-3-030-70347-9

226 Appendix A: Object-Oriented Programming in a Nutshell

An essential part of a Python class is the definition of the __init__ method,
which is also called constructor. It defines the attributes of an object belonging to
the class. Below the complete definition of the class Body is listed. It is part of the
module nbody, which is zipped together with other material from the appendices
of this book. The class definition begins with the Python keyword class followed
by the name of the class. The so-called member functions of the class are indented:

1 # excerpt from nbody.py
2 import numpy as np
3 from scipy.constants import G
4
5 class Body:
6
7 location="Universe"
8
9 def __init__(self, m, name=None):
10 self.m = m
11 self.name = name
12
13 # protected attributes
14 self._x = np.zeros(3)
15 self._v = np.zeros(3)
16
17 def print_mass(self):
18 if self.name == None:
19 print(f"Mass = {self.m:.2e} kg")
20 else:
21 print("Mass of", self.name, f"= {self.m:.2e} kg")
22
23 def set_state(self, x0, v0):
24 # ensure x0 and v0 are arrays
25 x0 = np.array(x0); v0 = np.array(v0)
26
27 # accept only if there are three elements
28 try:
29 if x0.size == 3 and v0.size == 3:
30 self._x = x0
31 self._v = v0
32 else:
33 raise ValueError
34 except ValueError:
35 print("Invalid argument:",
36 "must be array-like with three elements")
37
38 def pos(self):
39 return self._x
40
41 def vel(self):
42 return self._v
43
44 # compute distance between this body and another

Appendix A: Object-Oriented Programming in a Nutshell 227

45 def distance(self, body):
46 try:
47 if isinstance(body, Body):
48 return ((self._x[0] - body._x[0])**2 +
49 (self._x[1] - body._x[1])**2 +
50 (self._x[2] - body._x[2])**2)**(1/2)
51 else:
52 raise TypeError
53 except TypeError:
54 print("Invalid argument:",
55 "must be instance of Body")
56
57 # compute gravitational force exerted by another body
58 def gravity(self, body):
59 delta = body._x - self._x # distance vector
60 return G * self.m * body.m * \
61 delta / np.sum(delta*delta)**(3/2)
62
63 @classmethod
64 def two_body_step(cls, body1, body2, dt):
65 """
66 symplectic Euler step for the two-body problem
67
68 args: body1, body2 - the two bodies
69 dt - time step
70 """
71 force = cls.gravity(body1, body2)
72
73 body1._v += force * dt / body1.m
74 body2._v -= force * dt / body2.m
75
76 body1._x += body1._v * dt
77 body2._x += body2._v * dt

The constructor is defined in lines 9–15. To create a new instance of the class, the
user calls the constructor and supplies all the information that is required to initialize
the attributes. But how does this work?

228 Appendix A: Object-Oriented Programming in a Nutshell

In Sect. 4.3, we defined initial conditions for the binary system Sirius A and B.
So, let us first create an object for the star Sirius A:

1 %load_ext autoreload
2 %autoreload 1
3 %aimport nbody
4

5 from astropy.constants import M_sun
6

7 body1 = nbody.Body(2.06*M_sun.value, "Sirus A")

The first step is, of course, to import the module nbody, which you would nor-
mally do by executing import nbody. In interactive Python, however, class defi-
nitions contained inmodules will not be updated once you have imported themodule,
unless it is explicitly reloaded. This can be a quite a nuisance when you are still in
the process of developing a class. Fortunately, IPython and Jupyter offer with the
autoreload extension a convenient gadget. After invoking the magic command
%autoreload 1, all modules imported with %aimport will be reloaded when-
ever subsequent code is executed. In the example above, nbody is automatically
reloaded and you will find that any changes to nbody.py made in a source code
editor will immediately come into effect in your interactive session. After loading
the required modules, an object called body1 is created in line 7. As you can see, the
constructor is called by the class name and its first argument, self, is omitted. In
Python classes, the self variable represents the current object and only has a mean-
ing inside a class. In the constructor it refers to the object to be created. For this reason,
it cannot be specified as an actual argument. In other words, __init__(self)
is equivalent to Body() outside of the the class definition. The other arguments set
the mass and the name of the star as attributes. The constructor also initializes the
position and velocity with null vectors (defined as NumPy arrays).

Object attributes can be easily accessed via the dot operator. For example,

8 print("Mass of", body1.name, f"= {body1.m:.2e} kg")

produces the formatted output

Mass of Sirus A = 4.10e+30 kg

However, only public attributes should be accessed this way. There are also protected
and private attributes, but Python tends to be less restrictive than other object-oriented
languages adhering to the principle of data encapsulation. By default, attributes are
public and you are allowed to modify them directly. You may want to give it a try.
While it makes sense to change basic properties such as the name of a body without
further ado, position and velocity are more delicate pieces of data. They change
according to physical laws. For this reason, the attributes _x and _v are prefixed by
an underscore, indicating that the user is not supposed to access them outside of the
class. You can change them directly, but the preferred way of access is via methods.

Appendix A: Object-Oriented Programming in a Nutshell 229

Such attributes are called protected.1 If an attribute is prefixed with two underscores,
it is private and access will be more restricted.

Printing the mass of a body is incorporated as a method in the class Body (see
listing above). As a result, it can be applied to any object:

9 body2 = nbody.Body(1.02*M_sun.value, "Sirus B")
10

11 body2.print_mass()

In this case, we get the output

Mass of Sirus B = 2.03e+30 kg

From the definition of print_mass() you can see that the output is adjusted to
the cases of a name being defined or not. The name attribute is an optional argument
of the constructor. By default it is set to None. You can define a name anytime later
if you so choose. Maybe you remember various examples where whole objects are
printed (see, for example, Sect. 1.4). This is the purpose of the __str__(self)
method. It returns a formatted string for printing some or all attributes of an object
in a well readable from (e.g. print(body2)) We leave it to you to add such a
method to the Body class.

