Action Language BC: Preliminary Report

Joohyung Lee!, Vladimir Lifschitz? and Fangkai Yang?
1School of Computing, Informatics and Decision Systems Eewyiimg, Arizona State University
joolee@asu.edu
2 Department of Computer Science, Univeristy of Texas at Austi
{vl,fkyang} @cs.utexas.edu

1

Action description languages are formal languages for de:
scribing the effects and executability of actions.

Abstract

The action description languagBsaindC have sig-
nificant common core. Nevertheless, some expres-
sive possibilities of3 are difficult or impossible to
simulate inC, and the other way around. The main
advantage of3 is that it allows the user to give
Prolog-style recursive definitions, which is impor-
tant in applications. On the other hartdl,solves
the frame problem by incorporating the common-
sense law of inertia in its semantics, which makes
it difficult to talk about fluents whose behavior is
described by defaults other than inertia. drand

in its extensionC+, the inertia assumption is ex-
pressed by axioms that the user is free to include or
not to include, and other defaults can be postulated
as well. This paper defines a new action descrip-
tion language, calle#C, that combines the attrac-
tive features o5 andC+. Examples of formalizing
commonsense domains discussed in the paper illus-
trate the expressive capabilities Bf and the use

of answer set solvers for the automation of reason-
ing about actions described in this language.

Introduction

generation” action description languages, such §&elfond
and Lifschitz, 1998, Section 5C [Giunchiglia and Lifschitz,
1994, andC+ [Giunchigliaet al, 2004, Section i differ

from the older languages STRIPBikes and Nilsson, 1971
and ADL [Pednault, 198Rin that they allow us to describe
indirect effects of an action—effects explained by intdmact

between fluents.

The languages andC have significant common col&el-

solves the frame problem by incorporating the commonsense
law of inertia in its semantics, which makes it difficult tdkta
about fluents whose behavior is described by defaults other
than inertia. The position of a moving pendulum, for in-
stance, is a non-inertial fluent: it changes by itself, and an
action is required to prevent the pendulum from moving. The
amount of liquid in a leaking container changes by itself] an
an action is required to prevent it from decreasing. A spring
loaded door closes by itself, and an action is required tp kee
it open. Work on the action languageand its extensiod@+
was partly motivated by examples of this kind. In these lan-
guages, the inertia assumption is expressed by axiomsthat t
user is free to include or not to include. Other default agsum
tions about the relationship between the values of a fluent at
different time instants can be postulated as well. On theroth
hand, some recursive definitions cannot be easily expressed
in C andC+.

In this paper we define a new action description language,
calledBC, that combines the attractive featured30andC+.
This language, like3, can be implemented using compu-
tational methods of answer set programmihdarek and
Truszczynski, 1999; Niema&] 1999; Lifschitz, 2008

The main difference betweefi and BC is similar to the
difference between inference rules and default rules. rinfo
mally speaking, a default rule allows us to derive its conclu
sion from its premise if its justification can be consistentl

“Second@Ssumed; default logiReiter, 1980 makes this idea precise.

In the languagés, a static law has the form
< conclusion > if <premise> .
In BC, a static law may include a justification:
< conclusion > if <premise> ifcons < justification >

(if consis an acronym for “if consistent”). Dynamic laws may
include justifications also.
The semantics oBC is defined by transforming action de-

fond and Lifschitz, 2012 Nevertheless, some expressive scriptions into logic programs under the stable model seman
possibilities of 3 are difficult or impossible to simulate i,
and the other way around. The main advantagB fthat it
allows the user to give Prolog-style recursive definitidRe:

tics. When static and dynamic laws of the langu#&are
translated into the language of logic programming, d8ad-
duccini and Gelfond, 20Q3the rules that we get do not con-

cursively defined concepts, such as the reachability of & nodtain negation as failure. Logic programs corresponding-to

in a graph, play important role in applications of automateddescriptions do contain negation as failure, but this isbee
reasoning about actions, including the design of the datisi inertia rules are automatically included in them. In theecas
support system for the Space Shuftiogueiraet al, 2001. of BC, on the other hand, negation as failure is used for trans-
On the other hand, the languaf§e like STRIPS and ADL, lating justifications in both static and dynamic laws.

