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Abstract

Automatically extracting information from biomedical text holds the promise of
easily consolidating large amounts of biological knowledge in computer-accessible
form. This strategy is particularly attractive for extracting data relevant to genes
of the human genome from the 11 million abstracts in Medline. However, extrac-
tion e�orts have been frustrated by the lack of conventions for describing human
genes and proteins. We have developed and evaluated a variety of learned informa-
tion extraction systems for identifying human protein names in Medline abstracts
and subsequently extracting information on interactions between the proteins. We
demonstrate that machine learning approaches using support vector machines and
hidden Markov models are able to identify human proteins with higher accuracy
than several previous approaches. We also demonstrate that various rule induction
methods are able to identify protein interactions more accurately than manually-
developed rules.
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1 Introduction

An incredible wealth of biological information generated using biochemical
and genetic approaches is stored in published articles in scienti�c journals.
Summaries of more than 11 million such articles are available in the Medline
database. However, retrieving and processing this information is very diÆcult
due to the lack of formal structure in the natural-language narrative in these
documents. Automatically extracting information from biomedical text holds
the promise of easily consolidating large amounts of biological knowledge in
computer-accessible form. Information extraction (IE) systems could poten-
tially gather information on global gene relationships, gene functions, protein
interactions, gene-disease relationships, and other important information on
biological processes.

A number of recent projects have focused on the manual development of IE
systems for extracting information from biomedical literature [1{7]. Unfor-
tunately, manual engineering of information extraction (IE) systems for par-
ticular applications is a tedious and time-consuming process [8]. Each new
type of information to be extracted requires a signi�cant new engineering ef-
fort to develop speci�c extraction patterns for identifying this information.
Human-developed rules are also rarely able to accurately capture all of the
variety of formats and contexts in which the desired information can appear
in natural-language documents.

Consequently, signi�cant recent research in information extraction has focused
on using machine learning techniques to help automate the development of IE
systems [9,10]. A number of machine learning methods, including grammar
induction, hidden Markov models, inductive logic programming, naive Bayes
text categorization, and decision tree induction, have been used to help auto-
mate the development of IE systems. First, learning systems are trained on a
corpus of documents in which human experts have tagged the desired infor-
mation. Next, the IE systems induced from this supervised data are used to
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extract new information from novel test documents. Some projects on extract-
ing information from biomedical literature have also employed such learning
techniques [11{18].

We are exploring the use of a variety of machine learning methods to au-
tomatically develop IE systems for extracting information on gene/protein
name, function and interactions from Medline abstracts. For our purposes,
genes and proteins are interchangeable since, typically, there is a direct cor-
respondence between proteins and the genes that code for them. We focus
speci�cally on extracting information about human genes and proteins. Ap-
proximately 40,000 human genes are known from the sequences of the human
genome [19,20], yet fewer than 5,000 are well characterized and likely to be
described in the literature. Unlike other organisms, such as yeast or E. coli, hu-
man gene names have no standardized naming convention, and thus represent
the most diÆcult set of gene/protein names to extract. For example, human
genes/proteins may be named with standard English words, such as \light",
\map", \complement", and \Sonic hedgehog". Names may be alphanumeric,
may include Greek or Roman letters, may be case sensitive, and may be com-
posed of multiple words. Names are frequently substrings of each other, such
as \epidermal growth factor" and \epidermal growth factor receptor", which
refer to two distinct proteins. It is therefore necessary that an information
extraction algorithm be speci�cally trained to extract gene and protein names
accurately.

In this paper, we present results on learning to extract human protein names
and their interactions. We employ a variety of learning methods including
pattern-matching rule induction (Rapier) [21], boosted wrapper induction
(BWI) [22], memory-based learning (MBL) [23], transformation-based learn-
ing (TBL) [24], support vector machines (SVMs) [25], and hidden Markov
models (HMMs) [26,14]. We present cross-validated results on identifying hu-
man proteins and their interactions by training and testing on a set of ap-
proximately 1,000 manually-annotated Medline abstracts that discuss human
genes/proteins. Previous projects on extraction from Medline typically present
results for a single method on somewhat smaller corpora with limited or no
comparison to other methods. By contrast, we present uniform results of a
wide variety of methods on a single, reasonably large, human-annotated cor-
pus, thereby giving a broader picture of the relative strengths of di�erent
approaches.
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2 Biomedical Corpora

2.1 Tagging of Medline Abstracts

In order to generate a corpus of training and test data for extracting protein
names and protein interactions, we manually tagged approximately 1,000 ab-
stracts (including the titles) from among the 11 million abstracts available in
Medline. Tagging was performed using an existing IE-tagging tool 4 modi�ed
to enhance �le handling and to retain negative examples. This program ac-
cepts a directory of �les to be tagged and allows the user to tag them using
a graphical interface based on a �le of possible labels and writes the SGML
tagged �les into an output directory. Three annotated data sets were gener-
ated:

(1) 750 abstracts containing the word \human" were extracted from the Med-
line database and tagged for gene/protein names. 61.3% of the abstracts
discussed gene/protein names, for a total of 5,206 tags. An example of a
tagged abstract is shown in Figure 1.

(2) 200 abstracts previously known to contain protein interactions were ob-
tained from the Database of Interacting Proteins (DIP [27]) and tagged
for both 1,101 protein interactions and 4,141 protein names. An example
is shown in Figure 1.

(3) As negative examples for protein interactions were rare in (2), a set of 30
abstracts were generated by scanning approximately 5,000 abstracts for
sentences that mention at least two genes/proteins that do not interact.

We used data set (1) for testing protein names, and data sets (2) and (3) for
testing protein interactions.

