
"Text Mining and Natural Language Processing", Anne Kao and Steve Poteet (eds.), pp. 29-44, Springer, 2007.

Extrating Relations from TextFrom Word Sequenes to Dependeny PathsRazvan C. Bunesu and Raymond J. MooneyDepartment of Computer SienesUniversity of Texas at Austin1 University Station C0500Austin, TX 78712-0233razvan,mooney�s.utexas.edu1 IntrodutionExtrating semanti relationships between entities mentioned in text dou-ments is an important task in natural language proessing. The various typesof relationships that are disovered between mentions of entities an provideuseful strutured information to a text mining system [1℄. Traditionally, thetask spei�es a prede�ned set of entity types and relation types that aredeemed to be relevant to a potential user and that are likely to our in apartiular text olletion. For example, information extration from newspa-per artiles is usually onerned with identifying mentions of people, orga-nizations, loations, and extrating useful relations between them. Relevantrelation types range from soial relationships, to roles that people hold insidean organization, to relations between organizations, to physial loations ofpeople and organizations. Sienti� publiations in the biomedial domain of-fer a type of narrative that is very di�erent from the newspaper disourse.A signi�ant e�ort is urrently spent on automatially extrating relevantpiees of information from Medline, an online olletion of biomedial ab-strats. Proteins, genes and ells are examples of relevant entities in this task,whereas subellular loalizations and protein-protein interations are two ofthe relation types that have reeived signi�ant attention reently. The in-herent diÆulty of the relation extration task is further ompounded in thebiomedial domain by the relative sarity of tools able to analyze the orre-sponding type of narrative. Most existing natural language proessing tools,suh as tokenizers, sentene segmenters, part-of-speeh (POS) taggers, shallowor full parsers are trained on newspaper orpora, and onsequently they inura loss in auray when applied to biomedial literature. Therefore, informa-tion extration systems developed for biologial orpora need to be robust toPOS or parsing errors, or to give reasonable performane using shallower butmore reliable information, suh as hunking instead of full parsing.



2 Razvan C. Bunesu and Raymond J. MooneyIn this hapter, we present two reent approahes to relation extration thatdi�er in terms of the kind of linguisti information they use:1. In the �rst method (Setion 2), eah potential relation is represented im-pliitly as a vetor of features, where eah feature orresponds to a wordsequene anhored at the two entities forming the relationship. A rela-tion extration system is trained based on the subsequene kernel from[2℄. This kernel is further generalized so that words an be replaed withword lasses, thus enabling the use of information oming from POS tag-ging, named entity reognition, hunking or Wordnet [3℄.2. In the seond approah (Setion 3), the representation is entered onthe shortest dependeny path between the two entities in the depen-deny graph of the sentene. Beause syntati analysis is essential in thismethod, its appliability is limited to domains where syntati parsinggives reasonable auray.Entity reognition, a prerequisite for relation extration, is usually ast as asequene tagging problem, in whih words are tagged as being either outsideany entity, or inside a partiular type of entity. Most approahes to entitytagging are therefore based on probabilisti models for labeling sequenes,suh as Hidden Markov Models [4℄, Maximum Entropy Markov Models [5℄, orConditional Random Fields [6℄, and obtain a reasonably high auray. In thetwo information extration methods presented in this hapter, we assume thatthe entity reognition task was done and fous only on the relation extrationpart.2 Subsequene Kernels for Relation ExtrationOne of the �rst approahes to extrating interations between proteins frombiomedial abstrats is that of Blashke et al., desribed in [7, 8℄. Their systemis based on a set of manually developed rules, where eah rule (or frame) isa sequene of words (or POS tags) and two protein-name tokens. Betweenevery two adjaent words is a number indiating the maximum number ofintervening words allowed when mathing the rule to a sentene. An examplerule is \interation of (3) <P> (3) with (3) <P>", where '<P>' is used todenote a protein name. A sentene mathes the rule if and only if it satis�esthe word onstraints in the given order and respets the respetive word gaps.In [9℄ the authors desribed a new method ELCS (Extration using LongestCommon Subsequenes) that automatially learns suh rules. ELCS' rule rep-resentation is similar to that in [7, 8℄, exept that it urrently does not use POStags, but allows disjuntions of words. An example rule learned by this sys-tem is \- (7) interation (0) [between j of ℄ (5) <P> (9) <P> (17) .". Wordsin square brakets separated by `j' indiate disjuntive lexial onstraints, i.e.one of the given words must math the sentene at that position. The numbersin parentheses between adjaent onstraints indiate the maximum numberof unonstrained words allowed between the two.



