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Abstract. Formal methods tools vary widely but generally have logical
foundations. For ACL2, a general purpose theorem prover under contin-
uous development since about 1990, having a sound logical foundation
is absolutely essential. Many formal tools support execution on concrete
data, and ACL2 does so by being compatible with the Common Lisp
language: theorems can be proved about Common Lisp functions in the
ACL2 subset, and efficient execution is provided by reliance on compiled
Common Lisp code. ACL2’s arithmetic is based on a straightforward
axiomatization of the rationals and Common Lisp provides exact ratio-
nal arithmetic. But computation based on exact rational arithmetic is
relatively slow, so we have recently added support for floating-point op-
erations in ACL2. The challenge is how to do this while preserving the
pre-existing axioms for arithmetic and a large regression suite contain-
ing verified theorems and other logical tools contributed and used by the
entire ACL2 community. We discuss how we have met these challenges,
we discuss the limitations of our support for floating-point operations,
and we illustrate the resulting system with examples.
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1 Reflections on the Career of Cliff Jones by J Moore

In Fall, 2023, when the editors of this book approached me about contributing
an original research paper to this Festschrift for Cliff Jones, I initially declined
because no such paper was in the works. At the time, Matt Kaufmann and I were
busy experimenting with ways to support some limited floating-point arithmetic
within ACL2. In fact, we had developed a plausible design and a mock-up of an
ACL2 session demonstrating our intended functionality. Convinced it was worth
a more serious effort, we embarked on changing ACL2 in accordance with our
design and developing several applications that would exploit the new features.
But we were far from convinced that we would release this experimental version
of ACL2, much less were we inclined to write a paper about it. Reasons for all
this sturm und drang will be made clear in the main body of this paper.

Meanwhile, I had agreed to write a brief testimonial to Cliff for inclusion in
the Festschrift. But as the deadline approached Matt and I began to have more
⋆ corresponding author
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confidence that the new version of ACL2 was worthwhile. In fact, we released
the new system and asked the editors if we could contribute this article about
the work. They very kindly agreed.

But I feel I still owe them, and Cliff, that testimonial. I have known of Cliff
far longer than I have known him. In fact, I cannot remember when we first met.
I got my PhD in Edinburgh in 1973, but Cliff was not in nearby Newcastle then.
He was working at IBM in Vienna and made his first marks in formal methods
before he got his PhD at Oxford in 1981. I do not think our paths crossed when
I was a student. We have seen a lot more of each other since 1999, when my
wife and I started spending long summer months in Edinburgh and Cliff and
his wife moved to Newcastle. Like Cliff, I spent much of my time working in
industry, first at Xerox PARC and SRI and then at Computational Logic, Inc.
But regardless of where we were working, we have spent our careers in formal
methods. For example, in the 1970s, when Bob Boyer and I were formalizing
SRI’s Hierarchical Development Methodology, Cliff was working at IBM on the
Vienna Definition Language (and later the Vienna Development Method) — two
frameworks with the same objective: structured system development facilitating
proof.

Often, and quite predictably, we were investigating closely related phenomena
— language semantics, industrial practice, inductive invariants, rely-guarantee,
specification languages, the role of AI in theorem proving, proofs as certificates
that code is correct versus proofs as explanations of why code is correct, abstrac-
tion, concurrency, interference, real-time control, compiler correctness, system-
level verification, etc.

With such similar beginnings and similar high-level goals it is no wonder our
careers have run down parallel tracks. Indeed, the wonder is that they have been
literally parallel: they have never crossed! Cliff and I meet whenever we are in
the same place and enjoy conversation and exchange of ideas. But we have never
collaborated.

We each come at the problems with our own perspective and goals. I build
theorem provers intended to be useful to industry, whereas I think of Cliff as
more interested in how to build provably correct systems. He explores higher-
level ideas for how to specify and verify software and, compared to me, appears
agnostic as to one’s choice of formal mathematical logic. (Since I build theorem
provers, the choice of the logic is binding on me; once chosen, my problem is
whether and how we can get the machine to reason effectively in it.) Cliff is
bound only by the general principles of sound mathematical reasoning, and a
passion to make the work relevant to industrial practice.

Cliff has had a tremendous impact on the field by encouraging others to think
about how to think about software. He has graduated around 25 PhD students
and a dozen or so Masters students. He was the founding Editor-in-Chief of
Formal Aspects of Computing in 1989. That journal rather boldly focuses on
“the junction of theory and practice.” I say “boldly” because that junction can
be a hard territory to occupy. I have met many members of both tribes and
often found each looked down upon the other. Of course, the best members of
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either tribe deeply respect and leverage the skills of the other tribe. Cliff is one
of those. Stepping into that territory was an act of bravery that indicates his
true priorities.

2 Introduction and Background: Part I

This paper is about the extension of the ACL2 system to take advantage of Com-
mon Lisp floating-point computations. ACL2 has always used Common Lisp to
do computations, even during proofs, as discussed in Section 4. For ACL2 to
use floating-point computations, the key idea is to view a floating-point num-
ber as its corresponding rational number, with axiomatic support that provides
logical justification for floating-point computations. Before we explain this very
high-level summary, we provide relevant background.

