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Abstract

In this paper, we examine how large language
models (LLMs) solve multi-step problems un-
der a language agent framework with three com-
ponents: a generator, a discriminator, and a
planning method. We investigate the practical
utility of two advanced planning methods, it-
erative correction and tree search. We present
a comprehensive analysis of how discrimina-
tion accuracy affects the overall performance
of agents when using these two methods or a
simpler method, re-ranking. Experiments on
two tasks, text-to-SQL parsing and mathemat-
ical reasoning, show that: (1) advanced plan-
ning methods demand discriminators with at
least 90% accuracy to achieve significant im-
provements over re-ranking; (2) current LLMs’
discrimination abilities have not met the needs
of advanced planning methods to achieve such
improvements; (3) with LLM-based discrimi-
nators, advanced planning methods may not ad-
equately balance accuracy and efficiency. For
example, compared to the other two methods,
tree search is at least 10–20 times slower but
leads to negligible performance gains, which
hinders its real-world applications.1

1 Introduction

Planning plays a crucial role in intelligent behav-
iors of human and AI agents. Since the early stage
of AI research, various methods have been pro-
posed to build agents that can plan efficiently and
accurately (Newell and Simon, 1956; Russell and
Norvig, 2010). The problem-solving procedure
in these AI agents usually involves three steps:
searching for possible action sequences, predict-
ing their expected outcomes with an internal world
model, and finding an action sequence to achieve
the best expected outcome (Russell and Norvig,
2010; Mattar and Lengyel, 2022). This procedure

1Code and data are available at https://github.com/
OSU-NLP-Group/llm-planning-eval.

Figure 1: A generator-discriminator framework of lan-
guage agents, where planning methods control the inter-
action between a generator and a discriminator, both of
which are usually instantiated by some LLM.

shares common traits with how large language mod-
els (LLMs) solve multi-step tasks, including math-
ematical reasoning (Wei et al., 2022), multi-hop
question answering (Yao et al., 2023b), and code
generation (Yang et al., 2023). At each step, an
LLM searches for possible next actions and gen-
erates their language representations (generation).
To evaluate the actions, the LLM utilizes itself or
another LLM to predict the outcomes of actions, in
the form of rewards or correctness (discrimination).
Afterwards, it incorporates the outcomes into its
problem-solving process with some strategy to find
the best action sequence (planning).

Motivated by the similarity, we critically ex-
amine how LLMs solve multi-step tasks from a
language-agent view. We unify different problem-
solving procedures of LLMs into an agent frame-
work (Figure 1) consisting of a generator, a discrim-
inator, and a planning method. Under this frame-
work, we investigate the practical utility of more
advanced planning methods, such as tree search, in
comparison with simpler methods (e.g. re-ranking).
We hypothesize that the discriminator may be a
deciding factor and systematically investigate two
research questions: (RQ1) How does discrimina-
tion accuracy affect the performance of language
agents using different planning methods? (RQ2)
Can LLM-based discriminators correctly assess
language agents’ actions in practical settings?

https://github.com/OSU-NLP-Group/llm-planning-eval
https://github.com/OSU-NLP-Group/llm-planning-eval


To this end, we analyze LLMs’ discrimination
abilities and their impact on three categories of
planning methods: re-ranking, iterative correction,
and tree search. We comprehensively evaluate
these methods on two real-world tasks, text-to-SQL
parsing and mathematical reasoning, with open-
source, proprietary, and fine-tuned LLM discrimi-
nators. First, we use oracle environmental informa-
tion to simulate discriminators with different levels
of accuracy. The simulation experiments exhibit a
strong correlation between discrimination accuracy
and overall task performance among all three types
of planning methods. Then, in a non-oracle setting,
we closely investigate the LLM-based discrimina-
tors and show how environmental observations can
effectively improve them. Finally, we conduct end-
to-end evaluations of the discriminators and plan-
ning methods to verify and strengthen our findings.
In summary, our experiments show that:
(1) Advanced planning methods, i.e., iterative cor-
rection and tree search, demand highly accurate
discriminators (≥ 90% accuracy) to achieve decent
improvements over the simpler method, re-ranking.
(2) Using environmental feedback, we improve the
discrimination accuracy of LLMs by up to 30.2
and 8.4 absolute points on text-to-SQL parsing and
mathematical reasoning, respectively. Yet, our end-
to-end evaluations suggest they have barely met
the need for advanced planning methods to show
significant improvements over re-ranking.
(3) Meanwhile, advanced planning methods may
not adequately balance accuracy and efficiency
when using LLM-based discriminators. In our
experiments, compared to the other two methods,
tree search is at least 10–20 times slower but leads
to negligible performance gains. This accuracy-
efficiency trade-off can impede the deployment of
tree search in real-world applications.

2 Related Work
A lot of recent research efforts have focused on ad-
vanced planning methods for improving the multi-
step problem-solving abilities of LLMs (Li et al.
2023b; Madaan et al. 2023; Yao et al. 2023a,b;
Zhou et al. 2023; Feng et al. 2024; inter alia). De-
spite different designs, all these methods use a dis-
criminator to evaluate the agents’ actions, or plan-
ning steps. In fact, instead of planning methods,
an agent’s discriminator could be the more critical
component. Since incorrect outcome predictions
could lead to suboptimal plans, discriminators may
decide the performance of an agent, regardless of

its planning method (Mattar and Lengyel, 2022).
While it is commonly believed that discrimina-

tion is easier than generation for human and AI
agents (Gu et al., 2023), West et al. (2024) pose the
hypothesis that state-of-the-art generative AI mod-
els, including LLMs, may not have discrimination
abilities matching their generation abilities. This
hypothesis coincides with the findings of Huang
et al. (2024) and Wang et al. (2023a) that, without
any external feedback or with obviously absurd
feedback, LLMs may recognize some of their self-
generated correct plans as wrong. Huang et al.
(2024) also note that the performance gains of self-
correction, a kind of iterative correction method,
may rely on some high-quality external feedback,
such as checking ground-truth labels or test sets
for planning loop termination. However, such ex-
ternal feedback usually does not exist in practical
applications because solutions to new problems are
unknown, and annotating comprehensive test cases
can be nontrivial and costly.

Distinct from these existing studies, our work fo-
cuses on studying the relationship between discrim-
inators and planning methods, including but not
limited to self-correction, and attempts to improve
LLMs’ discrimination capability. Our findings can
provide useful guidelines for choosing planning
methods and implementing language agents in prac-
tice. In light of our findings, we encourage future
research to thoroughly evaluate language agents
with various practical, non-oracle discriminators.
We also advocate that improving LLM-based dis-
criminators is an important future direction to en-
hance agents’ accuracy and efficiency when using
advanced planning methods.

