
Action Language BC: Preliminary Report

Joohyung Lee1, Vladimir Lifschitz2 and Fangkai Yang2

1School of Computing, Informatics and Decision Systems Engineering, Arizona State University
joolee@asu.edu

2 Department of Computer Science, Univeristy of Texas at Austin
{vl,fkyang}@cs.utexas.edu

Abstract

The action description languagesB andC have sig-
nificant common core. Nevertheless, some expres-
sive possibilities ofB are difficult or impossible to
simulate inC, and the other way around. The main
advantage ofB is that it allows the user to give
Prolog-style recursive definitions, which is impor-
tant in applications. On the other hand,B solves
the frame problem by incorporating the common-
sense law of inertia in its semantics, which makes
it difficult to talk about fluents whose behavior is
described by defaults other than inertia. InC and
in its extensionC+, the inertia assumption is ex-
pressed by axioms that the user is free to include or
not to include, and other defaults can be postulated
as well. This paper defines a new action descrip-
tion language, calledBC, that combines the attrac-
tive features ofB andC+. Examples of formalizing
commonsense domains discussed in the paper illus-
trate the expressive capabilities ofBC and the use
of answer set solvers for the automation of reason-
ing about actions described in this language.

1 Introduction
Action description languages are formal languages for de-
scribing the effects and executability of actions. “Second
generation” action description languages, such asB [Gelfond
and Lifschitz, 1998, Section 5], C [Giunchiglia and Lifschitz,
1998], andC+ [Giunchiglia et al., 2004, Section 4], differ
from the older languages STRIPS[Fikes and Nilsson, 1971]
and ADL [Pednault, 1989] in that they allow us to describe
indirect effects of an action—effects explained by interaction
between fluents.

The languagesB andC have significant common core[Gel-
fond and Lifschitz, 2012]. Nevertheless, some expressive
possibilities ofB are difficult or impossible to simulate inC,
and the other way around. The main advantage ofB is that it
allows the user to give Prolog-style recursive definitions.Re-
cursively defined concepts, such as the reachability of a node
in a graph, play important role in applications of automated
reasoning about actions, including the design of the decision
support system for the Space Shuttle[Nogueiraet al., 2001].
On the other hand, the languageB, like STRIPS and ADL,

solves the frame problem by incorporating the commonsense
law of inertia in its semantics, which makes it difficult to talk
about fluents whose behavior is described by defaults other
than inertia. The position of a moving pendulum, for in-
stance, is a non-inertial fluent: it changes by itself, and an
action is required to prevent the pendulum from moving. The
amount of liquid in a leaking container changes by itself, and
an action is required to prevent it from decreasing. A spring-
loaded door closes by itself, and an action is required to keep
it open. Work on the action languageC and its extensionC+
was partly motivated by examples of this kind. In these lan-
guages, the inertia assumption is expressed by axioms that the
user is free to include or not to include. Other default assump-
tions about the relationship between the values of a fluent at
different time instants can be postulated as well. On the other
hand, some recursive definitions cannot be easily expressed
in C andC+.

In this paper we define a new action description language,
calledBC, that combines the attractive features ofB andC+.
This language, likeB, can be implemented using compu-
tational methods of answer set programming[Marek and
Truszczynski, 1999; Niemelä, 1999; Lifschitz, 2008].

The main difference betweenB andBC is similar to the
difference between inference rules and default rules. Infor-
mally speaking, a default rule allows us to derive its conclu-
sion from its premise if its justification can be consistently
assumed; default logic[Reiter, 1980] makes this idea precise.
In the languageB, a static law has the form

<conclusion> if <premise> .

In BC, a static law may include a justification:

<conclusion> if <premise> ifcons < justification>

(ifcons is an acronym for “if consistent”). Dynamic laws may
include justifications also.

The semantics ofBC is defined by transforming action de-
scriptions into logic programs under the stable model seman-
tics. When static and dynamic laws of the languageB are
translated into the language of logic programming, as in[Bal-
duccini and Gelfond, 2003], the rules that we get do not con-
tain negation as failure. Logic programs corresponding toB-
descriptions do contain negation as failure, but this is because
inertia rules are automatically included in them. In the case
of BC, on the other hand, negation as failure is used for trans-
lating justifications in both static and dynamic laws.