We define here three translations frd#@ into logic pro- stands for
gramming. Their target languages use slightly differemt ve Ag after a, Ay, ..., Ay,
sions of the stable model SemantiCS, but we show that ak thre An action descriptiorin the |anguaggc is a finite set con-
translations give the same meaningd6-descriptions. The s;sting of static and dynamic laws.
first version uses nested occurrences of negation as failure
[Lifschitz et al, 1999; the second involves strong (classical) 3 Defaults and | nertia
negation[Gelfond and Lifschitz, 1991but does not require)
nesting; the third produces multi-valued formulas under th Static laws of the form
stable model semanti¢®artholomew and Lee, 2012 The Agif Ay, ..., A, ifcons A 3)
third translation is particularly simple, because and multi- and dynamic laws of the form
valued formulas have much in common: both languages aré
designed for talking about non-Boolean fluents. But we start Ao after Ay, ..., Ay ifcons Ay (4)
with defining the other two translations, because theiretarg || pe particularly useful. They are similar to normal de-
languages are more widely known. o faults in the sense dReiter, 1980. We will write (3) as

Examples of formalizing commonsense domains discussed)
in this paper illustrate the expressive capabilitied36f and default Ao if Ay,..., A,
the use of answer set solvers for the automation of reasoningnd we will dropif whenm = 0. We will write (4) as
about actions described in this language. We state also two

default Ag after Ay,..., Ap,.

theorems relatingC to 5 and toC—+.
For any regular fluent constarft the set of the dynamic
2 Syntax laws

An action description in the languadgC includes a finite _ default f =v after f=uv
set of symbols of two kinddluent constantandaction con- for all v in the domain off expresses the commonsense law
stants Fluent constants are further divided inemularand ~ Of inertia for f. We will denote this set by
statically determinedA finite set of cardinality> 2, called inertial f. %)
thedomain is assigned to every fluent constant.

An atomis an expregsion of the fornfi =v, Whgref is 4 Semantics
a fluent constant, and is an element of its domain. If the
domain off is {f, t} then we say thaf is Boolean

A static lawis an expression of the form

For every action descriptionD, we will define a
sequence of logic programs with nested expressions
PNy (D), PN (D), ... so that the stable models &MN,(D)
Agif Ay, ... A, ifcons A, 1, ..., Ay Q) represent paths of lengthin the transition system corre-
sponding taD. The signature p ; of PN;(D) consists of

(n > m > 0), where eachd4, is an atom. It expresses, . o ,
e expressions : A for nonnegative integers< [and all

informally speaking, that every state satisfiég if it satis-

fiesAy,..., Ay, andA4,,.1,..., A, can be consistently as- atoms4, and
sumed. Ifm = 0 then we will dropif; if m = n then we will e expressions : a for nonnegative integers < [and all
dropifcons. action constants.
A dynamic lawis an expression of the form Thus every element of the signaturg ; is a “time stamp’i
A, after A, A, ifcons A, A, (2) followed by an atom in the sense of Section 2 or by an action
))) b

constant. The program consists of the following rules:

(n >m > 0), where o the translations

e Ay is an atom containing a regular fluent constant, iiAg —i: Ay, ..., i Ay,
e each ofA4,,..., A,, is an atom or an action constant, notnoti: A, 41, ...,notnoti: A,
and (i < 1) of all static laws (1) fromD,
* Amir,. .., Ay are atoms. o the translations
It expresses, informally speaking, that the end state of any (i4+1):Ag —i: Ay, ... i A,
transition satisfiegl if its beginning state and its action sat- not not(i + 1): Apy1,...,notnot(i 4+ 1): A,
isfy Ay,..., Ay, andA,, 11, ..., A, can be consistently as- . .
sumed about the end statenif= n then we will dropif cons. (i <1) of all dynamic laws (2) fromD,
For any action constaatand atomA, e the choice rulé {0 : A} for every atomA containing a
regular fluent constant,
a causes A
ds f A choice rule{ E} can be viewed as shorthand for the disjunc-
stands for tive nested expressioB; not E [Ferraris and Lifschitz, 20¢5or,
A after a. equivalently, for the rule
For any action constamtand atomsd,, . .., A,, (m > 0), FE < not notE.

