
Parallel Recursion: Batcher’s Bitonic Sort

Greg Plaxton
Theory in Programming Practice, Spring 2005

Department of Computer Science
University of Texas at Austin



Overview

• Compare-interchange sorting algorithms

– Adaptive versus oblivious

– Zero-one principle

– Comparator networks

• Batcher’s bitonic sort

– High-level structure

– Bitonic merge

– Analysis

Theory in Programming Practice, Plaxton, Spring 2005



Compare-Interchange Operation

• Given an array of n items drawn from a totally ordered set (e.g., the
integers) a compare-interchange operation is specified by an ordered
pair (i, j) of distinct array indices

– The effect of this operation is to compare the two items in array
locations i and j and interchange if necessary so that, after the
operation, the item in location i is at most the item in location j

Theory in Programming Practice, Plaxton, Spring 2005



Compare-Interchange Algorithm

• Given an array of n items drawn from a totally ordered set (e.g.,
the integers) a compare-interchange algorithm performs a sequence of
compare-interchange operations on the array

– No other kinds of operations are performed on the array

• A compare-interchange algorithm is oblivious if, for any given n, it
specifies a fixed sequence of compare-interchange operations

• A compare-interchange algorithm that is not oblivious is adaptive

– An adaptive algorithm might take into account the outcomes
of previous compare-interchange operations (i.e., whether or not
an interchange took place) to decide which compare-interchange
operation to perform next

Theory in Programming Practice, Plaxton, Spring 2005



Compare-Interchange Sorting Algorithm

• A compare-interchange algorithm is a sorting algorithm if it permutes
the items of any given input array into ascending order

• Example: For n = 3, the sequence of compare-interchange operations
(1, 2), (1, 3), (2, 3) corresponds to an oblivious compare-interchange
sorting algorithm

Theory in Programming Practice, Plaxton, Spring 2005



Zero-One Principle

• Theorem: If an oblivious compare-interchange algorithm sorts all zero-
one inputs (i.e., any array in which each array item is either 0 or 1),
then it is a sorting algorithm

• It is sufficient to prove that the the theorem holds for any fixed n, that
is, if a compare-interchange algorithm sorts all 2n zero-one inputs of
length n, then it sorts any input of length n

• So let us fix n in the proof of the zero-one principle that follows

• Remark: The zero-one principle also holds for adaptive compare-
interchange algorithms if we assume that ties are broken in a consistent
manner

– For example, we could break a tie between two items with equal keys
according to the array indices of their initial locations

– In this course, our use of the zero-one principle is confined to the
oblivious case, so we will focus on that case in what follows

Theory in Programming Practice, Plaxton, Spring 2005



Proof of the Zero-One Principle: Overview

• Definition of a k-partitioner

• Proof of a lemma related to k-partitioners

• Proof of the zero-one principle using the k-partitioner lemma

Theory in Programming Practice, Plaxton, Spring 2005



Definition of a k-Partitioner

• Let k be an integer such that 0 ≤ k ≤ n

• A compare-interchange algorithm is a k-partitioner if it permutes the
items of any given array of length n so that, when the algorithm
terminates, for every item x in the first k array locations, and every
item y in the last n− k locations, x ≤ y

Theory in Programming Practice, Plaxton, Spring 2005



k-Partitioner Lemma

• If an oblivious compare-interchange algorithm sorts every input
consisting of k 0’s and n− k 1’s, then it is a k-partitioner

Theory in Programming Practice, Plaxton, Spring 2005



Proof of the Zero-One Principle

• By the k-partitioner lemma, it is sufficient to prove the following:
If an oblivious compare-interchange algorithm is a k-partitioner for
0 ≤ k ≤ n, then it is a sorting algorithm

Theory in Programming Practice, Plaxton, Spring 2005



Comparator Networks

• An oblivious compare-interchange algorithm is also called a comparator
network

– In this context, a compare-interchange algorithm is called a
comparator

• An oblivious compare-interchange sorting algorithm is also called a
sorting network

• A useful pictorial representation

• Size and depth of a comparator network

Theory in Programming Practice, Plaxton, Spring 2005



A Lower Bound on the Size of any Sorting Network

• A sorting network has to be able to apply n! different permutations to
the input

• Therefore it needs to contain at least log2(n!) comparators

• It is not hard to argue that log2(n!) = Θ(n log n)

Theory in Programming Practice, Plaxton, Spring 2005



A Lower Bound on the Depth of any Sorting Network

• Each level of a sorting network can contain at most n/2 comparators

• Since the size of a sorting network is Ω(n log n), the depth is Ω(log n)

Theory in Programming Practice, Plaxton, Spring 2005



Batcher’s Bitonic Sort

• An elegant construction that achieves depth O(log2 n) and size
O(n log2 n)

• Much more complicated constructions have been given that achieve
depth O(log n) and size O(n log n)

– As we have seen, these bounds are optimal

Theory in Programming Practice, Plaxton, Spring 2005



Batcher’s Bitonic Sort: High Level

• We will assume that n is a power of 2

• If n = 1, do nothing

• Otherwise, proceed as follows:

– Partition the input into two subarrays of size n/2

– Recursively sort these two subarrays in parallel

– Merge the two sorted subarrays

Theory in Programming Practice, Plaxton, Spring 2005



Bitonic Merge: Overview

• Definition of a bitonic zero-one sequence

• Recursive construction of a comparator network that sorts any bitonic
sequence

• Observe that the preceding comparator network can be used for merging
two sorted zero-one sequences

Theory in Programming Practice, Plaxton, Spring 2005



Bitonic Zero-One Sequence

• A zero-one sequence is said to be bitonic if it is either of the form
0a1b0c or it is of the form 1a0b1c, where a, b, and c are integers

Theory in Programming Practice, Plaxton, Spring 2005



A Comparator Network that Sorts any Bitonic
Zero-One Sequence

• Assume that the length of the sequence is a power of 2

• If the sequence is of length 1, do nothing

• Otherwise, proceed as follows:

– Split the bitonic zero-one sequence of length n into the first half and
the second half

– Perform n/2 compare interchange operations in parallel of the form
(i, i + n/2), 0 ≤ i < n/2 (i.e., between corresponding items of the
two halves)

– Claim: Either the first half is all 0’s and the second half is bitonic,
or the first half is bitonic and the second half is all 1’s

– Therefore, it is sufficient to apply the same construction recursively
on the two halves

Theory in Programming Practice, Plaxton, Spring 2005



Analysis of Bitonic Merge

• Let M(n) denote the depth of the bitonic merging network

• M(1) = 0 and M(n) = M(n/2) + 1 for n > 1

• Thus M(n) = log2 n

Theory in Programming Practice, Plaxton, Spring 2005



Batcher’s Bitonic Sort: High Level Revisited

• We will assume that n is a power of 2

• If n = 1, do nothing

• Otherwise, proceed as follows:

– Partition the input into two subarrays of size n/2

– Recursively sort these two subarrays in parallel, one in ascending
order and the other in descending order

– Observe that any 0-1 input leads to a bitonic sequence at this stage,
so we can complete the sort with a bitonic merge

Theory in Programming Practice, Plaxton, Spring 2005



Analysis of Bitonic Sort

• Let T (n) denote the depth of the bitonic sorting network

• T (1) = 0 and T (n) = T (n/2) + log2 n for n > 1

• This recurrence implies T (n) = O(log2 n)

• It follows that the size of the bitonic sorting network is O(n log2 n)

Theory in Programming Practice, Plaxton, Spring 2005