3 Our Framework
As shown in Figure 1, we systematically analyze
different planning methods in a unified generator-
discriminator framework. Our framework consists
of a generator that proposes (partial) action se-
quences, a discriminator that evaluates the out-
comes of these actions, and a planning method that
ranks the actions according to their outcomes and
manages the interaction between the two models.
In this section, we describe each of the three compo-
nents and how they are instantiated on text-to-SQL
parsing and mathematical reasoning (Section 4.1).

3.1 Generator
For each planning step, we prompt the generator to
sample action sequences (SQL queries or Python



(a) Re-ranking. (b) Iterative Correction. (c) Tree Search.

Figure 2: Illustration of three categories of planning methods examined in our unified generator-evaluator framework.

programs for math reasoning). For text-to-SQL
parsing, we use 1-shot prompting, where the exam-
ple is retrieved from the training sets using BM25
(Robertson and Zaragoza, 2009). For math reason-
ing, we use a fixed 2-shot prompt adapted from Ni
et al. (2023b). See prompts in Appendix D.

3.2 Discriminator
Given some (partial) action sequences, we formu-
late the discrimination task as binary question an-
swering (Kadavath et al., 2022; Ke et al., 2023).
The discrimination score of each tested example
is the probability of “Yes” being generated as the
next token. Specifically, we prompt the LLMs with
the question “Is the SQL/python program correct
given the utterance/problem?” to generate one sin-
gle token with its probability as the score. With this
formulation, we evaluate three types of LLMs in
our experiments (Section 4.2). Similar to the gener-
ator, we use 1-shot prompting with BM25 retrieval
for text-to-SQL parsing and a fixed 2-shot prompt
for math reasoning. Prompts are in Appendix D.

3.3 Planning Methods
Re-ranking. Re-ranking is a straightforward plan-
ning method. After sampling a few complete action
sequences from the generator, it uses the discrimi-
nator to score them and return the highest-scoring
plan (Figure 2a). Although simple, it is commonly
used for code generation (Ni et al., 2023a) and
mathematical reasoning tasks (Wang et al., 2023b;
Li et al., 2023b). We consider re-ranking as a base-
line planning method for more advanced ones.
Iterative correction. Like re-ranking, iterative cor-
rection starts with the generator proposing a com-
plete action sequence. Then it leverages multiple
rounds of revision to improve the initial plan based
on the discriminator’s feedback (Figure 2b). When
the generator and the discriminator are the same
LLM, it becomes a prevalent planning method, self-
correction (Madaan et al., 2023; Shinn et al., 2023;
Yao et al., 2023b; Chen et al., 2024).

While some work uses greedy generation, our

implementation samples the same number of action
sequences as other planning methods for fair com-
parison. Then, it uses the discriminator to select
the best-scoring one for the next round’s revision.
We allow up to 10 rounds of corrections, with early
exiting when the best plan meets a threshold of
discrimination score (> 0.99), or the score is not
improved for 3 consecutive iterations. For fair com-
parison, we prompt the generator to revise plans
with 0-shot instruction following (Appendix D) in-
stead of few-shot, since in-context examples may
introduce additional information.
Tree Search. Tree search is another popular plan-
ning method for language agents, such as Monte-
Carlo Tree Search (Chaffin et al., 2022), Pangu
(Gu et al., 2023), RAP (Hao et al., 2023), Tree
of Thoughts (Yao et al., 2023a), and LATS (Zhou
et al., 2023). It uses a memory structure (e.g., a
heap) to store observed partial action sequences
and their scores. For each iteration, it prompts the
generator for possible next steps of the current best
partial plan, calls the discriminator to evaluate the
steps, and updates the memory with new plans and
scores (Figure 2c). Our tree search implementation
is a kind of MCTS (Zhang et al., 2023):
(1) Selection: Find the highest scoring partial plan
in the memory, implemented as a heap structure.
(2) Expansion: Prompt the generator for the next
step of this partial plan. We follow recent work to
define a step to be a SQL clause (Chen et al., 2023c)
or one line of Python code (Bui et al., 2022), which
is semantically more meaningful.
(3) Simulation: Reuse the generator to complete
the partial plans as Monte-Carlo simulations.
(4) Evaluation: Evaluate the simulations with the
discriminator. The score for each new step is the
maximum score of all simulations starting from it.
(5) Backpropagation: Update the partial plan with
the new step and score (if higher) and insert them
into the heap memory. After the update, if there is
a complete plan in the heap memory, we terminate
the tree search and return this plan.



4 Experimental Setup

4.1 Tasks and Datasets

Text-to-SQL Parsing. Text-to-SQL parsing is a
code generation task of mapping natural language
utterances to SQL queries. It requires agents to
ground utterances to database environment and gen-
erate multi-step plans as SQL queries, making it an
appropriate testbed in our study. To evaluate lan-
guage agents’ potential for text-to-SQL parsing, we
adapt two widely used datasets, Spider (Yu et al.,
2018) and Bird (Li et al., 2023a).

We use the entire training split in each dataset
to prompt or fine-tune LLMs.2 For evaluation, due
to resource and budget constraints, we randomly
select 400 and 300 development set examples in
Spider and Bird, respectively. We also note that
model performance may be lower on our evalua-
tion sets because we uniformly sampled examples
from each difficulty level, while the original de-
velopment sets have skewed distributions towards
easier examples (Appendix A.1).
Mathematical Reasoning. Mathematical reason-
ing is a common task for evaluating language
agents’ multi-step reasoning and planning capabili-
ties. With 500 random examples from GSM8K’s
development set (Cobbe et al., 2021), we follow
program of thoughts (Chen et al., 2023b) to test
the agents’ ability to plan in Python programs and
solve these grade school math word problems.

4.2 Models

In all experiments, we use CodeLlama-13B-
Instruct as the generator in our framework. We also
evaluate three kinds of LLMs as the discriminator:
(1) open-source LLMs: CodeLlama-7B-Instruct
and CodeLlama-13B-Instruct (Rozière et al., 2024),
(2) proprietary LLMs: GPT-3.5-Turbo (OpenAI,
2022) and GPT-4-Turbo (OpenAI, 2023), and (3)
fine-tuned LLMs: CodeLlama-7B-Instruct-FT and
CodeLlama-13B-Instruct-FT. For brevity, we will
omit “Instruct” in model names.

4.3 Implementation Details

Prompting the Generator LM. We prompt
CodeLlama-13B with temperature-based sampling
for different programs as action sequences (Ap-
pendix D). We use the model checkpoint and gen-
eration function implemented by HuggingFace

2In Bird, we exclude training examples for one database,
retail_world, due to annotation errors.

(Wolf et al., 2020). We set the maximum gen-
eration length (max_length) to 300, temperature
(temperature) to 0.6, and number of samples
(num_return_sequences) to 5.
Prompting Discriminator LMs. For CodeLlama-
7B and CodeLlama-13B, we simply feed them the
input prompt (Appendix D) to get the last logit’s
values, which give us the token-level probability of
“Yes” after applying the softmax function.

