**AUGUST 2024** 



# MULTIMODAL CONTEXTUALIZED SEMANTIC PARSING FROM SPEECH

ACL 2024 Main, Bangkok, Thailand



JORDAN VOAS, RAYMOND MOONEY, DAVID HARWATH

The University of Texas at Austin

**Paper Link** 





### Introduction

### **SPICE** - Semantic Parsing in Contextual Environments

Aims to formulate multi-turn, multimodal, dialogue through the iterative updates and utilization of knowledge graphs with Semantic Parsing.





## Introduction

### **SPICE** - Semantic Parsing in Contextual Environments

Aims to formulate multi-turn, multimodal, dialogue through the iterative updates and utilization of knowledge graphs with Semantic Parsing. SPICE advances applications of Semantic Parsing to compliment dialogue focused tasks





## Motivation

### Human Conversation is:

- Iterative
- Multimodal
  - e.q., Audio, Vision,
    Paralinguistics
- Exists within a structured knowledge base





## SPICE











### Semantic Parsing







### Semantic Parsing

Unimodal: Processes primarily textual data







### Semantic Parsing

- Unimodal: Processes primarily textual data
- Non-Structure: Rarely conditioned on dynamic structured contexts







### Semantic Parsing

- Unimodal: Processes primarily textual data
- Non-Structure: Rarely conditioned on dynamic structured contexts
- **Single-Round:** Lacks integration of iterative applications

### SPICE





### Semantic Parsing

- Unimodal: Processes primarily textual data
- Non-Structure: Rarely conditioned on dynamic structured contexts
- **Single-Round:** Lacks integration of iterative applications



• **Multimodal:** Requires multimodal input utilization





### Semantic Parsing

- Unimodal: Processes primarily textual data
- Non-Structure: Rarely conditioned on dynamic structured contexts
- **Single-Round:** Lacks integration of iterative applications



- **Multimodal:** Requires multimodal input utilization
- **Iterative:** Requires iteratively updating the context over multiple interactions





### Semantic Parsing

- Unimodal: Processes primarily textual data
- Non-Structure: Rarely conditioned on dynamic structured contexts
- **Single-Round:** Lacks integration of iterative applications



- Multimodal: Requires multimodal input utilization
- **Iterative:** Requires iteratively updating the context over multiple interactions
- Structure Conditioning: Requires conditioning on both novel inputs and prior contexts at each update





### **SPICE Benefits**

Computationally Efficient





### **SPICE Benefits**

Computationally Efficient Human Comprehensible





### **SPICE Benefits**

Computationally Efficient Human Comprehensible Modular and Adaptable





# How can we develop and measure current SPICE capabilities?





## VG-SPICE

- A novel training and evaluation dataset matching SPICEs formulation
- Derived from Visual Genome annotations refined with synthetic augmentations
- Simulates iterative construction of scene graphs from single-perspective dialogue





## **VG-SPICE**

|        | Scene Visual | Current Context                                                                                                                                                                                                                                                                                                                                                                                         | Spoken Utterance                                                                                                                                                                                                                                                                  |
|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs |              | Node: (ID: 0) "sign" with Attributes "white"<br>Node: (ID: 1) "boat" with Attributes "floating"<br>Node: (ID: 2) "post"<br>Node: (ID: 3) "walkway"<br>Node: (ID: 3) "bird"<br>Node: (ID: 5) "land"<br>Node: (ID: 6) "sky" with Attributes "cloudy"<br>Node: (ID: 7) "water"<br>Node: (ID: 8) "boat"<br>Node: (ID: 9) "door"<br>Edge: Node "boat" (ID: 1) with Predicate "in" to<br>Node "water" (ID: 7) | The bird is perched on a white sign while a small,<br>floating boat glides across the water. The boat is<br>surrounded by a cloudy sky and a wooden<br>walkway leads up to a door. In the distance, a<br>fence stretches across the land, separating the<br>water from the shore. |
| Output |              | #ADD_ATTR(\$ID(1), \$ATTRS(["small"]));<br>#ADD_ATTR(\$ID(3), \$ ATTRS(["wooden"]));<br>#ADD_NODE(\$NODE(\$ID(10), \$NAME("fence")));<br>#ADD_EDGE (\$ID(4), \$ID(0), \$PREDICATE("perched on"));<br>#END();                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   |