acauses Ag if A1,..., A,

e the choice rule{i : a} for every action constant and 5 Other Abbreviations

everyi <1, In BC-descriptions that involve Boolean fluent constants we
e the existence of value constraint will use abbreviations similar to those established fortmul
—noti:(f=uv1),...,noti:(f =) valued formulas ifGiunchigliaet al, 2004, Section 2]1

if fis Boolean then we will write the atorfi=t asf, and the
for every fluent constanf and everyi < [, where atomf=fas~f.

v1,..., v are all elements of the domain ¢f A static constrainis a pair of static laws of the form
e the uniqueness of value constraint Fovif Ay A, ©
<_Z(f:’U)7Z(f:w) fzwlfAl,,Am

for every fluent constanf, every pair of distinct ele- Wherev # w andm > 0. We will write (6) as
mentsv, w of its domain, and every < I. impossible A1, ..., A,,.

The transition systerff’(D) represented by an action de-
scription D is defined as follows. For every stable modél
of PNyg(D), the set of atoms! such that : A belongs toX
is a state ofl'(D). In view of the existence of value and
uniqueness of value constraints, for every statnd every

The use of this abbreviation depends on the fact that the
choice of f, v, andw in (6) is inessential, in the sense of
Theorem 3 below. About action descriptiofiy and Do

we say that they arstrongly equivalento each other if,

; _ for any action descriptio® (possibly of a larger signature),
fluent constanif there exists exactly one such thatf = v SR 9. ¢
belongs tos; thisv is considered the value gfin states. For (DU Dl).: T (DU Ds). _Th|s IS S|m|lgr to'the definition of
every stable modek of PN, (D), T(D) includes the transi- strong equivalence for logic prograrisfschitz et al, 2001.
tion (sg, o, 1), wheres; (i = 0, 1) is the set of atomgl such Theorem 3 Any two static constraints (6) with the same
thati: A belongs toX, anda is the set of action constanis atomsAq, ..., A,, are strongly equivalent to each other.
such that): a belongs taX.

The soundness of this definition is guaranteed by the fol The rules contributed BN, (D) by (6) can be equivalently

, written as
lowing fact: Le—i:Ay, ... it A,
gtg?g;em 1 For every transition(so, @, s1), so and s, are A dynamic constrainis a pair of dynamic laws of the form
We promised that stable models BN;(D) would repre- ffv after ay,..., ax, Ay, ..., Am (7
. i . f—”waftefal,...,ak,Al,...,Am
sent paths of lengthin the transition system corresponding
to D. For! = 0 andl = 1, this is clear from the definition wherev # w, ai,...,ar (k > 0) are action constants, and
of T(D); for I > 1 this needs to be verified. For every sét A, ..., A,, are atoms. We will write (7) as
of elements of the signaturep ;, let X* (i < [) be the triple nonexecutableas ax if Ay.... . A,,.

consisting of
o the set of atoms! such that : 4 belongs taX, and we will dropif in this abbreviation whem = 0. The use

e the set of action constanssuch that : a belongs taX, of this abbreviation depends on the following fact:

and Theorem 4 Any two dynamic constraints (7) with the same
« the set of atoms! such tha(i + 1): A belongs taX.. action constants, . .., a; and the same atom4,,..., A,,

. are strongly equivalent to each other.
> . :
Theorem 2 For everyl > 1, X is a stable model of PNID) The rules contributed tBN; (D) by (7) can be equivalently

iff X°,..., X!~ are transitions. ,
_ _ written as
The rules contributed tBN,; (D) by static law (3) have the))]]
form Le—itay,...,i:ag,1:A1,...,1: Ap,.
1:Ag «—1:Aq,...,1: A, not noti: Ag.