2.2 Rules used for Tagging

Due to the ambiguities involved in human gene/protein names and interac-
tions it was necessary to develop a set of conventions for their consistent tag-
ging. Manual examination of many abstracts revealed several ambiguities, such
as whether the organism names should be tagged (e.g. <prot> human delta

catenin </prot> or human <prot> delta catenin </prot>), whether punc-
tuation should be tagged (e.g. ( <prot> LIGHT </prot> ) or <prot> (

LIGHT ) </prot>), and whether generic protein family names should be tagged
(e.g. <prot> armadillo protein p0071 </prot> or armadillo protein

4 URL: http://www-2.cs.cmu.edu/~kseymore/general tagger.pl
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TI -- A <prot> c - Cbl </prot> yeast two hybrid screen

reveals interactions with 14 - 3 - 3 isoforms and cytoskeletal

components .

PG -- 46 - 50 AB - The protein product of <p1 pair=1> <p1

pair=2> <p1 pair=3> <prot> c - cbl </prot> </p1> </p1> </p1>

proto - oncogene is known to interact with several proteins ,

including <p2 pair=1> <prot> Grb2 </prot> </p2> , <p2 pair=2>

<prot> Crk </prot> </p2> and <p2 pair=3> <prot> PI3 kinase

</prot> </p2> , and is thought to regulate signalling by many

cell surface receptors .

The precise function of <prot> c - Cbl </prot> in these pathways

is not clear , although a genetic analysis in Caenorhabditis

elegans suggests that <p1 pair=4> <prot> c - Cbl </prot>

</p1> is a negative regulator of the <p2 pair=4> <prot> <prot>

epidermal growth factor </prot> receptor </prot> </p2> . Here we

describe a yeast two hybrid screen performed with <prot> c - Cbl

</prot> in an attempt to further elucidate its role in signal

transduction . The screen identified interactions involving

<p1 pair=5> <p1 pair=6> <prot> c - Cbl </prot> </p1> </p1> and

two 14 - 3 - 3 isoforms , <p2 pair=5> <prot> cytokeratin 18

</prot> </p2> , human unconventional myosin IC , and a recently

identified SH3 domain containing protein , <p2 pair=6> <prot>

SH3 P17 </prot> </p2> . We have used the yeast two hybrid assay

to localise regions of <prot> c - Cbl </prot> required for its

interaction with each of the proteins . Interaction with 14 - 3

- 3 is demonstrated in mammalian cell extracts .

AD -- Trescowthick Research Laboratories , Peter MacCallum

Cancer Institute .

Fig. 1. Abstract with all the proteins and interactions tagged. The tag PROT indi-
cates protein name and the tags P1 and P2 having the same value for the attribute
PAIR indicate interaction between the proteins.

<prot> p0071 </prot>). Such cases led to the following set of tagging con-
ventions:

(1) As few extra characters as possible are tagged. Punctuation marks and
plural characters are not tagged.

(2) Gene/protein names are tagged regardless of context, even when gene
names are substrings of other gene names. (e.g. <prot> <prot> GITR

</prot> ligand </prot>)
(3) Generic protein/gene families are not tagged, only speci�c names which

could ultimately be traced back to speci�c genes in the human genome.
(e.g. \Tumor necrosis factor" would not be tagged, while \tumor necrosis
factor alpha" would be.)

(4) Tags for interacting proteins follow the same conventions as for other
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proteins. All stated instances of protein interactions are tagged, even
when tags are nested. (e.g. human <p1 pair=1> <prot> <prot> GITR

</prot> </p1> ligand </prot> ( <p2 pair=1> <prot> hGITRL <prot>

</p2> ))

3 Protein Name Identi�cation

Named entity recognition (NER), identifying names of people, organizations,
and places in text, is a well studied problem in information extraction from
news articles. In recent years, machine learning approaches have become the
standard in developing robust, accurate NER systems [26,28]. Biomedical ap-
plications have special types of named entities that are di�erent from those
typically addressed by existing NER systems. These include names of diseases,
genes, proteins, organisms, organs, organelles, and other biological entities. In
this section we explore the problem of recognizing references to human pro-
teins using the tagged data described in the previous section.

3.1 IE Methods

3.1.1 Dictionary-based Extraction

The success of a protein tagger depends on how well it captures the regularities
of protein naming as well as name variations. In the dictionary-based approach,
we started with an extensive set of protein names extracted from two fairly
comprehensive sources:

(1) The �le human.seq, downloaded from the Human Proteome Initiative
(HPI) of EXPASY 5 .

(2) The �le feb2002-tables.tar.gz, downloaded from the Gene Ontology
Database 6 .

Altogether, these dictionaries contain 42,172 gene/protein names (synonyms
included). This collection of protein names, henceforth referred to as the orig-
inal dictionary (OD), was further extended using a generalization procedure
to obtain a generalized dictionary (GD). The aim was to extend the coverage
of the original set, while at the same time trying to minimize any decrease in
accuracy.

5 URL: http://us.expasy.org/sprot/hpi/hpi ftp.html
6 URL: http://www.godatabase.org/dev/database/archive
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Protein Name (OD) Generalized Name (GD) Canonical Form (CD)

interleukin-1 beta interleukin hni hgi interleukin

interferon alpha-D interferon hgi hri interferon

NF-IL6-beta NF IL hni hgi NF IL

TR2 TR hni TR

NF-kappa B NF hgi hri NF

Fig. 2. Dictionary generalizations.

Generalizing a dictionary entry involved identifying those parts susceptible to
change in new protein names, and replacing them with generic placeholders.
Thus, we isolate and replace numbers with hni, Roman letters with hri and
Greek letters with hgi. Figure 2 shows some examples of name generalizations.