Extrating Relations from Text 32.1 Capturing Relation Patterns with a String KernelBoth Blashke and ELCS do relation extration based on a limited set ofmathing rules, where a rule is simply a sparse (gappy) subsequene ofwords or POS tags anhored on the two protein-name tokens. Therefore,the two methods share a ommon limitation: either through manual sele-tion (Blashke), or as a result of a greedy learning proedure (ELCS), theyend up using only a subset of all possible anhored sparse subsequenes. Ide-ally, all suh anhored sparse subsequenes would be used as features, withweights reeting their relative auray. However expliitly reating for eahsentene a vetor with a position for eah suh feature is infeasible, due to thehigh dimensionality of the feature spae. Here, we exploit dual learning al-gorithms that proess examples only via omputing their dot-produts, suhas in Support Vetor Mahines (SVMs) [10, 11℄. An SVM learner tries to�nd a hyperplane that separates positive from negative examples and at thesame time maximizes the separation (margin) between them. This type ofmax-margin separator has been shown both theoretially and empirially toresist over�tting and to provide good generalization performane on unseenexamples.Computing the dot-produt (i.e. the kernel) between the features vetors as-soiated with two relation examples amounts to alulating the number ofommon anhored subsequenes between the two sentenes. This is done eÆ-iently by modifying the dynami programming algorithm used in the stringkernel from [2℄ to aount only for ommon sparse subsequenes onstrainedto ontain the two protein-name tokens. The feature spae is further prunneddown by utilizing the following property of natural language statements: whena sentene asserts a relationship between two entity mentions, it generally doesthis using one of the following four patterns:� [FB℄ Fore{Between: words before and between the two entity mentionsare simultaneously used to express the relationship. Examples: `interation ofhP1i with hP2i`, `ativation of hP1i by hP2i`.� [B℄ Between: only words between the two entities are essential for assert-ing the relationship. Examples: `hP1i interats with hP2i`, `hP1i is ativatedby hP2i`.� [BA℄ Between{After: words between and after the two entity mentionsare simultaneously used to express the relationship. Examples: `hP1i { hP2iomplex`, `hP1i and hP2i interat`.� [M℄ Modi�er: the two entity mentions have no words between them. Ex-amples:U.S. troops (aRole:Staff relation), Serbian general (Role:Citizen).While the �rst three patterns are suÆient to apture most ases of in-terations between proteins, the last pattern is needed to aount for variousrelationships expressed through noun-noun or adjetive-noun ompounds inthe newspaper orpora.Another observation is that all these patterns use at most 4 words toexpress the relationship (not ounting the two entity names). Consequently,



4 Razvan C. Bunesu and Raymond J. Mooneywhen omputing the relation kernel, we restrit the ounting of ommon an-hored subsequenes only to those having one of the four types desribedabove, with a maximum word-length of 4. This type of feature seletion leadsnot only to a faster kernel omputation, but also to less over�tting, whihresults in inreased auray.The patterns enumerated above are ompletely lexialized and onse-quently their performane is limited by data sparsity. This an be alleviated byategorizing words into lasses with varying degrees of generality, and then al-lowing patterns to use both words and their lasses. Examples of word lassesare POS tags and generalizations over POS tags suh as Noun, Ative Verbor Passive Verb. The entity type an also be used, if the word is part of aknown named entity. Also, if the sentene is segmented into syntati hunkssuh as noun phrases (NP) or verb phrases (VP), the system may hoose toonsider only the head word from eah hunk, together with the type of thehunk as another word lass. Content words suh as nouns and verbs an alsobe related to their synsets via WordNet. Patterns then will onsist of sparsesubsequenes of words, POS tags, generalized POS tags, entity and hunktypes, or WordNet synsets. For example, `Noun of hP1i by hP2i` is an FBpattern based on words and general POS tags.2.2 A Generalized Subsequene KernelLet �1; �2; :::; �k be some disjoint feature spaes. Following the example inSetion 2.1, �1 ould be the set of words, �2 the set of POS tags, et. Let�� = �1 � �2 � ::: � �k be the set of all possible feature vetors, where afeature vetor would be assoiated with eah position in a sentene. Given twofeature vetors x; y 2 ��, let (x; y) denote the number of ommon featuresbetween x and y. The next notation follows that introdued in [2℄. Thus, lets; t be two sequenes over the �nite set ��, and let jsj denote the length ofs = s1:::sjsj. The sequene s[i:j℄ is the ontiguous subsequene si:::sj of s. Leti = (i1; :::; ijij) be a sequene of jij indies in s, in asending order. We de�nethe length l(i) of the index sequene i in s as ijij � i1 + 1. Similarly, j is asequene of jjj indies in t.Let �[ = �1 [ �2 [ ::: [ �k be the set of all possible features. We saythat the sequene u 2 ��[ is a (sparse) subsequene of s if there is a sequeneof juj indies i suh that uk 2 sik , for all k = 1; :::; juj. Equivalently, we writeu � s[i℄ as a shorthand for the omponent-wise `2` relationship between uand s[i℄.Finally, let Kn(s; t; �) (Equation 1) be the number of weighted sparsesubsequenes u of length n ommon to s and t (i.e. u � s[i℄, u � t[j℄), wherethe weight of u is �l(i)+l(j), for some � � 1.Kn(s; t; �) = Xu2�n[ Xi:u�s[i℄ Xj:u�t[j℄�l(i)+l(j) (1)