6 Example TheBlocksWorld

They can be equivalently rewritten as
. . . The description of the blocks world below ensures that every
lizdo} —iAr,... i A block belongs to a tower that rests on the table; there are no
(seelLifschitz et al,, 2001). Similarly, the rules contributed blocks or groups of blocks “floating in the air.”
to PN;(D) by dynamic law (4) have the form Let Blocksbe a finite non-empty set of symbols (block
)] . . .) names) that does not include the symbable The action
(i+1): 4o —i:Ay,... 02 Am, nOLNOL(i + 1): Ao. description below uses the following fluent and action con-
They can be equivalently rewritten as stants:

{(i+1): A} —i:Aq, ... i A, o for eachB € Blocks regular fluent constaritoc(B)
with domain BlocksU {Table}, and statically deter-
mined Boolean fluent constaimTower B);

, ‘ o for eachB € Blocksand eachl € BlocksuU {Table},
{(i+1):f=v}—isf =0 action constantove B, L).

In particular, the rules contributed by the commonsense law
of inertia (5) can be rewritten as

In the list of static and dynamic law$3, B; and B, are ar-
bitrary elements oBlocks and L is an arbitrary element of

The values of the symbolic constarits(the number of
steps) anch (the number of blocks) are supposed to be spec-

BlocksU {Table}. Two different blocks cannot rest on the ified in command line. The stable models generated by an

same block:
impossible Loc(B;) =B, Loc(B2) = B (B1 # B3).
The definition ofinTower B):

InTower(B) if Loc(B)=Tableg
InTowet(B) if Loc(B) =By, InTower(B,),
default ~InTower B).

Blocks don't float in the air:
impossible ~InTower B).
The commonsense law of inertia:
inertial Loc(B).

The effect of moving a block:

Movg B, L) causes Loc(B) = L.
A block cannot be moved unless it is clear:

nonexecutable Moveg B, L) if Loc(B;)=B.

Here is a representation of logic prograf;(D) (Sec-
tion 4), for this action descriptiof, in the input language of
the groundeGRINGO:?

% decl arati ons of variables for steps,
% bl ocks, and | ocati ons
step(0..1).

#domai n step(l).

bl ock(b(1..n)).

#domai n bl ock(B).

#domai n bl ock(B1).
#domai n bl ock(B2).
location(X) :- block(X).
| ocation(table).

#domai n | ocation(L).

% transl ations of static | aws
.- loc(B1,B,1), loc(B2,B,1), Bill=B2.
intower (B,true, 1) :- loc(B,table,l).
intower (B,true, 1) :- loc(B,B1,1),

i ntower (B1,true,).
{intower (B, false, l)}.
i- intower(B,false,l).

% transl ati ons of dynamic | aws

{loc(B, L, 1+1)} :- loc(B, L, 1), I<I.
loc(B, L, 1+1) :- nove(B, L, 1), I<I.
:- nove(B,L,1), loc(B1,B, 1), I<I.

% st andard choi ce rul es
{loc(B,L,0)}.
{rove(B,L, 1)} :- I<l.

% uni queness and exi stence of val ue
:- not 1{loc(B,LL,1) : location(LL)}1.
.- not 1{intower(B,false,l),

i ntower (B, true,)}1.

2htt p: // pot assco. sour cef or ge. net/

answer set solver for this input file will represent all tje
tories of lengthl in the transition system corresponding to
the blocks world withn blocks. For instance, if we ground
this program with thesrRINGO options -¢c | =0 -¢ n=3
then the resulting program will have 13 stable models, eorre
sponding to to all possible configurations of 3 blocks.

The rules involvingi nt ower can be written more eco-
nomically if we use strong (classical) negation and replace

intower(B,true, 1), intower(B,false,l)
with
intower(B,1), -intower(B,1).

That would make the uniqueness of value constraint for
i nt ower redundant.

7 Example: A Leaking Container

The example above includes the inertiality assumptionffor a
regular fluents. In some cases, the commonsense law of in-
ertia for a regular fluent is not acceptable and needs to be
replaced by a different default.