ACL2 [6] is a formal verification system for (an extension of an applicative
subset of) Common Lisp [12]. We axiomatized that language as a first order logic.
It is used not only as a specification/modeling language but as the language in
which conjectures are stated, and it is also the implementation language of the
theorem prover. “ACL2” in fact stands for A Computational Logic for Applicative
Common Lisp. It has been under continuous development by the authors of this
paper since 1989 (with early contributions by Bob Boyer). In the early 1990s
ACL2 saw its first industrial use [3], and by the mid-2010s, Centaur Technology
used it in nightly regression tests to verify modifications to previously verified
modules in x86 designs [4]. In fact, by the mid-2010s, ACL2 was used by vari-
ous companies, including Centaur, IBM, AMD, and Oracle, to verify hardware
designs implementing floating-point operations. Basically, implementing floating
point requires iterative (recursive) manipulation of bit vectors and Lisp is an ex-
cellent language for describing such processes. It is also an excellent language in
which to express the operational semantics of hardware design languages and is
so used. Proving interesting properties of such designs requires induction, which
is among the strengths of the ACL2 theorem prover.

Today, for example, Intel runs ACL2 regression tests nightly, not just on
floating-point implementations but also on other microprocessor components.

ACL2’s success in industry can perhaps be attributed to three things: a long-
standing focus on making it useful to industry; the fact that as an efficiently
executable programming language formal models can be used both as testable
prototypes and build-to specifications subject to formal analysis; and the very
talented, passionate, and collaborative ACL2 community. The ACL2 regression
suite [1] has thousands of files containing formalized definitions, verified the-
orems, language models, and verified tools and extensions contributed by the
users and used by all. The system and its documentation are available without
cost in source code form under a generous 3-clause BSD style license [7]. The
documentation is provided in several formats but perhaps the most convenient
for most users is html format [11]. The documentation written especially for the
work described here may be found at [8].
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The axioms of ACL2 specify five Common Lisp data types: strings, charac-
ters, symbols (with packages), ordered pairs (i.e., lists and trees), and “ACL2
numbers” which include the rationals (which include the integers) and the com-
plex rationals (complex numbers in which both the real and imaginary parts
are rational). For simplicity in this paper we are going to ignore the complex
rationals and just pretend that, until the work described here, ACL2 arithmetic
was limited to the rationals.

ACL2 also includes an axiomatization of the ordinals up to ε0, a conservative
definitional principle for the introduction of recursive functions and an induc-
tion principle, both of which rely on the well-foundedness of the ordinals. There
are various additional logical features (encapsulation, allowing limited scoping
of some names and the conservative introduction of constrained functions, func-
tional instantiation, and limited “second-order” features similar to Lisp’s apply)
and additional programming features (e.g., multiple values, property lists, ar-
rays, single-threaded objects which can be destructively modified, hash tables,
and a flexible iteration primitive modeled on Lisp’s loop statement).

3 Why Are We Interested in Floating Point?

While we can prove facts about implementations of floating-point operations,
ACL2 could not directly execute floating-point operations. Of course, it could
run the designs it had verified. Indeed, in the above-mentioned floating-point
verification projects it is standard operating procedure to run the ACL2 models
of the floating-point hardware on millions, sometimes hundreds of millions, of
floating-point test vectors to test the model before trying to verify it. But it is
terribly inefficient to emulate hardware in software to compute the sum of two
floating-point numbers on a machine that has verified floating-point arithmetic
hardware. Why not just use the hardware?

Of course, to do this in the spirit of ACL2 we would ideally have floating-
point numbers and floating-point operations fully formalized in the logic. We
will discuss in Section 5 why that is too ambitious — or at least more ambitious
than our current project. Our goal is to allow the ACL2 user to take advantage
of floating-point hardware when evaluating ground (variable-free) expressions,
even during proofs, without necessarily being able to prove very much about the
results — and without invalidating the thousands of books and tools built and
verified in the ACL2 regression suite.

But why might we want to do floating-point computations? Every number
represented as a floating-point object is a rational number. And ACL2 and Com-
mon Lisp support exact rational arithmetic. So why not just use rationals? The
answer is that even that is too slow. For example, we coded a relatively straight-
forward (sequential) Gaussian elimination solver for linear equations in Common
Lisp. The implementation was optimized for sparse matrices and could use either
exact rational arithmetic or double precision floating-point arithmetic. When
solving for x in Ax = b for a particular 1036 × 1036 matrix A and vector b of
length 1036, it took exact rational arithmetic 158 seconds to compute the exact
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answer. It took double precision floating-point arithmetic only 0.0036 seconds.
The exact rational answer was a vector that took 10 megabytes to print out:
an array of 1036 rationals, each of the form p/q for integers p and q in lowest
terms, and each of p and q had, on average, 4,891 digits. But the answer was
exact. Given that x, the matrix-vector product Ax was equal to the given b. The
double precision answer was much more compact: 1036 double precision floating-
point numbers averaging about 20 digits each. The double precision x was not
exact. But the matrix-vector product Ax was close to b: the Euclidean distance
between Ax and b was 6.3176103868853046E-18. Perhaps more interesting is the
Euclidean distance between the exact solution and the double precision approx-
imation: 1.4438701402655734E-17. In fact, no corresponding components differ
by more than 3.0384309630009724E-18. So floating point computations can be
very attractive, which is why they are often used in scientific computing when
speed is desired and inexactness can be tolerated.