The next step is to define initial data. This can be done along the same lines as in
Sect. 4.3, except for using the set_state()method to set the initial position and
velocity of each star:

12 from math import pi
13 from scipy.constants import au,G
14
15 M1 = body1.m
16 M2 = body2.m
17
18 # orbital parameters
19 a = 2.64*7.4957*au
20 e = 0.5914
21 T = pi * (G*(M1 + M2))**(-1/2) * a**(3/2)
22
23 # periastron
24 d = a*(1 - e)
25 v = (G*(M1 + M2)*(2/d - 1/a))**(1/2) # vis-viva eq.
26
27 body1.set_state([d*M2/(M1 + M2), 0], [0, -v*M2/(M1 + M2)])

The last line, however, will throw an error:

Invalid argument: must be array-like with three elments

The reason is that set_state() checks whether the arguments it receives are
arrays with three elements. If not, a ValueError is raised. The problem in

1This is a naming convention. Protected attributes canmake a difference if subclasses are introduced.

230 Appendix A: Object-Oriented Programming in a Nutshell

the example above is that two-dimensional position and velocity vectors are passed
as arguments. Although this makes sense for the two-body problem, the general
case with three dimensions is assumed in the class Body. Consequently, the correct
initialization reads

28 body1.set_state([d*M2/(M1 + M2), 0, 0],
29 [0, -v*M2/(M1 + M2), 0])
30 body2.set_state([-d*M1/(M1 + M2), 0, 0],
31 [0, v*M1/(M1 + M2), 0])

You can get, for example, the position of Sirius A via body1.pos().
To compute the initial distance of the two stars, we can use another method:

32 print("{:.2f} AU, {:.2f} AU".
33 format(d/au, body1.distance(body2)/au))

This confirms that the initial distance is the periastron distance defined in line 24:

8.09 AU, 8.09 AU

Since distance() is a method, the first body is self, while the other body is
passed as an argument (see the definition of the method in the listing above). Tomake
the method foolproof, it is checked whether the actual argument is an instance of the
class. Actually, there is a way to call an instance method with the self argument
being filled in by the argument list:

34 print(nbody.Body.distance(body1, body2)/au)

You would not normally want to do that, but there are exceptions from the rule (see
below).

Finally, let us put all pieces together and simulate the orbital motions of Sirius A
and B:

35 import numpy as np
36

37 n_rev = 3 # number of revolutions
38 n = n_rev*500 # number of time steps
39 dt = n_rev*T/n # time step
40 t = np.arange(0, (n+1)*dt, dt)
41

42 orbit1 = np.zeros([n+1,3])
43 orbit2 = np.zeros([n+1,3])
44

45 # integrate two-body problem
46 for i in range(n+1):
47 orbit1[i] = body1.pos()
48 orbit2[i] = body2.pos()
49

50 nbody.Body.two_body_step(body1, body2, dt)

Appendix A: Object-Oriented Programming in a Nutshell 231

In the for loop, we make use of the class method two_body_step() to update
positions and velocities using the symplectic Euler scheme. In contrast to an instance
method, it does not act on a particular object. In the above listing of the class, you can
see that the definition of two_body_step() is marked by the @classmethod
decorator. The argument named cls is analogous to self, except that it refers to
the class name instead of the current object. The two objects for which we want to
compute the Euler step are passed just like arguments of an ordinary function. But,
hold on, did we not state that functions only receive input through their arguments,
without changing them? Well, two_body_step() can change the states of the
two bodies because Python uses a mechanism that is known as call by object ref-
erence. You can easily convince yourself that theses changes persist after calling
two_body_step().

Like functions, class methods can change public as well as protected attributes
of their arguments, provided that they are mutable objects (call by object
reference).

The gravitational force between the two bodies is computedwith the instancemethod
gravity(). Inside two_body_step(), it is called in the same fashion as
distance() in the example above (see line 34), with cls pointing to the class.
As a result, the states of body1 and body2 are iterated in the loop through all time
steps and successive positions are recorded, like ephemerides, in the arrays orbit1
and orbit2. It is left as an exercise to plot the orbits and to compare them with
Fig. 4.8.

Why not split two_body_step() into separate updates for the two bodies,
which could be implemented as instance methods? In that case, the gravitational
force between the bodies would be evaluated twice rather than applying Newton’s
third law to compute the their accelerations at once. Since force computation involves
themost expensive arithmetic operations, this should be avoided. You can try to write
a version for three-body interactions and apply it, for instance, to the Algol system
(see Sect. 4.3). In systems consisting of many gravitating bodies, such as the stellar
cluster discussed in Sect. 4.5, performance becomes the main issue. Direct summa-
tion of gravitational forces over all pairs of bodies becomes quickly intractable and
approximate algorithms have to be applied. If you want to test it, see Exercise 4.18.

Although defining objects for pieces of data helps to write well structured code,
the overhead can become problematic in numerical applications. As a consequence, it
is preferable to collect data in objects rather than representing each item individually
by an object. You can do an OOP project of your own in Exercise 4.15. The task is to
write a class for a large number of test particles orbiting a gravitating central mass.