For GPT-3.5-Turbo (gpt-3.5-turbo-1106) and
GPT-4-Turbo (gpt-4-1106-preview), we access
them through the API of OpenAI (2022, 2023). We
prompt the LLMs to generate one token and lever-
age the top_logprobs request to check the top-5
tokens and their probabilities.3 If “Yes” appears as
one of the top-5 tokens, we take its probability p
without any modifications. If “Yes” is missing and
“No” appears as one of the top-5 tokens, we inverse
its probability 1− p as the score. If both tokens are
missing, our implementation returns 0, though this
case should be rare in our experiments.
Training Discriminator LMs. To get CodeLlama-
7B-FT and CodeLlama-13B-FT, we again use the
checkpoints and trainer implemented by Hugging-
Face. We fine-tune the models with LoRA (Hu
et al., 2022) to classify the correctness of a given
program by generate one token: “Yes” or “No”.
Our training uses the following hyperparameters:

• Number of epochs: 1
• Batch size: 128
• Learning rate: 1e-5
• Warmup ratio: 3%
• Scheduler: cosine

The inference procedure of fine-tuned models is
the same as how we prompt the pre-trained LLMs,
but without using any in-context example.
Computing Resources. All of our experiments on
Spider and GSM8K use up to four NVIDIA RTX
A6000 GPU (48GB). Experiments on Bird use up
to four NVIDIA A100 Tensor Core GPU (80GB).

4.4 Evaluation

Intrinsic Evaluation. We measure the discrimina-
tion abilities of LLMs with four intrinsic metrics.
(1) Discrimination accuracy (Acc): Given a pair
of correct and wrong programs, we calculate the
percentage where the correct program obtains a
higher discrimination score than the wrong one

3https://platform.openai.com/docs/
api-reference/chat/create#chat-create-top_
logprobs

https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs


(a) Spider. (b) Bird. (c) GSM8K.

Figure 3: End-to-end evaluation results (the first row) and average inference time in log scale (the second row) of
our simulation experiments with oracle.

(Bai et al., 2022; Touvron et al., 2023). (2) Clas-
sification macro F1 (F1): We treat “correct” and
“wrong” as two classes and compute the macro av-
erage of F1 scores on these two labels. (3) Hit@1
(H@1): Given a batch of candidate programs, we
calculate the percentage where the highest scor-
ing candidate is correct. (4) Mean reciprocal rank
(MRR): We compute the standard MRR score by
the highest-ranking correct program in the batches.
End-to-End Evaluation. To show the impact of
discriminators, we evaluate language agents’ end-
to-end performance using our three planning meth-
ods, with execution accuracy for text-to-SQL pars-
ing and answer accuracy for math reasoning.

5 Simulation Experiments with Oracle

5.1 Oracle-Based Discriminator

To investigate how discrimination accuracy affects
the overall performance of language agents using
different planning methods (RQ1), we utilize oracle
environmental feedback to simulate a discriminator
with controllable accuracy. For text-to-SQL pars-
ing, we compare the first five rows in the execution
results of predicted and gold SQL queries and cal-
culate their table cell overlaps (Appendix A.4). For
mathematical reasoning, we compare the predicted
Python programs’ answers with the ground truth.

We use a probability-based threshold τ to con-
trol the accuracy of each simulated discriminator
(Gao et al., 2022). When evaluating each plan, the
discriminator first computes a score s with oracle

information. Then, it uses a random function to
generate a number p ∈ [0, 1). If p < τ , the dis-
criminator returns the score s. Otherwise, it returns
an inverted score 1− s. In this way, we ensure that
the discriminator’s accuracy is at most τ .

5.2 Results and Analysis

As shown in Figure 3, discrimination accuracy
closely correlates with the performance of agents
on all three datasets, no matter which planning
method is used. For instance, the performance of
re-ranking agents improves linearly as we increase
the discrimination accuracy threshold, setting up
a strong baseline for agents using other planning
methods. We also note that it takes around 80% dis-
crimination accuracy for all agents to outperform
greedy generation on text-to-SQL parsing, demon-
strating the task’s difficulty. To answer RQ1, we
further analyze the performance of agents using
iterative correction and tree search as follows:

Advanced planning methods demand highly
accurate discriminators. For iterative correction
agents, their performance usually cannot distin-
guish from the re-ranking baselines until we maxi-
mize the threshold τ = 1.0 (Figure 3). This finding
resonates with Huang et al. (2024) that high-quality
feedback may be the key to the success of iterative
correction. More interestingly, tree search agents
consistently underperform the other two when the
discrimination accuracy threshold τ ≤ 0.8. More-
over, when raising the threshold to 0.9, we observe
a sharp increase of their performance, with which



Models Spider Bird GSM8K‡

Acc F1 H@1 MRR Acc F1 H@1 MRR Acc F1 H@1 MRR

CodeLlama-7B 54.0 37.1 56.0 62.3 44.6 46.7 13.0 18.0 48.6 38.7 36.2 46.9
CodeLlama-13B 58.2 37.1 57.0 63.1 49.4 46.7 12.7 18.3 62.2 38.7 41.8 51.0
CodeLlama-7B-FT 62.4 60.3 59.5 64.6 52.4 46.7 14.3 19.1 - - - -
CodeLlama-13B-FT 69.7 67.2 61.3 65.7 62.1 46.7 16.0 20.5 - - - -

GPT-3.5-Turbo 67.0 47.3 59.0 64.3 64.3 35.7 16.0 20.5 72.1 49.1 46.6 54.0
GPT-4-Turbo 76.5 54.9 63.0 66.7 76.2 50.1 20.3 23.0 93.8 91.1 59.8 61.6

Table 1: Intrinsic evaluation results of naive LLMs’ discrimination abilities. The best performance is in bold for
open-source and closed-source LLMs. ‡Since GSM8K’s training set does not have program of thoughts annotated
for fine-tuning, we have only evaluated the models with in-context learning.

they start to beat other kinds of agents.

Advanced planning methods may not ade-
quately balance accuracy and efficiency. By cal-
culating the average inference time per example
(Figure 3), we find that our implementation of tree
search is at least 10–20 times slower than the other
two planning methods, mainly due to frequent gen-
eration of Monte-Carlo simulations (Zhang et al.,
2023). While we can remove the simulations to
be more efficient and evaluate partial plans, in our
preliminary study, we find LLMs would struggle
in this setting. This accuracy-efficiency trade-off
may hinder real-world applications of tree search
methods. Meanwhile, the inference time for itera-
tive correction increases as the accuracy threshold
is raised, suggesting more iterations are required
to derive a correct answer (Appendix C). This in-
dicates that developing efficient and accurate plan-
ning methods remains a key problem for AI agents.