In the GD-based extraction, we tag a textual n-gram as a protein name only
if it is an instance of one of the generalizations from the generic dictionary. To
extend the coverage even more, we have created a canonical dictionary (CD)
consisting of canonical forms of protein names. A canonical form is obtained
from a generic form by stripping it of all generic tags, as can be seen in the
examples from Figure 2. From the resulting set we �lter out common English
words whose presence could lead to a decrease in accuracy. Consequently,
in the CD-based extraction, a textual n-gram is deemed as being a protein
name if its canonical form is part of the canonical dictionary. As the tagging-
based on both the original and generic dictionary gave better results than
other combinations (as shown in the �rst entry of Table 1), we used this
particular dictionary-based tagger for supplying a pre-tagged input to some
of the learning methods that will be discussed in the following sections.

3.1.2 Rapier

Rapier [21] is a rule learning algorithm that acquires unbounded patterns for
extracting information from text. Each extraction rule consists of three parts:
(1) a pre-�ller pattern that matches text immediately preceding a �ller (e.g. a
protein name), (2) a �ller pattern that matches the extracted substring, and
(3) a post-�ller pattern that matches the text immediately following the �ller.
Rapier begins with a most-speci�c set of rules and compresses the rule base
by repeatedly replacing rules with more general ones.

To construct the initial rule base, most-speci�c patterns are created for each
training example, specifying words for the �ller, all words preceding the �ller,
and all words following the �ller. To generate new rules, pairs of existing
rules are randomly selected and their least-general generalizations created.
Rapier starts with rules containing only generalizations of the �ller patterns,
and uses beam search to eÆciently specialize the rules by adding pieces of
the generalizations of the pre- and post-�ller patterns of the seed rules, until
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<prot> Lol p 1 </prot> is one of the most important allergens in

grass pollen extracts...

<prot> Lol </prot> <prot> p 1 </prot> is one of the most

important allergens in grass pollen extracts...

<prot> BBBB Lol EEEE BBBB p 1 </prot> EEEE is one of the most

important allergens in grass pollen extracts...

Fig. 3. Incorporating information from the dictionary-based tagger. The �rst sen-
tence contains the correct tagging. The second sentence is the output of the dictio-
nary-based tagger. The third sentence shows the input for Rapier and BWI. The
output tags of dictionary-based tagger have been transformed into special tokens
BBBB and EEEE.

the best rule in terms of information gain produces no spurious �llers when
matched against the training examples. The best generalized rule is then added
to the rule base, and the process repeats until compression has failed more
than a speci�ed number of times.

To helpRapier capture generalities that are not evident from the words alone,
we supplied additional syntactic and semantic information to the learner in
some of our experiments. First, we added part-of-speech (POS) tags to every
word in the text. POS tags are potentially useful because certain types of
words (e.g. cardinal numbers and proper nouns) are likely candidates of being
parts of a protein name.

In another experiment, we included the output of the dictionary-based tagger
(Section 3.1.1) in place of the POS tags in the form of special tokens (see
Figure 3). By adding these tokens, we incorporated domain knowledge into
the learning algorithm. At the same time, the learning algorithm can �nd
general patterns that re�ne the output of the dictionary-based tagger.

3.1.3 Boosted Wrapper Induction

Boosted Wrapper Induction (BWI) [22] learns extraction rules composed only
of simple contextual patterns called wrappers [29]. Although wrappers are
highly accurate predictors of the start or end of a protein name, each of them
has limited coverage since Medline abstracts do not exhibit a rigid struc-
ture. BWI circumvents this limitation by using boosting [30], which repeat-
edly learns simple, weak patterns that focus on the training examples for
which the previous patterns have done poorly. The predictions of all learned
patterns are then combined using a weighted voting scheme. The result is a
boosted wrapper, which has been shown to be successful in several natural
text domains.

To perform protein-name extraction using a boosted wrapper, every word
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boundary i in a Medline abstract is �rst given a fore score F (i), which indicates
its likelihood of being the start of a protein name, and an aft score A(i),
which indicates its likelihood of being the end of a protein name. Then, the
wrapper recognizes a text fragment (i; j) as a protein name if and only if
F (i)A(j)H(j � i) > � , where H(k) is a function that reects the probability
that a protein name has length k, and � is a numeric threshold that controls
the level of recall. By varying � , we are able to perform extraction at di�erent
degrees of con�dence.

In our experiments with BWI, we tested the usefulness of including the out-
put of the dictionary-based tagger (Section 3.1.1) as part of the input of the
learner, in the same way as it was done in Section 3.1.2.

3.1.4 Memory-based Learning

In the remaining methods, we approach protein name identi�cation from a
slightly di�erent angle. Since our tagged Medline abstracts do not contain
any protein names that directly abut each other, we can reduce the NER
problem to classi�cation of individual words. First, a classi�er determines if
each word is part of a protein name or not, by looking at the word itself
and its surrounding context. Next, protein names are extracted by identifying
the longest sequences of words that have been classi�ed as parts of a protein
name. Similar approaches have been applied successfully to the task of text
chunking, which is identifying simple phrases such as non-recursive noun and
verb phrases [31,28].

Notice that this approach does not work when a protein name is part of
another protein name. But since such protein names are rare (127 out of 5,206
in our corpus, or 2.44%), we are going to ignore this possibility, and assume
that some protein names will always be missed whenever name nesting occurs.

We tested the eÆcacy of this approach using several traditional classi�cation
methods. The �rst is k-nearest neighbor (k-NN) or memory-based learning, in
which classi�cation is done by extrapolation from the k most similar training
examples. We used version 4.2 of TiMBL 7 , which has been successfully applied
to several text chunking tasks [32,33].