Consider, for instance, a container of capacitihat has a
leak, so that it loses units of liquid per unit of time, unless
more liquid is added. This domain can be described using
the regular fluent constangsmtwith domain{0, ..., n}, for
the amount of liquid in the container, and the action coristan
FillUp. There are two dynamic laws:

default Amt=max(a — k, 0) after Amt=a (a =0,...,n),
FillUp causes Amt=n.

(Whenk = 0, the first of them turns intinertial Amt)

Consider the following temporal projection problem in-
volving this domain, withn = 10 andk = 3: initially the
container is full, and it is filled up at time 3; we would like to
know how the amount of liquid in the container will change
with time. The program below consists of the rule®b§ (D)
and rules encoding the temporal projection problem.

% decl arations of variables for steps
% and anounts

step(0..1).

#domai n step(l).

amount (0. .n).

#domai n anount (A).

% transl ations of dynanic | aws

{amt (AA 1 +1)} - amt (A1),
AA=(| A-k| +(A-k)) /2, I<l.

amt(n, I +1) :- fillup(l), I<l.

% st andard choi ce rul es
{am (A 0)}.
{fillup(l)} :- I<l.

% uni queness and exi stence of val ue
- not 1 {ant(AA 1) : amount(AA} 1.

% t enporal projection

ant (n, 0).

fillup(3). -fillup(0..2;4..1).
#hi de. #show ant/ 2.

The solvercLINGO produces the following output:

am (10,0) anmt(10,4) ant(7,5) ant(7,1)
ant (4,2) ant(4,6) ant(1,7) ant(1,3)
am (0,9) ant (0, 8)

8 Trandation into the Language of Programs
with Strong Negation
In the definition of the semantics #C in Section 4 the pro-

gramsPN; (D) can be replaced by the programs with strong

negationPS (D) that consist of the following rules:
¢ the translations
1:Ag — it Ay, .. it A, nOt—i Ay, .
(7 < 1) of all static laws (1) fromD,
¢ the translations

(i4+1):A4g —i:Aq,...
not - (Z+ 1)1Am+1,..

.,not—i: A,

Ji:Am,
,not— (i4+1): A,
(¢ < 1) of all dynamic laws (2) fromD,

e the disjunctive rule® : A v = 0: A for every atomA
containing a regular fluent constant,

e the disjunctive rules:a Vv —i:a for every action con-
stanta and everyi < I,

¢ the existence of value constraint
—noti:(f=wvy),...,noti:(f=wvg)
for every fluent constanf and every: < [, where
v1,...,v; are all elements of the domain ¢6f
¢ the uniqueness of value rule
i (f=v) — i (f=w)
for every fluent constanf, every pair of distinct ele-
mentsv, w of its domain, and every < [.

The stable models of the prograiN; (D) from Section 4
can be obtained from the (complete) answer se8%fD)
by removing all negative literals:

Theorem 5 A setX of atoms of the signaturep ; is a stable
model of PN(D) iff X U{-A| A € op,; \ X} is an answer
set of P D).

It follows that the translatiofPN in the definition ofT’(D)
can be replaced with the translatiB&

9 Trandation into the Language of
Multi-Valued Formulas

Multi-valued formulas are defined ibGiunchiglia et al,

A multi-valued signaturés a setr of symbols, calledon-
stants along with a nonempty finite s&om(c) of symbols,
disjoint from o, assigned to each constantcalled thedo-
main of ¢. An atom of the signatures is an expression of
the forme¢ = v (“the value ofc is v"”), wherec € ¢ and
v € Dom(c). If Dom(c) is {f,t} then we say that the con-
stantc is Boolean A multi-valued formulds a propositional
combination of atoms. (Note that the symbelin multi-
valued formulas corresponds to negation as failure in logic
programs.)

