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Abstract
3D scene synthesis using natural language instructions has become a popular direction in computer graphics, with significant
progress made by data-driven generative models recently. However, previous methods have mainly focused on one-time scene
generation, lacking the interactive capability to generate, update, or correct scenes according to user instructions. To overcome
this limitation, this paper focuses on text-guided interactive scene synthesis. First, we introduce the SceneMod dataset, which
comprises 168k paired scenes with textual descriptions of the modifications. To support the interactive scene synthesis task,
we propose a two-stage diffusion generative model that integrates scene-prior guidance into the denoising process to explicitly
enforce physical constraints and foster more realistic scenes. Experimental results demonstrate that our approach outperforms
baseline methods in text-guided scene synthesis tasks. Our system expands the scope of data-driven scene synthesis tasks
and provides a novel, more flexible tool for users and designers in 3D scene generation. Code and dataset are available at
https://github.com/bshfang/SceneMod.

CCS Concepts
• Computing methodologies → Computer graphics; Natural language processing; • Computer systems organization →
Neural networks;

1. Introduction

3D scene synthesis based on deep learning is an important task
with numerous applications for 3D content generation, from inte-
rior design to video gaming and virtual reality. It demands the gen-
erated scenes to be realistic, high-fidelity, and functionally accu-
rate [PPL∗24]. Integrating instruction to generate scenes that con-
form to users’ instructions and envisioned concepts is also vital.
For example, in a generation system, a user might want to either
increase or decrease the number of table lamps in the bedroom
or wish to reconfigure the overall furniture layout and direction.
Also, users may prefer a sequential, step-by-step object generation
process, initiating with the generation of primary items such as a
double bed for the bedroom or a dining table and chairs for the din-
ing room, subsequently expanding towards a fully realized scene.
Therefore, an ideal scene synthesis system should possess the capa-
bility to interactively update its generated results in alignment with
user commands rather than merely producing a complete scene in
a single effort.

This paper focuses on the interactive, text-guided scene syn-
thesis task. From the user interaction perspective, guidance via
free-form language emerges as the most flexible approach, be-
ing highly semantic, unconstrained, and a very intuitive means
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of conveying ideas. In the domain of 3D scene generation, tex-
tual description guidance has also become increasingly popular,
offering a user-friendly and flexible interface for creation. Many
data-driven generative methods have explored text-guided gener-
ation [WYN21, PKS∗21, TNM∗23, LXJ∗23, LM24]. However, all
these methodologies focus on one-off scene generation, lacking the
capability for interactive updates and modifications to scenes.

To obtain interactive controllability in a generative system, the
first challenge is to link language with possible modifications to
3D scenes. While numerous works have studied text-guided image
editing [MMM∗24], descriptions of possible modifications in 3D
scenes encompass more subtle spatial relationships and patterns.
The textual instruction can not only delineate the position change
of objects within the scene but also contain the relative positioning
and geometrical relationships among elements in the scene. More-
over, no datasets exist that associate pairs of 3D scenes with textual
instructions to update from the source scene to the target scene.
Current 3D indoor scene datasets merely provide independent in-
door scenes without paired scenes that could facilitate the learning
of scene modifications. Consequently, we introduce the SceneMod
dataset, which comprises 168k pairs of scenes with textual modi-
fiers, to support training an interactive scene synthesis system.

Based on the SceneMod dataset, we developed a unified two-
stage graph diffusion model for various interactive scene synthe-
sis tasks. On the one hand, the diffusion model has demonstrated
robust capabilities across various generative tasks [YZS∗23] and
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“Create a bedroom by placing a 

blue double bed with a wooden headboard 

on the right side of a black wardrobe 

with doors.”

“Take the armchair out 

of the room.”

“Reorganize the bedroom so that the double bed 

is positioned on the right side of the room.”

"Add a wooden chair next 

to the table."

"Shift the shelf so it is positioned 

closely to the left of the black 

wardrobe."

Figure 1: We introduce a text-guided interactive scene synthesis system that supports progressive generation and modification during scene
synthesis. The examples in the figures are samples from our proposed dataset.

also excels in the domain of scene synthesis [TNM∗23,LM24]. On
the other hand, the scene graph data structure serves as an effec-
tive and informative data representation, explicitly encapsulating
the structural and geometrical relationships between objects. Espe-
cially for text-guided scene synthesis tasks, scene graphs provide a
clear grounding of objects and actions described in the text, thereby
enhancing the model’s ability to link textual guidance with scene
modifications.

There are still numerous challenges associated with the data-
driven learning of scene synthesis. First, in terms of data, obtaining
reliable training data is a significant hurdle. The data must be man-
ually crafted by professionals, which is both time-consuming and
costly, constraining the scale of the dataset. Some incorrect data
with incorrect penetration or unrealistic placements in the current
training dataset is another issue [LGWM22], leading to the same
errors reproduced in the generative models’ outputs. Second, re-
garding model learning, scene design involves a variety of generic
geometric patterns and constraints, such as ensuring that generated
objects do not overlap or penetrate each other. Neural network mod-
els are not easily trained to learn these patterns and constraints ex-
plicitly. To address these issues, we define a scene-prior loss based
on geometric constraints or those learned from training data and
combine them to construct more reliable training datasets and gen-
erate more feasible results. We propose a scene-prior guidance dif-
fusion model, which guides the random denoising process of graph
diffusion to a more realistic and correct generation.

We evaluate our system on the 3D-FRONT [FCG∗21] dataset
and our proposed SceneMod dataset. Experimental results show
that our approach can generate realistic, high-fidelity indoor scenes
interactively according to user guidance. Our method outperforms
baseline approaches both qualitatively and quantitatively and sur-
passes baselines in a perceptual study. The design of the two-
stage graph diffusion model and scene-prior guidance are validated
through the ablation studies.

In summary, our contributions are:

• We introduce the text-guided interactive scene synthesis system,
enabling progressive generation and update of indoor 3D scenes.

• We introduce the SceneMod dataset that associates textual de-
scription with modification on 3D scenes that supports the train-
ing of the text-guided interactive scene synthesis system.

• We propose a two-stage graph diffusion model with scene-prior
guidance that supports various scene synthesis tasks.