For each word in the corpus, we formed a feature vector, consisting of the word
itself, the previous N words, and the followingN words. We also included POS
tags generated by the Brill's tagger 8 and the output of the dictionary-based
protein tagger (Section 3.1.1) for all 2N + 1 words. We ignored capitalization
when preparing the feature vectors to avoid sparsity. To calculate the similarity

7 URL: http://ilk.kub.nl/software.html
8 URL: http://www.cs.jhu.edu/~brill/RBT1 14.tar.Z
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between two feature vectors, we used the overlap metric weighted by chi-
squared statistics. Good values for k and N were determined empirically (see
Section 3.2.2).

3.1.5 Support Vector Machines

Support Vector Machines (SVMs) are one of the most recently developed
classi�cation methods [34]. They are well-founded in computational learning
theory, and have been shown to generalize well in the presence of very many
features. They are generally considered to be the currently best technique for
text classi�cation [35].

Assume that all training examples consist of a vector ofm features, and belong
to either positive or negative class as follows: (x1; y1); : : : ; (xm; ym), where
xi 2 Rn is the i-th feature vector and yi 2 f+1;�1g is its class label. Then
an SVM learns an optimal threshold function f(x) = hw;xi+ b;w 2 Rn; b 2
R, which separates the training examples into two classes. An example x is
classi�ed as positive when f(x) > 0, or negative when f(x) < 0. A threshold
function is optimal when the margin of separation between the two classes is
maximal. It can be proved that the margin is maximized when the norm of
w is minimized. This leads to a constrained quadratic optimization problem
which can be exactly solved eÆciently.

In our experiments with SVMs, we used the same set of features as in Sec-
tion 3.1.4, with N set to 2. Inspired by the text chunking algorithm presented
in [36], we included the class labels of the two preceding words as part of the
feature vector. Since the class labels were not given in the test data, they were
decided dynamically during the tagging of previous words. Since numerical
values were needed, each word or tag in each position was a separate binary
feature. By taking all words and tags appearing in the training data as fea-
tures, the dimension of feature vectors became as large as 74,487. For each
extracted string, we used the minimal distance from the hyperplane f(x) = 0
as a quantitative measure of con�dence. For the inner product hw;xi, we used
wTx, which resulted in a linear threshold function. It has been argued that
most text categorization problems are linearly separable [35], so in our case
a linear threshold function should suÆce. We used version 5.0 of SVMlight 9 ,
which is highly eÆcient in dealing with sparse instances.

3.1.6 Transformation-based Learning

Transformation-based learning (TBL) is a rule-based, error-driven learning
technique that has been applied to a number of natural language problems

9 URL: http://svmlight.joachims.org/
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[24]. It is the basis of the widely-used Brill's POS tagger. A summary of the
learning process is as follows. First, a manually annotated corpus is passed
through a lexical rule learner, which learns lexical rules that assign initial tags
by looking at the lexical features of each word, such as whether the word is
capitalized, and what the last three letters of the word are. After that, the
lexical rules are applied to the same corpus with all annotations removed. Then
transformation rules are learned by comparing the output of initial tagging to
the correct annotations. Contextual information is taken into account when
generating transformation rules. An example rule is \change the tag from
NIL to PROT if the following word is protein." 10 The goal of transformation
rules is to make the annotations better resemble the correct ones. The learner
stops when no more transformations that result in a certain amount of error
reduction can be found. During testing, new text is annotated by �rst applying
the lexical rules, and then applying each of the transformation rules in order.

In our �rst experiment with TBL, we applied the lexical rule and contextual
rule learners to our training set, in order to see if the learners were able to
learn rules from scratch. In our second experiment, we applied the dictionary-
based tagger (Section 3.1.1) to the training set, and compared the results to
the correct annotations, from which contextual rules were induced.

3.1.7 Hidden Markov Models

Hidden Markov Models (HMMs) can be viewed as stochastic �nite state au-
tomata de�ned in terms of a set of states and transitions between them. Each
state is associated with two probability distributions: one over the emission
of various tokens, and the other over the transitions to other states in the
model. These distributions can be learned from training data using maximum-
likelihood estimates when the states are known, or the Baum-Welch procedure,
if the states are unknown [37].

HMMs have long been used in speech recognition and part-of-speech tag-
ging [38], and they have also proved to be highly e�ective in information
extraction tasks, such as name entity recognition [26], or template �lling [39].
Tasks from biomedical domain have also bene�ted from the use of HMM based
supervised learning. In one approach to protein-name extraction, an HMM
model is learned based on word features such as capitalization, Greek letters,
digits and symbols, without relying on other types of information such as
POS tags, handcrafted rules, or dictionaries [13]. Another work has addressed
the task of identifying subcellular structures in which proteins are located by
learning HMM models with di�erent levels of incorporated knowledge, from
an HMM based on words only, to a model using part-of-speech information,

10 If the tag is NIL, then the current word is not recognized as part of a protein
name. The tag PROT carries the opposite meaning.
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and �nally to a third model which relies on syntactic information obtained
from a shallow parser [14]. The model that uses words and part-of-speech in-
formation is also the model used in our experiments. It involves creating two
sub-models:

� A positive model in which states correspond to either a part-of-speech alone,
or to a part-of-speech annotated as protein. In the recognition phase, words
are tagged as being part of a protein name only if they are emitted by a
protein annotated state.

� A null model containing a di�erent state for each part-of-speech.