A multi-valued interpretatiorof o is a function that maps
every element of to an element of its domain. An interpre-
tation I satisfiesan atome = v if I(¢) = v. The satisfaction
relation is extended from atoms to arbitrary formulas ageor
ing to the usual truth tables for the propositional convesti

The reduct F of a multi-valued formulaF’ relative to a
multi-valued interpretatioi is the formula obtained fron’
by replacing each maximal subformula that is not satisfied by
I with 1. We say thaf is astable modedf F' if I is the only
interpretation satisfying™! .3

Consider the multi-valued signature consisting of

e the constants: f for nonnegative integers< [and all
fluent constantg, with the same domain g§ and

¢ the Boolean constantsa for nonnegative integetis< |
and all action constants

If F'is a propositional combination of atonfis=v and action
constants then: F' stands for the formula of this signature
obtained fromF’ by prepending : to every fluent constant
and to every action constant.

For any action descriptio®, by MV,(D) we denote the
conjunction of the following multi-valued formulas:

e the translations
(AN NAR AN Al A A A, — Ag)
(¢ < 1) of all static laws (1) fromD,
e the translations
(AL A ANAR) A (D) (5 A A
e AmmAL) — (4 1): A
(z < 1) of all dynamic laws (2) fronD,

e the formula0: (f =v V f #v) for every regular fluent
constantf and every element of its domain,

o the formulai: (a =t v a =f) for every action constani
and everyi < [.

By o we denote the set of all action constants.
Theorem 6 A setX of atoms of the signatukep, ; is a stable

model of PN(D) iff X U {i:a=f|aco?, i<l i:ad X}
is a stable model of MY/D).

It follows that the translatioRPN in the definition ofT'(D)
can be replaced with the translatibtV.

3This formulation is based on the characterization of the stable

2004, Section 2]1 and the stable model semantics is ex-model semantics of multi-valued formulas given [Bartholomew

tended to such formulas [Bartholomew and Lee, 2012

and Lee, 2012, Theoren}.5

10 Reationto B “simple” in C+; they correspond to regular fluents in our ter-

The version of the action languaieeferred to in this section Minology.) Fluent symbols ig+ may be non-exogenous; in

is defined in[Gelfond and Lifschitz, 2012 For any action our first version of5C such fluents are not allowed. Action
descriptionD in the languagés, by D,: we denote the result symbols inC+ may be non-Boolean; in this respect, that lan-

of replacing each negative literalf in D with the atom-~ f guage is more general than the versios6fdefined above.

(that is, / = f). The abbreviations introduced in Sections 2, Conls|der_al;>’)C-ldestcr:]r|pt|on dSUCh that, in e"’t‘ﬁhtm its St?t't.c
and 5 above allow us to view_ as an action description in aws (1),m = 0. In other words, we assume that every static

the sense oBC, provided that all fluent constants are treatedIaW has the form

as regular Boolean. We define the translatiofdhto 5C as Agifcons Ay, ..., A,. (8)
the result of extendin@ by adding the inertiality assump- L)
tions (5) for all fluent constantg. Such a description can be translated ifito as follows:

We will loosely refer to states and transitions of the transi e all action constants are treated as Boolean;
tion system represented l@/_as states_and transitions bf e every static law (8) is replaced with

To state the claim that this translation preserves the mean-
ing of D, we need to relate states and transitions in the sense caused Ag if A; A~ A Ay;
of the semantics oB to states and transitions in the sense of . . .
Section 4. InB, a state is a consistent and complete set of ® €Very dynamic law (2) is replaced with

literals f, - f for fluent constantg. For any set _of atoms caused Ag if Ay A A Ay, after Ay A--- A Ay
f.» ~f, by s~ we denote the set of literals obtained frem
by replacing each atomf with the negative literakf. Fur- o for every action constarat,

thermore, an action i is a consistent and complete set of
literalsa, —a for action constants.

Theorem 7 For any action descriptiotD in the languages3, is added.

(a) asets of atoms is a state of the translation Bfinto the 1 "€orém 8 For any action descriptiotd) in the language5C
languageB3C iff s~ is a state ofD; such that in each of its static laws (&) = 0,

(b) for any setsy, s; of atoms and any set of action con- (a) the states of the translation @f into the language& +
stants,(so, «, s1) is a transition of the translation ab are identical to the states db;
into the languages(C iff (b) the transitions of the translation @ into the language
- N C+ can be characterized as the triples
((0)Y,aU{=0:a|a ¢ a},(s1))

is a transition ofD.