Monte-Carlo tree search can be unstable, es-
pecially in the early stages. We observe that it-
erative correction outperforms tree search on Bird
(Figure 3b) when the accuracy threshold is 1.0.
This observation may be caused by the instability
of Monte-Carlo tree search. We first note that Mc-
Nemar’s test finds no difference between iterative
correction and tree search (p > 0.05), despite their
performance gap (29.3 vs 32.7). The rationales are
discussed in Appendix B. Furthermore, we analyze
all 25 examples of which iterative correction de-
rives the correct answer but tree search fails. In
12 out of the 25 examples (48%), tree search fails
to select the correct partial plan when the discrim-
ination scores are the same. Especially, this can
happen in the early stages of tree search, where a
correct program has not yet been discovered and
all the steps receive a score of 0 from the oracle
discriminator. Thus, we consider this underperfor-
mance a consequence of search instability.

6 LLM-Based Discriminators

While we have shown that iterative correction and
tree search work well with oracle discriminators,
it remains unclear whether LLM-based discrimina-
tors can correctly assess language agents’ actions
(RQ2). To answer this question, we leverage gen-
erator outputs in the simulation experiments and
re-label them with ground-truths to evaluate the
LLMs’ discrimination accuracy (Appendix A.2).

6.1 Naive Discriminators

As Table 1 shows, most open-source LLMs have
mediocre discrimination abilities. To improve their
accuracy (Arora and Kambhampati, 2023; Zhu
et al., 2023), we further fine-tune the LLMs to
classify the ground truth plans and incorrect ones
sampled from the generator (Appendix A.3). After
fine-tuning, CodeLlama-13B-FT could reach the
same level of performance as GPT-3.5. In compar-
ison, proprietary LLMs exhibit stronger discrim-
ination abilities, with GPT-4 achieving the best
performance across all three datasets. Nonetheless,
due to its high cost, we will use GPT-3.5 as the rep-
resentative proprietary LLM in our experiments.

6.2 Observation-Enhanced Discriminators

To improve LLMs’ discrimination abilities, we con-
duct an error analysis for CodeLlama-13B on its
worst-performing intrinsic evaluation set, Bird. We
sample 50 pairs of SQL queries from the Bird in-
trinsic evaluation set with incorrect predictions. In
25 of the 50 pairs (50%), CodeLlama-13B assigns
a higher score to non-executable SQL queries. Con-
sequently, no matter using which planning method,
language agents could hardly perform well with
such discriminators.

Motivated by our error analysis, we first propose
to add a program executability check as a safeguard
for LLMs. If a program is non-executable, our dis-
criminator would discard LLMs’ score and return



CodeLlama-13B GPT-3.5-Turbo CodeLlama-13B-FT

Spider Bird GSM8K Spider Bird GSM8K Spider Bird

Naive Discriminator 58.2 49.4 62.2 67.0 64.3 72.1 69.7 62.1

+ Executability Check 78.7 78.8 64.5 84.8 86.3 73.2 83.6 82.2
++ Execution Result 83.6 79.6 70.6 90.0 89.2 76.5 88.5 85.1

Improvement 25.4 30.2 8.4 23.0 24.9 4.4 18.8 23.0

Table 2: Discrimination accuracy of observation-enhanced LLMs. The best performance (in bold) is achieved
using both kinds of environmental observations. We also underline the largest improvement for each dataset.

Discriminators Spider (Greedy Gen = 62.3) Bird (Greedy Gen = 16.0)

Re-ranking Iter. Correct. Tree Search Re-ranking Iter. Correct. Tree Search

CodeLlama-13B 57.5 51.7 55.5 13.3 13.3 13.3
GPT-3.5-Turbo 58.3 52.7 56.2 18.0 17.3 14.0
CodeLlama-13B-FT 61.5 51.7 56.0 14.3 13.0 13.0

CodeLlama-13BE 65.5 62.0 62.5 21.0 24.3 22.7
GPT-3.5-TurboE 67.0 67.5 66.0 22.3 25.0 22.7
CodeLlama-13B-FTE 70.3 68.0 67.5 23.7 26.3 21.7

Oracle Simulation (τ = 1.0) 71.0 76.0∗ 76.2∗ 27.0 32.7∗ 29.3

Table 3: End-to-end execution accuracy on text-to-SQL parsing. The best performance for each discriminator
is in bold. The overall best performance for naive and enhanced discriminators on each dataset is underlined.
EObservation-enhanced discriminators. ∗Statistically significant (p < 0.05; McNemar’s) compared to re-ranking
with the same discriminator on each dataset. We only observe such improvement with the oracle discriminator.

0. Otherwise, it returns the original LLM score.
Besides executability check, we incorporate the ex-
ecution results of predicted programs (first 5 table
rows of SQL queries or answer of Python program)
into the in-context examples and fine-tuning data
(Ni et al., 2023a). If a program is non-executable,
we use ERROR to represent its execution result.

Evaluation results (Table 2) show that these
two non-oracle environmental observations can
effectively improve LLMs’ discrimination accu-
racy. Enhanced with environmental observations,
CodeLlama-13B can obtain up to 25.4, 30.2, and
8.4 points absolute accuracy gain on Spider, Bird,
and GSM8K, respectively. For the other two mod-
els, we also observe significant gains compared to
the naive discriminator baseline. Such notable im-
provements also highlight the importance of filter-
ing out non-executable programs, or invalid plans,
during planning.

7 End-to-End Evaluation

While we have evaluated their discrimination abili-
ties with a fixed test set, to answer RQ2, we wonder
if LLMs can correctly assess constantly changing
sets of programs in actual planning processes. To
this end, we evaluate the end-to-end performance
of language agents with LLM-based discriminators
and the three planning methods.

7.1 Text-to-SQL Parsing

As shown in Table 3, agents using naive LLM-
based discriminators do not perform well on text-
to-SQL parsing. On Spider, the re-ranking agent
using CodeLlama-13B-FT has the best accuracy
(61.5), which is still lower than greedy generation
(62.3) that requires no planning and is more ef-
ficient. On Bird, GPT-3.5-Turbo and re-ranking
show an accuracy of 18.0, which is slightly higher
than greedy generation (16.0). In addition to the
mediocre performance, we find that when using
naive discriminators, iterative correction and tree
search consistently show worse or the same perfor-
mance as re-ranking. These results mostly agree
with our findings in previous experiments that (1)
advanced planning methods need strong discrim-
inators, and (2) naive LLM-based discriminators
are not accurate enough.