An example of such an application is discussed in “VWSIM: A Circuit Sim-
ulator,” by Warren A. Hunt, Jr., Vivek Ramanathan, and J Strother Moore [5].
In fact, the work we did for that project was a major inspiration for the current
work. To quote from the introduction of that paper

We have defined the VWSIM circuit simulator with simulation mod-
els for resistors, capacitors, inductors, transmission lines, mutual induc-
tance, Josephson Junctions (JJs), and VWSIM includes voltage, current,
and phase sources. VWSIM can simulate an entire circuit model either
in the voltage or phase domain.

Voltages and phases are given by floating-point numbers produced by solving
a linear equation Ax = b where A and b are derived from the SPICE-compatible
circuit description and assumed input values. The solver, which as noted above is
a straightforward sequential Gaussian elimination solver for VWSIM, is actually
written in Lisp, not ACL2, because at the time of the work (2022) ACL2 did not
support floating point. But today, because of the work reported here, it would
be possible to verify the termination and type correctness of the solver.

That still leaves us with the question: what is the point of having a formal
circuit simulator if the voltages and phases being produced by the solver are not
exactly accurate? In principle — and we stress we have no immediate intention
of doing this — we could prove the solver is correct when running on rationals.
Assuming the rest of the simulator could be then proved correct, we would have
eliminated a major source of bugs the authors of the above paper have found
in other circuit simulators. We could then run the simulator on floating-point
inputs and know that the only inaccuracy is due to floating-point operations,
not because the authors of the simulator coded the semantics of an AND as an OR
or wrote X when they meant Y. As for the inexactness, engineers and physicists
have long suffered from this problem. For example, it turns out that the inputs
to some of these circuits cannot be measured accurately and fast enough to
be within 10% of the actual voltage, so it is simply a waste of time to worry
about a 10−18 error in the voltage of some interior wire. Some models are just
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ideal descriptions of the design and verification can eliminate the coding bugs
and engineering is required to decide what it means. Of course, given sufficient
time, we could solve Ax = b exactly and see whether that makes a (significant)
difference to the predicted behavior of the circuit.

Much more mundane applications in which floating point would be nice and
its inexactness could be tolerated is in gathering and analyzing statistics about
performance of the theorem prover, perhaps to gather information for weights
in machine learning experiments. Instrumenting ACL2 to gather metadata is
easiest if the instrumentation itself is in the language ACL2 is written in: ACL2.

Examples like these motivated our work on adding support for floating-point
calculations to ACL2. Common Lisp supports both single and double precision
floating-point formats, but we decided to support just double precision because
it provides so much more accuracy. In Common Lisp, these numbers are called
“double-floats” and are a distinct type of object, just as characters, strings, sym-
bols, conses, and rationals are distinct types.

4 Introduction and Background: Part II

To prepare the general reader for our discussion of how we support floating point
in ACL2, it is necessary to dive a little deeper into how ACL2 evaluates ground
terms like (+ 2 3) and what, exactly, is the relationship between ACL2’s logic
and Common Lisp. And of course we are assuming that Common Lisp imple-
mentations actually comply with the Common Lisp standard. The connection to
Common Lisp allows ACL2 to serve as a practical programming language. That
has always been a design goal for ACL2, which now provides fast execution for
floating-point operations.

An important feature for the current context is the notion of the “guard”
on a function. Guards allow proof-enforced type-checking, akin to type correct-
ness conditions in PVS [13]. Common Lisp is an untyped language. In principle,
any function can be applied to any type of object. But the Common Lisp stan-
dard [12] specifies the behavior of primitives only on certain “expected” types
or combinations of arguments. ACL2 captures these expectations as guards and
guarantees Common Lisp evaluation of an ACL2 ground term is consistent with
the ACL2 axioms — provided the guards are all satisfied.

For example, the Common Lisp standard says that (+ x y) returns the sum
of the rationals x and y.1 The ACL2 axioms formalize + with the usual axioms
about rational arithmetic, e.g., that ACL2’s rationals are closed under +, that
+ is associative and commutative, that 0 is the identity on numbers, etc. So, (+
2 3) is 5, (+ 2 1/2) is 5/2, and (+ 3/17 5/97) is 376/1649. But what is (+
"Monday" 5)? The standard does not say what + returns when given a string
as an argument. In fact, the standard says that the implementer of a Common
Lisp is free to do anything at all in such a case.
1 Recall we are ignoring ACL2’s handling of complex rationals here. And the standard

does not say that (+ x y) is the sum — in the ordinary mathematical sense of that
word — for floating-point numbers because it is not!
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But to make the ACL2 axioms as tractable as we can, we add the following
axiom, where rationalp is the recognizer for rational numbers.

(implies (not (rationalp x))
(equal (+ x y) (+ 0 y)))

That is, + defaults non-rational arguments to 0. So according to our axioms (+
"Monday" 5) is 5. As far as we know, there is no Common Lisp implementation
that implements this sense of +!

But note that the standard said that + is sum on rationals. That “expec-
tation” is captured in ACL2 by specifying that the guard on (+ x y) is (and
(rationalp x) (rationalp y)). We claim that the ACL2 axioms and Com-
mon Lisp evaluation agree provided every time + is applied it is applied to ratio-
nals. ACL2 provides guard verification for terms and function definitions. Guard
verification generates and attempts to prove conjectures that establish that ev-
ery function call is on arguments satisfying its guards. If a term or function body
has been guard verified and the inputs satisfy the guard, then its value under
the axioms is the same as its value in Common Lisp.

