
Special Issue in the Journal Artificial Intelligence in Medicine on
Summarization and Information Extraction from Medical Documents,

Comparative Experiments on Learning

Information Extractors for Proteins and their

Interactions

Razvan Bunescu a Ruifang Ge a Rohit J. Kate a

Edward M. Marcotte b;1 Raymond J. Mooney a;�;2

Arun K. Ramani b Yuk Wah Wong a;3

aDepartment of Computer Sciences, University of Texas, Austin, TX 78712, USA

bInstitute for Cellular and Molecular Biology and Center for Computational

Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA

Abstract

Automatically extracting information from biomedical text holds the promise of eas-
ily consolidating large amounts of biological knowledge in computer-accessible form.
This strategy is particularly attractive for extracting data relevant to genes of the
human genome from the 11 million abstracts in Medline. However, extraction e�orts
have been frustrated by the lack of conventions for describing human genes and pro-
teins. We have developed and evaluated a variety of learned information extraction
systems for identifying human protein names in Medline abstracts and subsequently
extracting information on interactions between the proteins. We demonstrate that
machine learning approaches using support vector machines and maximum entropy
are able to identify human proteins with higher accuracy than several previous
approaches. We also demonstrate that various rule induction methods are able to
identify protein interactions with higher precision than manually-developed rules.

Key words: information extraction, text mining, machine learning, protein
interactions, Medline

Preprint submitted to Elsevier Science 25 August 2003

1 Introduction

An incredible wealth of biological information generated using biochemical
and genetic approaches is stored in published articles in scienti�c journals.
Summaries of more than 11 million such articles are available in the Medline
database. However, retrieving and processing this information is very diÆcult
due to the lack of formal structure in the natural-language narrative in these
documents. Automatically extracting information from biomedical text holds
the promise of easily consolidating large amounts of biological knowledge in
computer-accessible form. Information extraction (IE) systems could poten-
tially gather information on global gene relationships, gene functions, protein
interactions, gene-disease relationships, and other important information on
biological processes.

A number of recent projects have focused on the manual development of IE
systems for extracting information from biomedical literature [1{10]. Unfor-
tunately, manual engineering of information extraction (IE) systems for par-
ticular applications is a tedious and time-consuming process [11]. Each new
type of information to be extracted requires a signi�cant new engineering ef-
fort to develop speci�c extraction patterns for identifying this information.
Human-developed rules are also rarely able to accurately capture all of the
variety of formats and contexts in which the desired information can appear
in natural-language documents.

Consequently, signi�cant recent research in information extraction has focused
on using machine learning techniques to help automate the development of IE
systems [12,13]. A number of machine learning methods, including grammar
induction, hidden Markov models, inductive logic programming, naive Bayes
text categorization, and decision tree induction, have been used to help auto-
mate the development of IE systems. First, learning systems are trained on a
corpus of documents in which human experts have tagged the desired infor-
mation. Next, the IE systems induced from this supervised data are used to

� Corresponding Author.
Email addresses: razvan@cs.utexas.edu (Razvan Bunescu),

grf@cs.utexas.edu (Ruifang Ge), rjkate@cs.utexas.edu (Rohit J. Kate),
marcotte@icmb.utexas.edu (Edward M. Marcotte), mooney@cs.utexas.edu
(Raymond J. Mooney), arun@icmb.utexas.edu (Arun K. Ramani),
ywwong@cs.utexas.edu (Yuk Wah Wong).
URLs: http://www.cm.utexas.edu/faculty/Marcotte.html (Edward M.

Marcotte), http://www.cs.utexas.edu/users/mooney (Raymond J. Mooney).
1 Supported by the Welch Foundation (F-1515), the National Science Foundation
(ITR-0219061), and the Texas Advanced Research Program.
2 Supported by grant IIS-0117308 from the National Science Foundation.
3 Supported by an MCD Fellowship from the University of Texas at Austin.

2

extract new information from novel test documents. Some projects on extract-
ing information from biomedical literature have also employed such learning
techniques [14{21].

We are exploring the use of a variety of machine learning methods to au-
tomatically develop IE systems for extracting information on gene/protein
name, function and interactions from Medline abstracts. For our purposes,
genes and proteins are interchangeable since, typically, there is a direct cor-
respondence between proteins and the genes that code for them. We focus
speci�cally on extracting information about human genes and proteins. Ap-
proximately 40,000 human genes are known from the sequences of the human
genome [22,23], yet fewer than 5,000 are well characterized and likely to be
described in the literature. Unlike other organisms, such as yeast or E. coli,
human gene names have no standardized naming convention, and thus rep-
resent one of the most diÆcult set of gene/protein names to extract. For
example, human genes/proteins may be named with standard English words,
such as \light", \map", \complement", and \Sonic hedgehog". Names may
be alphanumeric, may include Greek or Roman letters, may be case sensitive,
and may be composed of multiple words. Names are frequently substrings of
each other, such as \epidermal growth factor" and \epidermal growth factor
receptor", which refer to two distinct proteins. It is therefore necessary that an
information extraction algorithm be speci�cally trained to extract gene and
protein names accurately.

In this paper, we present results on learning to extract human protein names
and their interactions. We employ a variety of learning methods including
pattern-matching rule induction (Rapier) [24], boosted wrapper induction
(BWI) [25], memory-based learning (MBL) [26], transformation-based learn-
ing (TBL) [27], support vector machines (SVMs) [28], and maximum en-
tropy (MaxEnt) [29]. We present cross-validated results on identifying hu-
man proteins and their interactions by training and testing on a set of ap-
proximately 1,000 manually-annotated Medline abstracts that discuss human
genes/proteins. Previous projects on extraction from Medline typically present
results for a single method on somewhat smaller corpora with limited or no
comparison to other methods. By contrast, we present uniform results of a
wide variety of methods on a single, reasonably large, human-annotated cor-
pus, thereby giving a broader picture of the relative strengths of di�erent
approaches.

3

2 Biomedical Corpora

2.1 Tagging of Medline Abstracts

In order to generate a corpus of training and test data for extracting protein
names and protein interactions, we manually tagged approximately 1,000 ab-
stracts (including the titles) from among the 11 million abstracts available in
Medline. Tagging was performed using an existing IE-tagging tool 4 modi�ed
to enhance �le handling and to retain negative examples. This program ac-
cepts a directory of �les to be tagged and allows the user to tag them using
a graphical interface based on a �le of possible labels and writes the SGML
tagged �les into an output directory. Three annotated data sets were gener-
ated:

(1) 750 abstracts containing the word \human" were extracted from the Med-
line database and tagged for gene/protein names. 61.3% of the abstracts
discussed gene/protein names, for a total of 5,206 names. An example of
a tagged abstract is shown in Figure 1.

(2) 200 abstracts previously known to contain protein interactions were ob-
tained from the Database of Interacting Proteins (DIP [30]) and tagged
for both 1,101 protein interactions and 4,141 protein names. An example
is shown in Figure 1.

(3) As negative examples for protein interactions were rare in (2), a set of 30
abstracts were manually selected such that they had sentences with more
than one gene but the abstracts did not talk about any gene interactions.

We used data set (1) for testing protein names, and data sets (2) and (3) for
testing protein interactions.

2.2 Rules used for Tagging

Due to the ambiguities involved in human gene/protein names and interactions
it was necessary to develop a set of conventions for their consistent tagging. In
the following discussion we indicate protein names by underlined text and their
same subscript numbers indicate interaction between the proteins. Manual
examination of many abstracts revealed several ambiguities, such as whether
the organism names should be tagged (e.g. human delta catenin or human

delta catenin), whether punctuation should be tagged (e.g. (LIGHT) or
(LIGHT)), and whether generic protein family names should be tagged (e.g.

4 URL: http://www-2.cs.cmu.edu/~kseymore/general tagger.pl

4

PMID -- 9367879

TI -- A c - Cbl yeast two hybrid screen reveals interactions

with 14 - 3 - 3 isoforms and cytoskeletal components .