2. Related Work

2.1. Indoor 3D Scene Synthesis

Early works in scene synthesis primarily addressed the optimiza-
tion problems based on prior knowledge, either from hand-crafted
rules and constraints [MSL∗11,YYW∗12] or from hand-craft mod-
eling of structural patterns in indoor scenes [YYT∗11, FRS∗12,
KCKK12, LCK∗14, CLW∗14]. These methods are good at en-
suring constraints and capturing low-order patterns but cannot
generate novel and diverse results. More recent data-driven ap-
proaches directly learn indoor scene arrangements from large-
scale datasets, utilizing various machine learning techniques, in-
cluding convolutional networks [RWL19, WSCR18], Variational
Auto-Encoders (VAEs) [PZR20,YZY∗21], Generative Adversarial
Networks (GANs) [ZYM∗20, YGZT21], transformers [WYN21,
PKS∗21, LGWM22], and diffusion methods [TNM∗23, WDP∗23,
LM24]. Additionally, scene graphs are commonly used to repre-
sent indoor scenes in scene synthesis due to their ability to provide
rich structural and geometrical information [LPX∗19, WLW∗19,
ZWK19, HHT∗20, WDNT20, DMNT21, ZÖW∗24, LM24].

Given that indoor scene design often conforms to specific con-
straints or priors, some data-driven methods have been developed
to integrate these scene priors into the model’s training or infer-
ence. [YZY∗21] employs an optimization stage to refine object
arrangements generated by a variation auto-encoder model based
on learned relative attribute priors. [LGWM22] incorporates an er-
gonomic loss, crafted by experts, into the training of a transformer-
based model. Different from those methods, we use a diffusion
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model to generate the scene graph of indoor scenes and guide the
sampling process with scene priors to satisfy various priors inher-
ent in indoor scene design explicitly.

2.2. Interactive 3D Scene Synthesis

In 3D indoor scene synthesis, allowing users to interactively par-
ticipate in the generation process enhances the flexibility and con-
trol of the output, thereby aligning more closely with user expecta-
tions. There are various kinds of methods for integrating user feed-
back into the synthesis process. [MSL∗11] generates a series of
scenes based on interior design guidelines and lets users choose
from them. Tools like SceneSuggest [SCA17] and SceneDirec-
tor [ZTL∗23] provide interactive interfaces where users can select
objects to generate or modify through mouse clicks. Based on user-
selected query point location, [YYT15, ZWK19] suggest appropri-
ate object categories and models to detail the scene. Meanwhile,
[LZWT20,DMNT21,ZÖW∗24] employ a scene graph as the scene
representation, enabling users to modify the scene through explicit
manipulation of the scene graph. [CESM17] and [MPF∗18] utilize
natural language descriptions to guide scene generation and edit-
ing, offering a more flexible and user-friendly guidance method.
In this paper, we aim to introduce a general text-guided interactive
system capable of generating and modifying 3D scenes based on
free-form natural language instructions in an end-to-end manner.

2.3. Language-driven 3D Scene Synthesis

Traditional approaches [CSM14,CMS∗15,CESM17,MPF∗18] ex-
tract information about object categories and spatial relationships
from language descriptions through sentence parsing and then ap-
ply optimization techniques to arrange objects within a scene.
More recently, methods use cross-attention mechanisms [VSP∗17]
to integrate text descriptions as conditions for models, enhanc-
ing the proficiency of text-guided generation through data-driven
training. To obtain training data with text descriptions, [WYN21,
PKS∗21,TNM∗23,LM24] automatically generates textual descrip-
tions based on the object categories and spatial relationships
present in scenes. Additionally, [LXJ∗23,LM24] extract visual fea-
tures of 3D objects and incorporate visual information into de-
scriptions, enabling text to control scene style and object appear-
ance. With the advent of large language models (LLMs), some
LLM-based methods have been designed for text-guided scene
synthesis [FZF∗24, WLSF23, YSW∗24, AKGH∗24]. These meth-
ods exploit the textual generative capabilities of LLMs to produce
scene layouts in CSS-like formats [FZF∗24] or domain-specific
languages [YSW∗24, AKGH∗24]. Their advantage is the ability to
generate open-universe scenes without the need for additional train-
ing. However, they are constrained by LLMs’ limited understand-
ing of high-order semantics [YBL∗23, CXK∗24], such as spatial
relationships in 3D scenes, which hampers their potential to exe-
cute subtle instructions. Despite recent advances, text-guided scene
synthesis has mainly focused on one-time scene generation, lacking
interactive editing and progressive generation capabilities.

3. Text-guided Scene Modification Dataset

To facilitate the training of our interactive scene modification
model, we introduce the new SceneMod dataset, which comprises

168k samples in the form of (scene A, scene B, text description)
triplet. Scene B is derived from scene A through specific manipula-
tions, with the text description providing natural language guidance
on the modifications.

We develop an automated sample generation pipeline to produce
feasible pairs of scene modifications and human-like natural lan-
guage descriptions. The pipeline overview is illustrated in Figure 2.

3.1. Scene Pairs Generation and Selection

The SceneMod dataset encompasses two types of modification pat-
terns: i) Object-level modification, which pertains to operations on
individual objects. This includes placing an object in a scene, re-
moving an object, or moving an object. ii) Scene-level modifica-
tion, which involves alterations to the entire scene. It requires a
rearrangement of the positions of objects within the scene. By inte-
grating these two levels of modifications, users can easily refine or
adjust the generated scenes in the interactive scene synthesis sys-
tem.

In this section, we denote the 3D-front dataset as {X j
1:n j
}Nd

j=1,
where Nd is the sample number of 3D-front dataset and n j is the
object number of scene X j. Note that X j can be viewed as the set
of nodes of the scene graph in Section 4.1, where a node repre-
sentation is x j

i = [t j
i ,s

j
i ,θ

j
i ,c

j
i , f

j
i ], i = 1, · · · ,n j. For brevity, we will

omit the superscript j.

Object-level scene modification pairs Pairs related to remove
and add operations can be directly sourced from the original
scenes in the 3D-front dataset. From a well-annotated scene X,
we randomly subsample k + 1 objects to form the pairs (X1:k,
X1:k+1) or (X1:k+1, X1:k), where the only change between the two
scenes is the addition or removal of an object. To create scene
pairs demonstrating object movement, we train a generative model
pψ1(x̂k|X1:k−1,ck, fk), which is capable of suggesting possible lo-
cations for a given object model. The scene with a new object place-
ment can be formatted as X̂1:k = [X1:k−1, x̂k]. Then, we can form
a pair (X1:k, X̂1:k) or (X̂1:k, X1:k) along with the original scene,
wherein the position of an object changes.

