
Deductive Systems

for Logic Programs with Counting

Jorge Fandinno and Vladimir Lifschitz

May 7, 2024

Abstract

In answer set programming, two groups of rules are considered strongly
equivalent if they have the same meaning in any context. Strong equiva-
lence of two programs can be sometimes established by deriving rules of
each program from rules of the other in an appropriate deductive system.
This paper shows how to extend this method of proving strong equivalence
to programs containing the counting aggregate.

1 Introduction

In answer set programming (ASP), two groups of rules are considered strongly
equivalent if, informally speaking, they have the same meaning in any context
[Lifschitz et al., 2001]. If programs Π1 and Π2 are strongly equivalent then, for
any program Π, programs Π1 ∪ Π and Π2 ∪ Π have the same stable models.
Properties of this equivalence relation are important because they can help us
simplify parts of an ASP program without examining its other parts. More
generally, they can guide us in the process of developing correct and efficient
code.

Strong equivalence of two programs can be sometimes established by deriv-
ing rules of each program from rules of the other in an appropriate deductive
system. Deriving rules involves rewriting them in the syntax of first-order logic.
The possibility of such proofs has been demonstrated for the ASP language
mini-gringo [Lifschitz et al., 2019, Lifschitz, 2021, Fandinno and Lifschitz,
2023a], and it was used in the design of a proof assistant for verifying strong
equivalence [Heuer, 2020, Fandinno and Lifschitz, 2023b].

We are interested in extending this method of proving strong equivalence
to ASP programs with aggregates, such as counting and summation [Gebser
et al., 2019, Section 3.1.12]. Procedures for representing rules with aggregates
in the syntax of first-order logic have been proposed in several recent publica-
tions [Lifschitz, 2022, Fandinno et al., 2022, Fandinno and Hansen, 2023]. The
first of these papers describes a deductive system that can be used for proving
strong equivalence of programs in the language called mini-gringo with count-
ing (mgc). But that system is too weak for reasoning about mgc rules that

1

contain variables in the right-hand side of an aggregate atom. For instance,
let A be the pair of rules

p(a),
q(Y)← count{X : p(X) ∧X 6= a} = Y,

and let B stand for

p(a),
q(Y − 1)← count{X : p(X)} = Y.

These pairs of rules are strongly equivalent to each other, but the deductive
system mentioned above would not allow us to justify this claim.

We propose here an alternative set of axioms for proving strong equivalence
of programs with counting. After reviewing in Section 2 the language mgc
and the translation τ∗ that transforms mgc rules into first-order sentences, we
define in Section 3 a deductive system of here-and-there with counting (HTC).
Any two mgc programs Π1 and Π2 such that τ∗Π1 and τ∗Π2 can be derived
from each other in this deductive system are strongly equivalent. Furthermore,
the sentences τ∗A and τ∗B, corresponding to the programs A and B above,
are equivalent in HTC , as well as any two sentences that are equivalent in the
deductive system from the previous publication on mgc (Sections 4 and 5).

The system HTC is not a first-order theory in the sense of classical logic,
because some instances of the law of excluded middle F ∨¬F are not provable in
it. This fact makes it difficult to automate reasoning in HTC , because existing
work on automated reasoning deals for the most part with classical logic and its
extensions. Lin [2002] showed how to modify the straightforward representation
of propositional rules by formulas in such a way that strong equivalence will
correspond to equivalence of formulas in classical logic. His method was used in
the design of a system for verifying strong equivalence of propositional programs
[Chen et al., 2005]. It was also generalized to strong equivalence of propositional
formulas [Pearce et al., 2009], first-order formulas [Ferraris et al., 2011], and
mini-gringo programs [Fandinno and Lifschitz, 2023b], and it was used in
the design of a system for verifying strong equivalence in mini-gringo [Heuer,
2020]. In Section 6 we show that this method is applicable to programs with
counting as well. To this end, we define a classical first-order theory HTC ′ and
an additional syntactic transformation γ such that two sentences F1, F2 are
equivalent in HTC if and only if γF1 is equivalent to γF2 in HTC ′. It follows
that if the formula γτ∗Π1 ↔ γτ∗Π2 can be derived from the axioms of HTC ′

in classical first-order logic then Π1 is strongly equivalent to Π2.
Section 7 describes a modificaton HTCω of the deductive system HTC that is

not only sound for proving strong equivalence, but also complete: any two mgc
programs Π1, Π2 are strongly equivalent if and only if the formulas τ∗Π1 and
τ∗Π2 are equivalent in the modified system. This is achieved by including rules
with infinitely many premises, similar to the ω-rule in arithmetic investigated
by Leon Henkin [1954]:

F (0) F (1) . . .