PG -- 46 - 50 AB - The protein product of c - cbl
1;2;3 proto -

oncogene is known to interact with several proteins , including

Grb2
1
, Crk

2
and PI3 kinase

3
, and is thought to regulate

signalling by many cell surface receptors .

The precise function of c - Cbl in these pathways is not clear ,

although a genetic analysis in Caenorhabditis elegans suggests

that c - Cbl
4
is a negative regulator of the epidermal growth

factor receptor
4
. Here we describe a yeast two hybrid screen

performed with c - Cbl in an attempt to further elucidate

its role in signal transduction . The screen identified

interactions involving c - Cbl
5;6 and two 14 - 3 - 3 isoforms

, cytokeratin 18
5
, human unconventional myosin IC , and a

recently identified SH3 domain containing protein , SH3 P17
6
.

We have used the yeast two hybrid assay to localise regions of

c - Cbl required for its interaction with each of the proteins

. Interaction with 14 - 3 - 3 is demonstrated in mammalian cell

extracts .

AD -- Trescowthick Research Laboratories , Peter MacCallum

Cancer Institute .

Fig. 1. Abstract with all the proteins and interactions tagged. The protein names
have been underlined and their same subscript numbers indicate interaction between
the proteins.

armadillo protein p0071 or armadillo protein p0071). Such cases led
to the following set of tagging conventions:

(1) As few extra characters as possible are tagged. Punctuation marks and
plural characters are not tagged.

(2) Gene/protein names are tagged regardless of context, even when gene
names are substrings of other gene names. (e.g. GITR ligand)

(3) Generic protein/gene families are not tagged, only speci�c names which
could ultimately be traced back to speci�c genes in the human genome.
(e.g. \Tumor necrosis factor" would not be tagged, while \tumor necrosis
factor alpha" would be.)

(4) Tags for interacting proteins follow the same conventions as for other
proteins. All stated instances of protein interactions are tagged, even
when tags are nested. (e.g. human GITR

1
ligand (hGITRL

1
))

5

3 Protein Name Identi�cation

Named entity recognition (NER), identifying names of people, organizations,
and places in text, is a well studied problem in information extraction from
news articles. In recent years, machine learning approaches have become the
standard in developing robust, accurate NER systems [31,32]. Biomedical ap-
plications have special types of named entities that are di�erent from those
typically addressed by existing NER systems. These include names of diseases,
genes, proteins, organisms, organs, organelles, and other biological entities. In
this section we explore the problem of recognizing references to human pro-
teins using the tagged data described in the previous section.

3.1 IE Methods

3.1.1 Dictionary-based Extraction

The success of a protein tagger depends on how well it captures the regularities
of protein naming as well as name variations. In the dictionary-based approach,
we started with an extensive set of protein names extracted from two fairly
comprehensive sources:

(1) The �le human.seq, downloaded from the Human Proteome Initiative
(HPI) of EXPASY 5 .

(2) The �le feb2002-tables.tar.gz, downloaded from the Gene Ontology
Database 6 .

Altogether, these dictionaries contain 42,172 gene/protein names (synonyms
included). This collection of protein names, henceforth referred to as the orig-
inal dictionary (OD), was further extended using a generalization procedure
to obtain a generalized dictionary (GD). The aim was to extend the coverage
of the original set, while at the same time trying to minimize any decrease in
accuracy.

Generalizing a dictionary entry involved identifying those parts susceptible to
change in new protein names, and replacing them with generic placeholders.
Thus, we isolate and replace numbers with hni, Roman letters with hri and
Greek letters with hgi. Figure 2 shows some examples of name generalizations.

In the GD-based extraction, we tag a textual n-gram as a protein name only
if it is an instance of one of the generalizations from the generic dictionary. To

5 URL: http://us.expasy.org/sprot/hpi/hpi ftp.html
6 URL: http://www.godatabase.org/dev/database/archive

6

Protein Name (OD) Generalized Name (GD) Canonical Form (CD)

interleukin-1 beta interleukin hni hgi interleukin

interferon alpha-D interferon hgi hri interferon

NF-IL6-beta NF IL hni hgi NF IL

TR2 TR hni TR

NF-kappa B NF hgi hri NF

Fig. 2. Dictionary generalizations.

extend the coverage even more, we have created a canonical dictionary (CD)
consisting of canonical forms of protein names. A canonical form is obtained
from a generic form by stripping it of all generic tags, as can be seen in the
examples from Figure 2. From the resulting set we �lter out common English
words whose presence could lead to a decrease in accuracy. Consequently,
in the CD-based extraction, a textual n-gram is deemed as being a protein
name if its canonical form is part of the canonical dictionary. As the tagging-
based on both the original and generic dictionary gave better results than
other combinations (as shown in the �rst entry of Table 1), we used this
particular dictionary-based tagger for supplying a pre-tagged input to some
of the learning methods that will be discussed in the following sections.

3.1.2 Rapier

Rapier [24] is a rule learning algorithm that acquires unbounded patterns for
extracting information from text. Each extraction rule consists of three parts:
(1) a pre-�ller pattern that matches text immediately preceding a �ller (e.g. a
protein name), (2) a �ller pattern that matches the extracted substring, and
(3) a post-�ller pattern that matches the text immediately following the �ller.
Rapier begins with a most-speci�c set of rules and compresses the rule base
by repeatedly replacing rules with more general ones.

To construct the initial rule base, most-speci�c patterns are created for each
training example, specifying words for the �ller, all words in the text preceding
the �ller, and all words in the text following the �ller. To generate new rules,
pairs of existing rules are randomly selected and their least-general general-
izations created. Rapier starts with rules containing only generalizations of
the �ller patterns, and uses beam search to eÆciently specialize the rules by
adding pieces of the generalizations of the pre- and post-�ller patterns of the
seed rules, until the best rule in terms of information gain produces no spuri-
ous �llers when matched against the training examples. The best generalized
rule is then added to the rule base, and the process repeats until compression
has failed more than a speci�ed number of times.

To helpRapier capture generalities that are not evident from the words alone,
we supplied additional syntactic and semantic information to the learner in

7

PMID -- 11529898

Lol p 1 is one of the most important allergens in grass pollen

extracts...

Lol p 1 is one of the most important allergens in grass pollen

extracts...

BBBB Lol EEEE BBBB p 1 EEEE is one of the most important

allergens in grass pollen extracts...

Fig. 3. Incorporating information from the dictionary-based tagger. The �rst sen-
tence contains the correct tagging. The second sentence is the output of the dictio-
nary-based tagger. The third sentence shows the input for Rapier and BWI. The
output tags of dictionary-based tagger have been transformed into special tokens
BBBB and EEEE standing for begin and end of the tags respectively.

some of our experiments. First, we added part-of-speech (POS) tags to every
word in the text. POS tags are potentially useful because certain types of
words (e.g. cardinal numbers and proper nouns) are likely candidates of being
parts of a protein name.

In another experiment, we included the output of the dictionary-based tagger
(Section 3.1.1) in place of the POS tags in the form of special tokens (see
Figure 3). By adding these tokens, we incorporated domain knowledge into
the learning algorithm. At the same time, the learning algorithm can �nd
general patterns that re�ne the output of the dictionary-based tagger.

3.1.3 Boosted Wrapper Induction

Boosted Wrapper Induction (BWI) [25] learns extraction rules composed only
of simple contextual patterns called wrappers [33]. Although wrappers are
highly accurate predictors of the start or end of a protein name, each of them
has limited coverage since Medline abstracts do not exhibit a rigid struc-
ture. BWI circumvents this limitation by using boosting [34], which repeat-
edly learns simple, weak patterns that focus on the training examples for
which the previous patterns have done poorly. The predictions of all learned
patterns are then combined using a weighted voting scheme. The result is a
boosted wrapper, which has been shown to be successful in several natural
text domains.

To perform protein-name extraction using a boosted wrapper, every word
boundary i in a Medline abstract is �rst given a fore score F (i), which indicates
its likelihood of being the start of a protein name, and an aft score A(i),
which indicates its likelihood of being the end of a protein name. Then, the
wrapper recognizes a text fragment (i; j) as a protein name if and only if
F (i)A(j)H(j � i) > � , where H(k) is a function that reects the probability
that a protein name has length k, and � is a numeric threshold that controls

8

the level of recall. By varying � , we are able to perform extraction at di�erent
degrees of con�dence.