After enhancing the discriminators with two en-
vironmental observations (Section 6.2), we effec-
tively improve the agents’ performance without any
modifications to the generator or the planning meth-
ods. In 5 of the 6 experiments, CodeLlama-13B-
FTE results in the best execution accuracy among
all discriminators. It also leads to the overall best
performance on Spider with re-ranking (70.3) and
on Bird with iterative correction (26.3), showing
the effectiveness of fine-tuning LLMs for discrimi-
nation and using environmental observations.



While the performance gains are satisfying, our
implementation also takes the latency issue into
consideration (Section 5.2). For instance, on some
BIRD databases with 10K or more rows, the run-
time of a single SQL execution can take more than
10 minutes. To mitigate this issue, we speed up
the executions by fetching only the first 5 rows.
Additionally, we implement a 60-second timeout
interruption for each SQL execution, which aligns
to the limit in the official evaluation script.

It turns out that the environmental observations
help to reduce the end-to-end latency (Table 4),
especially for tree search. We think executability
check is the main reason for this latency improve-
ment. Since compilers and interpreters are heav-
ily optimized, the check itself does not take much
time. By quickly identifying incorrect programs, it
helps to prune the search space, thus reducing the
overall latency of re-ranking and tree search. For
iterative correction, the latency is increased when
using GPT-3.5-TurboE and CodeLlama-13B-FTE

as discriminators. This is because these two dis-
criminators are more accurate and allow iterative
correction to run more planning loops, as stated in
Section 5.2 and Appendix C.

7.2 Mathematical Reasoning
The most interesting result in mathematical rea-
soning evaluation (Table 5) is the failure of itera-
tive correction with naive discriminators. When
prompting the generator CodeLlama-13B for 0-
shot correction, it would disregard the instruction
to “generate a fixed python program” (Appendix
D), copy the program to be modified, and generate
explanations and correction steps in natural lan-
guage. Such natural language steps, usually having
some lexical overlap with the math problem, would
increase the discrimination score of LLMs while
being non-executable. As a result, our iterative
correction agent only has 10.2 answer accuracy
when using CodeLlama-13B to evaluate its own
generation. While this issue also exists when us-
ing GPT-3.5-Turbo as the discriminator, it is less
severe because GPT would sometimes assign a
high score (> 0.99) to the initial Python program.
These scores trigger an early exit condition in it-
erative correction (Section 3.3) and stop the agent
from calling the generator to add any natural lan-
guage, thus avoiding the issue. These findings echo
related analysis on self-correction (Stechly et al.,
2023; Valmeekam et al., 2023; Huang et al., 2024).

With an executability check, enhanced discrim-

Discriminators Re-ranking Iter. Correct. Tree Search

CodeLlama-13B 17.3 76.1 296.0
GPT-3.5-Turbo 24.4 41.0 405.2
CodeLlama-13B-FT 17.1 73.6 385.2

CodeLlama-13BE 17.1 (-0.2) 67.9 (-8.2) 272.9 (-23.1)
GPT-3.5-TurboE 17.9 (-6.5) 49.5 (+8.5) 262.8 (-142.4)
CodeLlama-13B-FTE 16.4 (-0.7) 84.5 (+10.9) 266.3 (-118.9)

Table 4: Average end-to-end inference time per exam-
ple (seconds) on Bird. Notations have the same meaning
as in Table 3. For each observation-enhanced discrimi-
nator, we calculate the difference between its average
inference time and that of its corresponding naive dis-
criminator (base model).

Discriminators Re-ranking Iter. Correct. Tree Search‡

CodeLlama-13B 39.7 10.2 41.0
GPT-3.5-Turbo 47.0 37.0 50.0

CodeLlama-13BE 42.8 42.2 46.0
GPT-3.5-TurboE 47.6 48.4 51.0

Oracle Simulation 64.1 66.0 73.0(τ = 1.0)

Table 5: End-to-end answer accuracy on GSM8K
(Greedy Gen = 39.4). Notations have the same meaning
as in Table 3. McNemar’s does not find difference be-
tween methods on GSM8K. ‡Tree search is evaluated
on 100 randomly selected examples from the 500 evalu-
ation examples due to slow inference speed (Figure 3c).
For McNemar’s, we compare tree search results with
those of re-ranking on the same 100 examples.

inators help mitigate this issue in iterative correc-
tion, which now achieves better performance (42.2
and 48.4) than greedy generation (39.4). Over-
all, the tree search agent using GPT-3.5-TurboE

achieves the best answer accuracy. Nevertheless,
McNemar’s test finds no difference (p > 0.05) be-
tween the performance of re-ranking (47.6) and that
of iterative correction (48.4) or tree search (51.0).

7.3 Analysis

To better understand the end-to-end evaluation re-
sults, we conduct an in-depth analysis of examples
where re-ranking returns the correct program, but
iterative correction or tree search does not (Table
6). Specifically, we analyze cases of the strongest
discriminators, CodeLlama-13B-FTE for text-to-
SQL parsing and GPT-3.5-TurboE for mathemat-
ical reasoning, and divide them into two kinds of
errors. (1) Discrimination error: The discriminator
assigns a higher score for wrong programs than
correct ones, which is not recoverable by any plan-
ning method. (2) Exploration error: The planning
method has not found the correct program before
termination. Our analysis suggests that:



Error Type Spider Bird GSM8K

Iter. Correct. Tree Search Iter. Correct. Tree Search Iter. Correct. Tree Search

Discrimination 29 (78.4%) 17 (60.7%) 9 (52.9%) 12 (50.0%) 30 (62.5%) 6 (66.7%)
Exploration 8 (21.6%) 11 (39.3%) 8 (47.1%) 12 (50.0%) 18 (37.5%) 3 (33.3%)

Total 37 28 17 24 48 9

Table 6: Error analysis of examples where re-ranking outperforms advanced planning methods. We list the actual
number of error cases and their percentages in parenthesis for each dataset and planning method.

LLM-based discriminators have not yet met
the needs of advanced planning methods. Across
all datasets, 50% or more discrimination errors are
observed in each planning method. On Spider, the
number of such errors in iterative correction is as
large as 29 out of 37 (78.4%). In fact, among the
29 errors, iterative correction has already found
the correct SQL queries for 15 (40.5% of the total
37 errors) of them. However, not only does the
discriminator fail to trigger early exits, but it also
assigns a higher score for wrong SQL queries in
new iterations. Consequently, these erroneous SQL
queries override the originally correct ones, leading
to an overall performance drop. The same issue is
also serious in tree search. When an incorrect par-
tial program receives a high discrimination score,
tree search will commit to it and hardly explore
other possibilities, including the correct partial pro-
grams. Such discrimination errors usually cannot
be recovered by the planning methods themselves,
unless they find another correct program with even
higher scores. This finding also demonstrates that
determining early exits using oracle information in
iterative correction may introduce a larger benefit
than previously thought (Huang et al., 2024).