This means that when a guard-verified ACL2 term needs to be evaluated, and
the inputs satisfy the guard, then ACL2 can just ask Common Lisp to evaluate
it. But what if the inputs do not satisfy the guard? In that situation, we have to
evaluate a version of the term in which all functions are replaced by their logical
counterparts. It is easiest to understand by example.

Imagine the ACL2 user submits the following definition.

(defun foo (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(+ 3 (+ x y)))

(Alternatively, we could have written (declare (type rational x y)). But
Common Lisp’s type specification facilities are not as general as guards.)

This function can be guard verified: if x and y satisfy the guard that they
are both rational, then every + in the definition gets a rational input, since the
sum of two rationals is a rational.

When foo is defined in the ACL2 logic, the ACL2 implementation defines two
versions of foo in the Common Lisp that is running ACL2. One version of foo
is exactly as written by the user; we may call this the Common Lisp counterpart
of foo. The second version, the ACL2 logic version of foo, is (essentially)

(defun acl2_*1*_acl2::foo (x y)
(if (and (rationalp x) (rationalp y))

(foo x y)
(acl2_*1*_acl2::+ 3 (acl2_*1*_acl2::+ x y))))

Note that the name of this second function is the symbol foo in an oddly named
symbol package. This package is guaranteed to be different from any package
accessible to the ACL2 user. Furthermore, the version of foo in that package
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has a guard of t (true), so it can be run without error. Importantly, all the
primitives of ACL2 have versions defined in that package too. For example,

(defun acl2_*1*_acl2::+ (x y)
(+ (if (rationalp x) x 0)

(if (rationalp y) y 0)))

That version of + satisfies the axioms because it defaults its non-rational argu-
ments to 0.

When ACL2 is asked to evaluate a call of foo, it makes the corresponding
call of acl2_*1*_acl2::foo. Thus, for evaluation of (foo 4 5), since 4 and
5 satisfy the guard of foo, then Common Lisp simply evaluates (foo 4 5) to
obtain 12, which ACL2 reports as its answer, as though it was derived from
the axioms. But if the user evaluates (foo "Monday" 5), then when ACL2 asks
Common Lisp to evaluate (acl2_*1*_acl2::foo "Monday" 5), the result is 8,
as the axioms specify.2

This discussion is critical to what follows because floating-point arithmetic
does not follow the laws of rational arithmetic, as we discuss in the next section.

5 Challenges for Supporting Floating-Point Operations
in ACL2

Common Lisp has both rational numbers and floating-point numbers, but ACL2
has traditionally not included floating-point numbers. Why not? The fundamen-
tal problem is that Common Lisp evaluation with floating-point numbers violates
ACL2 semantics. We present two examples of this problem.

Example 1. Consider for example that ACL2 proves (equal (equal x y) (=
x y)), since in fact = is defined logically to be equal. That property is violated
in Common Lisp, as illustrated by the following log.

? (equal 1 1.0)
NIL
? (= 1 1.0)
T

The discrepancy is due to Common Lisp semantics [14], where equal distin-
guishes numbers with different types but = compares numeric values.

Example 2.
Addition is associative in ACL2, and in fact ACL2 proves (equal (+ (+ x

y) z) (+ x (+ y z))). But the following log shows that addition is not asso-
ciative on Common Lisp double-floats.

2 Actually, the story is more complicated than this. But this basic idea that every
definition in the logic gives rise to two definitions in the underlying Lisp is suggestive
of what really happens.
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? (+ (+ 0.1 0.2) 0.3)
0.6000000000000001
? (+ 0.1 (+ 0.2 0.3))
0.6

An obvious approach to integrating double-floats would be to change the
axioms of equality and of the arithmetic operators to describe how Common
Lisp actually behaves when arguments are of type double-float. It would be
a monumental task just changing ACL2’s source code, where much information
about the primitives is built in. But it would have an even more deleterious effect
on the regression suite since, for example, it is often not necessary today for the
user to restrict to rationals in order to know addition is associative.

6 How ACL2 Supports Floating-Point Operations

We begin this section with an introduction, which presents simple examples that
illustrate evaluation using double-floats. That is followed by discussion of three
key facets of our approach, which are illustrated with more examples. Then, after
summarizing the built-in operators that involve double-floats, we lay out key
syntactic restrictions. Next we discuss reasoning about floating-point operations.
We conclude this section by discussing limitations.

6.1 Introduction with Examples

Although the logic of ACL2 is generally considered to be untyped, its syn-
tax is restricted so that certain variables may be designated as having type
double-float: their values are always double-floats during Common Lisp eval-
uation. The following simple ACL2 definition provides an example: its formal
parameters x, y, and z are declared to have type double-float, and the addition
operation df+ (“double-float sum”) adds the double-float x to the double-float
sum of y and z. Note that df+ is being applied to variables that are declared of
type double-float, but the outer call of df+ also has an argument that is itself
an application of df+ and hence designates a double-float value.