Extrating Relations from Text 5Let i and j be two index sequenes of length n. By de�nition, for every kbetween 1 and n, (sik ; tjk ) returns the number of ommon features betweens and t at positions ik and jk. If (sik ; tjk ) = 0 for some k, there are noommon feature sequenes of length n between s[i℄ and t[j℄. On the otherhand, if (sik ; tjk) = 0 is greater than 1, this means that there is more thanone ommon feature that an be used at position k to obtain a ommon featuresequene of length n. Consequently, the number of ommon feature sequenesof length n between s[i℄ and t[j℄, i.e. the size of the set fu 2 �n[ju � s[i℄; u �t[j℄g, is given by Qnk=1 (sik ; tjk ). Therefore, Kn(s; t; �) an be rewritten as inEquation 2: Kn(s; t; �) = Xi:jij=n Xj:jjj=n nYk=1 (sik ; tjk )�l(i)+l(j) (2)We use � as a deaying fator that penalizes longer subsequenes. Forsparse subsequenes, this means that wider gaps will be penalized more, whihis exatly the desired behavior for our patterns. Through them, we try to ap-ture head-modi�er dependenies that are important for relation extration;for lak of reliable dependeny information, the larger the word gap is be-tween two words, the less on�dent we are in the existene of a head-modi�errelationship between them.To enable an eÆient omputation of Kn, we use the auxiliary funtionK 0n with a similar de�nition as Kn, the only di�erene being that it ountsthe length from the beginning of the partiular subsequene u to the end ofthe strings s and t, as illustrated in Equation 3:K 0n(s; t; �) = Xu2�n[ Xi:u�s[i℄ Xj:u�t[j℄�jsj+jtj�i1�j1+2 (3)An equivalent formula for K 0n(s; t; �) is obtained by hanging the exponent of� from Equation 2 to jsj+ jtj � i1 � j1 + 2.Based on all de�nitions above, Kn is omputed in O(knjsjjtj) time, bymodifying the reursive omputation from [2℄ with the new fator (x; y), asshown in Figure 1. In this �gure, the sequene sx is the result of appendingx to s (with ty de�ned in a similar way). To avoid lutter, the parameter �is not shown in the argument list of K and K 0, unless it is instantiated to aspei� onstant.2.3 Computing the Relation KernelAs desribed at the beginning of Setion 2, the input onsists of a set ofsentenes, where eah sentene ontains exatly two entities (protein namesin the ase of interation extration). In Figure 2 we show the segments thatwill be used for omputing the relation kernel between two example senteness and t. In sentene s for instane, x1 and x2 are the two entities, sf is the



6 Razvan C. Bunesu and Raymond J. MooneyK00(s; t) = 1; for all s; tK00i (sx; ty) = �K00i (sx; t) + �2K0i�1(s; t) � (x; y)K0i (sx; t) = �K0i (s; t) +K00i (sx; t)Kn(s; t) = 0; if min(jsj; jtj) < nKn(sx; t) = Kn(s; t) +Xj �2K0n�1(s; t[1 : j � 1℄) � (x; t[j℄)Fig. 1. Computation of subsequene kernel.sentene segment before x1, sb is the segment between x1 and x2, and sa isthe sentene segment after x2. For onveniene, we also inlude the auxiliarysegment s0b = x1sbx2, whose span is omputed as l(s0b) = l(sb) + 2 (in alllength omputations, we onsider x1 and x2 as ontributing one unit only).
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t  = Fig. 2. Sentene segments.The relation kernel omputes the number of ommon patterns betweentwo sentenes s and t, where the set of patterns is restrited to the fourtypes introdued in Setion 2.1. Therefore, the kernel rK(s; t) is expressed asthe sum of four sub-kernels: fbK(s; t) ounting the number of ommon fore{between patterns, bK(s; t) for between patterns, baK(s; t) for between{afterpatterns, and mK(s; t) for modi�er patterns, as in Figure 3. The symbol 1 isused there as a shorthand for the indiator funtion, whih is 1 if the argumentis true, and 0 otherwise.The �rst three sub-kernels inlude in their omputation the ounting ofommon subsequenes between s0b and t0b. In order to speed up the ompu-tation, all these ommon ounts are alulated separately in bKi, whih isde�ned as the number of ommon subsequenes of length i between s0b and t0b,anhored at x1/x2 and y1/y2 respetively (i.e. onstrained to start at x1 in s0b