Appendix B
Making Python Faster

B.1 Using Arrays

The native data structure for ordered collections of data items in Python is a list.
At first glance, lists are very similar to NumPy arrays. For example, the days of
equinoxes and solstices in 2020 could be defined as a list:

1 N = [79, 171, 265, 355]

Compare this to the definition of the array N in Sect. 2.1. The list on the right-hand
side is just what is passed as argument to np.array(). What does this function
do? Well, it converts a given list into an array. If you enter

2 N[1], type(N[1]), type(N)

you will see the output

(171, int, list)

So N[1] is an integer, which is the second element of the list N (indexing works in
the same way as with arrays). Now let us convert this list into an array and assigned
it to the same name as before. The original list will be deleted in this case:

3 import numpy as np
4

5 # convert to array
6 N = np.array(N)
7

8 print(N[1], N[1].dtype, N.dtype)

Now the data type of the element N[1] is given by the NumPy attribute dtype:

171 int64 int64

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9

233

https://doi.org/10.1007/978-3-030-70347-9

234 Appendix B: Making Python Faster

In contrast to a list, this data type is also an attribute of the whole array because the
data type must be uniform, i.e. all elements must have an identical data type.

This does not apply to lists:

9 # redefine list
10 N = [79, "summer solstice", 265, "winter solstice"]
11

12 N[1], type(N[1]), type(N)

Now some of the elements are strings in place of integers:

(’summer solstice’, str, list)

You can easily convince yourself that the first and third elements are still of type
int. Although the meaning of the expressions in line 10 might be the same for a
human, the meaning that pertains to these data types is fundamentally different in
Python. What happens if N is again converted into an array? Try for yourself. You
are probably up for a surprise.

Uniformity of the data type is important for the memory layout of NumPy arrays.
The speed of modern CPUs is fast compared to the time required to load data from
the computer’s main memory (RAM). If data cannot be loaded more or less in big
chunks, the CPUwill inevitably be idle for a while, before it receives the next piece of
data. This situation is typically encountered when working with Python lists because
different elements of the list can be stored at random positions in memory. NumPy
arrays, on the other hand, alleviate the problem by arranging elements consecutively
in memory.2 The total memory required to store an array is given by the number
of elements times the size of each element in bytes and there is a simple mapping
between array elements and their positions in memory.3

It turns out that this has a substantial impact on the efficiency of numerical com-
putations using NumPy functions or array operations. As an example, let us compute
the Planck spectrum for a given temperature (see Sect. 3.1.2). First, we do this by
using lists. For convenience, we use physical constants from scipy.constants.

1 import math
2 from scipy.constants import h,c,k,sigma
3

4 # list of wavenumbers
5 n = 1000
6 lambda_max = 2e-6
7 lambda_step = lambda_max/n
8 wavelength = [i*lambda_step for i in range(1,n+1)]

2This is possible through a hierarchy of caches which provide access to blocks of memory at much
higher speed than the main memory.
3This is also true for multi-dimensional arrays, although the mapping is slightly more complicated.

Appendix B: Making Python Faster 235

The last line shows how to iteratively create a Python list of uniformly spaced
wavenumbers by means of an inline for loop. The following function calcu-
lates the intensity for a list of wavelengths. The effective temperature of the Sun is
set as default.

9 def planck_spectrum(wavelength, T=5778):
10
11 # create empty list
12 spectrum = []
13
14 # loop through wavelengths and append flux values
15 for val in wavelength:
16 spectrum.append(2*h*c**2 /
17 (val**5 * (math.exp(min(700, h*c/(val*k*T))) - 1)))
18
19 return spectrum

Here, we have an explict loop that runs through all wavelengths and computes the
corresponding intensity using the exponential function from the math module. The
result is appended to the listspectrum, which is initialized as an empty list without
any elements in line 12. This is an important difference between lists and arrays.
The latter always have to be initialized with non-zero length. Moreover, the method
append() in the example above modifies an existing object. As a result, appended
elements can be located anywhere in memory. In contrast, NumPy’s append()
function returns a newly allocated array that is a copy of the original array plus one
or more new elements.

A tool for performance measurement that is particularly easy to use is the magic
command timeit in interactive Python (alternatively use -m timeit as com-
mand line option if Python is executed on the shell):

20 %timeit planck_spectrum(wavelength)

which outputs (numbers will differ depending on your computer architecture):

834ms ± 3.44msperloop (mean ± std.dev.of7runs, 1000loopseach)

This tells us that execution of planck_spectrum(wavelength) took 834ms
(a little less than one second) averaged over 7 runs. Since timeit is tailored to
small code snippets that are executed in a very short time, the measurement period
is artificially increased by a large number of loops for higher precision (the number
of loops is automatically adjusted).

It is left as an exercise for you to time the implementation of
planck_spectrum() based on NumPy from Sect. 3.1.2 (do not forget to convert
wavelength to an array). We get:

50.3 ms ± 1.28 ms per loop (mean ± std. dev. of 7 runs, 10000 loops each)

With NumPy, the computation is more than ten times faster! We can assign the array
returned by planck_spectrum() to explore its properties:

236 Appendix B: Making Python Faster

21 solar = planck_spectrum(wavelength)
22 solar.flags

The flags attribute gives us the following information (abridged):

C_CONTIGUOUS : True

F_CONTIGUOUS : True

Indeed, the resulting array is contiguous in memory.4 You may also check the array
wavelength.