Advanced planning methods need more thor-
ough exploration. For the remaining cases, we
observe that advanced planning methods have not
found a correct program before terminating, which
we call exploration errors. This kind of error cir-
cles our discussion back to the accuracy-efficiency
trade-off mentioned in our simulation experiments
with oracle (Section 5.2). Indeed, we can extend the
exploration of planning methods in various ways,
such as loosening termination conditions, increas-
ing the number of generation samples for each step,
and adjusting some hyperparameters for more di-
verse program samples. Yet, all these adjustments
can slow down the planning methods and reduce
the language agents’ efficiency. Additionally, we
note that these strategies may not always result in
better performance, as the discriminators may give
unseen wrong programs a higher score.

For these reasons, iterative correction and tree

search cannot gain decent improvement over re-
ranking with the same LLM-based discriminator.
On text-to-SQL parsing, tree search even shows
worse performance than re-ranking when using
CodeLlama-13B-FTE (Table 3: 67.5 vs 70.3 on
Spider; 21.7 vs 23.7 on Bird). More surprisingly,
on GSM8K, advanced planning methods may not
perform much better than re-ranking even with the
oracle discriminator (p > 0.05; McNemar’s). Ad-
mittedly, some of the performance gains appear
considerable, but McNemar’s tells us there are still
decent chances of the simpler agent outperforming
a more complex one (Appendix B).

8 Conclusions

This paper presents a thorough investigation into
the relationship between discrimination accuracy
and performance of planning methods in language
agents. Through comprehensive experiments on
text-to-SQL parsing and mathematical reasoning,
we find that: Discrimination accuracy strongly cor-
relates with the overall performance of language
agents using different planning methods and also af-
fects their efficiency (answer to RQ1). LLM-based
discriminators can correctly assess a decent num-
ber of language agents’ actions with their environ-
mental observations, but they are still not accurate
enough for advanced planning methods (answer to
RQ2). Future research should investigate the devel-
opment of more accurate discrimination models for
language agents, e.g. by improving their grounded
understanding of execution results beyond error
signals.

Limitations

Experiments with Other Models. In this study,
we focus on studying the generation and discrim-
ination of instruction-tuned LLMs that have seen
code data during pre-training. This consideration
is because: (a) They may have better in-context
learning performance on our two tasks, text-to-SQL
parsing and mathematical reasoning with program-
of-thought (Ni et al., 2023b); (b) We want to lever-



age their 0-shot instruction following capabilities
in iterative correction for fair comparisons with
other planning methods; (c) For GSM8K problems,
LLMs tend to generate natural language plans in-
stead of programs with 2-shot prompting, and some
instructions other than in-context examples help to
mitigate this issue. Future research may extend our
study to other LLMs of code and conduct an abla-
tion study of instruction-tuning’s impact on models’
discrimination accuracy.
Experiments with Natural Language Plans. Our
study focuses on the generation and discrimina-
tion of formal language plans, i.e., programs, as
they can directly interact with the environment. Al-
though feasible for mathematical reasoning (Wei
et al., 2022), natural language plans require an-
other semantic parsing step to convert them into
actions defined in the corresponding environment,
which may introduce intermediate errors and add
noise to our analysis. Therefore, we conduct the ex-
periments with formal language plans using LLMs
trained on code data. As a future direction, it would
be interesting to extend our study to natural lan-
guage plans and see how the intermediate semantic
parsing step would affect the overall performance
of agents for mathematical reasoning.
Impact of Generators on Planning Methods.
While our work focuses on studying the relation-
ship between different discriminators and planning
methods, we acknowledge that the generator can
also actively affect different planning methods. For
example, we can transform the generator’s perplex-
ity into a probability and multiply it by the dis-
criminator’s score. We exclude such uses of the
generator because in our preliminary experiments,
we find that incorporating its perplexity leads to
mixed results. These results make it even harder to
analyze how language agents behave when using
different planning methods. Thus, we exclude the
generator to have a clear picture of how discrimina-
tors can affect planning methods. Nevertheless, it is
worth studying the generator’s impact on planning
methods in future work.
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A More Implementation Details

A.1 Text-to-SQL Parsing Evaluation Sets
For text-to-SQL parsing, we sub-sample the de-
velopment splits of each dataset, Spider and Bird,
following three steps: (1) categorize development
set examples by difficulty levels defined in each
dataset, (2) randomly select a database and choose
one associated example, and (3) repeat step 2 until
we have 100 samples for each difficulty level. In
this way, we ensure a uniform distribution across
different difficulty levels and database. Since there
are four and three difficulty levels in Spider and
Bird, respectively, our evaluation sets have 400 and
300 examples for each dataset.

Text-to-SQL parsing models, including LLMs,
may show lower performance on our evaluation
sets because of their uniformly distributed diffi-
culty (100 examples per level). In comparison, the
original datasets have skewed distributions towards
easier examples. Spider’s development set has 248

Spider Bird GSM8K

Number of Programs 1,221 1,291 2,453
Number of Program Pairs 409 269 1,238
Number of Program Batches 400 300 500

Table A.1: Statistics of our intrinsic evaluation sets.

(24.0%) examples at easy level and 446 (43.1%)
examples at medium level, while the hard and extra
hard examples only sum up to 32.9 % of the 1,034
examples. In Bird, 925 out of the 1,534 (60.3%)
development set examples are at simple level, 465
examples (30.3%) are at moderate level, and only
144 examples (9.4%) are at challenging level. Our
evaluation sets normalize these skewed distribu-
tions and make the macro averages of model per-
formance less biased (Section 4.1).

A.2 Intrinsic Evaluation Data
To evaluate LLMs’ discrimination performance,
we reuse the generation results from our oracle-
simulation experiments (Section 6). Specifically,
we use the evaluation scripts to re-label the gener-
ated programs in simulated re-ranking experiments
(accuracy threshold τ = 1.0). Then, we construct
our intrinsic evaluation sets based on the relabeled
programs (Table A.1). Intuitively, the number of
program batches for each dataset is the same as
the end-to-end evaluation examples we have, and
the the number of programs is all unique programs
we can get from the batches. To pair the programs
and calculate discrimination accuracy, we iterate
through each batch and enumerate combinations of
correct and wrong programs within the batch. We
do not include cross-batch pairs, as those do not
align with our end-to-end evaluation settings.

For discrimination accuracy, we enumerate pairs
of correct and wrong programs and ask LLMs to
select the better one. For classification F1, we let
LLMs predict the correctness of each individual
program. For Hit@1 and MRR, we use LLMs to
score the batches of programs in simulation experi-
ments.