In our experiments with BWI, we tested the usefulness of including the out-
put of the dictionary-based tagger (Section 3.1.1) as part of the input of the
learner, in the same way as it was done in Section 3.1.2.

3.1.4 Support Vector Machines

Support Vector Machines (SVMs) are one of the most recently developed
classi�cation methods [35]. They are well-founded in computational learning
theory, and have been shown to generalize well in the presence of very many
features. They are generally considered to be the currently best technique for
text classi�cation [36].

Assume that all training examples consist of a vector ofm features, and belong
to either positive or negative class as follows: (x1; y1); : : : ; (xm; ym), where
xi 2 Rn is the i-th feature vector and yi 2 f+1;�1g is its class label. Then
an SVM learns an optimal threshold function f(x) = hw;xi+ b;w 2 Rn; b 2
R, which separates the training examples into two classes. An example x is
classi�ed as positive when f(x) > 0, or negative when f(x) < 0. A threshold
function is optimal when the margin of separation between the two classes is
maximal. It can be proven that the margin is maximized when the norm of
w is minimized. This leads to a constrained quadratic optimization problem
which can be exactly solved eÆciently.

Since our tagged Medline abstracts do not contain any protein names that
directly abut each other, we can reduce the NER problem to classi�cation of
individual words. First, an SVM classi�er determines if each word is part of a
protein name or not, by looking at the word itself and its surrounding context.
Next, protein names are extracted by identifying the longest sequences of
words that have been classi�ed as parts of a protein name. Similar approaches
have been applied successfully to the task of text chunking, which is identifying
simple phrases such as non-recursive noun and verb phrases [37,32].

For each token, we built a feature vector consisting of the current word, the
previous and the following N words. We also included POS tags generated
by the Brill's tagger 7 and the output of the dictionary-based protein tagger
(Section 3.1.1) for all 2N+1 words. We ignored capitalization when preparing
the feature vectors to avoid sparsity. To capture morphological similarities and
alleviate the problem of unseen words, we included as features the last one,
two, and three characters of each word in the feature vector, which we hence-
forth refer to as the suÆx features. Inspired by the text chunking algorithm

7 URL: http://www.cs.jhu.edu/~brill/RBT1 14.tar.Z

9

presented in [38], we included the class labels of the two preceding words as
part of the feature vector. Since the class labels were not given in the test
data, they were decided dynamically during the tagging of previous words.
Because numerical values were needed, each word or tag in each position was
a separate binary feature. For each extracted sequence of tokens, we used the
minimal distance from the hyperplane f(x) = 0 as a quantitative measure of
con�dence. For the inner product hw;xi, we used wTx, which resulted in a
linear threshold function. It has been argued that most text categorization
problems are linearly separable [36], so in our case a linear threshold function
should suÆce. We used version 5.0 of SVMlight 8 , which is highly eÆcient in
dealing with sparse instances.

The training set for the token classi�cation problem is highly imbalanced. Out
of the 209,022 tokens in our corpus, only 10,175 of them (4.87%) are protein
names. As pointed out by [39], the induced classi�ers tend to be highly accu-
rate on negative examples but also produce many false negatives which lead
to low recall. By sampling the training set and feeding the learner with only
negative examples surrounding the positive ones, we can shift the resulting
hyperplane and potentially reduce the number of false negatives. Our experi-
ments supported this claim and showed that we could attain very high recall
at the expense of precision.

3.1.5 Maximum Entropy

Maximum Entropy [29] is a widely used method for inducing probabilistic
classi�ers. The classi�cation problem is viewed in terms of a random process
that produces an output value y from a �nite set Y , based on a contextual
information x, a member of a �nite set X. In a tagging scenario, this means
associating a tag y to each text token, whereas the context x can be derived
from the text centered at the current token position. In maximum entropy
modeling we are looking for a probability distribution p(yjx) that satis�es a
set of constraints Ci 2 C derived from a collection of user speci�ed features
fi(x; y) 2 F . Each feature is expressed as a binary function based on the
current context and its proposed classi�cation. For example, a useful feature
in protein tagging is the capitalization of the token to be classi�ed, and it can
be expressed as follows:

fi(x; y) =

(
1 if current token is capitalized & y = S;

0 otherwise:

The constraint Ci associated with a feature function fi is expressed simply by
imposing that the expected value of fi under the target distribution p(yjx) be

8 URL: http://svmlight.joachims.org/

10

the same as the expected value of fi under the empirical distribution ~p(x; y)
(derived from the training data):

Ci �
X
x;y

~p(x; y)fi(x; y) =
X
x;y

~p(x)p(yjx)fi(x; y)

Out of a potentially in�nite number of probability distributions p(yjx) satis-
fying a particular set of constraints, the maximum entropy principle dictates
that we select the most "uniform" distribution, where a formal measure for
the "uniformity" of a distribution is given by the information theoretic notion
of conditional entropy:

H(Y jX) = �
X
x;y

~p(x)p(yjx) log p(yjx)

The distribution p(yjx) satisfying the constraints Ci, and which also minimizes
the conditional entropy H(Y jX), is a member of the exponential family:

p(yjx) =
1

Z(x)
exp

 X
i

�ifi(x; y)

!

where Z(x) =
P

y exp (
P

i �ifi(x; y)) a normalizing constant. An additional
compelling justi�cation for the maximum entropy principle is that the result-
ing distribution is also the model which, among all log-linear models of the
above form, maximizes the likelihood of the training sample.

In the case of maximum entropy tagging (henceforth referred to as MaxEnt),
we distinguish among �ve types of tags in Y (as opposed to using only two
tags, as was the case with SVMs):

� S(-tart) - indicates the �rst token of a protein name
� E(-nd) - indicates the last token of a protein name
� C(-ontinue) - indicates a token strictly inside a protein name
� U(-nique) - indicates the unique token of a protein name
� O(-ther) - all other tokens (outside protein names)

We hypothesize that the task of tagging the �rst, the last, or the unique token
of a protein name is slightly di�erent from that of tagging other tokens inside
a protein name, hence the extended set of tags

The abstracts are tokenized, segmented in sentences, and annotated with part-
of-speech tags using the same tools as in Section 3.1.4. Then the model gen-
erates feature vectors by scanning each pair (xi; yi) in the training data using
the feature templates given in Figure 4. We use a threshold of 3 as the min-
imum number of times that a feature should appear in the training data in

11

Name Feature Description Feature Body

w current word w(xi) = hwi & yi = hyi

pw previous word pw(xi) = hwi & yi = hyi

nw next word nw(xi) = hwi & yi = hyi

pos POS, current word pos(xi) = hposi & yi = hyi

ppos POS, previous word ppos(xi) = hposi & yi = hyi

npos POS, next word npos(xi) = hposi & yi = hyi

cf word class (full) cf(xi) = hcfi & yi = hyi

cb word class (brief) cb(xi) = hcbi & yi = hyi

dict dictionary tag dict(xi) = hdti & yi = hyi

pt previous tag pt(xi) = hy0i & yi = hyi

Fig. 4. Feature Templates.

order to be considered. The word class features cf and cb are based on the
similar features introduced in [40]. Thus, for a character x we de�ne type(x)
as 'A' if x is a upper-case letter, 'a' if x is a lower-case letter, '0' if x is a digit
and x otherwise. The cf feature then is the current word with each character
mapped to its type, while the brief version bf results from cf by removing
repeating character types. For example, if \FGF1" is the current word, then
cf='AAA0', and bf = 'A0'. Another special feature is pt, based on the tag
assigned to the previous token. The dependence of the current tagging deci-
sion on the previous tag, unknown during testing, forces us to consider all
possible tags for the previous token when tagging unseen data. For a particu-
lar token sequence (tokenized sentence), this will result in a potentially very
large set of possible taggings. The classical approach is to use a Viterbi-like
algorithm for �nding the most likely sequence of tags. To each of the resulting
extractions we associate a con�dence measure. The parameters involved in its
computation are sketched on a sample extraction spanning 4 tokens (tagged
correspondingly with S, C, C, and E) in Figure 5. The exact calculation of
the two con�dence measures confavg and confmin is described in Figure 6. The
Viterbi and forward procedures used therein are the same as those used for
Hidden Markov Models [41], except that here we don't have any random event
for generating observations. Varying the con�dence level will later allow us to
trade o� between precision and recall (see Section 3.2.2).