Extrating Relations from Text 7rK(s; t) = fbK(s; t) + bK(s; t) + baK(s; t) +mK(s; t)bKi(s; t) = Ki(sb; tb; 1) � (x1; y1) � (x2; y2) � �l(s0b)+l(t0b)fbK(s; t) =Xi;j bKi(s; t) �K0j(sf ; tf); 1 � i; 1 � j; i + j < fbmaxbK(s; t) =Xi bKi(s; t); 1 � i � bmaxbaK(s; t) =Xi;j bKi(s; t) �K0j(s�a ; t�a ); 1 � i; 1 � j; i + j < bamaxmK(s; t) = 1(sb = ;) � 1(tb = ;) � (x1; y1) � (x2; y2) � �2+2;Fig. 3. Computation of relation kernel.and y1 in t0b, and to end at x2 in s0b and y2 in t0b). Then fbK simply ountsthe number of subsequenes that math j positions before the �rst entity andi positions between the entities, onstrained to have length less than a on-stant fbmax. To obtain a similar formula for baK we simply use the reversed(mirror) version of segments sa and ta (e.g. s�a and t�a ). In Setion 2.1 weobserved that all three subsequene patterns use at most 4 words to express arelation, therefore the onstants fbmax, bmax and bamax are set to 4. KernelsK and K 0 are omputed using the proedure desribed in Setion 2.2.3 A Dependeny-Path Kernel for Relation ExtrationThe pattern examples from Setion 2.1 show the two entity mentions, togetherwith the set of words that are relevant for their relationship. A loser analysisof these examples reveals that all relevant words form a shortest path betweenthe two entities in a graph struture where edges orrespond to relations be-tween a word (head) and its dependents. For example, Figure 4 shows the fulldependeny graphs for two sentenes from the ACE (Automated Content Ex-tration) newspaper orpus [12℄, in whih words are represented as nodes andword-word dependenies are represented as direted edges. A subset of theseword-word dependenies apture the prediate-argument relations present inthe sentene. Arguments are onneted to their target prediates either di-retly through an ar pointing to the prediate ('troops ! raided'), or indi-retly through a preposition or in�nitive partile ('warning  to  stop').Other types of word-word dependenies aount for modi�er-head relation-ships present in adjetive-noun ompounds ('several! stations'), noun-nounompounds ('pumping ! stations'), or adverb-verb onstrutions ('reently! raided').



8 Razvan C. Bunesu and Raymond J. Mooney
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Protesters stations workers

Troops churches ministers

seized   several   pumping , holding   127   Shell hostage .

recently   have   raided , warning to   stop   preaching .Fig. 4. Sentenes as dependeny graphs.Table 1. Shortest Path representation of relations.Relation Instane Shortest Path in Undireted Dependeny GraphS1:protesters AT stations protesters ! seized  stationsS1:workers AT stations workers ! holding  protesters ! seized  stationsS2:troops AT hurhes troops ! raided  hurhesS2:ministers AT hurhes ministers ! warning  troops ! raided  hurhesWord-word dependenies are typially ategorized in two lasses as follows:� [Loal Dependenies℄ These orrespond to loal prediate-argument (orhead-modi�er) onstrutions suh as 'troops ! raided', or 'pumping !stations' in Figure 4.� [Non-loal Dependenies℄ Long-distane dependenies arise due to var-ious linguisti onstrutions suh as oordination, extration, raising andontrol. In Figure 4, among non-loal dependenies are 'troops ! warn-ing', or 'ministers! preahing'.A Context Free Grammar (CFG) parser an be used to extrat loal de-pendenies, whih for eah sentene form a dependeny tree. Mildly ontextsensitive formalisms suh as Combinatory Categorial Grammar (CCG) [13℄model word-word dependenies more diretly and an be used to extrat bothloal and long-distane dependenies, giving rise to a direted ayli graph,as illustrated in Figure 4.3.1 The Shortest Path HypothesisIf e1 and e2 are two entities mentioned in the same sentene suh that theyare observed to be in a relationship R, then the ontribution of the sentene