We define here three translations fromBC into logic pro-
gramming. Their target languages use slightly different ver-
sions of the stable model semantics, but we show that all three
translations give the same meaning toBC-descriptions. The
first version uses nested occurrences of negation as failure
[Lifschitz et al., 1999]; the second involves strong (classical)
negation[Gelfond and Lifschitz, 1991] but does not require
nesting; the third produces multi-valued formulas under the
stable model semantics[Bartholomew and Lee, 2012]. The
third translation is particularly simple, becauseBC and multi-
valued formulas have much in common: both languages are
designed for talking about non-Boolean fluents. But we start
with defining the other two translations, because their target
languages are more widely known.

Examples of formalizing commonsense domains discussed
in this paper illustrate the expressive capabilities ofBC and
the use of answer set solvers for the automation of reasoning
about actions described in this language. We state also two
theorems relatingBC toB and toC+.

2 Syntax
An action description in the languageBC includes a finite
set of symbols of two kinds,fluent constantsandaction con-
stants. Fluent constants are further divided intoregular and
statically determined. A finite set of cardinality≥ 2, called
thedomain, is assigned to every fluent constant.

An atom is an expression of the formf = v, wheref is
a fluent constant, andv is an element of its domain. If the
domain off is {f, t} then we say thatf is Boolean.

A static lawis an expression of the form

A0 if A1, . . . , Am ifcons Am+1, . . . , An (1)

(n ≥ m ≥ 0), where eachAi is an atom. It expresses,
informally speaking, that every state satisfiesA0 if it satis-
fiesA1, . . . , Am, andAm+1, . . . , An can be consistently as-
sumed. Ifm = 0 then we will dropif; if m = n then we will
dropifcons.

A dynamic lawis an expression of the form

A0 after A1, . . . , Am ifcons Am+1, . . . , An (2)

(n ≥ m ≥ 0), where

• A0 is an atom containing a regular fluent constant,

• each ofA1, . . . , Am is an atom or an action constant,
and

• Am+1, . . . , An are atoms.

It expresses, informally speaking, that the end state of any
transition satisfiesA0 if its beginning state and its action sat-
isfy A1, . . . , Am, andAm+1, . . . , An can be consistently as-
sumed about the end state. Ifm = n then we will dropifcons.

For any action constanta and atomA,

a causes A

stands for
A after a.

For any action constanta and atomsA0, . . . , Am (m > 0),

a causes A0 if A1, . . . , Am

stands for
A0 after a,A1, . . . , Am.

An action descriptionin the languageBC is a finite set con-
sisting of static and dynamic laws.

3 Defaults and Inertia
Static laws of the form

A0 if A1, . . . , Am ifcons A0 (3)

and dynamic laws of the form

A0 after A1, . . . , Am ifcons A0 (4)

will be particularly useful. They are similar to normal de-
faults in the sense of[Reiter, 1980]. We will write (3) as

default A0 if A1, . . . , Am,

and we will dropif whenm = 0. We will write (4) as

default A0 after A1, . . . , Am.

For any regular fluent constantf , the set of the dynamic
laws

default f =v after f =v

for all v in the domain off expresses the commonsense law
of inertia forf . We will denote this set by

inertial f. (5)

4 Semantics
For every action descriptionD, we will define a
sequence of logic programs with nested expressions
PN0(D), PN1(D), . . . so that the stable models ofPNl(D)
represent paths of lengthl in the transition system corre-
sponding toD. The signatureσD,l of PNl(D) consists of

• expressionsi : A for nonnegative integersi ≤ l and all
atomsA, and

• expressionsi : a for nonnegative integersi < l and all
action constantsa.