These two HMMs are intended to recognize sentences containing protein names
(the positive model) and sentences without any protein names (the null model).
Consequently, the positive model is trained on sentences tagged with protein
names, while the null model is trained on the remaining sentences. Both models
are fully connected. In the extraction phase, a sentence is deemed as positive
(i.e. containing protein names) only if the likelihood of emission by the pos-
itive model is greater than the likelihood of emission by the null model. In
order to extract the protein names in a positive sentence, the system identi-
�es the maximal contiguous sequences of words that are emitted by protein
annotated states from the Viterbi path of the sentence in the positive model.
In a variant of the system, we used the output of the dictionary-based tagger
(Section 3.1.1) to replace the POS tag of tokens inside a tagged sequence with
a separate tag.

3.1.8 Existing Protein Name Identi�cation Systems

We also tested two existing protein name identi�cation systems. The �rst one
is KEX version 1.21, which is based on the PROPER algorithm described in
[1]. It consists of a set of hand-built pattern matching rules which makes use
of part-of-speech information given by the Brill's tagger. Without depending
on any protein-name dictionaries, KEX has been reported to achieve 94.70%
precision and 98.84% recall on a corpus of 80 abstracts on SH3 and signal
transduction domains.

We also tested Abgene, introduced in [40]. Similar to the method presented in
Section 3.1.6, Abgene uses a transformation-based tagger to produce initial
tagging. Then it uses a number of dictionaries and contextual rules to weed out
false positive and recover false negative. It was tested on a corpus consisting
of the complete set of abstracts introduced into Medline between June 15 and
September 24, 2001, and was reported to give good results.
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3.2 Experimental Results

We begin this section by explaining the methodology followed in our exper-
iments. We present next the quantitative results of the IE methods used for
extracting protein names. The section ends with a comparative analysis of the
results.

3.2.1 Experimental Methodology

The 750 Medline abstracts annotated with protein tags were tokenized using
simple pattern rules developed for the Penn Treebank project [41]. For pro-
grams requiring sentence-segmented input, we used the sentence segmenter
from the KEX tagger with additional rules for bulleted lists. For those learn-
ing algorithms requiring POS tags, we used Brill's POS tagger, which we
trained by using 10,000 untagged Medline abstracts as the training set. Those
abstracts were obtained the same way we did for the 750 abstracts. No stem-
ming or stopword �ltering was performed during the experiments. Capitaliza-
tion was retained unless otherwise speci�ed.

We performed ten-fold cross validation on each learning algorithm with a par-
ticular parameter setting. This provides average performance over ten random
trials, each training on 90% of the data and testing on the remaining 10%.
Each extracted protein name in the test data was compared to the human-
tagged data, with the positions taken into account. Since Abgene provides no
positional information, we assume that all occurrences of its extracted strings
are recognized as protein names. Two protein names are considered a match if
they consist of the same character sequence in the same position in the text.
This detects circumstances where common English words are incorrectly rec-
ognized as protein names (e.g. \light", \at"), and ensures that all references to
each protein are recognized. We measured precision (percentage of extracted
names that are correct), recall (percentage of correct names that are found),
and F-measure (harmonic mean of precision and recall) [8].

3.2.2 Quantitative Results

Table 1 summarizes results for the protein taggers presented in Section 3.1,
along with any additional sources of information used. For the k-NN tagger
(Section 3.1.4), we determined the best parameter settings by testing on every
combination of k = 1; 3; 5 and N = 1; 2; 3 using only words as features. Then
we used the combination of k and N that gave the best F-measure in the
remaining experiments on k-NN. For systems that output con�dences that
allow trading-o� precision and recall (i.e. BWI, k-NN, SVM and HMM), results
are presented for the maximum achievable recall.
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IE Methods and Additional Information Used Precision Recall F-measure

Dictionary-based

original dictionary 56.70% 27.24% 36.80%

plus generalized dictionary 62.27% 45.85% 52.81%

plus canonical dictionary 41.88% 54.42% 47.33%

Rapier

words only 76.77% 10.22% 18.04%

part-of-speech 72.95% 11.08% 19.24%

dictionary-based tagger 74.23% 12.45% 21.32%

BWI (300 iterations, 2 lookaheads, max. recall)

words only 72.97% 11.56% 19.96%

dictionary-based tagger 69.50% 24.03% 35.71%

k-NN (words only, max. recall)

k = 1; N = 1 37.18% 33.67% 35.34%

k = 1; N = 2 39.21% 36.73% 37.93%

k = 1; N = 3 37.34% 37.17% 37.25%

k = 3; N = 1 23.90% 8.99% 13.07%

k = 3; N = 2 33.43% 19.80% 24.87%

k = 3; N = 3 34.96% 24.30% 28.67%

k = 5; N = 1 13.54% 0.25% 0.49%

k = 5; N = 2 22.45% 7.03% 10.71%

k = 5; N = 3 29.82% 14.00% 19.06%

k-NN (k = 1; N = 2, max. recall)

part-of-speech 34.79% 40.86% 37.58%

dictionary-based tagger 47.22% 47.94% 47.58%

SVM (N = 2, max. recall)

preceding class labels 68.92% 19.77% 30.72%

preceding class labels and part-of-speech 69.97% 19.78% 30.85%

preceding class labels and dictionary-based
tagger

64.86% 45.66% 53.59%

dictionary-based tagger but no preceding
class labels

60.75% 47.31% 53.20%

HMM (max. recall)

part-of-speech 49.21% 25.93% 33.96%

dictionary-based tagger 51.24% 33.73% 40.68%

part-of-speech and dictionary-based tagger 60.29% 39.95% 48.05%

KEX 14.68% 31.83% 20.09%

Abgene 32.39% 45.87% 37.97%

Table 1
Performance of protein taggers in di�erent settings
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For ease of comparison, we show recall-precision curves in Figure 4, using
the version of each system that gave the best F-measure (as shown in bold
in Figure 1). For those IE methods that output extraction con�dences, we
show curves indicating the precision for each achievable level of recall. Single
recall-precision points are shown for all other methods.
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Fig. 4. Precision-recall curves for protein taggers in their best setting

3.2.3 Discussion of Results

Overall, the results show limited utility of POS tags. The use of POS tags
in Rapier, k-NN, and SVM, does not improve F-measure signi�cantly ac-
cording to a paired t-test (p > 0:05). An exception is for HMM, where the
F-measure increases signi�cantly when both the POS tags and the output of
the dictionary-based tagger are available. This is because the inclusion of POS
tags results in a model with more states, allowing for more accurate modeling
of the data.