Extrating Relations from Text 9dependeny graph to establishing the relationship R(e1; e2) is almost exlu-sively onentrated in the shortest path between e1 and e2 in the undiretedversion of the dependeny graph.If entities e1 and e2 are arguments of the same prediate, then the shortestpath between them will pass through the prediate, whih may be onneteddiretly to the two entities, or indiretly through prepositions. If e1 and e2belong to di�erent prediate-argument strutures that share a ommon argu-ment, then the shortest path will pass through this argument. This is the asewith the shortest path between 'stations' and 'workers' in Figure 4, passingthrough 'protesters', whih is an argument ommon to both prediates 'hold-ing' and 'seized'. In Table 1, we show the paths orresponding to the fourrelation instanes enoded in the ACE orpus for the two sentenes from Fig-ure 4. All these paths support the Loated relationship. For the �rst path, itis reasonable to infer that if a Person entity (e.g. 'protesters') is doing someation (e.g. 'seized') to a Faility entity (e.g. 'station'), then the Personentity is Loated at that Faility entity. The seond path aptures thefat that the same Person entity (e.g. 'protesters') is doing two ations (e.g.'holding' and 'seized') , one ation to a Person entity (e.g. 'workers'), andthe other ation to a Faility entity (e.g. 'station'). A reasonable inferenein this ase is that the 'workers' are Loated at the 'station'.In Figure 5, we show three more examples of the Loated (At) rela-tionship as dependeny paths reated from one or two prediate-argumentstrutures. The seond example is an interesting ase, as it illustrates howannotation deisions are aommodated in our approah. Using a reasoningsimilar with that from the previous paragraph, it is reasonable to infer that'troops' are Loated in 'vans', and that 'vans' are Loated in 'ity'. How-ever, beause 'vans' is not an ACE markable, it annot partiipate in anannotated relationship. Therefore, 'troops' is annotated as being Loatedin 'ity', whih makes sense due to the transitivity of the relation Loated.In our approah, this leads to shortest paths that pass through two or moreprediate-argument strutures.The last relation example is a ase where there exist multiple shortest pathsin the dependeny graph between the same two entities { there are atuallytwo di�erent paths, with eah path repliated into three similar paths due tooordination. Our urrent approah onsiders only one of the shortest paths,nevertheless it seems reasonable to investigate using all of them as multiplesoures of evidene for relation extration.There may be ases where e1 and e2 belong to prediate-argument stru-tures that have no argument in ommon. However, beause the dependenygraph is always onneted, we are guaranteed to �nd a shortest path betweenthe two entities. In general, we shall �nd a shortest sequene of prediate-argument strutures with target prediates P1; P2; :::; Pn suh that e1 is anargument of P1, e2 is an argument of Pn, and any two onseutive prediatesPi and Pi+1 share a ommon argument (where by \argument" we mean botharguments and omplements).



10 Razvan C. Bunesu and Raymond J. Mooney(1) He had no regrets for his ations in Brko.his ! ations  in  Brko(2) U.S. troops today ated for the �rst time to apture an allegedBosnian war riminal, rushing from unmarked vans parked in thenorthern Serb-dominated ity of Bijeljina.troops ! rushing  from  vans ! parked  in  ity(3) Jelisi reated an atmosphere of terror at the amp by killing,abusing and threatening the detainees.detainees ! killing  Jelisi ! reated  at  ampdetainees ! abusing  Jelisi ! reated  at  ampdetainees ! threatning  Jelisi ! reated  at  ampdetainees ! killing ! by ! reated  at  ampdetainees ! abusing ! by ! reated  at  ampdetainees ! threatening ! by ! reated  at  ampFig. 5. Relation examples.3.2 Learning with Dependeny PathsThe shortest path between two entities in a dependeny graph o�ers a veryondensed representation of the information needed to assess their relation-ship. A dependeny path is represented as a sequene of words interspersedwith arrows that indiate the orientation of eah dependeny, as illustratedin Table 1. These paths however are ompletely lexialized and onsequentlytheir performane will be limited by data sparsity. The solution is to allowpaths to use both words and their word lasses, similar with the approahtaken for the subsequene patterns in Setion 2.1.The set of features an then be de�ned as a Cartesian produt over wordsand word lasses, as illustrated in Figure 6 for the dependeny path between'protesters' and 'station' in sentene S1. In this representation, sparse or on-tiguous subsequenes of nodes along the lexialized dependeny path (i.e. pathfragments) are inluded as features simply by replaing the rest of the nodeswith their orresponding generalizations.Examples of features generated by Figure 6 are \protesters ! seized  stations", \Noun ! Verb  Noun", \Person ! seized  Faility", or\Person ! Verb  Faility". The total number of features generated bythis dependeny path is 4� 1� 3� 1� 4.For verbs and nouns (and their respetive word lasses) ourring along adependeny path we also use an additional suÆx '(-)' to indiate a negativepolarity item. In the ase of verbs, this suÆx is used when the verb (or anattahed auxiliary) is modi�ed by a negative polarity adverb suh as 'not' or