Thus every element of the signatureσD,l is a “time stamp”i
followed by an atom in the sense of Section 2 or by an action
constant. The program consists of the following rules:

• the translations
i :A0 ← i :A1, . . . , i :Am,

not noti :Am+1, . . . , not noti :An

(i ≤ l) of all static laws (1) fromD,

• the translations
(i + 1):A0 ← i :A1, . . . , i :Am,

not not(i + 1):Am+1, . . . , not not(i + 1):An

(i < l) of all dynamic laws (2) fromD,

• the choice rule1 {0 : A} for every atomA containing a
regular fluent constant,

1A choice rule{E} can be viewed as shorthand for the disjunc-
tive nested expressionE; not E [Ferraris and Lifschitz, 2005], or,
equivalently, for the rule

E ← not notE.

• the choice rule{i : a} for every action constanta and
everyi < l,

• the existence of value constraint

← not i : (f =v1), . . . , not i : (f =vk)

for every fluent constantf and everyi ≤ l, where
v1, . . . , vk are all elements of the domain off ,

• the uniqueness of value constraint

← i : (f =v), i : (f =w)

for every fluent constantf , every pair of distinct ele-
mentsv, w of its domain, and everyi ≤ l.

The transition systemT (D) represented by an action de-
scriptionD is defined as follows. For every stable modelX
of PN0(D), the set of atomsA such that0 : A belongs toX
is a state ofT (D). In view of the existence of value and
uniqueness of value constraints, for every states and every
fluent constantf there exists exactly onev such thatf = v
belongs tos; thisv is considered the value off in states. For
every stable modelX of PN1(D), T (D) includes the transi-
tion 〈s0, α, s1〉, wheresi (i = 0, 1) is the set of atomsA such
that i :A belongs toX, andα is the set of action constantsa
such that0:a belongs toX.

The soundness of this definition is guaranteed by the fol-
lowing fact:

Theorem 1 For every transition〈s0, α, s1〉, s0 and s1 are
states.

We promised that stable models ofPNl(D) would repre-
sent paths of lengthl in the transition system corresponding
to D. For l = 0 andl = 1, this is clear from the definition
of T (D); for l > 1 this needs to be verified. For every setX
of elements of the signatureσD,l, let Xi (i < l) be the triple
consisting of

• the set of atomsA such thati :A belongs toX,

• the set of action constantsa such thati :a belongs toX,
and

• the set of atomsA such that(i + 1):A belongs toX.

Theorem 2 For everyl ≥ 1, X is a stable model of PNl(D)
iff X0, . . . ,X l−1 are transitions.

The rules contributed toPNl(D) by static law (3) have the
form

i :A0 ← i :A1, . . . , i :Am, not noti :A0.

They can be equivalently rewritten as

{i :A0} ← i :A1, . . . , i :Am

(see[Lifschitz et al., 2001]). Similarly, the rules contributed
to PNl(D) by dynamic law (4) have the form

(i + 1):A0 ← i :A1, . . . , i :Am, not not(i + 1):A0.

They can be equivalently rewritten as

{(i + 1):A0} ← i :A1, . . . , i :Am.

In particular, the rules contributed by the commonsense law
of inertia (5) can be rewritten as

{(i + 1):f = v} ← i :f = v.

5 Other Abbreviations
In BC-descriptions that involve Boolean fluent constants we
will use abbreviations similar to those established for multi-
valued formulas in[Giunchiglia et al., 2004, Section 2.1]:
if f is Boolean then we will write the atomf = t asf , and the
atomf = f as∼f .

A static constraintis a pair of static laws of the form

f =v if A1, . . . , Am

f =w if A1, . . . , Am
(6)

wherev 6= w andm > 0. We will write (6) as

impossible A1, . . . , Am.

The use of this abbreviation depends on the fact that the
choice off , v, andw in (6) is inessential, in the sense of
Theorem 3 below. About action descriptionsD1 and D2

we say that they arestrongly equivalentto each other if,
for any action descriptionD (possibly of a larger signature),
T (D∪D1) = T (D∪D2). This is similar to the definition of
strong equivalence for logic programs[Lifschitz et al., 2001].

Theorem 3 Any two static constraints (6) with the same
atomsA1, . . . , Am are strongly equivalent to each other.