The description of the blocks world from Section 6 does) o i))
not correspond to an§-description, in the sense of this trans- ~ This translation is applicable, for instance, to the legkin
lation, for two reasons. First, some fluent constants inet ar container example. The description of the blocks world from
not regular: it uses statically determined flueinfSower(B), ~ Section 6 cannot be translated inte- in this way, because
defined recursively in terms dfoc(B). They are similar to the static laws in the recursive definition loffower(3) vio-
“defined fluents” allowed in the extension Bfintroduced in late the conditionn = 0.

[Gelfond and Inclezan, 2099Second, some fluent constants
in it are not Boolean: the values bbc(B) are locations. 12 Future Work

The leaking container example (Section 7) does not corThe version ofBC described in this preliminary report is
respond to any3-description either: the regular flueAmt propositional; expressions with variables, as in the exesp
is not Boolean, and the default describing how the value ofrom Sections 6 and 7, need to be grounded before they be-
this fluent changes is different from the commonsense lawome syntactically correct in the senseR¢. We plan to
of inertia. An alternative approach to describing the lagki define the syntax and semanticsR¢ with variables, in the
container is based on an extensionoby “process fluents,” sprit of[Lifschitz and Ren, 2007 using the generalization of

exogenous a

(50, {a=t]a€a}U{a=Fflaco?\a},s)

for all transitions(sg, o, s1) of D.

called# [Chintabathinat al., 2004. stable models proposed [iRerrariset al., 2011.
) The version of the Causal Calculator describedGaso-
11 RedationtoC+ lary and Lee, 2011will be extended to cover the expressive

The semantics of+ is based on the idea of universal cau- capabilities of3C.

sation[McCain and Turner, 1997 Formal relationships be-
tween universal causation and stable models are inveesdigatACknomedgementS
in [McCain, 1997; Ferrarigt al, 2014, and it is not sur- Joohyung Lee was partially supported by the National Sci-
prising that a large fragment @&C is equivalent to a large ence Foundation under Grant 11S-0916116 and by the South
fragment ofC+. Korea IT R&D program MKE/KIAT 2010-TD-300404-001.

In C+, just as inBC, some fluent symbols can be des- Many thanks to Michael Gelfond and to the anonymous ref-
ignated as “statically determined.” (Other fluents areechll erees for valuable advice.

References explanation: Preliminary report. IRroceedings of Na-
[Balduccini and Gelfond, 20§3Marcello Balduccini and tional Conference on Artificial Intelligence (AAAages

Michael Gelfond. Diagnostic reasoning with A-Prolog. 623-630. | Press, 1998.

Theory and Practice of Logic Programming(4-5):425— [Giunchigliaet al, 2004 Enrico Giunchiglia, ~Joohyung
461, 2003. Lee, Vladimir Lifschitz, Norman McCain, and Hud-

. son Turner. Nonmonotonic causal theoriedrtificial
[Bartholomew and Lee, 201 Michael Bartholomew and Intelligence 153(1—2):49—104, 2004.

Joohyung Lee. Stable models of formulas with intensionat)) o)

functions. InProceedings of International Conference on LIEChItZ _?Qd Ren, 2(t)_d7VI?d|m_|rbII_|fsc_:h|tz tf?‘nd dwa”‘{""’t‘_”

Principles of Knowledge Representation and Reasonin en. € semantics of variables In action descriptions.

(KR), 5012_ g P J In Proceedings of National Conference on Atrtificial Intel-
ligence (AAAI) pages 1025-1030, 2007.