Extrating Relations from Text 11264 protestersNNSNounPerson 375� [!℄� " seizedVBDVerb #� [ ℄� 264 stationsNNSNounFaility375Fig. 6. Feature generation from dependeny path.'never'. Nouns get the negative suÆx whenever they are modi�ed by negativedeterminers suh as 'no', 'neither' or 'nor'. For example, the phrase \He neverwent to Paris" is assoiated with the dependeny path \He ! went(-)  to Paris".As in Setion 2, we use kernel SVMs in order to avoid working expliitelywith high-dimensional dependeny path feature vetors. Computing the dot-produt (i.e. kernel) between two relation examples amounts to alulatingthe number of ommon features (i.e. paths) between the two examples. If x= x1x2:::xm and y = y1y2:::yn are two relation examples, where xi denotesthe set of word lasses orresponding to position i (as in Figure 6), then thenumber of ommon features between x and y is omputed as in Equation 4.K(x;y) = 1(m = n) � nYi=1 (xi; yi) (4)where (xi; yi) = jxi \ yij is the number of ommon word lasses between xiand yi.This is a simple kernel, whose omputation takes O(n) time. If the twopaths have di�erent lengths, they orrespond to di�erent ways of expressinga relationship { for instane, they may pass through a di�erent number ofprediate argument strutures. Consequently, the kernel is de�ned to be 0 inthis ase. Otherwise, it is the produt of the number of ommon word lassesat eah position in the two paths. As an example, let us onsider two instanesof the Loated relationship, and their orresponding dependeny paths:1. 'his ations in Brko' (his ! ations  in  Brko).2. 'his arrival in Beijing' (his ! arrival in  Beijing).Their representation as a sequene of sets of word lasses is given by:1. x = [x1 x2 x3 x4 x5 x6 x7℄, where x1 = fhis, PRP, Persong, x2 = f!g,x3 = fations, NNS, Noung, x4 = f g, x5 = fin, INg, x6 = f g, x7 =fBrko, NNP, Noun, Loationg2. y = [y1 y2 y3 y4 y5 y6 y7℄, where y1 = fhis, PRP, Persong, y2 = f!g,y3 = farrival, NN, Noung, y4 = f g, y5 = fin, INg, y6 = f g, y7 =fBeijing, NNP, Noun, LoationgBased on the formula from Equation 4, the kernel is omputed as K(x;y) =3� 1� 1� 1� 2� 1� 3 = 18.



12 Razvan C. Bunesu and Raymond J. Mooney4 Experimental EvaluationThe two relation kernels desribed above are evaluated on the task of extrat-ing relations from two orpora with di�erent types of narrative, whih aredesribed in more detail in the following setions. In both ases, we assumethat the entities and their labels are known. All preproessing steps { sentenesegmentation, tokenization, POS tagging and hunking { were performed us-ing the OpenNLP1 pakage. If a sentene ontains n entities (n � 2), it isrepliated into �n2� sentenes, eah ontaining only two entities. If the two en-tities are known to be in a relationship, then the repliated sentene is addedto the set of orresponding positive sentenes, otherwise it is added to the setof negative sentenes. During testing, a sentene having n entities (n � 2) isagain repliated into �n2� sentenes in a similar way.The dependeny graph that is input to the shortest path dependey kernelis obtained from two di�erent parsers:� The CCG parser introdued in [14℄2 outputs a list of funtor-argumentdependenies, from whih head-modi�er dependenies are obtained usinga straightforward proedure (for more details, see [15℄).� Head-modi�er dependenies an be easily extrated from the full parseoutput of Collins' CFG parser [16℄, in whih every non-terminal node isannotated with head information.The relation kernels are used in onjuntion with SVM learning in order to�nd a deision hyperplane that best separates the positive examples from neg-ative examples. We modi�ed the LibSVM3 pakage by plugging in the kernelsdesribed above. The fator � in the subsequene kernel is set to 0:75. Theperformane is measured using preision (perentage of orretly extratedrelations out of the total number of relations extrated), reall (perentage oforretly extrated relations out of the total number of relations annotated inthe orpus), and F-measure (the harmoni mean of preision and reall).4.1 Interation Extration from AIMedWe did omparative experiments on the AIMed orpus, whih has been pre-viously used for training the protein interation extration systems in [9℄. Itonsists of 225 Medline abstrats, of whih 200 are known to desribe in-terations between human proteins, while the other 25 do not refer to anyinteration. There are 4084 protein referenes and around 1000 tagged inter-ations in this dataset.The following systems are evaluated on the task of retrieving protein in-terations from AIMed (assuming gold standard proteins):1 URL: http://opennlp.soureforge.net2 URL:http://www.irs.upenn.edu/~juliahr/Parser/3 URL:http://www.sie.ntu.edu.tw/~jlin/libsvm/