The rules contributed toPNl(D) by (6) can be equivalently
written as

⊥ ← i :A1, . . . , i :Am.

A dynamic constraintis a pair of dynamic laws of the form

f =v after a1, . . . , ak, A1, . . . , Am

f =w after a1, . . . , ak, A1, . . . , Am
(7)

wherev 6= w, a1, . . . , ak (k > 0) are action constants, and
A1, . . . , Am are atoms. We will write (7) as

nonexecutable a1, . . . , ak if A1, . . . , Am,

and we will dropif in this abbreviation whenm = 0. The use
of this abbreviation depends on the following fact:

Theorem 4 Any two dynamic constraints (7) with the same
action constantsa1, . . . , ak and the same atomsA1, . . . , Am

are strongly equivalent to each other.

The rules contributed toPNl(D) by (7) can be equivalently
written as

⊥ ← i :a1, . . . , i :ak, i :A1, . . . , i :Am.

6 Example: The Blocks World
The description of the blocks world below ensures that every
block belongs to a tower that rests on the table; there are no
blocks or groups of blocks “floating in the air.”

Let Blocks be a finite non-empty set of symbols (block
names) that does not include the symbolTable. The action
description below uses the following fluent and action con-
stants:

• for eachB ∈ Blocks, regular fluent constantLoc(B)
with domain Blocks∪ {Table}, and statically deter-
mined Boolean fluent constantInTower(B);

• for eachB ∈ Blocksand eachL ∈ Blocks∪ {Table},
action constantMove(B,L).

In the list of static and dynamic laws,B, B1 andB2 are ar-
bitrary elements ofBlocks, andL is an arbitrary element of
Blocks∪ {Table}. Two different blocks cannot rest on the
same block:

impossible Loc(B1)=B, Loc(B2) = B (B1 6= B2).

The definition ofInTower(B):

InTower(B) if Loc(B)=Table,
InTower(B) if Loc(B)=B1, InTower(B1),
default ∼InTower(B).

Blocks don’t float in the air:

impossible ∼InTower(B).

The commonsense law of inertia:

inertial Loc(B).

The effect of moving a block:

Move(B,L) causes Loc(B)=L.

A block cannot be moved unless it is clear:

nonexecutable Move(B,L) if Loc(B1)=B.

Here is a representation of logic programsPNl(D) (Sec-
tion 4), for this action descriptionD, in the input language of
the grounderGRINGO:2

% declarations of variables for steps,
% blocks, and locations
step(0..l).
#domain step(I).
block(b(1..n)).
#domain block(B).
#domain block(B1).
#domain block(B2).
location(X) :- block(X).
location(table).
#domain location(L).

% translations of static laws
:- loc(B1,B,I), loc(B2,B,I), B1!=B2.
intower(B,true,I) :- loc(B,table,I).
intower(B,true,I) :- loc(B,B1,I),

intower(B1,true,I).
{intower(B,false,I)}.
:- intower(B,false,I).

% translations of dynamic laws
{loc(B,L,I+1)} :- loc(B,L,I), I<l.
loc(B,L,I+1) :- move(B,L,I), I<l.
:- move(B,L,I), loc(B1,B,I), I<l.

% standard choice rules
{loc(B,L,0)}.
{move(B,L,I)} :- I<l.

% uniqueness and existence of value
:- not 1{loc(B,LL,I) : location(LL)}1.
:- not 1{intower(B,false,I),

intower(B,true,I)}1.
2http://potassco.sourceforge.net/

The values of the symbolic constantsl (the number of
steps) andn (the number of blocks) are supposed to be spec-
ified in command line. The stable models generated by an
answer set solver for this input file will represent all trajec-
tories of lengthl in the transition system corresponding to
the blocks world withn blocks. For instance, if we ground
this program with theGRINGO options -c l=0 -c n=3
then the resulting program will have 13 stable models, corre-
sponding to to all possible configurations of 3 blocks.

The rules involvingintower can be written more eco-
nomically if we use strong (classical) negation and replace

intower(B,true,I), intower(B,false,I)

with

intower(B,I), -intower(B,I).