However, this is not the only reason for higher efficiency. Array operations also
avoid function calls inside loops, which are particularly costly. Especially beginners
might prefer an explicit loop as it is easy to read. For example, we can apply the
trapezoidal rule to integrate the Planck spectrum (see Sect. 3.2.2) using a for loop:

1 def integr_trapez(f, a, b, n):
2

3 # integration step
4 h = (b - a)/n
5

6 # initialisation
7 tmp = 0.5*f(a)
8

9 # loop through subintervals between a+h and b-h
10 for i in range(1,n):
11 tmp += f(a + i*h)
12

13 tmp += 0.5*f(b)
14

15 return h*tmp

Timing the integration of the Planck spectrum,

16 %timeit integr_trapez(planck_spectrum, 1e-9, 364.7e-9, 100)

yields a mean execution time of

474 µs ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For comparability, we used the Numpy version of planck_spectrum(). Now
let us see what we get if the integrator from Sect. 3.2.2 is used:

76.7 µs ± 893 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Once more, the speed up is palpable. Passing an array as function argument and
applying np.sum() turns out to be much faster than calling the function for single
values inside the body of a for loop, as in the code example above. So the lesson

4The two types are relevant for two-dimensional arrays, where the layout can be row-major as in C
or column-major as in Fortran.

Appendix B: Making Python Faster 237

learned is to avoid explicit loops and especially function calls inside loops whenever
possible. Even in cases where this is not feasible, there are means of improving
performance, as shown in the following section.

B.2 Cythonizing Code

As a case study, we consider the Strömgren sphere discussed in Sect. 4.1.1. To
solve the initial value problemwith the fourth-order Runge-Kutta method (RK4), we
iteratively call the Python function rk4_step(). As demonstrated in the previous
section, function calls inside a loop have a negative impact on performance. We can
time the complete RK4 integration by defining a wrapper function:

1 import numpy as np
2
3 def solve_stroemgren(r0, dt, n_steps):
4 t = np.linspace(0, n_steps*dt, n_steps+1)
5 r = np.zeros(n_steps+1)
6 r[0] = r0
7
8 for n in range(n_steps):
9 r[n+1] = rk4_step(lambda t, r: (1 - r**3)/(3*r**2),
10 t[n], r[n], dt)
11
12 return (t,r)

This allows us to utilize the %timeit command introduced in Sect. B.1:

13 %timeit solve_stroemgren(0.01, 1e-3, 10000)

The measured execution time (subject to the computer in use) is

94.3 ms ± 997 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

which is about a tenth of a second.
If this is so, why do we not implement the RK4 scheme for a specific differential

equation rather than using a function for arbitrary initial value problems? Without
a generic, reusable implementation, it would be necessary to rewrite the code every
time a new problem is to be solved. This is time consuming and prone to errors.

A better solution is to translate the Python code for the RK4 scheme into the
compilable language C. A compiler produces machine code that is much faster than
code that is executed by the Python interpreter. This is made possible by Cython and
requires some preparation.5 To begin with, we need to put the functions we want to
turn into C code in a module with file extension .pyx. In our example, this means
copying the definition of rk4_step() into a file named stroemgren.pyx (or

5For more information, see cython.readthedocs.io/en/latest/index.html.

https://cython.readthedocs.io/en/latest/index.html

238 Appendix B: Making Python Faster

extract the file from the zip-archive for this section). An important modification to
take advantage of Cython is static typing. Remember that variables in Python are
versatile objects without a fixed data type. For example, you can initially assign a
float to a variable, then change it to a string and later to something entirely different.
As a consquence, there is no way of telling what kind of data is passed as actual
argument to a function before it is called. This is nice and extremely flexible, but
not favourable in terms of efficiency. In a low-level language such as C, you need to
exactly specify the type of every variable, function argument, and return value. So
if you want to translate Python code into C via Cython, you should make data types
explicit in your Python source code:

1 # excerpt from stroemgren.pyx
2 cpdef double crk4_step(f, double t, double x, double dt):
3
4 cdef double k1 = dt * f(t, x)
5 cdef double k2 = dt * f(t + 0.5*dt, x + 0.5*k1)
6 cdef double k3 = dt * f(t + 0.5*dt, x + 0.5*k2)
7 cdef double k4 = dt * f(t + dt, x + k3)
8
9 return x + (k1 + 2*(k2 + k3) + k4)/6.0

The C type double corresponds to a floating point number in Python. For local
variables you need to use the Cython keyword cdef followed by the type. In
addition, the function will return a static type if it is declared with cpdef instead of
def. Formal arguments of a function are simply prefixed with the type. You might
notice that first argument has no type because f is the name of a Python function.

As preparation for using the module stroemgren.pyx, we create a small
Python script setup.py:

from setuptools import setup
from Cython.Build import cythonize

setup(
ext_modules=cythonize("stroemgren.pyx")

)

The central directive is cythonize("stroemgren.pyx"). It instructs Python
to cynthonize the code contained in the module stroemgren.pyx. For the next
step, you need a C compiler, such as the GNU compiler gcc, on your system.6 The
command

python setup.py build_ext --inplace

6On Linux and Mac systems you can try to type gcc -v on the command line. If the compiler is
installed, you will get some information, otherwise an error message will result. Anaconda comes
with integrated compiler tools. If there is no compiler on your computer, search theweb for available
compilers for your system.

Appendix B: Making Python Faster 239

executed on the command line instructs Cython to produce a shared object file (also
know as shared library).7 Shared libraries are extensions that can be used by programs
when they are executed.