(defun f1 (x y z)
(declare (type double-float x y z))
(df+ x (df+ y z)))

Now let us define a function that is to be applied to rational number inputs.
We see below that those inputs are converted by to-df to double-float numbers,
before adding them using f1 in the given order and in the reverse order, and
finally checking for equality of those two sums using the operator df=, which
compares double-float values.

(defun f2 (x y z)
(declare (type rational x y z))
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(let ((x0 (to-df x))
(y0 (to-df y))
(z0 (to-df z)))

(df= (f1 x0 y0 z0) (f1 z0 y0 x0))))

The following log illustrates evaluation of a call of f2, after tracing f1 so
that we can monitor the calls of f1 in Common Lisp. We see that each call of
f1 is made on double-float inputs and returns a double-float. The return value
is NIL — which represents false in Lisp — since the two calls of f1 returned
different values.

ACL2 !>(trace$ f1)
((F1))

ACL2 !>(f2 1/10 2/10 3/10)
1> (F1 0.1 0.2 0.3)
<1 (F1 0.6)
1> (F1 0.3 0.2 0.1)
<1 (F1 0.6000000000000001)
NIL

We see above that reversing the order changes the sum. (In fact double-float
addition is commutative but it is not associative.)

6.2 Key Facets of Our Approach

We address the challenges raised in Section 5 with an approach that has the
following key facets.

(A) The ACL2 logic simulates floating-point numbers with the rational numbers
that they represent. For example, 1.5 is not an ACL2 value, but 3/2 is an
ACL2 value that has 1.5 as a floating-point representation.

(B) Certain ACL2 expressions are designated as df expressions, or dfs for short.
These are the ACL2 expressions that evaluate in Common Lisp to double-
floats.

(C) Syntactic restrictions in the form of very limited typed syntax apply to
the use of dfs. In particular, each function has an input signature and an
output signature that indicate, respectively, which arguments must be dfs
and whether the function’s calls are df expressions.3

These Key Facets have the following happy consequences.

– The ACL2 logic, supported since 1990, is unchanged: support for floating-
point operations only involves adding axioms (including definitions) about
new operators such as df+ and df=.

– ACL2 supports Common Lisp computation with double-floats, in spite of
their absence from the logic.

3 This is not the first use of typed syntax in ACL2. See [2].
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We turn now to discuss Key Facets (A), (B), and (C).
According to (A), ACL2 logically treats double-floats as the rational numbers

that they represent. ACL2 provides a convenient way to read and write rationals
using Common Lisp floating-point notation, by using the prefix “#d”. In the
following example, the input at the prompt is read as 7/4, which is the rational
value represented by the double-float, 1.75.

ACL2 !>#d1.75
7/4

Of course, floating-point numbers are represented using binary digits. So for
example, since 3/10 cannot be thus represented, then 0.3 is read by Common
Lisp as a number that is only approximately 3/10. The corresponding rational
number is shown by the transcript below.

ACL2 !>#d0.3
5404319552844595/18014398509481984

The #d notation is used for printing output when the input form represents
a computation that would produce a double-float result in Common Lisp, as
suggested by the following example.4

ACL2 !>(df+ #d1.5 #d0.25)
#d1.75

The result is the ACL2 value 7/4. But it is printed with #d notation because
in Common Lisp, the df+ operation returns a double-float. This leads us to a
discussion of (B).

ACL2 identifies an expression as a df if its Common Lisp evaluation produces
a double-float. Thus, any call of df+ is a df expression. When a df expression
is evaluated in the top-level loop, the result is printed using #d notation, as
illustrated above.

The next examples illustrate df expressions and their evaluation. In the defi-
nition of g1 below, the inputs x and y occur as dfs because of their double-float
type declarations. Since g1 returns a value computed by df+, then any call of
g1 is a df.

(defun g1 (x y)
(declare (type double-float x y))
(df+ x y))

We next define a wrapper g2 for g1. This definition uses calls of to-df, which
are df expressions, to convert rational inputs to df inputs as required by g1.
4 The astute reader may observe that the inputs are the rationals 3/2 and 1/4, yet

previous discussion may have suggested that the arguments to df+ should be df
expressions. In fact df+ is a macro and rational arguments are converted to dfs, as
discussed below in Subsection 6.3.
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(defun g2 (r s)
(declare (type rational r s))
(g1 (to-df r) (to-df s)))

We have already observed that calls of g1 are df expressions; thus, calls of g2
are also dfs.

Let us use these examples to illustrate (C). We have seen that calls of df+,
to-df, g1, and g2 are df expressions; also, some must have df inputs. By using
the symbol :df to indicate a df input or output and the symbol * to indicate an
ordinary (not df) input or output, we can write signatures in the form “input-
signature => output-signature”, as follows.

(df+ :df :df) => :df
(to-df *) => :df
(g1 :df :df) => :df
(g2 * *) => :df

These signatures represent the restrictions from (C) regarding which inputs and
calls must be dfs. Thus, by (B), they also indicate which input and output values
computed by Common Lisp should be double-floats. Let us illustrate these points
with the following log, which shows tracing of g1 and g2 before evaluating a call
of g2. We can see in passing from “2>” to “3>” that g2 applies to-df to convert
its rational inputs to corresponding double-floats.