Scene-level scene modification pairs While interactive opera-
tions on individual objects are somewhat limited, we also want to
support abstract and high-level commands for whole-scene modifi-
cation. To acquire such data pairs, we train a scene rearrangement
generative model pψ2(X̃1:k|X1:k) = pψ2(X̃1:k|{ci, fi}1:k), which
can provide complete scene arrangement suggestions with the con-
dition of an object set {ci, fi}1:k from the origin scene. The newly
generated layout and the original scene together constitute a scene
modification pair (X1:k, X̃1:k).

Splits We employ the same splits for the 3D-front dataset as used
in [PKS∗21], and perform the scene pairs generation and selection
in each split. Additionally, we use half of the data from each split
subset to train the two generative models pψ1 and pψ2 , and the re-
maining half to generate results for constructing scene modification
pairs. More details about the training of pψ1 and pψ2 and the scene
pairs selection process are provided in the supplementary material.
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Modification scene pairs generation

Random rearrangement

Random placement

A sample from 
original dataset

Detect spatial variation

Structural description in natural language

Description refinement with LLM

(a)

(b)

(c)

Add

Remove

: (table, left of, cabinet), (table, left) ...

: (cabinet, parallel, wardrobe), (cabinet, back, wardrobe), ...

: (wardrobe, parallel, double bed), (wardrobe, left), ...

: ...
......

: "Add a black round end table to the left of the cabinet."

            : "Rearrange the scene. Make the wardrobe to the left 
side of the room. It should also be left of the brown double bed."

             : "Rearrange the scene by moving the wardrobe to the 
left side of the room, ensuring that it is positioned to the left of
 the brown double bed as well."

......

......

Figure 2: The automatic pipeline for scene modification data generation.

Move the wooden cabinet to the left.

Move the cabinet to the left of the wardrobe, making sure it is parallel to it.Position a cabinet in the upper left corner of the room.

Bring the chair nearer to the desk.

Adjust the room to place the grey dressing table with a mirror in 
the top left corner.

Rearrange the room so the double bed is on the left side of the chair.

Figure 3: Examples in the SceneMod dataset.

3.2. Automatic Description Generation

Spatial variation detection The generation of textual instructions
begins by detecting the low-level spatial variations between pairs
of scenes. These spatial variants describe changes of objects within
the scene. The variation pattern for an object primarily includes
two aspects: 1) changes in its relative relationships with other ob-
jects, which can be considered as changes in the edge attributes in
the corresponding scene graph representations; 2) alterations in its
own position, such as location and orientation. For instance, in Fig-

ure 2, a table is added to scene A to generate scene B. The variation
pattern would include changes in relative relationships, such as (ta-
ble, left of, cabinet), indicating that the ’table is left of the cabinet,’
or patterns of its absolute position alterations, such as (table, left),
where the newly added table is positioned on the left side of the
room and near the left wall. Please refer to the supplementary for
more details.

Description generation and refinement After detecting all spa-
tial variation patterns, we randomly select 0-2 patterns for each pair
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Object-level Scene-level
Overall

Add Remove Move Rearrange

Bedroom 24,147 2,462 41,094 16,022 83,725
Living/Dining 26,055 3,149 40,814 14,183 84,201

Table 1: Data statistics for the SceneMod dataset. It shows the num-
ber of samples for each modification type and room type.

of scene modifications and generate a structural description in nat-
ural language according to the type of modification. Taking Fig-
ure 2(a) as an example, the modification in pair (A, B) involves
placing a table in the scene. Suppose we sample (table, left of, cab-
inet) as the variation pattern to describe. A rule-based method can
generate the corresponding description: ’Add a black round end
table to the left of the cabinet.’ Note that we utilize object cap-
tions annotated by [LM24], which include descriptions of visual
information about the objects beyond just their category. This al-
lows our dataset to support interaction instructions incorporating
descriptions of an object’s visual information. Given that instruc-
tions generated by rule-based methods can be rigid, lack diversity,
and may not align with natural human instructions, we use a large
language model [AAA∗23] to paraphrase the generated descrip-
tion, making it more human-like.

3.3. Dataset Statistics

Following previous data-driven scene synthesis works [PKS∗21,
TNM∗23,LM24], we focus on three types of indoor rooms from the
3D-front dataset to construct the SceneMod dataset, including bed-
rooms, dining rooms, and living rooms. Due to the overlap in this
partition, where approximately 60 percent of the samples in the din-
ing room and living room types are identical, we have merged these
two room types, considering ’bedroom’ and ’living room & dining
room’ as the two types in our dataset. In total, the SceneMod dataset
comprises about 168k samples, each including a pair of scenes with
a textual description of the modifications between them. The split
for training, validation, and testing is approximately 8:1:1. Detailed
data statistics can be found in Table 1.

4. Method

We propose a two-stage scene-prior-guided graph diffusion model
for interactive scene generation. In this section, we introduce the
scene graph representation and task formulation (Section 4.1), two-
stage graph diffusion model (Section 4.2), scene-prior definition
(Section 4.3) and the scene-prior guidance denoising process (Sec-
tion 4.4). An overview of our method is shown in Figure 4.

4.1. Problem Setup

Scene graph representation A 3D scene graph, represented
as G = (X,E), is a structural representation where X =
{xi|i ∈ {1, · · · ,n}} denotes the set of object nodes, E ={

ei j|i ∈ {1, · · · ,n}, j ∈ {1, · · · ,n}
}

denotes the set of directed
edges from xi to x j.

Each node representation xi = [ti,si,θi,ci, fi] contains all infor-
mation of an object. ti ∈ R3, si ∈ R3 and θi ∈ [−π,π) are the lo-

cation, size and orientation of the object. For modeling, the ori-
entation θi is represented using its sine and cosine values. ci ∈
{1, · · · ,Nc} is the category of the object, where Nc is number of
all categories in the dataset. fi ∈ R f denotes the model feature
of the object. To effectively represent both the 3D information
and the visual semantic features of the object, we utilize Open-
Shape [LSK∗24] to extract features from the textured object model
following [LM24]. Then, we also train an autoencoder [HMP∗17]
on the extracted features to reduce its dimensionality to f = 32.

Edge representation encodes the relative relationships ei j =[
ri j,oi j, pi j,di j

]
between two objects, including spatial relation-

ship ri j ∈ {1, · · · ,Nr} such as ’left of’ or ’above’, orientation rela-
tionship oi j ∈ {1, · · · ,No} such as ’vertical’ or ’parallel’, and other
abstract relative relationship pi j ∈ {1, · · · ,Np} such as ’facing’ and
’symmetric’. Additionally, di j = ti− t j is the relative position be-
tween the two objects. Please refer to the supplementary material
for more details.