That would make the uniqueness of value constraint for
intower redundant.

7 Example: A Leaking Container
The example above includes the inertiality assumption for all
regular fluents. In some cases, the commonsense law of in-
ertia for a regular fluent is not acceptable and needs to be
replaced by a different default.

Consider, for instance, a container of capacityn that has a
leak, so that it losesk units of liquid per unit of time, unless
more liquid is added. This domain can be described using
the regular fluent constantsAmtwith domain{0, . . . , n}, for
the amount of liquid in the container, and the action constant
FillUp . There are two dynamic laws:

default Amt=max(a − k, 0) after Amt=a (a = 0, . . . , n),
FillUp causes Amt=n.

(Whenk = 0, the first of them turns intoinertial Amt.)
Consider the following temporal projection problem in-

volving this domain, withn = 10 andk = 3: initially the
container is full, and it is filled up at time 3; we would like to
know how the amount of liquid in the container will change
with time. The program below consists of the rules ofPNl(D)
and rules encoding the temporal projection problem.

% declarations of variables for steps
% and amounts
step(0..l).
#domain step(I).
amount(0..n).
#domain amount(A).

% translations of dynamic laws
{amt(AA,I+1)} :- amt(A,I),

AA=(|A-k|+(A-k))/2, I<l.
amt(n,I+1) :- fillup(I), I<l.

% standard choice rules
{amt(A,0)}.
{fillup(I)} :- I<l.

% uniqueness and existence of value
:- not 1 {amt(AA,I) : amount(AA)} 1.

% temporal projection
amt(n,0).
fillup(3). -fillup(0..2;4..l).

#hide. #show amt/2.

The solverCLINGO produces the following output:

amt(10,0) amt(10,4) amt(7,5) amt(7,1)
amt(4,2) amt(4,6) amt(1,7) amt(1,3)
amt(0,9) amt(0,8)

8 Translation into the Language of Programs
with Strong Negation

In the definition of the semantics ofBC in Section 4 the pro-
gramsPNl(D) can be replaced by the programs with strong
negationPSl(D) that consist of the following rules:

• the translations

i :A0 ← i :A1, . . . , i :Am, not¬ i :Am+1, . . . , not¬ i :An

(i ≤ l) of all static laws (1) fromD,

• the translations

(i + 1):A0 ← i :A1, . . . , i :Am,
not¬ (i + 1):Am+1, . . . , not¬ (i + 1):An

(i < l) of all dynamic laws (2) fromD,

• the disjunctive rules0 : A ∨ ¬ 0 : A for every atomA
containing a regular fluent constant,

• the disjunctive rulesi : a ∨ ¬ i : a for every action con-
stanta and everyi < l,

• the existence of value constraint

← not i : (f =v1), . . . , not i : (f =vk)

for every fluent constantf and everyi ≤ l, where
v1, . . . , vk are all elements of the domain off ,

• the uniqueness of value rule

¬ i : (f =v) ← i : (f =w)

for every fluent constantf , every pair of distinct ele-
mentsv, w of its domain, and everyi ≤ l.

The stable models of the programPNl(D) from Section 4
can be obtained from the (complete) answer sets ofPSl(D)
by removing all negative literals:

Theorem 5 A setX of atoms of the signatureσD,l is a stable
model of PNl(D) iff X ∪ {¬A | A ∈ σD,l \ X} is an answer
set of PSl(D).

It follows that the translationPN in the definition ofT (D)
can be replaced with the translationPS.

9 Translation into the Language of
Multi-Valued Formulas

Multi-valued formulas are defined in[Giunchiglia et al.,
2004, Section 2.1], and the stable model semantics is ex-
tended to such formulas in[Bartholomew and Lee, 2012].

A multi-valued signatureis a setσ of symbols, calledcon-
stants, along with a nonempty finite setDom(c) of symbols,
disjoint from σ, assigned to each constantc, called thedo-
main of c. An atom of the signatureσ is an expression of
the form c = v (“the value ofc is v”), where c ∈ σ and
v ∈ Dom(c). If Dom(c) is {f, t} then we say that the con-
stantc is Boolean. A multi-valued formulais a propositional
combination of atoms. (Note that the symbol¬ in multi-
valued formulas corresponds to negation as failure in logic
programs.)