Now we can import and use crk4_step() just like any other Python function
defined in a module:

1 import numpy as np
2 from stroemgren import crk4_step
3
4 def solve_stroemgren(r0, dt, n_steps):
5 t = np.linspace(0, n_steps*dt, n_steps+1)
6 r = np.zeros(n_steps+1)
7 r[0] = r0
8
9 for n in range(n_steps):
10 r[n+1] = crk4_step(lambda t, r: (1 - r**3)/(3*r**2),
11 t[n], r[n], dt)
12
13 return (t,r)

A measurement of the execution time confirms that using crk4_step() instead
of rk4_step() makes a difference:

14 %timeit solve_stroemgren(0.01, 1e-3, 10000)

The measured execution time (subject to the computer in use) is

21.5 ms ± 1.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The gain in speed is about a factor four.
It turns out that we can do even better if we refrain from passing a Python function

as argument (something that does not translate well into C). In the example above, a
Python lambda is used to specify the derivate dr̃/dt̃ defined by Eq. (4.11). A more
efficient computation can be accomplished by using a pure C function in the module
stroemgren.pyx:

15 # excerpt from stroemgren.pyx
16 cdef double rdot(double t, double r):
17 return (1.0 - r**3)/(3.0*r**2)

The Cython keyword cdef indicates that this function will be compiled as a C
function and cannot be called directly by a Python program. For this reason, it has
to be referenced explicitly from within the RK4 integrator:

7If you list the files in your work directory, you will see that also a file named stroemgren.c is
produced. This file contains the C code generated by Cython from which the C compiler produces
the shared object file. It should be mentioned that the intermediate C code is not intended to be read
by humans.

240 Appendix B: Making Python Faster

18 # excerpt from stroemgren.pyx
19 cpdef double stroemgren_step(double t, double r, double dt):
20
21 cdef double k1 = dt * rdot(t, r)
22 cdef double k2 = dt * rdot(t + 0.5*dt, r + 0.5*k1)
23 cdef double k3 = dt * rdot(t + 0.5*dt, r + 0.5*k2)
24 cdef double k4 = dt * rdot(t + dt, r + k3)
25
26 return x + (k1 + 2*(k2 + k3) + k4)/6.0

Of course, we give away versatility since the integrator stroemgren_step()
requires a particular function name. However, we could easily change its definition to
solve other first-order differential equations. Let us see howwell the fully cythonized
functions perform in the following program:

1 from stroemgren import stroemgren_step
2
3 def solve_stroemgren(r0, dt, n_steps):
4 t = np.linspace(0, n_steps*dt, n_steps+1)
5 r = np.zeros(n_steps+1)
6 r[0] = r0
7
8 for n in range(n_steps):
9 r[n+1] = stroemgren_step(t[n], r[n], dt)
10
11 return (t,r)

Executing

12 %timeit solve_stroemgren(0.01, 1e-3, 10000)

we finally get

7.97 ms ± 260 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Compared to the plain Python version, we have achieved a speed-up by more than
a factor of ten. You might still think that is of no concern whether your Python
program finishes in a somewhat shorter or longer fraction of a second. However, if
you increase the number of steps to 100.000—the convergence study in Sect. 4.1.1
suggests that this is the recommended number of steps—you will begin to notice
the difference without using timeit. If it comes to more demanding problems,
for example, the colliding disk simulations in Sect. 4.1.1, performance optimization
becomes an issue, and even more so in scientific data analysis in research projects.

You need to find a balance between the versatility offered by Python and the
efficiency of languages such as C and Fortran that serves your purpose. There is
much more to Cython than what we can cover here. We have given you only a first
taste and your are invited to explore the capabilities on your own.8 Since Cython

8A good starting point are the online tutorials: cython.readthedocs.io/en/latest/src/tutorial.

https://cython.readthedocs.io/en/latest/src/tutorial/index.html

Appendix B: Making Python Faster 241

allows you to call external C functions from Python, an alternative to translating
Python into C is to implement critical parts of an algorithm directly as C functions.
Moreover, code can be executed very fast on GPUs, as outlined in the following
section.

B.3 Parallelization and GPU Offloading

The N-body problem discussed in Sect. 4.5 belongs to the class of N 2 problems.
That is, if we double the number N of objects, the computational cost per numerical
timestep increases by a factor of 22 = 4. Therefore, simulating large N-body sys-
tems becomes prohibitively expensive if the computation is carried out by a single
processor core. Since modern CPUs have a multi-core architecture, it is possible to
speed up the computationally most demanding part by distributing the workload over
several cores. Without going into the gory details, you can think of cores as identical
compute units in a processor (CPU). Each core can carry out an independent task.
Alternatively, a program can be split into several threads running in parallel on differ-
ent cores. While each task has its own data in memory, threads may share data. The
threading and multiprocessing modules of the Python Standard Library
offer APIs for running Python programs on multiple cores. They are relatively easy
to use even for beginners. If you want to give it a try, we recommend the online guide
docs.python.org/3/library/concurrency.html. For running fully parallelized codes on
high-performance clusters, MPI for Python is available in the mpi4py package.
However, this is a topic for advanced programming courses.9

An alternative is the so-called offloading of computationally intensive tasks to
accelerators. The most common accelerators are now Graphics Processing Units
(GPU). Especially for machine learning, the speedup can be dramatic. Compared
to a CPU, a GPU has a much larger number of execution units and is capable of
performing hundreds or even thousands of floating point operations in parallel.10

The downside is that GPUs have significantly tighter memory restrictions and it
is not straightforward to write code that runs efficiently on a GPU. In Python, the
library PyOpenCL allows you to create special functions called kernels that can
be executed on a GPU.11 For example, the computation of the forces in a N-body
simulations can be put into a kernel. For a small number of bodies, copying data
such as the positions from the main memory of the computer into the GPU’s local

9See mpi4py.readthedocs.io/en/stable/index.html.
10For instance, high-end graphics cards such as the Nvidia Titan V have as many as 5120 individual
execution units.
11PyOpenCL is the Pythonic flavor of OpenCL (Open Computing Language), a standardized API
to run programs on all kinds of accelerators. For further information, see pypi.org/project/pyopencl.

https://docs.python.org/3/library/concurrency.html
https://mpi4py.readthedocs.io/en/stable/index.html
https://pypi.org/project/pyopencl/

242 Appendix B: Making Python Faster

memory is a bottleneck that slows down the code. Beyond roughly 1000 bodies,
however, substantial performance gains are possible. If you are interested in GPU
programming, you can find more on the subject in specialized textbooks and on the
web.