Interactive scene modification The interactive 3D scene gen-
erative model is formularized as pΦ(Gk|Gk−1,c), where k is the
step number in the interactive generation process, G0 could be
an empty scene or any partial scene. c = (l,b) is the condition,
where l denotes the natural language description and b denotes
the floorplan boundary of the 3D scene. For simplicity, here we
represent the floorplan of an indoor room as its four boundaries
b = [xmin,xmax,ymin,ymax].

We apply a coarse-to-fine paradigm and decouple the generative
process into two stages. The first stage updates the semantic infor-
mation in the scene graph, denoted as GS = (XS,ES). The node se-
mantic feature XS consists of node categories ci and object model
features fi, and the edge semantic feature ES contains all relative
relationship semantics ri j, oi j and pi j. After we have updated all
semantic information of the scene graph, the second stage gener-
ates the exact layout of the 3D scene, denoted as GL = (XL,EL).
XL is defined by the specific arrangement of every object, includ-
ing location ti, size si, and orientation θi. EL include the relative
position di j between two nodes.

This two-stage generative model can be formulated as

pΦ(G
k|Gk−1,c) = pΦ1(G

k
S|G

k−1
S ,c)pΦ2(G

k
L|Gk

S,G
k−1,c) (1)

4.2. Scene Graph Diffusion

We build our text-guided interactive scene generation pipeline
based on diffusion models. The two stages of the generation process
pΦ1(G

k
S|G

k−1,c) and pΦ2(G
k
L|Gk

S,G
k−1,c) share the same diffu-

sion model design. To simplify notations, here we will omit the
subscript of scene graph Gk. The optional condition graphs Gk

S and
Gk−1 will also be omitted and viewed as a part of the condition c
for brevity.

Diffusion process. The forward diffusion process progres-
sively adds noise to the graph following the Markov chain un-
til its distribution is close to the latent distribution q(G1:T |G0) =

∏
T
t=1 q(Gt |Gt−1). For our scene graph diffusion, Gaussian noises

are added to node and edge features independently according to a
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Graph Denoiser

Scene-prior Guided
Graph Denoiser

Stage 1: semantic graph generation Stage 2: layout graph generation

Condition: a) Natural language instruction; b) Floorplan boundary; c) Source scene graph

Output

Retrieval
& Position

Figure 4: Overview of the two-stage scene graph diffusion model.

variance schedule (βt)
T
t=1.

q(Xt |X0) =N (Xt ;
√

ᾱtX0,(1− ᾱt)I)

q(Et |E0) =N (Et ;
√

ᾱtE0,(1− ᾱt)I)
(2)

where αt = 1−βt , ᾱt = ∏
T
s=0 αs.

Denoising process. To reverse the diffusion process, the de-
noising process is also a Markov Chain that predicts and removes
the noise gradually, starting from a standard multivariate Gaussian
distribution N (0,I). The denoising process is parameterized by a
learned Gaussian transition process, denoted as pθ(Gt−1|Gt). The
denoising steps for node and edge are defined as

pθ(Xt−1|Xt) =N (Xt−1;µθ,X (Gt , t,c),Σθ,X)

pθ(Et−1|Et) =N (Et−1;µθ,E(Gt , t,c),Σθ,E)
(3)

where µθ and Σθ are two models that are trained to predict the mean
and variance of the denoising process respectively. For simplicity,
Σθ is fixed to a constant that is determined by time t following
[HJA20]. µθ,X and µθ,E denote the node part and edge part of the
graph output predicted by a graph neural network µθ.

Also, instead of directly predicting the denoised graph Gt−1, we
follow the common technique [HJA20] that predicts the noises ϵX
and ϵE added on the graph. Then µθ,X can be formulated as

µθ,X(Gt , t,c) =
1√
αt

(Xt −
1−αt√
1− ᾱt

ϵθ,X(Gt , t,c))

µθ,E(Gt , t,c) =
1√
αt

(Et −
1−αt√
1− ᾱt

ϵθ,E(Gt , t,c))
(4)

The model’s optimization objective can be expressed as:

L := Et,G0,ϵ

[
∥ϵX− ϵθ,X(Gt , t,c)∥2 +∥ϵE− ϵθ,E(Gt , t,c)∥2

]
(5)

Therefore, by training the network ϵθ(Gt , t,c), we can denoise
the graph of standard noise step by step and finally obtain a clean
scene graph based on multiple conditions, including natural lan-
guage instructions, floorplan boundaries or previous scene graph.

Model Architecture The backbone of our model is based on a
general graph transformer model [DB20]. Before each layer of the
graph neural network, all conditioning information, including the
floorplan boundary and node and edge embeddings of the source
scene, are fused to the node and edge features. A frozen CLIP text

encoder [RKH∗21] is utilized to extract textual features, and an ad-
ditional cross-attention module [VSP∗17] is injected into the graph
neural network to integrate the textual guidance features.

ALGORITHM 1: Scene-prior guided diffusion sampling
Input: Denoiser µθ, condition c, scene-prior cost function
S, guidance threshold m.

XT , ET ← sample fromN (0,I)
GT ← (XT ,ET )
for t = T, . . . ,1 do

(µX,µE),Σ← µθ(Gt , t,c),Σθ(t)
if t < m then

µX← µX + sΣ∇XtS(Gt)
end
Xt−1, Et−1← sample fromN (µX,Σ),N (µE,Σ)
Gt−1← (Xt−1,Et−1)

end
return G0

4.3. Scene Priors Definition

We have defined a series of scene prior cost functions to explic-
itly reflect the authenticity, physical feasibility, and uncertainty of
object arrangement in a 3D indoor scene.