ACL2 !>(trace$ g1 g2)
((G1) (G2))

ACL2 !>(g2 3/2 1/4)
1> (ACL2_*1*_ACL2::G2 3/2 1/4)

2> (G2 3/2 1/4)
3> (G1 1.5 0.25)
<3 (G1 1.75)

<2 (G2 1.75)
<1 (ACL2_*1*_ACL2::G2 7/4)
#d1.75

Recall that the oddly-named function acl2_*1*_acl2::g2 is the ACL2 logic
version of g2.5 It takes and returns ACL2 objects — in particular, it returns
a rational, not a double-float. But the Common Lisp counterpart for g2 calls
the Common Lisp counterpart of g1, and these return the double-float 1.75
before acl2_*1*_acl2::g2 coerces that double-float to a rational number. So
the final return value is 7/4, but it is printed as #d1.75 because the input
expression, (g2 3/2 1/4), is a df, since the output signature of g2 is :df. This
is consistent with (B), that is, that dfs evaluate in Common Lisp to double-floats;
see “<2 (G2 1.75)” in the log above.

5 In ACL2 and Common Lisp, symbol names are case insensitive by default.
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6.3 Built-in Operators

Next we lay out the built-in operators that involve double-floats. Technically
these are mostly macros. For example, the expression (df+ x y) abbreviates the
function call (binary-df+ x y). These macros are actually a bit fancier than
that might suggest: for example, (df+ 3 z) abbreviates (binary-df+ (to-df
3) z), where in Common Lisp, binary-df+ is an inlined function that is defined
to add double-floats efficiently.

Here is the definition of binary-df+. An occurrence of the expression (the
double-float EXPR) tells the Common Lisp compiler that EXPR evaluates to a
double-float value, and it requires ACL2 to prove that this is indeed the case
as part of guard verification.

(defun binary-df+ (x y)
(declare (type double-float x y))
(the double-float

(+ (the double-float x) (the double-float y))))

The operator to-df is special: it is a function in ACL2 but in Common Lisp
it is a macro, hence there is no runtime cost to evaluating the generated form
(to-df 3) above. Further such implementation details are beyond the scope of
this chapter.

Basic arithmetic operators on dfs include df+ for addition, already discussed
several times above, as well as operators df*, df-, and df/ respectively for mul-
tiplication, subtraction (also unary negation), and division (also reciprocal). The
operator df-abs takes the absolute value. IEEE Standard 754 [16] requires that
elementary floating-point operations return the mathematically correct result
rounded (as specified by a rounding mode) to the nearest representable floating-
point number. ACL2 is only built on Common Lisps that explicitly include the
:IEEE-FLOATING-POINT feature, which signifies that the Common Lisp imple-
mentors believe they have adhered to the standard.

The function df-round is intended to represent rounding as discussed in
the IEEE and Common Lisp specs, without tying down the rounding mode.
It is constrained to return a rational, and it is used in defining the arithmetic
operators. For example, (binary-df+ x y) is defined logically to be (df-round
(+ x y)). (The definition of binary-df+ displayed above is its Common Lisp
definition.) Notice that this definition implies that df+ is commutative, since +
is commutative.

Conversion functions include to-df, discussed above, and from-df, which is
logically the identity but maps a df to an equal rational, and has the following
signature.

(from-df :df) => *

There is also a function, dfp, that recognizes which rationals are representable
as double-floats. That function is used mainly in proofs, and (dfp x) is defined
to be (and (rationalp x) (= (to-df x) x)).
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Other operations include the square root and common transcendental func-
tions, listed alphabetically below. Their names are derived from corresponding
Common Lisp functions by adding the prefix, “df-”.

df-acos df-acosh df-asin df-asinh df-atan df-atanh
df-cos df-cosh df-exp df-expt df-log df-pi
df-sin df-sinh df-sqrt df-tan df-tanh

We close this discussion by saying a bit more about the function to-df. This
function is intended to represent the coercion of a rational number to a nearby
double-float value, where the rational input is numerically equal to the output
exactly when the rational input is representable by a double-float. But while
the output of to-df is a double-float in Common Lisp, the output is logically a
rational number (recall Key Facet (A)) in the ACL2 logic, as the following log
illustrates.

ACL2 !>(to-df 1/3)
#d0.3333333333333333
ACL2 !>#d0.3333333333333333
6004799503160661/18014398509481984

Rationals like that are unpleasant to read, but ACL2 provides (courtesy of
Common Lisp) a function, df-rationalize, that returns a more pleasant but
less exact rational.

ACL2 !>(df-rationalize (to-df #d0.3333333333333333))
1/3

6.4 More on Syntactic Restrictions

As a useful programming language ACL2 includes many constructs not discussed
here but requiring careful consideration when adding support for double-floats.
One such construct is multiple-value return. Another is single-threaded objects,
or stobjs [2], together with several documented related features [11]: abstract
stobjs, nested stobjs, global stobjs, and local stobjs. What is more, ACL2 has
two forms of syntax, user-facing (untranslated) and internal (translated). [10].

Instead of delving further into such details, we here elaborate a little more
on the syntactic restrictions mentioned above in Key Facet (C).

The syntactic restrictions apply to definitions but not to theorems. A def-
inition specifies what we call a set of df variables: as we have seen above, the
form (declare (type double-float v1 . . . vn)) specifies that v1 through vn
are df variables. For a given set V of df variables (sometimes implicit), we have
the following basic rules for determining which expressions are dfs and which
syntactic restrictions must hold.