... α (S)

S

p(C|S) p(C|C) p(E|C)

C C E

...

Fig. 5. Con�dence Parameters

We chose to take either the minimum or the average as we were targeting a
length-independent measure. Also, when using the average function, or the
minimum function, one has to ensure that the quantities involved have a sim-

12

conf(W;u; v)

Input: W , a sequence of tokens w1; w2; : : : ; wT

[u; v], an extraction span with 1 � u � v � T

Use the forward procedure on W with p(yjx) to compute:

�t(y) = p(yt = yjW) , where 1 � t � T and y 2 fS;C;E;U;Og

if u = v

confavg(W;u; v) = confmin(W;u; v) = �u(U)

else

pu = �u(S)

pu+1 = p(yu+1 = CjW;yu = S)

pu+2 = p(yu+2 = CjW;yu+1 = C)

. . .

pv�1 = p(yv�1 = CjW;yv�2 = C)

pv = p(yv = EjW;yv�1 = C)

confavg(W;u; v) = 1
v�u+1

Pv
t=u pt

confmin(W;u; v) = minu�t�v(pt)

Fig. 6. Extraction Con�dence.

ilar interpretation and consequently can be safely combined. In our case, we
can view the value �t(y) as another transition probability, namely the prob-
ability of reaching state y at time step t from a special state encoding the
beginning of the sentence.

One drawback of using the Viterbi algorithm is that by focusing on the most
likely sequence of tags, the program is missing many low con�dence extrac-
tions that might help in extending the recall endpoint. When applied on test
data, the Viterbi algorithm, augmented with the con�dence measure confmin,
results in a maximum recall of 47:76%. To further extend it, we use the greedy
algorithm from Figure 7 on all token sequences appearing between two con-
secutive Viterbi extractions, thus obtaining additional extractions compatible
with the set of proteins already extracted through the Viterbi procedure (two
extractions are compatible if they do not overlap). All the results that presup-
pose using a con�dence measure are based on confmin, which does a better
job at extending the recall endpoint.

We base our Maximum Entropy approach on the opennlp.maxent package 9 ,
version 2.1.0, which uses the Generalized Iterative Scaling algorithm [42] for
estimating the parameters of the log-linear model.

9 URL: http://maxent.sourceforge.net/

13

greedy extract(W;u; v)

Input: W , a sequence of tokens w1; w2; : : : ; wT

[u; v], an extraction domain with 1 � u � v � T

if u > v

return ;

else

[l; r] = argmax[l;r]�[u;v]conf(W; l; r)

LE = greedy extract(W;u; l � 1)

RE = greedy extract(W; r + 1; v)

return LE [f[l; r]g [RE

Fig. 7. Greedy Extraction.

3.1.6 Existing Protein Name Identi�cation Systems

We also tested two existing protein name identi�cation systems. The �rst one
is KEX version 1.21, which is based on the PROPER algorithm described in
[1]. It consists of a set of hand-built pattern matching rules which makes use
of part-of-speech information given by the Brill's tagger. Without depending
on any protein-name dictionaries, KEX has been reported to achieve 94.70%
precision and 98.84% recall on a corpus of 80 abstracts on SH3 and signal
transduction domains.

The second system isAbgene, introduced in [43].Abgene uses a transformation-
based tagger to produce an initial tagging. Then it employs a number of dic-
tionaries and contextual rules to weed out false positive and recover false
negative. It was tested on a corpus consisting of the complete set of abstracts
introduced into Medline between June 15 and September 24, 2001, and was
reported to give good results.

3.2 Experimental Results

We begin this section by explaining the methodology followed in our exper-
iments. We present next the quantitative results of the IE methods used for
extracting protein names. The section ends with a comparative analysis of the
results.

3.2.1 Experimental Methodology

The 750 Medline abstracts annotated with protein tags were tokenized using
simple pattern rules developed for the Penn Treebank project [44]. For pro-
grams requiring sentence-segmented input, we used the sentence segmenter
from the KEX tagger with additional rules for bulleted lists. For those learn-

14

ing algorithms requiring POS tags, we used Brill's POS tagger, which we
trained by using 10,000 untagged Medline abstracts as the training set. Those
abstracts were obtained the same way we did for the 750 abstracts. No stem-
ming or stopword �ltering was performed during the experiments. Capitaliza-
tion was retained unless otherwise speci�ed.

We performed ten-fold cross validation on each learning algorithm with a par-
ticular parameter setting. This provides average performance over ten random
trials, each training on 90% of the data and testing on the remaining 10%.
Each extracted protein name in the test data was compared to the human-
tagged data, with the positions taken into account. Since Abgene provides no
positional information, we assume that all occurrences of its extracted strings
are recognized as protein names. Two protein names are considered a match if
they consist of the same character sequence in the same position in the text.
This detects circumstances where common English words are incorrectly rec-
ognized as protein names (e.g. \light", \at"), and ensures that all references to
each protein are recognized. We measured precision (percentage of extracted
names that are correct), recall (percentage of correct names that are found),
and F-measure (harmonic mean of precision and recall) [11].

3.2.2 Quantitative Results

Table 1 summarizes results for the protein taggers presented in Section 3.1,
along with any additional sources of information used. We also include results
obtained with two additional taggers: one using transformation-based learning
(TBL) [27], and another based on the k-nearest neighbor (k-NN) method in
which classi�cation is done by extrapolation from the k most similar training
examples. For systems that output con�dences that allow trading-o� precision
and recall (i.e. BWI, k-NN, SVM and MaxEnt), results are presented for the
maximum achievable recall or the best F-measure.

For ease of comparison, we show recall-precision curves in Figure 8, using
the version of each system that gave the best F-measure (as shown in bold
in Figure 1). For those IE methods that output extraction con�dences, we
show curves indicating the precision for each achievable level of recall. Single
recall-precision points are shown for all other methods.

Given that the MaxEnt approach achieves the best results on the 750 abstracts
dataset, we applied it on the 230 abstracts from the interactions dataset,
our aim being to feed these automatically tagged abstracts to the interac-
tion extraction program (see Section 4.2.2 for overall results of the combined
approach). The tagging performance on the interaction dataset is shown in
Figure 9.

15

IE Methods and Additional Information Used Precision Recall F-measure

Dictionary-based

original dictionary 56.70% 27.24% 36.80%

plus generalized dictionary 62.27% 45.85% 52.81%

plus canonical dictionary 41.88% 54.42% 47.33%

Rapier

words only 76.11% 9.97% 17.63%

part-of-speech 70.84% 11.05% 19.12%

dictionary-based tagger 74.49% 12.22% 21.00%

BWI (300 iterations, 2 lookaheads, max. recall)

words only 70.67% 11.52% 19.81%

dictionary-based tagger 71.01% 24.06% 35.94%

k-NN (k = 1; N = 2)

part-of-speech 34.66% 40.66% 37.42%

dictionary-based tagger 47.30% 47.82% 47.56%

TBL

words only 47.08% 36.65% 41.22%

dictionary-based tagger 56.80% 34.62% 43.02%

SVM (N = 2, full training set, max. recall)

preceding class labels 69.16% 19.74% 30.72%

preceding class labels and part-of-speech 70.18% 19.72% 30.79%

preceding class labels and dictionary-based
tagger

65.00% 45.43% 53.48%

with additional suÆx features 70.38% 44.49% 54.42%

MaxEnt (N = 1, Viterbi w/o greedy extraction, max. recall)

w/o dictionary 71.10% 42.31% 53.05%

with dictionary 73.37% 47.76% 57.86%

with dictionary, two tags only (I,O) 66.41% 44.74% 53.46%

KEX 14.68% 31.83% 20.09%

Abgene 32.39% 45.87% 37.97%

Table 1
Performance of protein taggers in various settings.