A multi-valued interpretationof σ is a function that maps
every element ofσ to an element of its domain. An interpre-
tationI satisfiesan atomc = v if I(c) = v. The satisfaction
relation is extended from atoms to arbitrary formulas accord-
ing to the usual truth tables for the propositional connectives.

The reductF I of a multi-valued formulaF relative to a
multi-valued interpretationI is the formula obtained fromF
by replacing each maximal subformula that is not satisfied by
I with ⊥. We say thatI is astable modelof F if I is the only
interpretation satisfyingF I .3

Consider the multi-valued signature consisting of

• the constantsi : f for nonnegative integersi ≤ l and all
fluent constantsf , with the same domain asf , and

• the Boolean constantsi :a for nonnegative integersi < l
and all action constantsa.

If F is a propositional combination of atomsf =v and action
constants theni : F stands for the formula of this signature
obtained fromF by prependingi : to every fluent constant
and to every action constant.

For any action descriptionD, by MVl(D) we denote the
conjunction of the following multi-valued formulas:

• the translations

i : (A1 ∧ · · · ∧ Am ∧ ¬¬Am+1 ∧ · · · ∧ ¬¬An → A0)

(i ≤ l) of all static laws (1) fromD,

• the translations

i : (A1 ∧ · · · ∧ Am) ∧ (i+1):(¬¬Am+1∧
· · · ∧ ¬¬An) → (i + 1):A0

(i < l) of all dynamic laws (2) fromD,

• the formula0 : (f = v ∨ f 6= v) for every regular fluent
constantf and every elementv of its domain,

• the formulai : (a= t ∨ a= f) for every action constanta
and everyi < l.

By σA we denote the set of all action constants.

Theorem 6 A setX of atoms of the signatureσD,l is a stable
model of PNl(D) iff X ∪ {i :a= f | a ∈ σA, i < l, i :a 6∈ X}
is a stable model of MVl(D).

It follows that the translationPN in the definition ofT (D)
can be replaced with the translationMV.

3This formulation is based on the characterization of the stable
model semantics of multi-valued formulas given by[Bartholomew
and Lee, 2012, Theorem 5].

10 Relation to B

The version of the action languageB referred to in this section
is defined in[Gelfond and Lifschitz, 2012]. For any action
descriptionD in the languageB, by D¬

∼
we denote the result

of replacing each negative literal¬f in D with the atom∼f
(that is,f = f). The abbreviations introduced in Sections 2
and 5 above allow us to viewD¬

∼
as an action description in

the sense ofBC, provided that all fluent constants are treated
as regular Boolean. We define the translation ofD intoBC as
the result of extendingD¬

∼
by adding the inertiality assump-

tions (5) for all fluent constantsf .
We will loosely refer to states and transitions of the transi-

tion system represented byD as states and transitions ofD.
To state the claim that this translation preserves the mean-

ing of D, we need to relate states and transitions in the sense
of the semantics ofB to states and transitions in the sense of
Section 4. InB, a state is a consistent and complete set of
literalsf , ¬f for fluent constantsf . For any sets of atoms
f , ∼f , by s∼

¬
we denote the set of literals obtained froms

by replacing each atom∼f with the negative literal¬f . Fur-
thermore, an action inB is a consistent and complete set of
literalsa, ¬a for action constantsa.

Theorem 7 For any action descriptionD in the languageB,

(a) a sets of atoms is a state of the translation ofD into the
languageBC iff s∼

¬
is a state ofD;

(b) for any setss0, s1 of atoms and any setα of action con-
stants,〈s0, α, s1〉 is a transition of the translation ofD
into the languageBC iff

〈(s0)
∼

¬
, α ∪ {¬0:a | a /∈ α}, (s1)

∼

¬
〉

is a transition ofD.