While the dictionary-based tagger barely improves F-measure for Rapier and
TBL, it is useful for the rest of the learning methods to di�erent extents. It
improves both precision and recall for k-NN and HMM, while for BWI and
SVM, it hurts the precision slightly, but this is outweighed by a larger gain in
recall. For SVM, the improvement in recall is so great that SVM coupled with
the dictionary-based tagger gives the best overall F-measure.
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While none of the learning methods achieve a signi�cant improvement over
the dictionary-based tagger in terms of F-measure, several of them can pro-
duce much higher precision. In particular, SVM is able to achieve arbitrarily
high precision by adjusting the level of recall. This is because the extraction
con�dence seems to truly reect the probability of correctness. Since high pre-
cision is needed to extract accurate knowledge from text, this is a signi�cant
contribution.

All of our IE methods perform signi�cantly better than two existing protein
taggers, KEX and Abgene. Given that these systems were developed for dif-
ferent distributions of proteins, this is not surprising; however it does illustrate
the relative diÆculty of identifying human proteins. The hand-built rules used
in KEX were developed and tested on a rather con�ned set of proteins dif-
ferent from the human proteins in our data. Abgene uses a version of TBL
to learn a protein tagger; however, the speci�c tagger we obtained was not
trained speci�cally for human proteins. Our own TBL system is more indica-
tive of the performance of this approach when speci�cally trained for human
proteins; however, note that many of the other learning approaches perform
better than TBL.

4 Protein Interaction Extraction

Identifying relations between named entities stated in text is a more diÆ-
cult IE problem that only recently has attracted signi�cant attention in re-
search on extraction from new articles. The current ACE (Automated Content
Extraction) program at the National Institute of Standards and Technology
(NIST) [42] is focused on identifying various social, action-role, part-of, and
locational relations between named entities. Several projects have focused on
extracting relations from biomedical text, such as identifying gene-disease re-
lations, subcellular localizations, or protein interactions [12,14,15,2{6,43]. This
section discusses our work on identifying human-protein interactions assum-
ing that the proteins themselves have already been tagged, and shows that
machine-learning systems out-perform human-written extraction rules.

4.1 IE Methods

4.1.1 Rapier and Boosted Wrapper Induction

In order to adapt slot-�lling IE systems that extract individual entities (like
Rapier and BWI) to the problem of extracting relations, we developed two
approaches. The �rst approach we call the Inter�ller approach. Given two
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<interactor> SHPTP2 </interactor> <interfiller> interacts with

another signaling protein , </interfiller> <interactee> Grb7

</interactee> .

Fig. 5. Interactor, interactee and inter�ller

tagged entities participating in a relationship, the text fragment between them
is called the inter�ller (see Figure 5). If a slot-�lling IE system extracts an in-
ter�ller, the tagged entities before and after it can be extracted as participating
in the targeted relation.

The second approach we call the Role-�ller approach. In this approach, we
extract the two related entities into di�erent role-speci�c slots. For protein
interactions, we named the roles interactor and interactee (see Figure 5). We
then assume that all interacting proteins appear in the same sentence and
extract the related pairs using the following heuristics. (1) The interactors
and interactees appearing in the same sentence form a sequence of role �llers.
This sequence is separated into segments at the points where an interactee
is immediately followed by an interactor. Interactors and interactees can only
be paired within the same segment. (2) Each interactor is associated with the
next occuring interactee in the segment. (3) If there are fewer interactors (in-
teractees) than interactees (interactors) in the segment, use the last interactor
(interactee) in constructing the remaining pairs. In our human-tagged inter-
action corpus, assuming interactors and interactees are properly tagged, this
approach identi�es all the interacting pairs with 99.2% accuracy.

Both of these approaches have been used to train BWI (Section 3.1.3) to ex-
tract interacting proteins, and the Role-�ller approach has been used to train
Rapier (Section 3.1.2) to extract interactions. Rapier could not learn to
extract inter�llers successfully, since, in the worst case, the time complexity
of its generalization algorithm can grow exponentially in the length of a �ller.
Since extracted entities are usually fairly short, this is typically not a prob-
lem in standard slot-�lling IE. However, the long inter�llers in many protein
interactions prevented us from running Rapier with the Inter�ller approach.

4.1.2 Extraction using Longest Common Subsequences (ELCS)

We have also developed a new method for directly learning patterns for ex-
tracting relations between previously tagged entities. Blaschke et al. [3,44]
manually developed rules for extracting interacting proteins. Each of their
rules (or frames) is a sequence of words (or POS tags) and two protein-name to-
kens. Between every two adjacent words is a number indicating the maximum
number of intervening words allowed when matching the rule to a sentence.
Here we describe a new method ELCS (Extraction using Longest Common
Subsequences) that automatically learns such rules.
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[These j Here j have j,] (4) [data j we j previously j the j wild] (1)
[suggest j show j reported j transcription j-] (2) [that j factor j type j of]
(15) PROTEINNAME (14) [surface j of j - j with j boundj activate]
(0) PROTEINNAME (27) .