3.2.3 Discussion of Results

Overall, the results show limited utility of POS tags. The use of POS tags in
Rapier, k-NN, and SVM does not improve F-measure signi�cantly according
to a paired t-test (p > 0:05). While the dictionary-based tagger barely im-
proves F-measure for Rapier and TBL, it is useful for the rest of the learning
methods to di�erent extents. It improves both precision and recall for BWI,
k-NN and MaxEnt, while for SVM it hurts the precision slightly, but this is
outweighed by a larger gain in recall.

Out of all the learning methods tested here, SVM and MaxEnt achieve a sig-

16

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

%
)

Recall (%)

Dict
RAPIER-Dict

BWI-Dict
KNN-Dict
TBL-Dict

SVM-Dict
MaxEnt-Dict

KEX
Abgene

Fig. 8. Precision-recall curves for protein taggers on the 750 abstracts dataset.

ni�cant improvement over the dictionary-based tagger in terms of F-measure.
Another advantage is that both are able to achieve arbitrarily high preci-
sion by adjusting the con�dence level. This is possible because the extraction
con�dence is highly correlated with the probability of correctness. Since high
precision is needed to extract accurate knowledge from text, this is a signi�cant
contribution.

We have also included results for MaxEnt with a tagging scheme based on
two tags only. The di�erence in performance validates our initial hypothesis
suggesting the use of more than one tag for tokens inside a protein name.

All of our IE methods perform signi�cantly better than two existing protein
taggers, KEX and Abgene. Given that these systems were developed for dif-
ferent distributions of proteins, this is not surprising; however it does illustrate
the relative diÆculty of identifying human proteins. The hand-built rules used
in KEX were developed and tested on a rather con�ned set of proteins dif-
ferent from the human proteins in our data. Abgene uses a version of TBL
to learn a protein tagger; however, the speci�c tagger we obtained was not
trained speci�cally for human proteins. Our own TBL system is more indica-
tive of the performance of this approach when speci�cally trained for human
proteins; however, note that many of the other learning approaches perform
better than TBL.

17

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

%
)

Recall (%)

Dict
MaxEnt-Dict

Fig. 9. Performance of MaxEnt tagger on the 230 abstracts dataset.

As shown in Figure 9, the performance on the interaction dataset is a lot
better than on the protein dataset, and this is also reected in the results of
the dictionary-based tagger. There are two main reasons for this signi�cant
di�erence:

(1) The protein dataset has been manually tagged by 9 people, in just one
pass. After analyzing the results, we have discovered signi�cant tagging
inconsistencies which clearly a�ected the learning performance. On the
other hand, the interaction dataset has been tagged by one person only,
resulting in a more consistent tagging.

(2) Each of the 230 interaction abstracts contains at least two proteins, due
to the particular selection process described in Section 2.1. This results in
a signi�cant bias which is captured by the learning algorithm. Compara-
tively, 38:7% of the 750 abstracts dataset contain no proteins, while many
of the same abstracts include various names for cell lines, or aminoacids,
names which are very similar with protein names, making the task of
recognizing proteins more realistic, but at the same time harder.

We have also tried our protein name extraction systems on the Yapex 10

dataset (200 Medline abstracts) which gave slightly better results, but due
to space constraints those results are not included in this paper.

10 URL: http://www.sics.se/humle/projects/prothalt/

18

SHPTP2interactor [interacts with another signaling protein ,]
interfiller

Grb7
interactee

.

Fig. 10. Interactor, interactee and inter�ller

4 Protein Interaction Extraction

Identifying relations between named entities stated in text is a more diÆ-
cult IE problem that only recently has attracted signi�cant attention in re-
search on extraction from new articles. The current ACE (Automated Content
Extraction) program at the National Institute of Standards and Technology
(NIST) [45] is focused on identifying various social, action-role, part-of, and
locational relations between named entities. Several projects have focused on
extracting relations from biomedical text, such as identifying gene-disease re-
lations, subcellular localizations, or protein interactions [15,17,18,2{6,46]. This
section discusses our work on identifying human-protein interactions assum-
ing that the proteins themselves have already been tagged, and shows that
machine-learning systems out-perform human-written extraction rules with
respect to providing a wider range of precision and recall.

4.1 IE Methods

4.1.1 Rapier and Boosted Wrapper Induction

In order to adapt slot-�lling IE systems that extract individual entities (like
Rapier and BWI) to the problem of extracting relations, we developed two
approaches. The �rst approach we call the Inter�ller approach. Given two
tagged entities participating in a relationship, the text fragment between them
is called the inter�ller (see Figure 10). If a slot-�lling IE system extracts an
inter�ller, the tagged entities before and after it can be extracted as partici-
pating in the targeted relation.

The second approach we call the Role-�ller approach. In this approach, we
extract the two related entities independently into di�erent role-speci�c slots.
For protein interactions, we named the roles interactor and interactee (see
Figure 10). There might be many interactors and interactees extracted in one
sentence, we then decide which of them participate in a relationship using the
following heuristics, assuming that all interacting proteins appear in the same
sentence. (1) The interactors and interactees appearing in the same sentence
form a sequence of role �llers. This sequence is separated into segments at the
points where an interactee is immediately followed by an interactor. Interac-
tors and interactees can only be paired within the same segment. (2) Each
interactor is associated with the next occurring interactee in the segment. (3)

19

[These j Here j have j,] (4) [data j we j previously j the j wild] (1)
[suggest j show j reported j transcription j-] (2) [that j factor j type j of]
(15) PROT (14) [surface j of j - j with j boundj activate] (0) PROT
(27) .

Fig. 11. Sample protein-extraction rule learned by ELCS. Token PROT stands for
protein name.

If there are fewer interactors (interactees) than interactees (interactors) in
the segment, use the last interactor (interactee) in constructing the remaining
pairs. In our human-tagged interaction corpus, assuming interactors and in-
teractees are properly tagged, this approach identi�es all the interacting pairs
with 99.2% accuracy.

Both of these approaches have been used to train BWI (Section 3.1.3) to ex-
tract interacting proteins, and the Role-�ller approach has been used to train
Rapier (Section 3.1.2) to extract interactions. Rapier could not learn to
extract inter�llers successfully, since, in the worst case, the time complexity
of its generalization algorithm can grow exponentially in the length of a �ller.
Since extracted entities are usually fairly short, this is typically not a prob-
lem in standard slot-�lling IE. However, the long inter�llers in many protein
interactions prevented us from running Rapier with the Inter�ller approach.

4.1.2 Extraction using Longest Common Subsequences (ELCS)

We have also developed a new method for directly learning patterns for ex-
tracting relations between previously tagged entities. Blaschke et al. [3,47]
manually developed rules for extracting interacting proteins. Each of their
rules (or frames) is a sequence of words (or POS tags) and two protein-name to-
kens. Between every two adjacent words is a number indicating the maximum
number of intervening words allowed when matching the rule to a sentence.
Here we describe a new method ELCS (Extraction using Longest Common
Subsequences) that automatically learns such rules.

ELCS' rule representation is similar to that in [3,47], except that it currently
does not use POS tags, but allows disjunctions of words. Figure 11 shows an
example of a rule learned by ELCS. Words in square brackets separated by
'j' indicate disjunctive lexical constraints, i.e. one of the given words must
match the sentence at that position. The numbers in parentheses between
adjacent constraints indicate the maximum number of unconstrained words
allowed between the two (called a word gap). A sentence matches the rule if
and only if it satis�es the word constraints in the given order and respects the
respective word gaps.