A.3 Data for Discriminator LMs
For text-to-SQL parsing, we perform 2-fold cross-
validation on the training sets to synthesize incor-
rect SQL queries for each example (Chen et al.,
2023a). We prompt the LM using one pair of cor-
rect and wrong SQL queries (labeled with “Yes”
and “No”), also retrieved by BM25 (Section 3.2).
Alternatively, we fine-tune the LM on the entire
training set with ground-truth and synthesized SQL
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queries to generate “Yes” or “No.” For mathemat-
ical reasoning, we annotate two incorrect python
programs for the two examples used in generator.
Similar to text-to-SQL parsing, we use the two
program pairs to prompt LMs for binary question
answering. Since the training set of GSM8K is not
annotated with program of thoughts, we are not
able to fine-tune LMs on this dataset.

A.4 Implemendation of Oracle Discriminator
For text-to-SQL parsing, our oracle uses the first
five rows in execution results of the predicted and
gold SQL query and calculate the table cell overlap.
More specifically, the calculation is similar to span
F1 in machine reading comprehension. Our oracle
function first compares each row in the execution
results head-to-head under a strong assumption that
the rows are ordered. Although strict, this assump-
tion is helpful for evaluating the correctness of SQL
queries with an ORDER BY clause. Then, the func-
tion count how many table cells overlap with each
other in an unordered manner. We divide the num-
ber of overlapping cells by the total number of cells
in execution results of the gold SQL query (preci-
sion) and the predicted one (recall). Finally, we
compute the harmonic mean of these two numbers
to get the oracle score (F1).

For instance, given “-- countryid: 1, 2, 4, 5 --
countryname: usa, germany, japan, italy” as the
gold execution result and “-- countryid: 1, 4, 6 --
countryname: usa, japan, japan” as the result of
predicted SQL query. We compare (1, usa), (4,
japan), and (6, japan) the first, second, and third
row in the gold result, respectively. They have 2, 0,
and 1 overlapping table cells, respectively. Thus,
we have our precision to be 3/8 = 0.375 and recall
to be 3/6 = 0.5. The oracle’s score would be:

2 · 0.375 · 0.5
0.375 + 0.5

= 0.43

For mathematical reasoning, our oracle directly
checks if the predicted answer equals to the ground-
truth. If the answer is None (non-executable pro-
gram) or does not equal to the ground-truth, it re-
turns 0. Otherwise, it returns 1.

IC Correct IC Wrong

TS Correct 73 15
TS Wrong 25 187

Table B.1: Contingency table for tree search (TS) and
iterative correction (IC) on Bird, using CodeLlama-13B-
FTE as the discriminator (Section 5.2).

B McNemar’s Test for Statistical
Significance

We measure the statistical significance of perfor-
mance gains using the exact McNemar’s Test4 (Mc-
Nemar, 1947). We choose the test’s exact bino-
mial version because our sample sizes are relatively
small (Edwards, 1948), and the first two significant
digits of p-values are the same for this binomial
version and the original chi-square version in our
tests. Intuitively, this test measures how likely the
weaker method can still outperform the stronger
one.

For example, we consider the comparison be-
tween tree search and iterative correction on Bird
when using CodeLlama-13B-FTE as the discrimi-
nator (Section 5.2). By computing a 2× 2 contin-
gency table (Table B.1), McNemar’s Test focuses
on the 40 examples where only one of the two
method have predicted correctly. Specifically, there
are 25 examples that iterative correction finds the
correct answer, but tree search does not, which is
the source of performance gain. Also, there are
15 examples that iterative correction fails, but tree
search succeeds. According to McNemar’s Test,
these 15 (37.5% of the total 40) examples result in a
p-value of 0.15, meaning there is still some chance
for tree search to outperform iterative correction.

In contrast, suppose there are only 10 examples
that iterative correction finds the correct answer,
but tree search does not. Meanwhile, there are
no examples that iterative correction fails, but tree
search succeeds. Then, we can still observe the
same number of accuracy gain, but it is now sta-
tistically different because it is almost impossible
for tree search to outperform iterative correction (0
out of 10). The same rationale also applies to the
results of other tests in Section 7.

4https://www.statsmodels.org/dev/generated/
statsmodels.stats.contingency_tables.mcnemar.
html
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C More Analysis on Simulation
Experiments with Oracle

In Section 5.2, we conclude that “the inference
time for iterative correction increases as the accu-
racy threshold is raised, suggesting more iterations
are required to derive a correct answer.” Though
counter-intuitive, we verify that this conclusion is
correct because an accurate discriminator would
avoid triggering early exit by mistake in iterative
correction.

To give a concrete example, we compare the
number of iterations needed on Spider when using
oracle-based discriminator with accuracy threshold
0.6 and 1.0. When the threshold is 0.6, the planning
method takes 1.275 iterations on average. When the
threshold is 1.0, the planning method takes 1.725
iterations on average, 1.35 times more than the
previous case. This roughly aligns with the increase
in average inference time: When the threshold is
0.6, iterative correction takes an average of 21.5
seconds per example. When the threshold is 1.0,
the average inference time is 27.9, which is 1.29
times more.

This counter-intuitive observation is mainly
caused by the early exit of iterative correction meth-
ods. In other words, if the discrimination score is
high enough (>0.99) or is not improved for 3 con-
secutive iterations, the planning method would stop
making more corrections (Lines 214–217). When
the discriminator is not accurate, it would (a) give
high scores to wrong plans or (b) keep assigning the
same or even lower scores to improved plans. As
a result, the planning method would stop quickly
without finding a better plan. On the other hand, an
accurate discriminator would predict less extreme
scores and increase them for even small improve-
ments in the plan, thus allowing the method to
iterate 3 more times. This results in the increased
inference time per example.



D Prompt Examples

Given database schema and a question in natural language, generate the corresponding SQL query.

-- Database climbing:
-- Table mountain: mountain_id, name, height, prominence, range, country
-- Table climber: climber_id, name, country, time, points, mountain_id
-- Question: How many distinct countries are the climbers from?
-- SQL:
SELECT COUNT(DISTINCT country) FROM climber;

-- Database concert_singer:
-- Table stadium: stadium_id, location, name, capacity, highest, lowest, average
-- Table singer: singer_id, name, country, song_name, song_release_year, age, is_male
-- Table concert: concert_id, concert_name, theme, stadium_id, year
-- Table singer_in_concert: concert_id, singer_id
-- Question: What are all distinct countries where singers above age 20 are from?
-- SQL:
SELECT

Table D.1: An example prompt for 1-shot generation (text-to-SQL parsing).

Given database schema and a question in natural language, correct the buggy SQL query and
generate a fixed SQL query.

-- Database concert_singer:
-- Table stadium: stadium_id, location, name, capacity, highest, lowest, average
-- Table singer: singer_id, name, country, song_name, song_release_year, age, is_male
-- Table concert: concert_id, concert_name, theme, stadium_id, year
-- Table singer_in_concert: concert_id, singer_id
-- Question: What are all distinct countries where singers above age 20 are from?
-- Buggy SQL:
SELECT DISTINCT country FROM singer WHERE age > 20;
-- Fixed SQL:
SELECT

Table D.2: An example prompt for 0-shot iterative correction (text-to-SQL parsing).