Fig. 6. Sample protein-extraction rule learned by ELCS.

ELCS' rule representation is similar to that in [3,44], except that it currently
does not use POS tags, but allows disjunctions of words. Figure 6 shows an
example of a rule learned by ELCS. Words in square brackets separated by
'j' indicate disjunctive lexical constraints, i.e. one of the given words must
match the sentence at that position. The numbers in parentheses between
adjacent constraints indicate the maximum number of unconstrained words
allowed between the two (called a word gap). A sentence matches the rule if
and only if it satisifes the word constraints in the given order and respects the
respective word gaps.

Sentences in the training data that contain interacting proteins are called
positive sentences and others are called negative sentences. ELCS induces rules
using a bottom-up approach. It starts with positive sentences and repeatedly
generalizes them to form rules until the rules becomes overly general and
start matching negative sentences. Note that a positive sentence may contain
more than two proteins and more than one pair of interacting proteins. In
order to extract the interacting pairs, the rules should be trained to pick
out exactly the interacting proteins from the positive sentences. To do this
we replicate positive sentences having n proteins (n > 2) into Cn

2 sentences
such that each one has exactly two of the proteins tagged, with the rest of
the protein tags omitted. If the tagged proteins interact, then the replicated
sentence is added to the set of positive sentences, otherwise it is added to the
set of negative sentences. During testing, a sentence having n proteins (n > 2)
is again replicated into Cn

2 sentences in a similar way. If such a replicated
sentence matches one of the rules, then the system extracts the two proteins
tagged in that sentence as interacting proteins.

Rule induction starts with maximally speci�c rules for each positive sentence
which contain all the words in the sentence with zero-length word gaps. We
have developed two methods for generalizing rules, one that does not use
disjunction and one that does. A simple way to produce a non-disjunctive
generalization of two rules is to �nd the longest common subsequence (LCS) of
words between them. EÆcient algorithms for computing an LCS are presented
in [45,46]. After �nding the LCS between two rules, we determine the size of
word gaps between every two adjacent words in their LCS as the larger of the
number of words plus the sum of existing word gaps between the two LCS
words where they are found in the orignal two rules. Figure 7 shows a sample
generalization of two sentences.

18



Sentence 1: The <p1> retinoblastoma </p1> protein binds to <p2>

RIZ </p2> , a zinc - finger protein that shares an epitope with

the adenovirus E1A protein .

Sentence 2: The present study has shown that cell surface <p1

pair=1> calreticulin </p1> binds to the <p2 pair=1> B beta chain

of fibrinogen </p2> mediating its mitogenic activity .

Generalization using LCS: The (7) PROTEINNAME (1) binds (0) to (1)
PROTEINNAME (15) .

Fig. 7. Sample LCS generalization of two sentences with P1 and P2 protein tags.

Sentence 1: The <p1> retinoblastoma </p1> protein binds to <p2>

RIZ </p2> , a zinc - finger protein that shares an epitope with

the adenovirus E1A protein .

Sentence 2: The present study has shown that cell surface <p1

pair=1> calreticulin </p1> binds to the <p2 pair=1> B beta chain

of fibrinogen </p2> mediating its mitogenic activity .

Generalization using edit distance: The (7) PROTEINNAME (1) binds
(0) to (1) PROTEINNAME (11) [mediating j the] (0) [its j adenovirus] (0)
[mitogenic j E1A] (0) [activity j protein] (0) .

Fig. 8. Sample edit-distance generalization of two sentences with P1 and P2 protein
tags.

Our second approach to generalization uses edit distance (ED) [46] and creates
more speci�c rules that contain disjunctive constraints. The most common edit
distance is Levenshtein distance [47], de�ned as the minimum number of edit
operations (adding, deleting, or replacing an item) required to convert one
sequence into another. We use the minimal edit-operation sequence obtained
when computing Levenshtein distance to generalize two rules. We preserve the
common word constraints between the rules, make disjunctions of constraints
when one item is replaced by another in the edit sequence, and drop constraints
that are added or deleted in the edit sequence. Finally, we introduce word gaps
using the method described for the LCS-based generalization. Figure 8 shows
an example of edit-distance generalization.

Using one of these generalization methods, a greedy-covering, bottom-up rule-
induction method is used to learn a small set of rules that cover of all the
positive sentences without covering many negative ones. Speci�cally, we use
a version of the algorithm used in GOLEM [48,49]. GOLEM �rst generates
a good seed rule by generalizing random pairs of positive examples. Then it
repeatedly generalizes this rule as long as it continues to cover more positives
without covering too many negatives. It returns the rule thus learned, removes
all of the positive examples it covers, and then continues learning rules until
all of the positive examples are covered.

In order to prevent over-�tting, we allow learned rules to cover a small number
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interactions (0) between (4) PROTEINNAME (0) and (4) PROTEINNAME
(16) .

PROTEINNAME (3) - (6) PROTEINNAME (21) in (5) cell (0) lines (16) .

PROTEINNAME (0) / (0) PROTEINNAME (10) heterodimers (36) .

[binding j substitution j AB j addition j Interestingly j TI j interactions]
(0) [of j - j ,] (3) PROTEINNAME (19) [to j for j : j same j with]
(10) PROTEINNAME (30) [nM j binding j 1 j CDK6 j CCR8 j
death] (9) .

[We j Structure j we j strong j determinants j Interactions j consisting j con-
sists] (0) [demonstrate j of j interaction j for] (4) PROTEINNAME
(12) [binds j bound j protein j homology j assembly j but] (19) [to j (
j , j designated j speci�c] (11) PROTEINNAME (19) .