Extrating Relations from Text 13� [Manual℄: We report the performane of the rule-based system of [7, 8℄.� [ELCS℄: We report the 10-fold ross-validated results from [9℄ as aPreision-Reall (PR) graph.� [SSK℄: The subseqeuene kernel is trained and tested on the same splitsas ELCS. In order to have a fair omparison with the other two systems, whihuse only lexial information, we do not use any word lasses here.� [SPK℄: This is the shortest path dependeny kernel, using the head-modi�er dependenies extrated by Collins' syntati parser. The kernel istrained and tested on the same 10 splits as ELCS and SSK.The Preision-Reall urves that show the trade-o� between these metrisare obtained by varying a threshold on the minimum aeptable extrationon�dene, based on the probability estimates from LibSVM. The results,summarized in Figure 7(a), show that the subsequene kernel outperformsthe other three systems, with a substantial gain. The syntati parser, whihis originally trained on a newspaper orpus, builds less aurate dependenystrutures for the biomedial text. This is reeted in a signi�antly reduedauray for the dependeny kernel.
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14 Razvan C. Bunesu and Raymond J. Mooney4.2 Relation Extration from ACEThe two kernels are also evaluated on the task of extrating top-level relationsfrom the ACE orpus [12℄, the version used for the September 2002 evaluation.The training part of this dataset onsists of 422 douments, with a separate setof 97 douments reserved for testing. This version of the ACE orpus ontainsthree types of annotations: oreferene, named entities and relations. Thereare �ve types of entities { Person, Organization, Faility, Loation,and Geo-Politial Entity { whih an partiipate in �ve general, top-level relations: Role, Part, Loated, Near, and Soial. In total, thereare 7,646 intra-sentential relations, of whih 6,156 are in the training dataand 1,490 in the test data.A reent approah to extrating relations is desribed in [17℄. The authorsuse a generalized version of the tree kernel from [18℄ to ompute a kernelover relation examples, where a relation example onsists of the smallest de-pendeny tree ontaining the two entities of the relation. Preision and reallvalues are reported for the task of extrating the 5 top-level relations in theACE orpus under two di�erent senarios:{ [S1℄ This is the lassi setting: one multi-lass SVM is learned to dis-riminate among the 5 top-level lasses, plus one more lass for the no-relationases.{ [S2℄ One binary SVM is trained for relation detetion, meaning thatall positive relation instanes are ombined into one lass. The thresholdedoutput of this binary lassi�er is used as training data for a seond multi-lassSVM, trained for relation lassi�ation.The subsequene kernel (SSK) is trained under the �rst senario, to re-ognize the same 5 top-level relation types. While for protein interation ex-tration only the lexialized version of the kernel was used, here we utilizemore features, orresponding to the following feature spaes: �1 is the wordvoabulary, �2 is the set of POS tags, �3 is the set of generi POS tags, and�4 ontains the 5 entity types. Chunking information is used as follows: all(sparse) subsequenes are reated exlusively from the hunk heads, where ahead is de�ned as the last word in a hunk. The same riterion is used foromputing the length of a subsequene { all words other than head words areignored. This is based on the observation that in general words other than thehunk head do not ontribute to establishing a relationship between two enti-ties outside of that hunk. One exeption is when both entities in the examplesentene are ontained in the same hunk. This happens very often due tonoun-noun ('U.S. troops') or adjetive-noun ('Serbian general') ompounds.In these ases, the hunk is allowed to ontribute both entity heads.The shortest-path dependeny kernel (SPK) is trained under both senar-ios. The dependenies are extrated using either Hokenmaier's CCG parser(SPK-CCG) [14℄, or Collins' CFG parser (SPK-CFG) [16℄.Table 2 summarizes the performane of the two relation kernels on theACE orpus. For omparison, we also show the results presented in [17℄ for