[|ifschitzetal, 1999 Vladimir Lifschitz, Lappoon R. Tang,

Answer Set Programming. [fechnical Communications and Hudson Turner._Nested ex_p_re_ssions in logic programs.
of the 27th International Conference on Logic Program- Annals of Mathematics and Artificial Intelligen@5:369—

ming (ICLP) pages 51-61, 2011. 389, 1999.
: . . . [Lifschitz et al., 2004 Vladimir Lifschitz, David Pearce
Chintabathinat al., 2009 Sandee Chintabathina, - . : !
[Michael Gelfond aad Richar% Watson. Modeling and Agustin Va]verde. Strongly equwalent ng|c programs.
hybrid domains using process description language. In ACM Transactions on Computational Logi2:526-541,

Proceedings of Workshop on Answer Set Programming: 2001.
Advances in Theory and Implementation (ASP,@B05. [Lifschitz, 200§ Vladimir Lifschitz. What is answer set pro-

. . . . - gramming? IrProceedings of the AAAI Conference on Ar-
[Ferraris and Lifschitz, 20Q5Paolo Ferraris and Vladimir tificial Intelligence pages 1594—1597. MIT Press, 2008.

Lifschitz. Weight constraints as nested expressiorise-

ory and Practice of Logic Programming:45-74, 2005, [Marek and Truszczynski, 1999victor ~ Marek and
Miroslaw Truszczynski. Stable models and an alter-

[Ferrariset al, 2011 Paolo Ferraris, Joohyung Lee, and pative logic programming paradigm. Ifihe Logic

[Ferrariset al, 2013 Paolo Ferraris, Joohyung Lee, Yuliya [McCain and Turner, 1997Norman McCain and Hudson
Lierler, Vladimir Lifschitz, and Fangkai Yang. Represent- Turner. Causal theories of action and change. Pio-
ing first-order causal theories by logic program3he- ceedings of National Conference on Artificial Intelligence
ory and Practice of Logic Programmind.2(3):383-412, (AAAI), pages 460—465, 1997.

2012. [McCain, 1997 Norman McCain. Causality in Common-
[Fikes and Nilsson, 1971Richard Fikes and Nils Nilsson. sense Reasoning about Action®hD thesis, University
STRIPS: A new approach to the application of theorem of Texas at Austin, 1997.

proving to problem solving.Artificial Intelligence 2(3— [Niemet, 1999 Ilkka Niemek. Logic programs with stable
4):189-208, 1971. model semantics as a constraint programming paradigm.
[Gelfond and Inclezan, 2009Michael Gelfond and Daniela Annals of Mathematics and Artificial Intelligen@bs:241—

[Casolary and Lee, 2011Michael Casolary and Joohyung
Lee. Representing the language of the Causal Calculator i

Inclezan. Yet another modular action language.Pto- 273,1999.

ceedings_of th.e Second International Workshop on SOﬂfNogueiraet al, 2001 Monica Nogueira, Marcello Balduc-

ware Engineering for Answer Set Programmipgges 64— cini, Michael Gelfond, Richard Watson, and Matthew

78, 2009. Barry. An A-Prolog decision support system for the
[Gelfond and Lifschitz, 1991 Michael Gelfond and Space Shuttle. IRroceedings of International Symposium

Vladimir Lifschitz. Classical negation in logic pro- on Practical Aspects of Declarative Languages (PADL)

grams and disjunctive databases.New Generation pages 169-183, 2001.

Computing 9:365-385, 1991. [Pednault, 1980 Edwin Pednault. ADL: Exploring the mid-
[Gelfond and Lifschitz, 1998 Michael Gelfond and dle ground between STRIPS and the situation calculus_. In

Vladimir Lifschitz. Action languages. Electronic Ronald Brachman, Hector Levesque, and Raymond Reiter,

Transactions on Artificial Intelligen¢e:195—210, 1998. editors,Proceedings of International Conference on Prin-

i) i ciples of Knowledge Representation and Reasoning,(KR)
[Gelfond and Lifschitz, 2012Michael ~ Gelfond and pages 324332, 1989.

Vladimir Lifschitz. The common core of action lan-
guagesB andC. In Working Notes of the International
Workshop on Nonmonotonic Reasoning (NMER)L2.

[Reiter, 198D Raymond Reiter. A logic for default reason-
ing. Artificial Intelligence 13:81-132, 1980.

[Giunchiglia and Lifschitz, 1998Enrico Giunchiglia and
Vladimir Lifschitz. An action language based on causal