Constraints. First, the arrangement of a 3D scene must adhere to
some constraints. It should prevent physical inaccuracies, such as
objects intersecting spatially or being placed outside the floor plan
boundary. Following [YZY∗21], we consider the constraints of an
indoor scene within the 2D plane from the top-down view. In 3D in-
door scenes, it is possible for objects to overlap in a top-down view,
such as ceiling lamps and beds or tables and chairs. We employ an
indicator Ici,c j to determine whether overlapping between two cat-
egories of objects is permissible and exclude these pairs from the
cost function calculation. The cost function for scene constraints is
defined as

Loverlap = ∑
xi,x j∈X

Ici,c j · IOU2D(xi,x j)

Lbound = ∑
xi∈X
∥relu(bmin−ai

min)∥2+

∥relu(ai
max−bmax)∥2

Lconstraint = Loverlap +Lbound

(6)
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Object-level Scene-level Overall
Acc (↑) Errt (↓) Erra(↓) iRecall (↑) Errt (↓) Erra(↓) iRecall (↑) iRecall (↑)

Bedroom
DiffuScene 96.48 26.50 11.32 73.02 132.94 69.36 63.54 71.74
InstructScene* 98.30 24.64 9.32 76.90 107.72 64.95 69.79 75.94
Ours 98.30 18.05 6.74 82.07 104.86 57.33 71.88 80.70

Living/Dining
DiffuScene 88.99 23.39 8.94 57.35 228.05 74.12 41.30 55.47
InstructScene* 96.49 20.20 7.21 63.69 204.32 75.81 47.83 61.83
Ours 96.49 17.23 5.41 69.74 192.06 73.55 54.38 67.94

Table 2: Quantitive evaluations for text-guided scene modification tasks.

where bmin = (xmin,ymin) and bmax = (xmax,ymax) are the bottom-left
and top-right corners of the floor plan boundary and ai

min and ai
max

are the bounding box’s bottom-left and top-right corners of each
object node xi.

Arrangement uncertainty. In indoor scene design, layout ar-
rangements often exhibit specific patterns, including the relative
attributes between objects or the absolute attributes of the objects
themselves. For example, TV stands are typically arranged oppo-
site sofas, and wardrobes are always placed against a wall. To ex-
tract these patterns, following [YZY∗21], we use the generalized
Gaussian mixture models to learn parametric prior distributions for
both absolute and relative attributes. Then, we can define a layout
arrangement uncertainty cost function based on the prior distribu-
tions.

Luncertainty = ∑
xi∈X

− logMµci
(xi)+ ∑

ei j∈E
− logMµ(ci ,c j )

(ei j) (7)

Here M denotes the Gaussian mixture models and µci and µ(ci,c j)

are hyperparameters of the mixture models that are learned from
the training datasets. Please refer to the supplementary material for
details.

4.4. Scene Prior Guidance

During model training, the models implicitly learn specific patterns
through a data-driven approach. However, the generated scenes
cannot guarantee the satisfaction of constraint conditions, and the
scene’s arrangement uncertainty is not explicitly incorporated into
the model. Therefore, we introduce scene-prior guidance during the
denoising sampling process. The cost function is formulated as fol-
lows

S(G) = λ1Lconstraint +λ2Luncertainty (8)

where λ1 and λ2 are the balancing parameters. The scene-prior
guided diffusion sampling is shown in Algorithm 1. Scene prior
guidance is applied only during the latter part of the sampling pro-
cess when the noise level is relatively low, controlled by the guid-
ance threshold m. This guidance can also be considered a refine-
ment mechanism during the diffusion sampling process, steering
the scene toward a more accurate and realistic result.

5. Experimental Results

5.1. Experimental settings

We conduct experiments on two text-guided scene synthesis tasks:
text-guided scene modification and text-guided scene generation.
The text-guided scene modification experiments are conducted
on the proposed SceneMod dataset, which is derived from 3D-
Front [FCG∗21] and includes two room types: bedrooms and a
combined category of living rooms and dining rooms. The text-
guided scene generation experiments are conducted on 3D-Front.
We follow the same data split for training and evaluation as spec-
ified by [PKS∗21] and conduct experiments for both bedroom and
living room types separately.

Baselines We compare our results with three state-of-the-art
methods: (a) Atiss [PKS∗21], a transformer-based method that pre-
dicts 3D objects in sequence. Due to its autoregressive genera-
tion approach, transformer-based methods are not well-suited for
scene modification tasks. While they can perform complete scene
rearrangement by resampling from learned distributions, they of-
fer limited control over modifying specific objects within an ex-
isting scene, such as adding, removing, or repositioning individ-
ual objects. Therefore, we only compare it in the context of text-
guided scene generation. (b) Diffuscene [TNM∗23], a diffusion-
based method that generates scenes as an unordered set of objects.
For the text-guided scene modification task, we use the original
scene as an additional condition for the diffusion model. To inte-
grate the original scene, we apply the same method used for fus-
ing the source room node condition in our graph diffusion method.
Specifically, the source room information is encoded and then con-
catenated with the node features before being fed into the denois-
ing network. (c) InstructScene [LM24], which also employs a two-
stage generation process. In the first stage, it generates a semantic
graph driven by text instructions, and the second stage is a general
layout decoder that decodes the scene from the predicted seman-
tic graph. To support modification tasks, we use the same semantic
graph generation model (first-stage generation) as our method.

Evaluation Metrics For the text-guided scene generation task,
we follow previous work [LM24] and report the instruction recall
(iRecall) to assess the accuracy of scene generation based on the
instructions. Moreover, we report the Fréchet Inception Distance
(FID) score [HRU∗17] and Scene Completion Accuracy (SCA)
score to measure the plausibility and diversity of the generated
scenes based on their rendered images. To ensure a fair compari-
son, we adopt the same rendering method as [LM24].
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Figure 5: Qualitative results for text-guided scene modification. The results show that our method outperforms the baseline models, and scene
prior guidance can act as a refinement of the generated results.

For the novel scene modification tasks, we use four kinds of
metrics to evaluate model performance: instruction recall (iRecall),
object selection accuracy (Acc), location error (Errt ), and angle
error (Erra). iRecall evaluates whether the variation patterns de-
scribed in the textual descriptions are accurately implemented in
the modified scenes. Object selection accuracy (Acc) measures the
accuracy of the object category for the add and remove opera-
tion in object-level modifications. Err metrics measure discrepan-
cies between corresponding objects in predicted and ground truth
scenes. Errt is defined by the distance between locations, and Erra
is defined by the intersection angle difference. Assume Xpred ={

xpred
i |i ∈ {1, · · · ,n}

}
is the generated scene after modification

and Xgt is the ground truth scene.

Errt =
1
n

n

∑
i=1
∥t pred

i − tgt
i ∥

2

Erra =
1
n

n

∑
i=1

intersec(θpred
i ,θ

gt
i )

(9)

Implementation details We train the models on various types of
indoor rooms for text-guided scene generation and scene modifica-

tion tasks, respectively. Please refer to the supplementary material
for more implementation details.