A sentence in the training data may contain more than two proteins and more

20

than one pair of interacting proteins. In order to extract the interacting pairs,
the rules should be trained to pick out exactly the interacting proteins from
the sentences. To do this we replicate the sentences having n proteins (n > 2)
into Cn

2 sentences such that each one has exactly two of the proteins tagged,
with the rest of the protein tags omitted. If the tagged proteins interact, then
the replicated sentence is added to the set of positive sentences, otherwise it
is added to the set of negative sentences. During testing, a sentence having n
proteins (n > 2) is again replicated into Cn

2 sentences in a similar way. If such
a replicated sentence matches one of the rules, then the system extracts the
two proteins tagged in that sentence as interacting proteins.

ELCS induces rules using a bottom-up approach. Rule induction starts with
maximally speci�c rules for each positive sentence which contain all the words
in the sentence with zero-length word gaps. These are then repeatedly general-
ized to form more general rules until the rules become overly general and start
matching negative sentences. We have developed three methods for generaliz-
ing rules. The �rst simple method to produce a generalization of two rules is to
�nd the longest common subsequence (LCS) of words between them. EÆcient
algorithms for computing an LCS are presented in [48,49]. After �nding the
LCS between two rules, we determine the size of word gaps between every two
adjacent words in their LCS as the larger of the number of words plus the
sum of existing word gaps between the two LCS words where they are found
in the original two rules.

Our second approach to generalization uses edit distance (ED) [49] and creates
more speci�c rules that contain disjunctive constraints. The most common edit
distance is Levenshtein distance [50], de�ned as the minimum number of edit
operations (adding, deleting, or replacing an item) required to convert one
sequence into another. We use the minimal edit-operation sequence obtained
when computing Levenshtein distance to generalize two rules. We preserve the
common word constraints between the rules, make disjunctions of constraints
when one item is replaced by another in the edit sequence, and drop constraints
that are added or deleted in the edit sequence. Finally, we introduce word gaps
using the method described for the LCS-based generalization.

The third generalization method �nds all common sequences between the two
rules and considers their conjunction (CJ) as the generalization. Unlike the
previous two methods, this method is associative, i.e. we get the same gener-
alization of a set of rules irrespective of the order in which we generalize two
of them at a time. If there is any common pattern among the base rules then
this property guarantees that the pattern will also appear in the generalization
(note that it is possible to lose such a common pattern while taking LCS of
two rules at a time). Word gaps are then introduced as in the previous two
methods. Figure 12 shows generalization of two sentences obtained by each of
these methods.

21

Sentence 1: The self - association site appears to be formed by interactions
between helices 1 and 2 of beta spectrin

1
repeat 17 of one dimer with helix 3

of alpha spectrin
1
repeat 1 of the other dimer to form two combined alpha -

beta triple - helical segments .

Sentence 2: Title - Physical and functional interactions between the tran-
scriptional inhibitors Id3

2
and ITF - 2b

2
.

Generalization using longest common sequence (LCS):

- (7) interactions (0) between (5) PROT (9) PROT (17) .

Generalization using edit-distance (ED):
[selfjTitle] (0) - (4) [bejPhysical] (0) [formedjand] (0) [byjfunctional] (0)
interactions (0) between (2) [andjthe] (0) [2jtranscriptional] (0) [ofjinhibitors]
(0) PROT (8) [ofjand] (0) PROT (17) .

Generalization using conjunctions (CJ):

f - (7) interactions (0) between (5) PROT (9) PROT (17) . g
V

f- (11) and
(6) PROT (9) PROT (17) . g

Fig. 12. Generalizations of two sentences using di�erent methods. Protein names
have been underlined and same sub-script numbers indicate interactions between
them. Token `PROT' stands for protein name.

Using one of these generalization methods, a greedy-covering, bottom-up rule-
induction method is used to learn a small set of rules that cover all the positive
sentences without covering many negative ones. We use an algorithm similar
to beam search and consider only the r best rules for generalization at any
time. We start with r randomly selected positive examples. These r rules are
generalized with one of the remaining positive examples to obtain r more
rules. Out of these 2r rules we select r rules with the highest con�dence level
and allow further generalization with the remaining positive examples. After
iterating over the remaining positive examples in this way, the r best rules are
�nally included in the set of learned rules and the positive examples covered
by them are removed. The entire process is repeated till we exhaust the set of
positive examples.

We measure the con�dence levels of our rules using m-estimate [51] which is a
measure of expected accuracy of a rule. It is de�ned as: con�dence level(rule) =
p+m:p+

p+n+m
, where p and n are the number of positive and negative examples

covered by the rule, p+ is the prior probability of positive examples and m is
a parameter which should be set according to the amount of noise in the data.
We set p+ as the fraction of examples in the training data which are positive
and set m based on pilot studies.

The generalizations obtained using any of the methods may result in rules that

22

interactions (0) between (4) PROT (0) and (4) PROT (16) .

PROT (0) / (0) PROT (10) heterodimers (36) .

[binding j substitution j AB j addition j Interestingly j TI j interactions] (0)
[of j - j ,] (3) PROT (19) [to j for j : j same j with] (10) PROT (30)
[nM j binding j 1 j CDK6 j CCR8 j death] (9) .

[linker j TI j armadillo j b558 j of] (0) [- j , j a] (5) PROT (13) [and
j / j with j to j containing] (0) PROT (2) .

f, (11) PROT (25) and (8) to (9) PROT (66) .g
V

f, (11) PROT (16) bind
(18) PROT (66) .g

f, (10) PROT (5) for (7) PROT (9) .g
V

f, (10) PROT (4) binding (6) PROT
(9) .g

Fig. 13. Some example rules learned by ELCS; the �rst two were learned using LCS
generalization, the next two using ED generalization and the last two using CJ
generalization.

do not contain two protein-name tokens. This is �ne for extracting protein
interactions because we always apply the rules to sentences containing exactly
two protein names (if they contain more than two protein names then we
replicate the sentence as described earlier). However, constraining learned rules
to contain two protein names is a useful bias. Therefore, we divide each of the
training sentences in three parts: the portion of the sentence before the �rst
protein name, the portion between the two protein names, and the portion
after the second protein name. When we generalize two rules, we generalize
these three parts separately. This ensures the rule will always contain two
protein-name tokens. Figure 13 shows some sample rules learned by ELCS.

4.2 Experimental Results

4.2.1 Experimental Methodology

Medline abstracts were pre-processed as described in Section 3.2.1. All our
systems for extracting interactions require sentence segmentation since only
the proteins within a sentence are considered when identifying interactions
(this constraint is satis�ed by all interactions in our corpus). We also compared
our systems with Blaschke et al.'s manually-written rules [47]. Since these rules
require POS tags, we used Brill's POS tagger. We also tested a version of the
human-written rules in which the POS tags are replaced by typical words
indicating interactions such as activation, phosphorylation or interaction for
nouns and activates, binds or phosphorylates for verbs, similar to the approach

23

in [3].

We did two experiments to evaluate the performance of protein interaction
extraction. In both experiments the machine learning systems were trained
using the manually tagged abstracts (see Section 2.1) with proteins and their
interactions. The two experiments di�er in the way we tested the systems. In
the �rst experiment we provide manually tagged protein names to our systems
and extract interactions among these proteins. This way we get a measure of
how the protein interaction extraction systems alone perform independent
of the protein name extraction systems. In the second experiment we �rst
�nd protein names in the abstracts using our best system for protein name
extraction, MaxEnt (see Section 3.2.2), and then extract interactions among
these proteins. This gives a true measure of how our systems can perform at
extracting protein interactions from completely untagged abstracts. Blaschke
et al.'s manually-written rules also require protein names, in this experiment
we also test those rules by providing them with our extracted protein names.
For this experiment we chose the point on the MaxEnt's precision-recall curve
(�gure 9) which gives 70% precision and about 90% recall for protein name
extraction.

As in Section 3.2.1, performance is evaluated using ten-fold cross validation
and measuring recall and precision. We consider an extracted interaction from
an abstract correct only if both its proteins have been human-tagged as in-
teracting with each other somewhere in that abstract. As the task of interest
is only to extract interacting protein-pairs, in our evaluation we don't con-
sider matching exact positions and every occurrence of interacting protein-
pairs within the abstract. For those IE methods which output extraction
con�dences, if we extract more than one occurrence of interaction between
two proteins then we combine their extraction con�dences using the standard
Noisy-Or method [52].