The description of the blocks world from Section 6 does
not correspond to anyB-description, in the sense of this trans-
lation, for two reasons. First, some fluent constants in it are
not regular: it uses statically determined fluentsInTower(B),
defined recursively in terms ofLoc(B). They are similar to
“defined fluents” allowed in the extension ofB introduced in
[Gelfond and Inclezan, 2009]. Second, some fluent constants
in it are not Boolean: the values ofLoc(B) are locations.

The leaking container example (Section 7) does not cor-
respond to anyB-description either: the regular fluentAmt
is not Boolean, and the default describing how the value of
this fluent changes is different from the commonsense law
of inertia. An alternative approach to describing the leaking
container is based on an extension ofB by “process fluents,”
calledH [Chintabathinaet al., 2005].

11 Relation to C+

The semantics ofC+ is based on the idea of universal cau-
sation[McCain and Turner, 1997]. Formal relationships be-
tween universal causation and stable models are investigated
in [McCain, 1997; Ferrariset al., 2012], and it is not sur-
prising that a large fragment ofBC is equivalent to a large
fragment ofC+.

In C+, just as inBC, some fluent symbols can be des-
ignated as “statically determined.” (Other fluents are called

“simple” in C+; they correspond to regular fluents in our ter-
minology.) Fluent symbols inC+ may be non-exogenous; in
our first version ofBC such fluents are not allowed. Action
symbols inC+ may be non-Boolean; in this respect, that lan-
guage is more general than the version ofBC defined above.

Consider aBC-description such that, in each of its static
laws (1),m = 0. In other words, we assume that every static
law has the form

A0 ifcons A1, . . . , An. (8)

Such a description can be translated intoC+ as follows:

• all action constants are treated as Boolean;

• every static law (8) is replaced with

caused A0 if A1 ∧ · · · ∧ An;

• every dynamic law (2) is replaced with

caused A0 if Am+1 ∧ · · · ∧ An after A1 ∧ · · · ∧ Am;

• for every action constanta,

exogenous a

is added.

Theorem 8 For any action descriptionD in the languageBC
such that in each of its static laws (1)m = 0,

(a) the states of the translation ofD into the languageC+
are identical to the states ofD;

(b) the transitions of the translation ofD into the language
C+ can be characterized as the triples

〈 s0, {a= t | a ∈ α} ∪ {a= f | a ∈ σA \ α}, s1 〉

for all transitions〈s0, α, s1〉 of D.

This translation is applicable, for instance, to the leaking
container example. The description of the blocks world from
Section 6 cannot be translated intoC+ in this way, because
the static laws in the recursive definition ofInTower(B) vio-
late the conditionm = 0.

12 Future Work
The version ofBC described in this preliminary report is
propositional; expressions with variables, as in the examples
from Sections 6 and 7, need to be grounded before they be-
come syntactically correct in the sense ofBC. We plan to
define the syntax and semantics ofBC with variables, in the
sprit of [Lifschitz and Ren, 2007], using the generalization of
stable models proposed in[Ferrariset al., 2011].

The version of the Causal Calculator described in[Caso-
lary and Lee, 2011] will be extended to cover the expressive
capabilities ofBC.

Acknowledgements
Joohyung Lee was partially supported by the National Sci-
ence Foundation under Grant IIS-0916116 and by the South
Korea IT R&D program MKE/KIAT 2010-TD-300404-001.
Many thanks to Michael Gelfond and to the anonymous ref-
erees for valuable advice.

References
[Balduccini and Gelfond, 2003] Marcello Balduccini and

Michael Gelfond. Diagnostic reasoning with A-Prolog.
Theory and Practice of Logic Programming, 3(4-5):425–
461, 2003.

[Bartholomew and Lee, 2012] Michael Bartholomew and
Joohyung Lee. Stable models of formulas with intensional
functions. InProceedings of International Conference on
Principles of Knowledge Representation and Reasoning
(KR), 2012.

[Casolary and Lee, 2011] Michael Casolary and Joohyung
Lee. Representing the language of the Causal Calculator in
Answer Set Programming. InTechnical Communications
of the 27th International Conference on Logic Program-
ming (ICLP), pages 51–61, 2011.