Extrating Relations from Text 15their best performing kernel K4 (a sum between a bag-of-words kernel and atree dependeny kernel) under both senarios.Table 2. Extration Performane on ACE.(Senario) Method Preision Reall F-measure(S1) K4 70.3 26.3 38.0(S1) SSK 73.9 35.2 47.7(S1) SPK-CCG 67.5 37.2 48.0(S1) SPK-CFG 71.1 39.2 50.5(S2) K4 67.1 35.0 45.8(S2) SPK-CCG 63.7 41.4 50.2(S2) SPK-CFG 65.5 43.8 52.5The shortest-path dependeny kernels outperform the dependeny kernelfrom [17℄ in both senarios, with a more substantial gain for SP-CFG. Anerror analysis revealed that Collins' parser was better at apturing loal de-pendenies, hene the inreased auray of SP-CFG. Another advantage ofshortest-path dependeny kernels is that their training and testing are veryfast { this is due to representing the sentene as a hain of dependenies onwhih a fast kernel an be omputed. All the four SP kernels from Table 2 takebetween 2 and 3 hours to train and test on a 2.6GHz Pentium IV mahine.As expeted, the newspaper artiles from ACE are less prone to parsingerrors than the biomedial artiles from AIMed. Consequently, the extrateddependeny strutures are more aurate, leading to an improved aurayfor the dependeny kernel.To avoid numerial problems, the dependeny paths are onstrained topass through at most 10 words (as observed in the training data) by settingthe kernel to 0 for longer paths. The alternative solution of normalizing thekernel leads to a slight derease in auray. The fat that longer paths havelarger kernel sores in the unnormalized version does not pose a problembeause, by de�nition, paths of di�erent lengths orrespond to disjoint setsof features. Consequently, the SVM algorithm will indue lower weights forfeatures ourring in longer paths, resulting in a linear separator that worksirrespetive of the size of the dependeny paths.5 Future WorkThere are ases when words that do not belong to the shortest dependenypath do inuene the extration deision. In Setion 3.2, we showed how neg-ative polarity items are integrated in the model through annotations of wordsalong the dependeny paths. Modality is another phenomenon that is in-



16 Razvan C. Bunesu and Raymond J. Mooneyuening relation extration, and we plan to inorporate it using the sameannotation approah.The two relation extration methods are very similar: the subsequene pat-terns in one kernel orrespond to dependeny paths in the seond kernel. Moreexatly, pairs of words from a subsequene pattern orrespond to pairs of on-seutive words (i.e. edges) on the dependeny path. The lak of dependenyinformation in the subsequene kernel leads to allowing gaps between words,with the orresponding exponential penalty fator �. Given the observed sim-ilarity between the two methods, it seems reasonable to use them both inan integrated model. This model would use high-on�dene head-modi�er de-pendenies, falling bak on pairs of words with gaps, when the dependenyinformation is unreliable.6 ConlusionMining knowledge from text douments an bene�t from using the stru-tured information that omes from entity reognition and relation extration.However, aurately extrating relationships between relevant entities is de-pendent on the granularity and reliability of the required linguisti analysis.In this hapter, we presented two relation extration kernels that di�er interms of the amount of linguisti information they use. Experimental evalua-tions on two orpora with di�erent types of disourse show that they omparefavorably to previous extration approahes.7 AknowledgementThis work was supported by grants IIS-0117308 and IIS-0325116 from theNSF. We would like to thank Arun Ramani and Edward Marotte for theirhelp in preparing the AIMed orpus.Referenes1. R. J. Mooney, R. C. Bunesu, Mining knowledge from text using informationextration, SIGKDD Explorations (speial issue on Text Mining and NaturalLanguage Proessing) 7 (1) (2005) 3{10.2. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, C. Watkins, Text las-si�ation using string kernels, Journal of Mahine Learning Researh 2 (2002)419{444.3. C. D. Fellbaum, WordNet: An Eletroni Lexial Database, MIT Press, Cam-bridge, MA, 1998.4. L. R. Rabiner, A tutorial on hidden Markov models and seleted appliationsin speeh reognition, Proeedings of the IEEE 77 (2) (1989) 257{286.
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