∀nF (n)
.

2

Deductive systems of this kind are useful as theoretical tools. But derivations
in such systems are infinite trees, and they cannot be represented in a finite
computational device.

Proofs of theorems are presented in the sections that follow. Some of the
proofs refer to the concept of an HT-interpretation, which is reviewed in Sec-
tion 10. In Section 12, we define a class of standard HT-interpretations, for
which the deductive system HTCω is sound and complete.

2 Background

2.1 Programs

The syntax of mini-gringo with counting is defined as follows.1 We assume
that three countably infinite sets of symbols are selected: numerals, symbolic
constants, and variables. We assume that a 1-1 correspondence between numer-
als and integers is chosen; the numeral corresponding to an integer n is denoted
by n. (In examples of programs, we sometimes drop overlines in numerals.)

Precomputed terms are numerals and symbolic constants. We assume that a
total order on the set of precomputed terms is selected such that numerals are
contiguous (no symbolic constants between numerals) and are ordered in the
standard way. mgc terms are formed from precomputed terms and variables
using the unary operation symbol | | and the binary operation symbols

+ − × / \ ..

An mgc atom is a symbolic constant optionally followed by a tuple of terms
in parentheses. A literal is an mgc atom possibly preceded by one or two
occurrences of not. A comparison is an expression of the form t1 ≺ t2, where
t1, t2 are mini-gringo terms, and ≺ is = or one of the comparison symbols

6= < > ≤ ≥ (1)

An aggregate element is a pair X : L, where X is a tuple of distinct variables,
and L is a conjunction of literals and comparisons such that every member of X
occurs in L. An aggregate atom is an expression of one of the forms

count{E} ≥ t, count{E} ≤ t, (2)

where E is an aggregate element, and t is a term that does not contain the
interval symbol (..). The conjunction of aggregate atoms (2) can be written as
count{E} = t.

A rule is an expression of the form

Head ← Body , (3)

where
1The description below differs slightly from the original publication [Lifschitz, 2022]: the

absolute value symbol | | is allowed in the definition of a term, and the symbols inf and sup
are not included.

3

� Body is a conjunction (possibly empty) of literals, comparisons, and ag-
gregate atoms, and

� Head is either an atom (then (3) is a basic rule), or an atom in braces
(then (3) is a choice rule), or empty (then (3) is a constraint).

A variable that occurs in a rule R is local in R if each of its occurrences is
within an aggregate element, and global otherwise. A rule is pure if, for every
aggregate element X : L in its body, all variables in the tuple X are local. For
example, the rule

q(Y)← count{X : p(X)} = Y ∧X > 0

is not pure, because X is global.
In mini-gringo with counting, a program is a finite set of pure rules.

2.2 Stable models and strong equivalence

An atom p(t) is precomputed if all members of the tuple t are precomputed
terms. The semantics of mgc is based on an operator, called τ , which trans-
forms pure rules into infinitary propositional formulas formed from precomputed
atoms [Lifschitz, 2022, Section 5]. For example, the rule

q ← count{X : p(X)} ≤ 5

is transformed by τ into the formula ∧
∆ : |∆|>5

¬
∧
x∈∆

p(x)

→ q,

where ∆ ranges over finite sets of precomputed terms, and |∆| stands for the
cardinality of ∆. The result of applying τ to a program Π is defined as the
conjunction of formulas τR for all rules R of Π.

Stable models of an mgc program Π are defined as stable models of τΠ in
the sense of Truszczynski [2012]. Thus stable models of programs are sets of
precomputed atoms.

About programs Π1 and Π2 we say that they are strongly equivalent to each
other if τΠ1 is strongly equivalent to τΠ2; in other words, if for every set Φ of
infinitary propositional formulas formed from precomputed atoms, {τΠ1} ∪ Φ
and {τΠ2} ∪ Φ have the same stable models. It is clear that if Π1 is strongly
equivalent to Π2 then, for any program Π, Π1 ∪ Π has the same stable models
as Π2 ∪Π (take Φ to be {τΠ}).

2.3 Representing MGC terms and atoms by formulas

In first-order formulas used to represent programs, we distinguish between terms
of two sorts: the sort general and its subsort integer. General variables are

4

meant to range over arbitrary precomputed terms, and we assume them to be
the same as variables used in mgc programs. Integer variables are meant to
range over numerals (or, equivalently, integers). In this paper, integer variables
are represented by letters from the middle of the alphabet (I, . . . , N).