References

1. J.M. Kinder, P. Nelson, A Student’s Guide to Python for Physical Modeling (Princeton Univer-
sity, Oxford, 2015)

2. J. Freely, Aladdin’s Lamp: How Greek Science Came to Europe Through the Islamic World,
1st edn. (Alfred A. Knopf, New York, 2009)

3. H. Karttunen, P. Kröger, H. Oja,M. Poutanen, K.J. Donner,Fundamental Astronomy (Springer,
Berlin, 2017). https://doi.org/10.1007/978-3-662-53045-0

4. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, 2nd edn. (Pearson, San
Francisco, 2014)

5. P. Goldreich, S. Soter, Icarus 5(1), 375 (1966). https://doi.org/10.1016/0019-1035(66)90051-
0

6. J.B. Holberg, M.A. Barstow, F.C. Bruhweiler, A.M. Cruise, A.J. Penny, Astrophys. J. 497(2),
935 (1998). https://doi.org/10.10862F305489

7. R.H. Landau, Computational Physics: Problem Solving with Python (Wiley-VCH, 2015)
8. P. Bretagnon, G. Francou, Astron. Astrophys. 202, 309 (1988)
9. J. Lequeux,The Interstellar Medium (Springer, Berlin, 2005). https://doi.org/10.1007/b137959
10. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes the Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)
11. J.E. Lyne, Nature 375(6533), 638 (1995). https://doi.org/10.1038/375638a0
12. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation. Freeman (1973)
13. R. Montgomery, Sci. Am. 321(2), 66 (2019)
14. M.C. Schroeder, N.F. Comins, Astronomy 16(12), 90 (1988)
15. Planck Collaboration, P. A. R. Ade, N. Aghanim, and 259 more, A&A 594, A13 (2016).

10.1051/0004-6361/201525830. URL https://doi.org/10.1051/0004-6361/201525830
16. S. Perlmutter, G. Aldering, G. Goldhaber, and 30 more, ApJ 517(2), 565 (1999). https://doi.

org/10.1086/307221
17. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016). http://www.

deeplearningbook.org
18. S. Raschka, V. Mirjalili, Python Machine Learning. Machine Learning and Deep Learning

with Python, Scikit-learn, and TensorFlow, 2nd edn. fourth release, [fully revised and updated]
edn. Expert insight (Packt Publishing, 2018)

19. A. Baillard, E. Bertin, V. de Lapparent, P. Fouqué, S. Arnouts, Y. Mellier, R. Pelló, J.-F.
Leborgne, P. Prugniel, D. Makarov, L. Makarova, H.J. McCracken, A. Bijaoui, L. Tasca, A&A
532, A74 (2011). https://doi.org/10.1051/0004-6361/201016423

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9

243

https://doi.org/10.1007/978-3-662-53045-0
https://doi.org/10.1016/0019-1035(66)90051-0
https://doi.org/10.1016/0019-1035(66)90051-0
https://doi.org/10.10862F305489
https://doi.org/10.1007/b137959
https://doi.org/10.1038/375638a0
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1051/0004-6361/201016423
https://doi.org/10.1007/978-3-030-70347-9

244 References

20. N. Piskunov, in Second BRITE-Constellation Science Conference: Small Satellites - Big Sci-
ence, vol. 5, ed. by K. Zwintz, E. Poretti (2017), pp. 209–213

21. J.B. Kaler, Stars and Their Spectra an Introduction to the Spectral Sequence, 1st edn. (Cam-
bridge University Press, 1989).

Index

A
absorption, 77
ADQL, 195
air resistance, 128
algorithm, 8
alias, 15
altitude, see coordinate systems, horizontal
Anaconda, 2
anonymous function, see function, lambda
arithmetic operator, 3

array, performed on, 24
basic, 3
exponentiation, 7
integer division, 160
modulo, 14
remainder, 160

array, 21–27
axis, 130
contiguous memory layout, 236
data type, 206
flattening, 130
index, 22, 50
index list, 210
initialization, 22
masked, 52
operation, see arithmetic operator
slicing, 131
two-dimensional, 50, 129–131

artificial neural network
see neural network, 207

assignment, 3
multiple, 13, 50

astropy, 16–17
constants, 17, 57
coordinates, 28–29, 35

AltAz, 36
altitude, 39
declination, 29
get_sun, 38
SkyCoord, 29
transform_to, 38

io
fits, 185

reference, 57
time, 36, 104
units, 29, 58–60, 107, 128, 156

arrays, 37, 108
to, 30, 59

value, 17, 129
attribute, see object
autoreload, magic command, 228
azimuth, see coordinate systems, horizontal

B
Balmer series, 78, 80, 82, 187
barometric height formula, 128
Bernoulli equation, 106
black body, 55

spectrum, see Planck spectrum
block, 9
Boltzmann distribution, 78
Boolean

array, select elements, 191
expression, 13
type, 13

branching, 13
array, 40, 42
elif, 71
else, 13

© Springer Nature Switzerland AG 2021
W. Schmidt and M. Völschow, Numerical Python in Astronomy and Astrophysics,
Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-70347-9