4.2.2 Quantitative Results

Figure 14 shows recall-precision results for protein-interaction extraction when
tested on abstracts that have been manually tagged for protein names and
�gure 15 shows the results when tested on abstracts in which protein names
were tagged using our best protein name extractor. We plotted a precision-
recall curve for BWI by utilizing its extraction con�dences for ELCS using the
con�dence levels of the rules which extract the interactions. Since Rapier and
human-written rules do not produce con�dences, only a single recall-precision
point is shown for each of them.

24

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (

%
)

Recall (%)

BWI-Interfiller
BWI-Role-Filler

ELCS
ELCS-ED
ELCS-CJ

RAPIER-Role-Filler
Human-Written-Words

Human-Written-POS

Fig. 14. Precision-recall graphs for protein interaction extraction using correct pro-
tein names.

4.2.3 Discussion of Results

From �gure 14 it can be seen that BWI gives varying degrees of high precision,
but its recall is generally quite low. Rapier also gives relatively high precision
but low recall. ELCS tends to give higher recall with only a modest decrease in
precision compared to BWI and Rapier. When we use the protein names ex-
tracted from our protein name extractor instead of the correct protein names,
not surprisingly the performance of all the systems degrade but they still o�er
reasonable ranges of precisions and recalls (�gure 15).

These results demonstrate that machine learning systems can provide higher
precisions than the human-written rules. In order to avoid over-loading human
curators with too many false positives when extracting knowledge from large
volumes of text, a general emphasis towards higher precision seems appropri-
ate. The machine learning systems also o�er a wide range of precision-recall
trade-o� which can be suitably utilized by a user depending on the needs of
the application. The machine learning systems can also provide recalls higher
than the best recall the human-written rules could provide.

25

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (

%
)

Recall (%)

BWI-Interfiller
BWI-Role-Filler

ELCS
ELCS-ED
ELCS-CJ

RAPIER-Role-Filler
Human-Written-Words

Human-Written-POS

Fig. 15. Precision-recall graphs for protein interaction extraction using extracted
protein names.

5 Conclusions and Future Research

After comparing a number of methods for extracting human protein names
and interactions, we obtained the best performance for protein tagging with a
maximum entropy learning method that exploits a generalized protein-name
dictionary. For extracting protein interactions, we found that several methods
for learning extraction rules generally out-perform the hand-written rules with
respect to precision. Token classi�cation methods like k-NN, TBL, SVM, and
MaxEnt are not directly applicable to extracting interactions; however, we
plan to test HMMs on extracting interactions in the near future.

Clearly, the ability to extract human proteins and their interactions still needs
signi�cant improvement. We foresee improvement in three general areas: better
training data, better learning methods, and better use of external knowledge.

Larger training sets are always bene�cial to learning systems; however, man-
ually tagging data is very time consuming. One alternative approach is to use
existing knowledge to automatically produce weakly labeled training data [15].
Another approach is to use active learning to select only the best training
examples for human labeling [53]. A third approach is to utilize a mixture of
both labeled and unlabeled data during training [54].

26

Improved learning algorithms for information extraction continue to be de-
veloped. Recently, a number of methods for improving HMMs have been pro-
posed, including linear interpolating HMMs [16], maximum-entropy Markov
models [55], and conditional random �elds [56].

Existing biological knowledge can also be used to improve extraction perfor-
mance. Currently we have only exploited dictionaries of known protein names.
Using learning to revise initial human-written extraction rules has also been
shown to improve performance [18]. One can imagine many other sources of
external knowledge: global statistical properties of abstracts, existing interac-
tion or pathway data, prior expectations for �nding protein names, and dic-
tionaries of near-miss negative examples of protein names. Filtering proposed
interacting proteins by comparing their gene-expression data or examining
their co-occurrences in other abstracts or web pages could also prove useful.

In the future, it will also be interesting to develop IE systems for extracting
other associations with genes. A few examples include extracting informa-
tion about post-translational modi�cations of proteins, identifying genes that
are speci�cally involved with diseases, identifying genes that are co-regulated,
extracting protein-drug interactions, protein-metabolite interactions and in-
formation about the dynamics and dependencies of these processes.

6 Acknowledgements

We would like to thank members of the Marcotte lab for helping to tag Med-
line abstracts. We would also like to thank Kristie Seymore for making the
IE-tagging tool available. We would like to thank Lorraine Tanabe for kindly
allowing us to use the Abgene system. Many thanks to Kenichiro Fukuda for
the KEX system, Mary Elaine Cali� for the Rapier system, Dayne Freitag
and Nicholas Kushmerick for the BWI program, Thorsten Joachims for the
SVMlight software, Eric Brill for his POS tagger, and to Ellen Rilo� for the
Sundance shallow parser. We also thank Christian Blaschke for the informa-
tion about the hand-written rules. This work was supported in part by the
National Science Foundation (IIS-0117308), the Welch Foundation (F-1515),
the National Science Foundation (ITR-0219061), and the Texas Advanced Re-
search Program.

References

[1] K. Fukuda, T. Tsunoda, A. Tamura, T. Takagi, Information extraction:
Identifying protein names from biological papers, in: Proc. of the 3rd Paci�c

27

Symp. on Biocomputing, 1998, pp. 707{718.

[2] K. Humphreys, G. Demetriou, R. Geizauskas, Two applications of information
extraction to biological science journal articles: Enzyme interactions and protein
structure, in: Proc. of the 5th Paci�c Symp. on Biocomputing, 2000, pp. 502{
513.

[3] C. Blaschke, A. Valencia, Can bibliographic pointers for known biological data
be found automatically? protein interactions as a case study, Comparative and
Functional Genomics 2 (2001) 196{206.

[4] D. Proux, F. Rechenmann, L. Julliard, A pragmatic information extraction
strategy for gathering data on genetic interactions, in: Proc. of the 9th Intl.
Conf. on Intelligent Systems for Molecular Biology, 2000, pp. 279{85.

[5] T. C. Rindesch, L. Tanabe, J. N. Weinstein, L. Hunter, EDGAR: Extraction
of drugs, genes, and relations from the biomedical literature, in: Proc. of the
5th Paci�c Symp. on Biocomputing, 2000, pp. 515{524.

[6] J. Thomas, D. Milward, C. Ouzounis, S. Pulman, M. Carol, Automatic
extraction of protein interactions from scienti�c abstracts, in: Proc. of the 5th
Paci�c Symp. on Biocomputing, 2000, pp. 541{553.

[7] U. Hahn, M. Romacker, S. Schulz, Creating knowledge repositories from
biomedical reports: The MEDSYNDIKATE text mining system, in: Proc. of
the 7th Paci�c Symp. on Biocomputing, 2002, pp. 338{349.

[8] J. Pustejovsky, J. Castano, J. Zhang, M. Kotecki, B. Cochran, Robust relational
parsing over biomedical literature: Extracting inhibit relations, in: Proc. of the
7th Paci�c Symp. on Biocomputing, 2002, pp. 362{373.

[9] J. Park, H. S. Kim, J. J. Kim, Bidirectional incremental parsing for automatic
pathway identi�cation with combinatory categorial grammar, in: Proc. of the
6th Paci�c Symp. on Biocomputing, 2001, pp. 396{407.

[10] C. Friedman, P. Kra, H. Yu, M. Krauthammer, A. Rzhetsky, GENIES: A
natural-language processing system for the extraction of molecular pathways
from journal articles, Bioinformatics 17 S74{S82, supplement 1.

[11] J. Cowie, W. Lehnert, Information extraction, Communications of the
Association for Computing Machinery 39 (1) (1996) 80{91.

[12] C. Cardie, Empirical methods in information extraction, AI Magazine 18 (4)
(1997) 65{79.

[13] M. E. Cali� (Ed.), Papers from the Sixteenth Natl. Conf. on Arti�cial
Intelligence (AAAI-99) Workshop on Machine Learning for Information
Extraction, AAAI Press, Orlando, FL, 1999.