5.2. Quantitative results

Text-guided scene modification Table 2 presents a comprehensive
comparison between our proposed methods and other baselines for
text-guided scene modification. Our method outperforms the two
baselines in both object-level and scene-level modification tasks
across both room types, showing improvements of up to 10% com-
pared to previous methods. Note that for InstructScene* here, to
support modification tasks, we use the same semantic graph gener-
ation model (first-stage generation) as our method. InstructScene’s
performance is unsatisfactory because it uses a general uncondi-
tional layout decoder, which cannot handle modifications involv-
ing absolute position changes of objects. Also, it is unable to main-
tain the positions of other objects in the scene during object-level
modifications. Our method consistently outperforms others in all
settings, clearly demonstrating that our method is more suitable for
interactive scene synthesis tasks.

Text-guided scene generation Table 3 shows the quantitative
results for the text-guided scene generation tasks. Our results are
comparable to the state-of-the-art method and outperform all other
methods in the bedroom type for both FID and SCA metrics. Our
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Source Target

Object-level modification. Step number: 7

Object-level modification + scene-level modification. Step number: 4

Manual modification. Step number: 7

"Shift the wardrobe to the
 right side of the bed."

"Move the dressing table 
to the bottom-left corner 
of the room."

"Move the dressing chair 
near the dressing table."

"Reposition the bed to 
the upper side of the room."

"Move the nightstand to 
the left side of the bed."

"Add a nightstand"

"Add a nightstand"
"Hang a pendant lamp 
above the bed."

"Rearrange the room layout, 
ensuring the double bed is placed
 on the upper side of the room, 
with the wardrobe positioned 
to the right."

"Hang a pendant lamp 
above the bed."

"Relocate the pendant 
lamp so it hangs above 
the bed."

Figure 6: Interactive generation example. Given the current source scene and a target scene, the objective is to interactively update the source
scene towards the target scene in a minimum number of steps.

results are slightly inferior to InstructScene, which employs a dis-
crete diffusion method for generating the semantic graph, poten-
tially making it more suitable for generating the one-hot seman-
tic categories. However, it is important to note that the discrete
diffusion method used in InstructScene can be directly applied
to our framework. Results in Table 2 show that when using the
same semantic graph generation model, our method outperforms
InstructScene. To maintain uniformity and simplicity, we just use
the same diffusion model in both generation stages of our method.

5.3. Ablation studies

Scene prior guidance Table 4 presents the results of the ablation
study on the selection of scene prior guidance. The experiments are
conducted on scene modification tasks for the bedroom type. We

report metrics for both physical plausibility and modification er-
ror. Overlap and Out-of-bound represent the percentage of issues
where a modified object overlaps with other objects or exceeds the
boundary. Err is the average location error Errt for all object-level
and scene-level modification samples. Using constraint prior signif-
icantly enhances the physical plausibility of the generated scenes,
halving the percentage of unreasonable arrangements while keep-
ing the error metric nearly constant. Furthermore, incorporating
arrangement uncertainty prior allows us to further improve mod-
ification accuracy while maintaining high levels of geometric and
physical correctness.

Two-stage generation Table 5 presents the results of the ab-
lation study on different generation stages. In the one-stage ap-
proach, all scene parameters are generated by the diffusion model,
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Text-guided generation
iRecall (↑) FID (↓) SCA(%)

Bedroom

ATISS 48.13 119.73 59.17
DiffuScene 56.43 123.09 60.49
InstructScene 73.64 114.78 56.02
Ours 72.84 113.46 55.57

Living

ATISS 29.50 117.67 69.38
DiffuScene 31.15 122.20 72.92
InstructScene 56.81 110.39 65.42
Ours 53.19 112.08 66.15

Table 3: Quantitive evaluations for text-guided scene generation
tasks.

Overlap Out-of-bound Err

w/o guidance 16.38 16.32 30.00
w/ constraint 7.20 11.64 30.16
w/ uncertainty 13.94 21.86 29.97
w/ full guidance 7.42 11.64 29.71

Table 4: Ablation for scene prior guidance

which is trained under the same training settings with diffusion
steps T = 100. The model is tested on the bedroom object-level
modification task. The one-stage approach shows a notable drop
in performance, with lower accuracy in following modification in-
structions and reduced spatial precision. The two-stage method ad-
dresses these issues by first generating a coarse layout and then
refining object placement, leading to better alignment with instruc-
tions and improved geometric accuracy. These results highlight the
advantages of the two-stage design in producing more precise and
reliable scene modifications.

5.4. Qualitative results

Qualitative results Qualitative comparisons, as shown in Figure 5,
demonstrate that the scene prior guidance acts as a refinement to
the generated results. Also, our method outperforms the baseline
models. InstructScene [LM24] uses a general unconditional layout
decoder, so it cannot maintain the positions of other objects in the
scene during object-level modifications.

Interactive generation In Figure 6, we present an interactive
modification example using our proposed model. Given a current
source scene and a target scene we aim to achieve, our model pro-
gressively updates the source scene to match the target scene. If
a user manually operated the modification process, the operation
steps would correspond to the number of objects in the scene. We
demonstrate two modification sequences: one using only object-
level modification operations and another combining both object-
level and scene-level modifications. Our interactive approach al-
lows scene generation and modification to be easily performed us-
ing text descriptions, even with only object-level modification op-
erations, thereby eliminating manual operations. Furthermore, it
demonstrates that the combined use of scene-level and object-level
modification operations can significantly enhance the efficiency of

Acc (↑) Errt (↓) Erra(↓) iRecall (↑)

one-stage 95.71 26.19 10.70 74.96
two-stage 98.30 18.05 6.74 82.07

Table 5: Ablation for generation stages

Figure 7: Perceptual study results. Scores on text alignment, phys-
ical correctness, and realism.

scene editing. The entire scene can undergo a complex update in
just two steps, showcasing the effectiveness and rationality of our
operation setting that supports multi-scale modification. Please re-
fer to the supplementary material for more quantitative compar-
isons and applications.