245

https://doi.org/10.1007/978-3-030-70347-9

246 Index

if, 13
inline, 216

nested, 74
brightness, 77

C
celestial coordinate system, see coordinate

systems
celestial sphere, 19
circle, see patches
class, see object-oriented programming
class, 226
cluster, globular, 167
colormap, see matplotlib
comment, 4, 57
comparison operator, 13, 14
control structure, 8
convolutional neural network

see neural network, 207
coordinate systems

angular coordinates, 28, 29
barycentric, 103
equatorial, 19

declination, 19, 29
hour angle, 27

horizontal, 35, 41
coordinated universal time, 36
cosmological parameters, 176
CPU, 241
culmination

upper, 41
Cython, 237–241

cdef, 238, 239
cpdef, 238
cynthonize, 238

D
datetime, 41

date, 41
utcnow, 96

decay, exponential, 105
declination, see coordinate systems, equato-

rial
decorator, 231
deep learning, 208
def, see function
dictionary, 33–35

as argument of function, 156
keyword, 33
nested, 61

differential equation, numerical solution

Euler method, forward, 107–110, 118–
120

Euler method, symplectic, 122–123
explicit method, 122
Runge-Kutta method, 112–116
Runge-Kutta-Nyströmmethod, 123–124
semi-implicit method, 123

differentiation, numerical
centered difference, 98, 100

discretization error, see truncation error
distance, 77
diurnal arc, 27
dwarf planet, 45

E
ecliptic, 20

obliquity, 20
effective temperature, 56
else, see branching
enumerate, 26
ephemeris, planetary, 94
equatorial coordinate system, see coordinate

systems
equinox, 20
Euler method

see differential equation, 107
exception, see exception handling
exception handling, 87–89, 229

exception, 87
exceptions

TypeError, 230
ValueError, 89, 122, 229
ZeroDivisionError, 88

raise, 89
try, 87

exoplanet, 46, 188
hot Jupiter, 46, 188
naming, 190
radius, 193, 194
transit method, 188
TrES-2b, 190

extinction, 77

F
Fibonacci sequence, 10
file

binary, 217
FITS, see FITS file format
open, 209
text, 168, 190

fit, 94, 198
FITS file format, 185, 203

Index 247

HDU, 186
floating point number

float_info, 91
format specifier, 5, 6, 44
literal, 3
overflow, 91

for, see loop
format, 5, 26
formatted string literal, see string
free fall, 116
Friedmann equatioin, 175
from, 16
function, 2, 16, 21, 56–58

argument, actual, 57
argument, formal, 57
argument, keyword, 45, 72
argument, optional, 68, 72
argument, positional, 45, 72
argument, variadic, 61, 119–120
built-in, 14
call by object reference, 58, 231
call by value, 58
def, 56
lambda, 92, 102, 103, 115
return, 57

G
galaxy, 151

Cartwheel, 166
classification, 208
disk, 151
interacting, 151, 163–165
Whirlpool, 163, 202

Gauss, Carl Friedrich, 10
Gaussian distribution, 198
GPU, 241

offloading, 223
graphics format, 31
gravity well, 127
grid, see mesh grid

H
Hamburg Observatory, 29
help, 57
histogram, see pyplot, hist
Hohmann transfer trajectory, 46
horizontal coordinate system

see coordinate systems, 35
hour angle, see coordinate systems, equato-

rial
Hubble parameter, 175, 182
Hubble SpaceTelescope, see space telescope

I
if, see branching
image, 204–206

open, see PIL, Image
RGB color system, 204

import, 15
increment, 13
inheritance

see object, 37
initial value problem

see differential equation, 107
instance, see object
int, 89, 160
integration, numerical, 85

Simpson’s rule, 86, 89–91
trapezoidal rule, 85–89, 132
using numpy, see numpy, trapz

ionization energy, hydrogen, 79
iteration, 8

J
Julian date, 95

modified, 190
Jupyter, 1

K
Kepler’s laws

third law, 6, 42, 155

L
lambda, see function
len, 33
library, 15
light curve, 190
list, 22, 209, 216, 233

append, 209, 235
empty, 209

list, 217
logical, see Boolean
logistic equation, 106
loop, 8–14

counter, 9
for, 9, 25, 235

inline, 235
implicit, 25
inline, 65, 216
nested, 112
through array, 25–27
through dictionary, 35, 64
while, 12

248 Index

luminosity, 56
luminosity distance, 182
Lyman series, 78

M
magic command, 31
magnitude

absolute, 77
apparent, 77

Mars Climate Orbiter, 7
math, 16

floor, 96
radians, 21
trigonometric functions, 21

matplotlib
colormap, 83
inline, magic command, 31
patches, 53
pyplot, 31, 52
ticker, 84

mesh grid, 50–51
method, see object
module, 15, 95

submodule, 97
MPI, see mpi4py
mpl_toolkits

mplot3d, 83, 163
multiple plots, see pyplot, subplot

N
namespace

global, 15, 58, 97
local, 58

neural network
convolution filter, 211
convolutional, 207
dropout layer, 213
fully-connected layer, 211
hidden layer, 207
pooling layer, 211

Newton–Raphson method, 100–102
None, 88
normal distribution, see Gaussian distribu-

tion
numerical convergence, 87, 116
numpy, 22

append, 74, 159
two-dimensional, 130

arange, 30
array, 22
array, general, see array
astype, 206

integer, 206
average, 222
axis, 130, 173
clip, 33
conditional indexing, 191, 201
cross, 154
delete, 210
dot, 155
expand_dims, 214
flatten, 203
identity, 155
index list, 210
linspace, 50
load, 217
loadtxt, 168, 190

delimiter, 196
skiprows, 196
usecols, 195

masked_where, 52
max, 31
maximum, 160
mean, 173
median, 173
meshgrid, 50, 83
min, 31
minimum, 91
npz format, 217
random, 150, 153
shape, 50
slicing, 131
sort, 64
sum, 87
trapz, 133
trigonometric functions, 24
where, 41
zeros, 64

O
object, 17, 225

attribute, 17, 226
protected, 228
public, 228

constructor, 226
inheritance, 37, 186
method, 17, 229–231
self, 228

object-oriented programming, 17, 225
__init__, 226
__str__, 229
class, 17, 29, 37
class method, 231
instance method, 230