The two-sorted signature σ0 includes

� all numerals as object constants of the sort integer ;

� all symbolic constants as object constants of the sort general ;

� the symbol | | as a unary function constant; its argument and value have
the sort integer ;

� the symbols +, − and × as binary function constants; their arguments
and values have the sort integer ;

� pairs p/n, where p is a symbolic constant and n is a nonnegative integer,
as n-ary predicate constants; their arguments have the sort general ;

� symbols (1) as binary predicate constants; their arguments have the sort
general.

Note that the definition of σ0 does not allow terms that contain a general variable
in the scope of an arithmetic operation. For example, the mgc term Y − 1 is
not a term over σ0.

A formula of the form (p/n)(t), where t is a tuple of terms, can be written
also as p(t). Thus precomputed atoms can be viewed as sentences over σ0.

The set of values of an mgc term2 t can be described by a formula over the
signature σ0 that contains a variable Z that does not occur in t [Lifschitz et
al., 2019, Fandinno and Lifschitz, 2023a]. This formula, “Z is a value of t,” is
denoted by val t(Z). Its definition is recursive, and we reproduce here two of its
clauses:

� if t is a precomputed term or a variable then val t(Z) is Z = t,

� if t is t1 op t2, where op is +, −, or × then val t(Z) is

∃IJ(val t1(I) ∧ val t2(J) ∧ Z = I op J),

where I and J are integer variables that do not occur in t.

For example, val Y−1(Z) is

∃IJ(I = Y ∧ J = 1 ∧ Z = I − J).

The translation τB transforms mgc atoms, literals and comparisons into
formulas over the signature σ0. (The superscript B conveys the idea that

2We talk about a set of values because an mgc term may contain the interval symbol. For
instance, the values of the mgc term 1..3 are 1, 2, and 3. On the other hand, the set of values
of the term a− 1, where a is a symbolic constant, is empty.

5

this translation expresses the meaning of expressions in bodies of rules.) For
example, τB transforms p(t) into the formula ∃Z(val t(Z) ∧ p(Z)). The com-
plete definition of τB can be found in earlier publications [Lifschitz et al., 2019,
Fandinno and Lifschitz, 2023a].

2.4 Representing aggregate expressions and rules

To represent aggregate expressions by first-order formulas, we need to extend the
signature σ0 [Lifschitz, 2022, Section 7]. The signature σ1 is obtained from σ0

by adding all predicate constants of the forms

AtleastX;V
F and AtmostX;V

F (4)

where X and V are disjoint lists of distinct general variables, and F is a formula
over σ0 such that each of its free variables belongs to X or to V. The number
of arguments of each of constants (4) is greater by 1 than the length of V; all
arguments are of the sort general. If n is a positive integer then the formula
AtleastX,VF (V, n) is meant to express that F holds for at least n values of X.

The intuitive meaning of AtmostX,VF (V, n) is similar: F holds for at most n
values of X.

For an aggregate atom of the form count{X : L} ≥ t in the body of a rule,
the corresponding formula over σ1 is

∃Z
(

val t(Z) ∧AtleastX;V
∃WτB(L)

(V, Z)
)
,

where

� V is the list of global variables that occur in L, and

� W is the list of local variables that occur in L and are different from the
members of X.

For example, the aggregate atom count{X : p(X)} ≥ Y is represented by the
formula

∃Z
(
Z = Y ∧AtleastX;

∃Z(Z=X∧p(Z))(Z)
)

(V and W are empty).
The formula representing count{X : L} ≤ t is formed in a similar way,

with Atmost in place of Atleast .
Now we are ready to define the translation τ∗, which transforms pure rules

into sentences over σ1. It converts a basic rule

p(t)← B1 ∧ · · · ∧Bn

into the universal closure of the formula

B∗1 ∧ · · · ∧B∗n ∧ val t(Z)→ p(Z),

where B∗i is

6

� τB(Bi), if Bi is a literal or comparison, and

� the formula representation of Bi formed as described above, if Bi is an
aggregate atom.

The definition of τ∗ for pure rules of other forms can be found in the previous
paper on mini-gringo with counting [Lifschitz, 2022, Sections 6 and 8]. For any
program Π, τ∗Π stands for the conjunction of the sentences τ∗R for all rules R
of Π.