5.5. Perceptual study

We conduct perceptual studies with 6 graduate participants to eval-
uate the quality of the modification results against [TNM∗23] and
the effectiveness of the scene-prior guidance design. We randomly
sampled 100 examples from the SceneMod test split, including
object-level and scene-level modification samples across various
types of modifications. Models’ performance is measured accord-
ing to three different aspects: 1) Text alignment. (“Does the gen-
erated scene align with the modification described in the text con-
tent?”), 2) physical correctness (“Is the arrangement of the objects
correct and physically plausible?”), 3) functionality and realism.
(“Is the generated scene realistic, and does it adhere to the room’s
function?”). Participants are shown one result from one method at
a time and asked to rate each result as Yes (1), No (0), or Not Sure
(0.5). The average scores are displayed in Fig. 7. Then, participants
are shown side-by-side results from three models with the same
source scene and text instruction and asked to determine 1) which
follows instructions better and 2) looks more realistic. Fig. 8 depicts
the results. Fig. 7 and Fig. 8 show that our full model can generate
more realistic and physically plausible scene modifications accord-
ing to the text descriptions. Additionally, the scene-prior guidance’s
design enhances the generated results quality in all aspects.

6. Conclusions

We introduce a text-guided interactive scene synthesis system that
combines data-driven learning and scene-prior guidance, support-
ing progressive generation and modification. To the best of our
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Figure 8: Perceptual study results. Force choice on text alignment
and realism.

knowledge, we are the first to integrate text-guided interaction in
the data-driven scene synthesis process. We propose a large-scale
dataset, SceneMod, to support the training of interactive scene
modification. This dataset includes numerous viable scene mod-
ification pairs and corresponding natural language instructions.
Qualitative and quantitative results demonstrate that the proposed
method is effective for interactive scene synthesis and that scene-
prior guidance makes the generated results more plausible and re-
alistic.
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7. SceneMod dataset

7.1. Scene Pairs Generation and Selection

We generate scene modification pairs through three methods. For
modification pairs of add and remove, we sample k + 1 objects
from an original 3D-Front scene sample X containing n objects.
The pairs (X1:k, X1:k+1) and (X1:k+1, X1:k) constitute scene mod-
ification pairs for ’add’ operation and ’remove’ operation, respec-
tively. The object number k of the sub-scene is randomly selected
with k > 3 and k > n− 4. Therefore, in our interactive modifica-
tion task, we consider an initialized scene with a certain number of
objects.

Moreover, To obtain object-level movement and scene-level re-
arrangement modification pairs, we train two generative mod-
els: pψ1(x̂k|X1:k−1,ck, fk) for object placement suggestion and
pψ2(X̃1:k|X1:k) = pψ2(X̃1:k|{ci, fi}1:k) for scene rearrangement
suggestion. We can use any generative models for pψ1 and pψ2 ;
here, we use the same two-stage diffusion method as in our experi-
ments, modifying only the input conditions as needed.

To train the generative models pψ1 and pψ2 , we use half of the
samples from each train/val/test split used for training and the other
half for generating pairs. Specifically, for the bedroom category, we
use a total of 2041 samples for training and 2000 samples for gen-
erating pairs. For the living/dining category, we use 600 samples
for training and 575 samples for generating pairs. During training,
for each scene in the training set, we also sample a sub-scene Xk
as the training sample. We employ the same training strategy and
implementation settings as in the text-guided scene generation ex-
periments in the paper.

After training pψ1 and pψ2 , we generate scenes using the remain-
ing half of the data. Since this half includes data from the original
train/val/test splits, we can create new dataset splits for SceneMod
accordingly. For each sample X, we generate n (n=32) candidate re-
sults using the trained models. As these are not manually annotated,
the quality of the generated results is not guaranteed. Therefore, we
filter out layouts with severe violations of scene constraints, such as
significant overlaps and out-of-boundary placements, and then se-
lect the results with lower energy according to the scene prior cost
function defined in Sec. 4.3, forming the modification pairs for the
SceneMod dataset.

7.2. Spatial Variation Detection and Description Generation

The generation of textual instructions starts with detecting low-
level spatial variations between pairs of scenes. We first identify
the object-level variations between pairs of scenes. Denote xi as
the object that is modified and selected for description. We primar-
ily consider four types of spatial variation patterns.

i) Changes of relative relationships. A relative relationship can
be represented as (xi, rrel , x j), where xi and x j are two objects in
the scene and rrel is the relation type between xi and x j. we use the
same range of relative relationships as in the edge attributes of the
scene graph representations introduced in Section 8.1. Therefore,
the calculation and detection of rrel also follow the definition used
in scene graph construction.

ii) Changes of absolute position. The absolute position pattern

can be denoted as (xi, rabs), and we consider four types of rabs ∈
{’left’, ’right’, ’front’, ’back’}, which indicate the part of the room
the object is in or its proximity to a specific boundary. Recall the
boundary is denoted as b = [xmin,xmax,ymin,ymax], the pattern (xi,
’left’) means
distance(xi,xmin) < d or (tx− xmin)/(xmax− xmin) < 1/4, and the
other three patterns have the similar definition.

iii) Changes of relative distance. If the directional relationship
between two objects xi and x j remains the same, but the distance
relationship changes, such as changing from ’closely right of’ to
’right of’, we can describe the change in the distance: e.g. ’Move
object A closer to/farther from object B.’ This type of variation
pattern can be denoted as (xi,{closer/ f arther},x j).

iv) Changes of absolute position. If an object’s position
changes along a single axis (x-axis or y-axis), we can de-
scribe the modification directionally. For example, ’Move object
A forward/backward.’. The variation pattern can be denoted as
(xi,{le f t/ f ront/right/back}).

As shown in Table 6, after confirming the operation type and
detecting the variation patterns, we can generate the corresponding
instructions based on specific rules. We select 0-2 variation patterns
for each modification pairs to describe the operation. For scene-
level modifications, we describe the changes in the entire scene
through object-level variations while also providing additional in-
structions for altering the entire scene (e.g., ’Rearrange the whole
scene.’).

7.3. Description Refinement

The generated structural description from the identified spatial vari-
ation patterns is then refined using the Chatgpt (gpt-3.5-turbo) API.
The prompt for the paraphrase is

“Given an instruction generated according to specific structural
rules and describes a modification operation to a given scene, please
paraphrase it to sound like a person speaks it in a natural, conversa-
tional tone. Note that you must not alter the intended actions in the
original instruction. There may also exist some directional content,
such as ’left’ and ’behind’; the meaning of this content must remain
unchanged.”

8. Method

8.1. Scene Graph Relationships

In our scene graph representation implementation, object node is
represented as xi = [ti,si,θi,ci, fi] and edge attribute is represented
as ei j =

[
ri j,oi j, pi j,di j

]
. Here, we define three kinds of categori-

cal relative relationships for edge attributes: spatial relationship r,
orientation relationship o, and abstract relative relationship p.