Answer the following Yes/No question: Is the SQL correct given the utterance?

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT COUNT(DISTINCT nationality) FROM swimmer;
-- Answer: Yes

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT DISTINCT country FROM swimmer;
-- Answer: No

-- Utterance: What are all distinct countries where singers above age 20 are from?
-- SQL:
SELECT DISTINCT country FROM singer WHERE age > 20;
-- Answer:

Table D.3: An example prompt for 1-shot discrimination (text-to-SQL parsing). For discrimination, each in-context
example has a pair of correct and wrong programs.

Answer the following Yes/No question: Is the SQL correct given the utterance and its result?

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT COUNT(DISTINCT nationality) FROM swimmer;
-- Result:
-- count(distinct nationality): 7
-- Answer: Yes

-- Utterance: How many different countries are all the swimmers from?
-- SQL:
SELECT DISTINCT country FROM swimmer;
-- Result:
ERROR
-- Answer: No

-- Utterance: What are all distinct countries where singers above age 20 are from?
-- SQL:
SELECT DISTINCT country FROM singer WHERE age > 20;
-- Result:
-- country: Netherlands, United States, France
-- Answer:

Table D.4: An example prompt for 1-shot discrimination with execution results (text-to-SQL parsing). For
discrimination, each in-context example has a pair of correct and wrong programs.



## Given questions in the comment, use python programs to produce the correct answers with
the ’answer’ variable.

## James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
## Python Program:
mg_tylenol_per_tablet = 375
mg_tylenol_taken_each_time = 2 * mg_tylenol_per_tablet
hours_per_day = 24
times_per_day = hours_per_day / 6
mg_each_day = mg_tylenol_taken_each_time * times_per_day
answer = mg_each_day

## There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
## Python Program:
n_easter_eggs = 63
unit_times = 2
total_units = unit_times + 1
n_easter_eggs_per_unit = n_easter_eggs / total_units
n_easter_eggs_helen = n_easter_eggs_per_unit * 1
n_easter_eggs_hannah = n_easter_eggs_per_unit * 2
answer = n_easter_eggs_hannah

## Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
## Python Program:

Table D.5: An example prompt for 2-shot generation (mathematical reasoning).

## Given the question in the comment, correct the buggy python program and generate a fixed
python program to produce the correct answer with the ’answer’ variable.

## Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
## Buggy Python Program:
price_boots = 50
price_heels = 33
price_heels_twice = 2 * price_heels
price_heels_total = price_heels + price_heels_twice
price_boots_difference = price_boots - price_heels_total
answer = price_boots_difference
## Fixed Python Program:

Table D.6: An example prompt for 0-shot iterative correction (mathematical reasoning).



## Answer the following Yes/No question: Is the python program correct given the problem in
the comment?

## James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
## Python Program:
mg_tylenol_per_tablet = 375
mg_tylenol_taken_each_time = 2 * mg_tylenol_per_tablet
hours_per_day = 24
times_per_day = hours_per_day / 6
mg_each_day = mg_tylenol_taken_each_time * times_per_day
answer = mg_each_day
## Answer: Yes

## James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
## Python Program:
mg_per_tablet = 375
n_tablets_per_day = 2
n_tablets_per_6hrs = n_tablets_per_day / 6
mg_per_6hrs = mg_per_tablet * n_tablets_per_6hrs
answer = mg_per_6hrs
## Answer: No

## There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
## Python Program:
n_easter_eggs = 63
unit_times = 2
total_units = unit_times + 1
n_easter_eggs_per_unit = n_easter_eggs / total_units
n_easter_eggs_helen = n_easter_eggs_per_unit * 1
n_easter_eggs_hannah = n_easter_eggs_per_unit * 2
answer = n_easter_eggs_hannah
## Answer: Yes

## There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
## Python Program:
eggs_in_yard = 63
eggs_found_by_hannah = 2 * eggs_in_yard
eggs_found_by_helen = eggs_found_by_hannah / 2
answer = eggs_found_by_hannah
## Answer: No

## Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
## Python Program:
price_boots = 50
price_heels = 33
price_heels_twice = 2 * price_heels
price_heels_total = price_heels + price_heels_twice
price_boots_difference = price_boots - price_heels_total
answer = price_boots_difference
## Answer:

Table D.7: An example prompt for 2-shot discrimination (mathematical reasoning). For discrimination, each
in-context example has a pair of correct and wrong programs.



## Answer the following Yes/No question: Is the python program correct given its result and
the problem in the comment?

## James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
## Python Program:
mg_tylenol_per_tablet = 375
mg_tylenol_taken_each_time = 2 * mg_tylenol_per_tablet
hours_per_day = 24
times_per_day = hours_per_day / 6
mg_each_day = mg_tylenol_taken_each_time * times_per_day
answer = mg_each_day
## Result: 3000.0
## Answer: Yes

## James takes 2 Tylenol tablets that are 375 mg each, every 6 hours. How many mg
does he take a day?
## Python Program:
mg_per_tablet = 375
n_tablets_per_day = 2
n_tablets_per_6hrs = n_tablets_per_day / 6
mg_per_6hrs = mg_per_tablet * n_tablets_per_6hrs
answer = mg_per_6hrs
## Result: 125.0
## Answer: No

## There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
## Python Program:
n_easter_eggs = 63
unit_times = 2
total_units = unit_times + 1
n_easter_eggs_per_unit = n_easter_eggs / total_units
n_easter_eggs_helen = n_easter_eggs_per_unit * 1
n_easter_eggs_hannah = n_easter_eggs_per_unit * 2
answer = n_easter_eggs_hannah
## Result: 42
## Answer: Yes

## There were 63 Easter eggs in the yard. Hannah found twice as many as Helen. How
many Easter eggs did Hannah find?
## Python Program:
eggs_in_yard = 63
eggs_found_by_hannah = 2 * eggs_in_yard
eggs_found_by_helen = eggs_found_by_hannah / 2
answer = eggs_found_by_hannah
## Result: 126
## Answer: No

## Gloria is shoe shopping when she comes across a pair of boots that fit her shoe
budget. However, she has to choose between the boots and two pairs of high heels that
together cost five dollars less than the boots. If one pair of heels costs $33 and the other
costs twice as much, how many dollars are the boots?
## Python Program:
price_boots = 50
price_heels = 33
price_heels_twice = 2 * price_heels
price_heels_total = price_heels + price_heels_twice
price_boots_difference = price_boots - price_heels_total
answer = price_boots_difference
## Result: -49
## Answer:

Table D.8: An example prompt for 2-shot discrimination with execution results (mathematical reasoning). For
discrimination, each in-context example has a pair of correct and wrong programs.
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