[Chintabathinaet al., 2005] Sandeep Chintabathina,
Michael Gelfond, and Richard Watson. Modeling
hybrid domains using process description language. In
Proceedings of Workshop on Answer Set Programming:
Advances in Theory and Implementation (ASP’05), 2005.

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir
Lifschitz. Weight constraints as nested expressions.The-
ory and Practice of Logic Programming, 5:45–74, 2005.

[Ferrariset al., 2011] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. Stable models and circumscription.
Artificial Intelligence, 175:236–263, 2011.

[Ferrariset al., 2012] Paolo Ferraris, Joohyung Lee, Yuliya
Lierler, Vladimir Lifschitz, and Fangkai Yang. Represent-
ing first-order causal theories by logic programs.The-
ory and Practice of Logic Programming, 12(3):383–412,
2012.

[Fikes and Nilsson, 1971] Richard Fikes and Nils Nilsson.
STRIPS: A new approach to the application of theorem
proving to problem solving.Artificial Intelligence, 2(3–
4):189–208, 1971.

[Gelfond and Inclezan, 2009] Michael Gelfond and Daniela
Inclezan. Yet another modular action language. InPro-
ceedings of the Second International Workshop on Soft-
ware Engineering for Answer Set Programming, pages 64–
78, 2009.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9:365–385, 1991.

[Gelfond and Lifschitz, 1998] Michael Gelfond and
Vladimir Lifschitz. Action languages. Electronic
Transactions on Artificial Intelligence, 3:195–210, 1998.

[Gelfond and Lifschitz, 2012] Michael Gelfond and
Vladimir Lifschitz. The common core of action lan-
guagesB andC. In Working Notes of the International
Workshop on Nonmonotonic Reasoning (NMR). 2012.

[Giunchiglia and Lifschitz, 1998] Enrico Giunchiglia and
Vladimir Lifschitz. An action language based on causal

explanation: Preliminary report. InProceedings of Na-
tional Conference on Artificial Intelligence (AAAI), pages
623–630. AAAI Press, 1998.

[Giunchigliaet al., 2004] Enrico Giunchiglia, Joohyung
Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories.Artificial
Intelligence, 153(1–2):49–104, 2004.

[Lifschitz and Ren, 2007] Vladimir Lifschitz and Wanwan
Ren. The semantics of variables in action descriptions.
In Proceedings of National Conference on Artificial Intel-
ligence (AAAI), pages 1025–1030, 2007.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25:369–
389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustin Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2:526–541,
2001.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set pro-
gramming? InProceedings of the AAAI Conference on Ar-
tificial Intelligence, pages 1594–1597. MIT Press, 2008.

[Marek and Truszczynski, 1999] Victor Marek and
Miroslaw Truszczynski. Stable models and an alter-
native logic programming paradigm. InThe Logic
Programming Paradigm: a 25-Year Perspective, pages
375–398. Springer Verlag, 1999.

[McCain and Turner, 1997] Norman McCain and Hudson
Turner. Causal theories of action and change. InPro-
ceedings of National Conference on Artificial Intelligence
(AAAI), pages 460–465, 1997.

[McCain, 1997] Norman McCain. Causality in Common-
sense Reasoning about Actions. PhD thesis, University
of Texas at Austin, 1997.

[Niemel̈a, 1999] Ilkka Niemel̈a. Logic programs with stable
model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25:241–
273, 1999.

[Nogueiraet al., 2001] Monica Nogueira, Marcello Balduc-
cini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the
Space Shuttle. InProceedings of International Symposium
on Practical Aspects of Declarative Languages (PADL),
pages 169–183, 2001.

[Pednault, 1989] Edwin Pednault. ADL: Exploring the mid-
dle ground between STRIPS and the situation calculus. In
Ronald Brachman, Hector Levesque, and Raymond Reiter,
editors,Proceedings of International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
pages 324–332, 1989.

[Reiter, 1980] Raymond Reiter. A logic for default reason-
ing. Artificial Intelligence, 13:81–132, 1980.