For the spatial relationship ri j, we adopt the same definition as
in [LM24], which categorizes the relative positions of the center
points of objects i and j into 11 classes: ’left of’, ’right of’, ’in
front of’, ’behind’, ’closely left of’, ’closely right of’, ’closely in
front of’, ’closely behind’, ’above’, ’below’, and ’None’.

The orientation relationship oi j considers the directional rela-
tionship between two objects, categorized into four classes: paral-
lel, orthogonal, antiparallel, and none. These are defined based on
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Operation Variation pattern Raw description example generated by rules

Remove
(xi,rrel ,x j) Remove object i that is rrel object j.

(xi,rabs) Delete object i that is in the rabs part of the room.

Add
(xi,rrel ,x j) Add object i to rrel object j.

(xi,rabs) Place object i in the rabs part of the room.

Move

(xi,rrel ,x j) or (xi,rabs)→ (xi, r̂rel ,xk) or (xi, r̂abs) Reposition object i, which is r̂rel object j, to rrel object
k.

∅→ (xi, r̂rel ,x j) or (xi, r̂abs) Relocate object i to rrel object j.

(xi,{closer/ f arther},x j) Move object i {closer to / farther from} object j.

(xi,{le f t/ f ront/right/back}) Move object i {to its left / forward / · · · }.

Table 6: All variation patterns and corresponding rule-based description examples for object-level modification operations. In all patterns, xi
denotes the object that is modified and selected for description.

the angle between the directions of the two objects. If the angle
between the objects’ directions θi and θ j is less than a threshold
(5 degrees in our case), the orientation relationship is classified as
parallel. The classifications for orthogonal and antiparallel follow
a similar criterion. All other cases are classified as none.

The abstract relative relationship pi j includes other abstract re-
lationships between objects in 3D space, such as symmetric and
facing. The symmetric relationship is defined when two objects are
parallel, and the angle θi j is perpendicular to both θi and θ j, where
θi j = arctan(Y j−Yi,X j−Xi). This relationship often occurs in sce-
narios like cabinets placed parallel against a wall or chairs neatly
arranged by the side of a table. A facing relationship is defined
when θi j is equal to θi, common in situations where a sofa faces a
TV stand or chairs are arranged around a table.

All the above categorical relative relationships are generated in
the semantic graph from the first stage diffusion model.

8.2. Scene Prior Definition

In scene prior guidance, we use the generalized Gaussian mixture
models (GMMs) to model the prior distribution of scene arrange-
ment. Following [YZY∗21], in Mµci

and Mµ(ci ,c j )
, we mainly model

the translation information of the arrangement and ignore the size
and orientation. When modeling Mµci

, instead of modeling the ab-
solute translation of objects in [YZY∗21], we consider the distance
to the nearest wall of each object, which is a more informative and
general feature in indoor scene arrangement. For the relative posi-
tion distribution, we model the prior for each dimension of the rela-
tive position between two objects separately. A 6-component GMM
is utilized to model Mµci

for each class ci and an 8-component
GMM is utilized to model Mµ(ci ,c j )

for each class pair (ci,c j).

In the calculation of Loverlap, we employ an indicator Ici,c j to
determine whether overlapping between two categories of objects
is permissible and exclude these pairs from the cost function calcu-
lation. I is statistically derived from the dataset. Specifically, if the
overlap probability between categories ci and c j in a scene exceeds
a threshold (0.3 in our implementation), I is set to 0.

9. Experiment

9.1. Implementation Details

In the denoising network ϵθ(Gt , t,c), the noises on each type of
attribute in the node representations xi and edge representations ei j
are predicted with a separate decoder after the final layer of graph
neural network. Also, the loss for noise prediction on each attribute
is calculated separately. When computing the training loss (Eq. 5),
we balance the loss calculation for edge attributes by multiplying it
by a fixed weight 10.

For the diffusion setting, we use a linear noise schedule follow-
ing [HJA20], and the number of diffusion steps for the first-stage
model is set to T = 100, and that for the second-stage model is set
to T = 50. For our inference-time scene prior guidance, we set the
scale s = 20.0 and balancing parameters λ1 = 1.0 and λ2 = 0.1.
The guidance is enabled for the last 30% of the denoising steps,
where threshold m = 15. The input text is encoded using a frozen
CLIP-ViT-B/32 model. We employ the AdamW optimization algo-
rithm for training with a learning rate of 0.0002. Scene generation
models are trained on a single GPU with a batch size of 128 for
10,000 epochs, and scene modification tasks are trained on eight
GPUs with a batch size of 128 for 3,000 epochs.

9.2. Applications

Scene Correction Our interactive scene synthesis design allows
users to correct errors using text instructions, fundamentally ad-
dressing the problem of invalid scenes in previous scene synthesis
methods. Figure 10 shows examples of erroneous scenes generated
from text instructions. Our method can easily correct these errors
through text guidance.

10. Limitations

Our proposed system has several limitations. Although we support
object-level and scene-level modification, our dataset does not ac-
count for group-level modification. In indoor design, group-level
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"Remove the TV stand."

"Make the double bed 
under the lamp."

"Move one of the nightstands 
which is to the right of the
 bed to its left and near the bed."

"Move one of the nightstands 
to the parallel of the other 
nightstand and right of the bed."

"Relocate the wardrobe 
to the bottom-right corner
 of the room.."

"Add a TV stand"

"Rearrange the room so the 
double bed is at the bottom 
part of the space, with the wardrobe 
positioned to the right of it.."

"Move the TV stand farther 
from the double bed."

Source Target

Object-level modification. Step number: 6

Object-level modification + scene-level modification. Step number: 2

Manual modification. Step number: 6

Figure 9: Interactive generation example.

modification is helpful for interactive synthesis. For example, ta-
bles and chairs are often manipulated together in real-world scenar-
ios. Generating a dataset for group-level modification is challeng-
ing and may require significant manual effort, so we have left this
interactive operation for future work. Additionally, since the data
scales for scene generation and scene modification do not match,
we trained separate models for text-guided generation and text-
guided modification. A more general model would integrate these
two tasks.

Moreover, our work is still limited to data-driven scene synthe-
sis with fixed room types and object categories. While some cur-
rent LLM-based methods achieve open-vocabulary synthesis, they
struggle with precise and detailed interaction. We believe that open-
vocabulary interactive scene synthesis represents a promising di-
rection for future research.
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Figure 10: Scene correction application. Our interactive scene synthesis design can easily fix the errors in scene generation through text
guidance.
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