Index 249

subclass, 37, 167
obliquity, see ecliptic
Oort’s formula, 202
open, see file
OpenCL, 241
optional argument, see function
orbital

eccentricity, 41
orbital energy, 166
orbital period, 42
orbital velocity, 3–8
os, 216

isfile, 216
listdir, 216

oscillator
damped, 117
harmonic, 117

P
package, 15
packing, see function, argument, variadic
parallelization

mpi4py, 241
multiprocessing, 241
threading, 241

patches, 53
add_patch, 53
Circle, 53
Polygon, 150

physical constants, see scipy,
constants

physical dimension, see unit
PIL, 206

fromarray, 206
Image, 206

open, 209
Pillow, see PIL
Planck spectrum, 62
planet, solar system, 43
plot, see pyplot
polygon, see patches
precision

machine precision, 5
print, 2, 4
p-value, see statistical test
pyopencl, 241
pyplot, 31, 52, 83

axes, 83
axis ticks, 40, see matplotlib,
ticker 201

bar, 212
colorbar, 84

errorbar, 190
hist, 170
label, axes, 31
label, graph, 35
LaTeX, text rendering, 65
legend, 35
limit, 35
ordering, 193
plot, 31
plot, inside loop, 35
plot_surface, 83
quiver, 52
quiverkey, 53
savefig, 31
scatter, 163
semilogy, 65
set_aspect, 52, 201
subplot, 131, 172
subplots, 52
three-dimensional, 83, 163

Python Imaging Library, see PIL
Python Standard Library, 14
PYTHONPATH, 95

R
raise, see exception handling
random

sample, 210
random numbers, see numpy, random
range, 9
recursion, 10, 73–76
return, see function
RGB color, 64
right ascension, 20
rocket, suicide burn, 134
root finding, 66, 100

bisection method, 66–76
rotation, three-dimensional, 155
Runge-Kutta method, see differential equa-

tion

S
Saha equation, 80
scipy, 15–17

constants, 15, 79
integrate

solve_ivp, 141––143
quad, 181

optimize, 198, 199
curve_fit, 94, 198

stats, 199
secular variation, 94

250 Index

VSOP, 94
set, 217
sidereal time, 3, 28, 30
slingshot effect, 165
solstice, 21
sorted, 217
space telescope

GAIA, 195
Hubble Space Telescope, 202
image archive, 202

Spyder, 1
star

ζ Persei, 187
Aldebaran, 76
Arcturus, 60
Bellatrix, 76
Bernard’s Star, 60
Betelgeuse, 28, 41, 60
Polaris, 41
Rigel, 41
Sirius, 41, 60, 137

static typing, see Cython
statistical test, 199

Kolmogorov–Smirnov, 199
Stefan–Boltzmann law, 56
string, 2

concatenate, 35
formatted literal, 11
literal, 4

sun
declination, 20, 41
diurnal arc, 30
horizontal coordinates, 38
spectrum, 221

surface plot, see pyplot
survey

EFIGI, 208
GAIA, 195

sys, 91
float_info, 91
path, 95

T
task, 241
tensorflow

keras, 211–214
evaluate, 214
fit, 212, 220
predict, 214
Sequential, 211, 219

thread, 241
tidal bulge, 49
tidal force, 48

approximate, 48
timeit, magic command, 235
truncation error, 113
truncation error, global, 113
try, see exception handling
tuning parameters, 194
tuple, 26, 27, 154

from array, 130
tuple, 65
type, 37

U
unit, 7

arbitrary, 118
in Python, see astropy

universal time, 96
unpacking operator, 120, 177

V
variable, 4

local, 57
vector field, plot, see pyplot
vector multiplication, 154, 155

cross product, see numpy, cross
dot product, see numpy, dot

W
while, see loop
white dwarf, 62
Wien’s displacement law, 66
with, 223

Z
zip, 26

	Preface
	Acknowledgements
	Contents
	1 Python Basics
	1.1 Using Python
	1.2 Understanding Expressions and Assignments
	1.3 Control Structures
	1.4 Working with Modules and Objects

	2 Computing and Displaying Data
	2.1 Spherical Astronomy
	2.1.1 Declination of the Sun
	2.1.2 Diurnal Arc
	2.1.3 Observation of Celestial Objects

	2.2 Kepler's Laws of Planetary Motion
	2.3 Tidal Forces

	3 Functions and Numerical Methods
	3.1 Blackbody Radiation and Stellar Properties
	3.1.1 Stefan–Boltzmann Law
	3.1.2 Planck Spectrum

	3.2 Physics of Stellar Atmospheres
	3.2.1 Thermal Excitation and Ionization
	3.2.2 The Balmer Jump

	3.3 Planetary Ephemerides

	4 Solving Differential Equations
	4.1 Numerical Integration of Initial Value Problems
	4.1.1 First Order Differential Equations
	4.1.2 Second Order Differential Equations

	4.2 Radial Fall
	4.3 Orbital Mechanics
	4.4 Galaxy Collisions
	4.5 Stellar Clusters
	4.6 Expansion of the Universe

	5 Astronomical Data Analysis
	5.1 Spectral Analysis
	5.2 Transit Light Curves
	5.3 Survey Data Sets
	5.4 Image Processing
	5.5 Machine Learning
	5.5.1 Image Classification
	5.5.2 Spectral Classification

	Appendix A Object-Oriented Programming in a Nutshell
	Appendix B Making Python Faster
	B.1 Using Arrays
	B.2 Cythonizing Code
	B.3 Parallelization and GPU Offloading
	Appendix References
	

	Index