Paper Link



### **VG-SPICE**

|        | Scene Visual | <b>Current Context</b>                                                                                                                                                                                                                                                                                                                                                                               | Spoken Utterance                                                                                                                                                                                                                                                                  | Statistia                                                                                      | Value                                     |
|--------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|
| Inputs |              | Node: (ID: 0) "sign" with Attributes "white"<br>Node: (ID: 1) "boat" with Attributes "floating"<br>Node: (ID: 2) "post"<br>Node: (ID: 2) "post"<br>Node: (ID: 5) "land"<br>Node: (ID: 5) "land"<br>Node: (ID: 6) "sky" with Attributes "cloudy"<br>Node: (ID: 7) "water"<br>Node: (ID: 8) "boat"<br>Node: (ID: 9) "door"<br>Edge: Node "boat" (ID: 1) with Predicate "in" to<br>Node "water" (ID: 7) | The bird is perched on a white sign while a small,<br>floating boat glides across the water. The boat is<br>surrounded by a cloudy sky and a wooden<br>walkway leads up to a door. In the distance, a<br>fence stretches across the land, separating the<br>water from the shore. | # Samples<br># Unique Scenes<br>Hours of Audio<br>Avg. Words per Utterance<br>Avg. Nodes Added | 131362<br>22346<br>10.56<br>71.83<br>1.27 |
| Output |              | <pre>#ADD_ATTR(\$ID(1), \$ATTRS(["small"]));<br/>#ADD_ATTR(\$ID(3), \$ATTRS(["wooden"]));<br/>#ADD_NODE(\$NODE(\$ID(10), \$NAME("fence")));<br/>#ADD_EDGE (\$ID(4), \$ID(0), \$PREDICATE("perched on<br/>#END();</pre>                                                                                                                                                                               | ));                                                                                                                                                                                                                                                                               | Avg. Attributes Added<br>Avg. Edges Added                                                      | 0.93<br>0.60                              |





## VG-SPICE Clean-Challenge Set

• Sample evaluation subset of 50 visual scenes over 250 samples





## VG-SPICE Clean-Challenge Set

- Sample evaluation subset of 50 visual scenes
- Human annotated for high quality and dense scene graphs and dialogue utterances





## VG-SPICE Clean-Challenge Set

- Sample evaluation subset of 50 visual scenes
- Human annotated for high quality and dense scene graphs and dialogue utterances
- Includes both TTS audio samples and single voice real human speech for out of domain evaluation







 To set a baseline for VG-SPICE we produce a initial model, AViD-SP, built on LLaMa 2 7B, using pretrained per-modality encoders (DINOv2 and Whisper-Large)





- To set a baseline for VG-SPICE we train a LLM based model, AViD-SP, built on LLaMa 2 7B, using pretrained per-modality encoders (DINOv2 and Whisper-Large)
- We evaluate AViD-SP with two forms of multimodal features adaptation modules
  - Linear Projection + Meanpooling
  - A novel Grouped Modality Adaptation Down Sampler (GMADS)





























































## **Evaluation Metrics**

- Evaluations are performed using Representation Edit Distance
  - Group Attributes and Nodes together
  - Uses sentence embedding representations to identify semantic edit distance between reference and prediction
  - We include both Soft (penalizes only omissions) and Hard (penalizes erroneous additions as well) metric variants





### **Evaluation Results**

| Model Type           |       | S-RED↓ |       |
|----------------------|-------|--------|-------|
|                      | 0dB   | 20dB   | Gold* |
| AViD-SP + GMADS      |       |        |       |
| Base                 | 0.402 | 0.3765 | 0.348 |
| w/o Image            | 0.407 | 0.384  | 0.364 |
| w/o Audio            | 0.570 | 0.538  | 0.481 |
| w Incorrect Image**  | -     | 0.381  | -     |
| w/o Prior Context*** | -     | 0.478  | -     |
| AViD-SP + Meanpool   |       |        |       |
| Base                 | 0.377 | 0.359  | 0.323 |
| w/o Image            | 0.386 | 0.362  | 0.330 |
| w/o Audio            | 0.414 | 0.385  | 0.363 |





### **Evaluation Results**

| Model Type           | S-RED↓ |        |       |
|----------------------|--------|--------|-------|
|                      | 0dB    | 20dB   | Gold* |
| AViD-SP + GMADS      |        |        |       |
| Base                 | 0.402  | 0.3765 | 0.348 |
| w/o Image            | 0.407  | 0.384  | 0.364 |
| w/o Audio            | 0.570  | 0.538  | 0.481 |
| w Incorrect Image**  | -      | 0.381  | -     |
| w/o Prior Context*** | -      | 0.478  | -     |
| AViD-SP + Meanpool   |        |        |       |
| Base                 | 0.377  | 0.359  | 0.323 |
| w/o Image            | 0.386  | 0.362  | 0.330 |
| w/o Audio            | 0.414  | 0.385  | 0.363 |





## Clean Challenge Set Results

• Our novel multimodal fusion method, GMADS, manages to far exceed meanpooling on out of domain real-world performance.

| Variant  | TTS    |        | Read   |        |
|----------|--------|--------|--------|--------|
|          | H-RED↓ | S-RED↓ | H-RED↓ | S-RED↓ |
| GMADS    | 0.739  | 0.497  | 0.731  | 0.497  |
| Meanpool | 0.640  | 0.460  | 1.415  | 0.628  |



#### **AUGUST 2024**



### Contact

Jordan <u>Voas</u> University of Texas at Austin Email: jvoas@utexas.edu Website: jordanvoas.com Phone: (320) 267-2665

ACL 2024 Main, Bangkok, Thailand

**JORDAN VOAS** PhD, The University of Texas at Austin