[linker j TI j armadillo j b558 j of] (0) [- j , j a] (5) PROTEINNAME
(13) [and j / j with j to j containing] (0) PROTEINNAME (2) .

Fig. 9. Some example rules learned by ELCS; the �rst three were learned using LCS
generalization and the next three using edit distance generalization.

of negative examples. A rule is kept as long as p�n

p+n
> C, where p and n are,

respectively, the number of positive and negative examples covered by the
rule, and C is a parameter of the system. The greater the value of C, the more
induced rules tend towards high precision but low recall. A similar approach
is used in RIPPER [50] and Rapier [21].

The generalizations obtained using either the LCS or ED method may result in
rules that do not contain two protein-name tokens. This is �ne for extracting
protein interactions because we always apply the rules to sentences containing
exactly two protein names. However, constraining learned rules to contain
two protein names is a useful bias. Therefore, we divide each of the training
sentence in three parts: the portion of the sentence before the �rst protein
name, the portion between the two protein names, and the portion after the
second protein name. When we generalize two rules, we generalize these three
parts separately. This ensures the rule will always contain two protein-name
tokens. Figure 9 shows some sample rules learned by ELCS.
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4.2 Experimental Results

4.2.1 Experimental Methodology

Medline abstracts were pre-processed as described in Section 3.2.1. All our
systems for extracting interactions require sentence segmentation since only
two proteins within a sentence are considered when identifying interactions
(this constraint is satis�ed by all interactions in our corpus). We also compared
our systems with Blaschke et al.'s manually-written rules [44]. Since these rules
use POS tags, we also used Brill's POS tagger. We also tested a version of
the human-written rules in which the POS tags are replaced by typical words
indicating interactions such as activation, phosphorylation or interaction for
nouns and activates, binds or phosphorylates for verbs, similar to the approach
in [3].

Our current experiments only evaluate the performance of interaction extrac-
tion, assuming all protein names have already been correctly tagged. Results
with automatically-tagged proteins will be presented in the �nal version of
the paper. As in Section 3.2.1, performance is evaluated using ten-fold cross
validation and measuring recall and precision. We consider an extracted inter-
action correct if and only if the names and positions of both proteins exactly
match human-tagged interactions. Note that this is the strictest measure of
accuracy.

4.2.2 Quantitative Results

Figure 10 shows recall-precision results for protein-interaction extraction when
tested on abstracts that have been manually tagged for protein names. We
plotted a precision-recall curve for BWI by utilizing its extraction con�dences.
Since Rapier and human-written rules do not produce con�dences, only a
single recall-precision point is shown. For ELCS, we show the point which
gives the maximum F-measure, found by varying the over�tting parameter C.

4.2.3 Discussion of Results

BWI gives varying degrees of high precision, but recall is generally quite low.
Rapier also gives relatively high precison but low recall. ELCS tends to give
higher recall with only a modest decrease in precision compared to BWI and
Rapier. In contrast, human-written rules with POS tags achieve high recall
but quite low precision. The human-written rules with typical words substi-
tuted for POS tags gives somewhat higher precision but with much less recall.

These results generally demonstrate that machine learning out-performs human-
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Fig. 10. Precision-recall graphs for protein interaction extraction.

written rules. The human-written rules with POS tags give higher recall but
very low precision. When the human-written rules are made more precise
by replacing the POS tags by speci�c key words, as in [3], then the machine
learning systems clearly out-perform the human-written rules in terms of both
precision and recall. In order to avoid over-loading human curators with too
many false positives when extracting knowledge from large volumes of text, a
general emphasis towards higher precision seems appropriate.

5 Conclusions and Future Research

After comparing a number of methods for extracting human protein names
and interactions, we obtained the best performance for protein tagging with
an SVM-based learning method that exploits a generalized protein-name dic-
tionary. Other learning methods also perform fairly well; however, no method
achieves greater than 50% recall. For extracting protein interactions, we found
that several methods for learning extraction rules generally out-perform hand-
written rules, particularly with respect to precision. Token classi�cation meth-
ods like k-NN, SVM, and TBL are not directly applicable to extracting inter-
actions; however, we plan to test HMMs on extracting interactions in the near
future.
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Clearly, the ability to extract human proteins and their interactions still needs
signi�cant improvement. We foresee improvement in three general areas: better
training data, better learning methods, and better use of external knowledge.

Larger training sets are always bene�cial to learning systems; however, man-
ually tagging data is very time consuming. One alternative approach is to use
existing knowledge to automatically produce weakly labeled training data [12].
Another approach is to use active learning to select only the best training
examples for human labeling [51]. A third approach is to utilize a mixture of
both labeled and unlabeled data during training [52].

Improved learning algorithms for information extraction continue to be de-
veloped. Recently, a number of methods for improving HMMs have been pro-
posed, including linear interpolating HMMs [13], maximum-entropy HMMs [53],
and conditional random �elds [54].

Existing biological knowledge can also be used to improve extraction perfor-
mance. Currently we have only exploited dictionaries of known protein names.
Using learning to revise initial human-written extraction rules has also been
shown to improve performance [15]. One can imagine many other sources of
external knowledge: global statistical properties of abstracts, existing interac-
tion or pathway data, prior expectations for �nding protein names, and dic-
tionaries of near-miss negative examples of protein names. Filtering proposed
interacting proteins by comparing their gene-expression data or examining
their co-occurences in other abstracts or web pages could also prove useful.

In the future, it will also be interesting to develop IE systems for extracting
other associations with genes. A few examples include extracting informa-
tion about post-translational modi�cations of proteins, identifying genes that
are speci�cally involved with diseases, identifying genes that are co-regulated,
extracting protein-drug interactions, protein-metabolite interactions and in-
formation about the dynamics and dependencies of these processes.
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