[14] D. Proux, F. Rechenmann, L. Julliard, V. Pillet, B. Jacq, Detecting gene
symbols and names in biological texts: A �rst step toward pertinent information
extraction, Genome Informatics 9 (1998) 72{80, GIW '98.

28

[15] M. Craven, J. Kumlien, Constructing biological knowledge bases by extracting
information from text sources, in: Proc. of the 7th Intl. Conf. on Intelligent
Systems for Molecular Biology, Heidelberg, Germany, 1999, pp. 77{86.

[16] N. Collier, C. No, J. Tsujii, Extracting the names of genes and gene products
with a Hidden Markov Model, in: Proc. of 18th Intl. Conf. on Computational
Linguistics, Saarbruken, Germany, 2000, pp. 201{207.

[17] S. Ray, M. Craven, Representing sentence structure in hidden Markov models
for information extraction, in: Proc. of 17th Intl. Joint Conf. on Arti�cial
Intelligence (IJCAI-2001), Seattle, WA, 2001, pp. 1273{1279.

[18] T. Eliassi-Rad, J. Shavlik, A theory-re�nement approach to information
extraction, in: Proc. of 18th Intl. Conf. on Machine Learning (ICML-2001),
2001.

[19] J. E. Leonard, J. B. Colombe, J. L. Levy, Finding relevant references to genes
and proteins in medline using a bayesian approach, Bioinformatics 18 (11)
(2002) 1515{1522.

[20] S. Raychaudhuri, J. T. Chang, P. D. Sutphin, R. B. Altman, Associating genes
with gene ontology codes using a maximum entropy analysis of biomedical
literature, Genome Research 12 (2002) 203{214.

[21] C. Perez-Iratxeta, P. Bork, M. A. Andrade, Association of genes to genetically
inherited diseases using data mining, Nature Genetics 31 (3) (2002) 316{319.

[22] J. C. Venter, et al., The sequence of the human genome, Science Feb
16;291(5507) (2001) 1304{1351.

[23] E. S. Lander, et al., Initial sequencing and analysis of the human genome,
Nature Feb 15;409(6822) (2001) 860{921.

[24] M. E. Cali�, R. J. Mooney, Relational learning of pattern-match rules for
information extraction, in: Proc. of 16th Natl. Conf. on Arti�cial Intelligence
(AAAI-99), Orlando, FL, 1999, pp. 328{334.

[25] D. Freitag, N. Kushmerick, Boosted wrapper induction, in: Proc. of 17th Natl.
Conf. on Arti�cial Intelligence (AAAI-2000), AAAI Press / The MIT Press,
Austin, TX, 2000, pp. 577{583.

[26] R. O. Duda, P. E. Hart, Pattern Classi�cation and Scene Analysis, Wiley, New
York, 1973.

[27] E. Brill, Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging, Computational Linguistics
21 (4) (1995) 543{565.

[28] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,
Berlin, 1995.

[29] A. L. Berger, S. A. Della Pietra, V. J. Della Pietra, A maximum entropy
approach to natural language processing, Computational Linguistics 22 (1)
(1996) 39{71.

29

[30] I. Xenarios, E. Fernandez, L. Salwinski, X. J. Duan, M. J. Thompson, E. M.
Marcotte, D. Eisenberg, DIP: The database of interacting proteins: 2001 update,
Nucleic Acids Research 29 (1) (2001) 239{241.

[31] D. M. Bikel, R. Schwartz, R. M. Weischedel, An algorithm that learns what's
in a name, Machine Learning 34 (1999) 211{232.

[32] D. Roth, A. van den Bosch (Eds.), Proc. of 6th Conf. on Natural Language
Learning, Association for Computational Linguistics, Taipei, Taiwan, 2002.

[33] N. Kushmerick, D. S. Weld, R. B. Doorenbos, Wrapper induction for
information extraction, in: Proc. of 15th Intl. Joint Conf. on Arti�cial
Intelligence (IJCAI-97), Nagoya, Japan, 1997, pp. 729{735.

[34] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, in:
L. Saitta (Ed.), Proc. of 13th Intl. Conf. on Machine Learning (ICML-96),
Morgan Kaufmann, 1996.

[35] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.

[36] T. Joachims, Text categorization with support vector machines: Learning with
many relevant features, in: Proc. of 10th European Conf. on Machine Learning,
Springer-Verlag, Berlin, 1998, pp. 137{142.

[37] L. A. Ramshaw, M. P. Marcus, Text chunking using transformation-based
learning, in: Proc. of 3rd Workshop on Very Large Corpora, 1995.

[38] T. Kudoh, Y. Matsumoto, Use of support vector learning for chunk
identi�cation, in: Proc. of CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000,
pp. 142{144.

[39] M. Kubat, R. C. Holte, S. Matwin, Machine learning for the detection of oil
spills in satellite radar images, Machine Learning 30 (2{3) (1998) 195{215.
URL citeseer.nj.nec.com/kubat98machine.html

[40] M. J. Collins, Ranking algorithms for named-entity extraction: Boosting and the
voted perceptron, in: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), philadelphia, 2002, pp. 489{496.

[41] L. R. Rabiner, A tutorial on hidden Markov models and selected applications
in speech recognition, Proc. of the IEEE 77 (2) (1989) 257{286.

[42] J. Darroch, D. Ratchli�, Generalized iterative scaling for log-linear models, The
Annals of Mathematical Statistics 43 (5) (1972) 1470{1480.

[43] L. Tanabe, W. J. Wilbur, Tagging gene and protein names in biomedical text,
Bioinformatics 18 (8) (2002) 1124{1132.

[44] M. Marcus, B. Santorini, M. A. Marcinkiewicz, Building a large annotated
corpus of English: The Penn treebank, Computational Linguistics 19 (2) (1993)
313{330.

[45] N. I. of Standards, Technology, ACE - Automatic Content Extraction,
http://www.nist.gov/speech/tests/ace/.

30

[46] E. Marcotte, I. Xenarios, D. Eisenberg, Mining literature for protein-protein
interactions, Bioinformatics Apr;17(4) (2001) 359{363.

[47] C. Blaschke, A. Valencia, The frame-based module of the Suiseki information
extraction system, IEEE Intelligent Systems 17 (2002) 14{20.

[48] C. Charras, T. Lecroq, Sequence comparison 11 , Laboratoire d'Informatique
de Rouen et Atelier Biologie Informatique Statistique Socio-Linguistique,
Universit�e de Rouen, France (1998).

[49] D. Gus�eld, Algorithms on Strings, Trees and Sequences, Cambridge University
Press, New York, 1997.

[50] V. I. Levenshtein, Binary codes capable of correcting insertions and reversals,
Soviet Physics Doklady 10 (8) (1966) 707{710.

[51] B. Cestnik, Estimating probabilities: A crucial task in machine learning, in:
Proc. of 9th European Conf. on Arti�cial Intelligence, Stockholm, Sweden, 1990,
pp. 147{149.

[52] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Mateo,CA, 1988.

[53] C. A. Thompson, M. E. Cali�, R. J. Mooney, Active learning for natural
language parsing and information extraction, in: Proc. of 16th Intl. Conf. on
Machine Learning (ICML-99), Bled, Slovenia, 1999, pp. 406{414.

[54] michael collins, yoram singer, unsupervised models for named entity
classi�cation, in: Proc. of the Conf. on Empirical Methods in Natural Language
Processing and Very Large Corpora (EMNLP/VLC-99), university of maryland,
1999.

[55] A. McCallum, D. Freitag, F. Pereira, Maximum entropy Markov models for
information extraction and segmentation, in: Proc. of 17th Intl. Conf. on
Machine Learning (ICML-2000), Stanford, CA, 2000.

[56] J. La�erty, A. McCallum, F. Pereira, Conditional random �elds: Probabilistic
models for segmenting and labeling sequence data, in: Proc. of 18th Intl. Conf.
on Machine Learning (ICML-2001), 2001.

11 http://www-igm.univ-mlv.fr/~lecroq/seqcomp

31