– A variable is a df if and only if it is in V .
– A constant is not a df.



ACL2 Support for Floating-point Computations 15

– A function call (f t1 . . . tn) respects the signature of f as follows.
• For each i < n, ti is a df if and only if the ith member of the input

signature of f is :df.
• (f t1 . . . tn) is a df if and only if the output signature of f is :df.

But ACL2 also supports local variable bindings. Recall an earlier definition.

(defun f2 (x y z)
(declare (type rational x y z))
(let ((x0 (to-df x))

(y0 (to-df y))
(z0 (to-df z)))

(df= (f1 x0 y0 z0) (f1 z0 y0 x0))))

There are no top-level df variables here; V is empty. However, variables x0, x1,
and x2 are each locally bound to df expressions, so they are considered to be df
variables in the body of the let expression, which is the df= call. This example
is covered by the following rule.

– Consider a term (let ((x1 e1) ...(xk ek)) dcl1 ...dclk body). Let V1

be the result of removing all xi from the set V (of df variables) except for
those xi that some dclj declares to be of type double-float. Then for each
xi in V1, ei must be a df with respect to V . Let V2 be the set of variables
obtained from V1 as follows: for all xi not already in V1, if ei is a df then put
xi into V2. Then body must satisfy the syntactic restrictions with respect to
V2.

6.5 Reasoning

As noted earlier, the motivation for supporting floating-point computations with
ACL2 was to support faster computation. That could also be accomplished by
programming in Common Lisp, but ACL2 has the advantage of supporting proofs
of properties of its functions. Among the most basic properties it proves are
that functions terminate and are applied only to suitable arguments (see the
discussion of guard verification in Section 4). Those proofs are typically well
supported by ACL2, even when df expressions are involved.

ACL2 can also prove facts about specific evaluations. For example, ACL2
can prove the following formalization of sin(π/2) = 1.

(equal (df-sin (df/ (df-pi) 2)) 1)

That proof is performed using evaluation, where the ACL2 function df-sin
invokes the Common Lisp function sin on the result of dividing the Common
Lisp approximation to π by 2. The axiomatic foundation for such evaluation
includes the implicit table of all Common Lisp computations applying sin to a
double-float. We omit details other than to point the interested reader to the
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documentation for ACL2’s partial-encapsulate feature [9] and comments in
ACL2 source file float-a.lisp.

However, ACL2 has only limited support for reasoning about floating-point
operations when variables are present. For example, ACL2 fails to prove the
following.

(implies (and (dfp x) (<= 0 x) (<= x 1))
(<= (df* 2 x) 3))

Additional support for floating-point reasoning may be addressed in the future
if there is user demand. For example, we may ultimately formalize df-round as
rounding to nearest even, perhaps following Russinoff’s ACL2 formalization of
that operation [15].

Two basic properties that can be proved are commutativity of addition and
multiplication, as follows.

(equal (df+ x y) (df+ y x))
(equal (df* x y) (df* y x))

These prove because (df+ x y) is defined to be (df-round (+ x y)) (as noted
earlier) and (df* x y) is defined to be (df-round (* x y)). Notice by the way
the use of equal instead of df=; either is OK, but only df= would be allowed in
definitions.

Unlike commutativity, associativity cannot be proved for df+ or df*, since it
fails.

ACL2 !>(df+ #d0.1 (df+ #d0.2 #d0.3))
#d0.6
ACL2 !>(df+ (df+ #d0.1 #d0.2) #d0.3)
#d0.6000000000000001

ACL2 can prove the following trivial theorem, as from-df is logically the
identity function.

(equal (from-df x) x)

Of course, to-df is not the identity function; for example, 1/3 is not a repre-
sentable rational, so (to-df 1/3) cannot equal 1/3. But ACL2 can prove:

(dfp (to-df x)).

However, ACL2 can prove that to-df is idempotent.

(equal (to-df (to-df x)) (to-df x))

Here are two simple theorems provable by ACL2.
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(implies (dfp x)
(equal (df- x x)

0))
(implies (and (dfp x)

(not (equal x 0)))
(equal (df/ x x) 1))

Finally, we note that two Common Lisp implementations may prove con-
tradictory theorems, because the IEEE spec does not make requirements on all
floating-point operations. The following examples illustrate the fact that indeed,
different Lisp implementations can compute slightly different values for trigono-
metric functions.

;;; ACL2 built on LispWorks:
(equal (df-sin (df* 2 *df-pi*)) #d-2.4492127076447545E-16)

;;; ACL2 built on other than LispWorks:
(equal (df-sin (df* 2 *df-pi*)) #d-2.4492935982947064E-16)

However, it has long been part of the ACL2 soundness claim that a single proof
development should not be performed using more than one Lisp implementation.

6.6 Limitations

Our approach is limited by syntactic restrictions. In particular, one cannot form
lists of double-floats using ACL2, since the list-formation function, cons, takes
non-df inputs. (Arrays of double-floats provide an efficient workaround, and are
used in Section 7. These are fields of single-threaded objects (stobjs); further
discussion is beyond the scope here.)

But ACL2 also inherits a limitation from Common Lisp: floating-point com-
putations do not always yield mathematically exact results. The following ex-
amples reflect attempts to compute sin(π/6) = 1/2 and cos(π/2) = 0.

ACL2 !>(df-sin (df* (to-df 1/6) (df-pi)))
#d0.49999999999999994
ACL2 !>(df-cos (df* #d0.5 (df-pi)))
#d6.123233995736766E-17

There are several reasons why the computed values are not exact. One is that
1/6 is not representable as a double-float, so (to-df 1/6) is not numerically
equal to 1/6. A second is that π is not a rational number, hence not numerically
equal to the value of (df-pi). Third, the multiplications performed by df*
may involve rounding. And finally, the mathematical sin and cos functions are
transcendental and hence cannot be expected to be perfectly represented by
df-sin and df-cos since they logically return rationals.

IEEE Standard 754 comprehends non-numeric results, including NaNs and
infinities, from floating-point computations. These are completely avoided in
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ACL2, which causes an error when a df operation would return such a re-
sult. Implementation details on how that is accomplished are generally beyond
the present scope, but we give a brief outline for those who want to under-
stand more by exploring the ACL2 source code. Four of the host Lisps sup-
port causing errors for what would be non-numeric results, and the function
break-on-overflow-and-nan exploits such support provided by CCL, SBCL,
GCL, and CMUCL. For the other two supported host Lisps, LispWorks and Al-
legro CL, the primitive df operations (such as binary-df+) are introduced with
macros defun-df-binary and defun-df-unary, each of which lays down a call
of macro df-signal? to check the results.

That IEEE standard also discusses a negative zero, typically written as −0.0.
But this is not an issue, since ACL2 has only rational numbers, not true floating-
point numbers. In particular, the input #d-0.0 is read in as the rational number
0.

Finally, handling of underflow and overflow reflect Common Lisp. Here are
examples.

– An attempt to read #d1E310 causes an overflow error.
– The input #d1E-500 is read as the number 0.

7 A Realistic Example

As noted in Section 3, one application of ACL2 is circuit simulation, which in
the case of [5] involves solving systems of linear equations Ax = b for sparse
matrices A. That paper described a solver written in Lisp, not ACL2, because at
the time ACL2 did not support floating-point computations. Now that we have
double-floats in ACL2 we have coded a new solver in ACL2 and we describe it
briefly here. It is important to note that this solver is in no way competitive with
the numerous linear algebra packages available today that exploit platform- and
OS-specific hardware, memory hierarchies, block memory operations, instruc-
tion level parallelism, and other features of superscalar processors, clusters, and
supercomputers.

Our solver is just a straightforward, sequential ACL2 implementation of a
Gaussian elimination-style solver but the matrix representation is designed for
sparse A: abstractly each row is a list of double-float coefficients optionally
separated by single elements denoting zero-filled “gaps” of specified lengths. But
dfs cannot be stored in conses, so we store the coefficients in a double-float
array called the “heap” which is a component of a mutable single-threaded object;
the index of each coefficient is stored in the row as a natural number. The
basic operation of adding the product of a scalar and a row to another row is
straightforward. The df arithmetic expression involved is

(df+ (df* scalar
(coefi (the (integer 0 *) (car row1)) heap))

(coefi (the (integer 0 *) (car row2)) heap)).
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We organize rows into blocks by the number of leading zeros and implement
pivoting so as to use the row with the largest (absolute value) coefficient to
cancel the leading coefficient of every other row in the block. As we reduce A to
triangular form we also maintain a “program” that, when run on any given b, will
perform the same transformation that would have occurred had we augmented
A with b in an extra column. This allows us reduce A once and then quickly
solve for multiple bs.

When applied to the 1036 × 1036 matrix A mentioned in Section 3, (where
99.75% of the entries are zero), this code reduces the matrix in 0.00137 seconds
on a MacBook Pro running ACL2 in SBCL. This is approximately twice as fast
as the Lisp (not ACL2) solver reported in [5] (though the speed up is due to the
change of matrix representation, not df). By further refining the implementation
to use a stobj containing resizable arrays for rows and for blocks we reduced the
time for the df solver on this problem to 0.0008 seconds. The answers computed
and their accuracy were identical to those described in Section 3.

We have not yet verified termination or the guards of this solver. The reason
is that we are still refining it. Because the basic algorithm is just Gaussian
elimination, it will not scale to significantly larger matrices. We aim to implement
better algorithms going forward, now that we can do double-float calculations
in ACL2 with decent efficiency.

The solver, named df-solver-v9.lisp, and the 1036 x 1036 matrix example,
named big-a-and-big-b.lsp, may be found in the ACL2 regression suite [1]
under the directory projects/gaussian-elim-solvers/.

8 Conclusion

We have added support for doing floating-point calculations within the ACL2
system while preserving the pre-existing axioms for arithmetic and a large re-
gression suite containing verified theorems and other logical tools. We provide
only limited support for reasoning about floating-point arithmetic but enough
support to enable use of the underlying (and IEEE 754 compliant) floating-point
hardware for calculations within ACL2, including in proofs. This is especially
meaningful in light of the fact that much of today’s floating-point hardware de-
signs have been verified (often by ACL2) as being compliant. All of this is just
another small step toward the goal, shared by all of us in the formal methods
community and especially by Cliff Jones, of making formal methods a practical
and widely used tool in industrial hardware and software development.
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