2.5 Logic of here-and-there and standard interpretations

We are interested in deductive systems S with the following property:

for any programs Π1 and Π2,
if τ∗Π1 and τ∗Π2 can be derived from each other in S

then Π1 is strongly equivalent to Π2.
(5)

Systems with property (5) cannot possibly sanction unlimited use of classical
propositional logic. Consider, for instance, the one-rule programs

p← not q and q ← not p.

They have different stable models, although the corresponding formulas

¬q → p and ¬p→ q

have the same truth table.
This observation suggests that the study of subsystems of classical logic

may be relevant. One such subsystem is first-order intuitionistic logic (with
equality) adapted to the two-sorted signature σ1. Intuitionistic logic does have
property (5). Furthermore, this property is preserved if we extend it by the
axiom schema

F ∨ (F → G) ∨ ¬G, (6)

introduced by Hosoi [1966] as part of his formalization of the propositional logic
known as the logic of here-and-there.

The axiom schema
∃X(F → ∀X F) (7)

(for a variable X of either sort) can be included without losing property (5) as
well. It was introduced to extend the logic of here-and-there to a language with
variables and quantifiers [Lifschitz et al., 2007]. Both (6) and (7) are provable
classically, but not intuitionistically.

The axioms and inference rules discussed so far are abstract, in the sense
that they are not related to any properties of the domains of variables (except
that one is a subset of the other). To describe more specific axioms, we need
the following definition. An interpretation of the signature σ0 is standard if

� its domain of the sort general is the set of precomputed terms;

7

� its domain of the sort integer is the set of numerals;

� every object constant represents itself;

� the absolute value symbol and the binary function constants are inter-
preted as usual in arithmetic;

� predicate constants (1) are interpreted in accordance with the total order
on precomputed terms chosen in the definition of mgc (Section 2.1).

Two standard interpretations of σ0 can differ only by how they interpret the
predicate symbols p/n. If a sentence over σ0 does not contain these symbols
then it is either satisfied by all standard interpretations or is not satisfied by
any of them.

Let Std be the set of sentences over σ0 that do not contain predicate symbols
of the form p/n and are satisfied by standard interpretations. Property (5) will
be preserved if we add any members of Std to the set of axioms. The set Std
includes, for instance, the law of excluded middle F ∨ ¬F for every formula F
over σ0 that does not contain symbols p/n. Other examples of formulas from
Std are

2× 2 = 4, ∀N(N ∗N ≥ 0), t1 6= t2,

where t1, t2 are distinct precomputed terms.
To reason about mgc programs, we need also axioms for Atleast and Atmost .

A possible choice of such additional axioms is described in the next section.

3 Deductive system HTC

The deductive system HTC (“here-and-there with counting”) operates with
formulas of the signature σ2, which is obtained from σ1 (Section 2.4) by adding

the predicate constants StartX;V
F , where X and V are disjoint lists of distinct

general variables, and F is a formula over σ0 such that each of its free variables
belongs to X or to V. The number of arguments of each of these constants
is the combined length of X and V plus 1. The last argument is of the sort
integer, and the other arguments are of the sort general.

For any integer n, the formula StartX;V
F (X,V, n) is meant to express that

if n > 0 then there exists a lexicographically increasing sequence X1, . . .Xn of
values satisfying F such that the first of them is X.

3.1 Axioms of HTC

The axioms for Start define these predicates recursively:

∀XVN(N ≤ 0→ StartX;V
F (X,V, N)),

∀XV(StartX;V
F (X,V, 1)↔ F),

∀XVN(N > 0→ (StartX;V
F (X,V, N + 1)↔
F ∧ ∃U(X < U ∧ StartX;V

F (U,V, N)))).

8

Here N is an integer variable, and U is a list of distinct general variables of the
same length as X, which is disjoint from both X and V. The symbol < in the
last line denotes lexicographic order: (X1, . . . , Xm) < (U1, . . . , Um) stands for

m∨
l=1

(
(Xl < Ul) ∧

l−1∧
k=1

(Xk = Uk)

)
.

This set of axioms for Start will be denoted by D0.
The set of axioms for Atleast and Atmost , denoted by D1, defines these

predicates in terms of Start :

∀VY (AtleastX;V
F (V, Y)↔ ∃XN(StartX;V

F (X,V, N) ∧N ≥ Y)), (8)

∀VY (AtmostX;V
F (V, Y)↔ ∀XN(StartX;V

F (X,V, N)→ N ≤ Y)). (9)

In addition to the axioms listed above, we need the induction schema

FN
0
∧ ∀N

(
N ≥ 0 ∧ F → FN

N+1

)
→ ∀N(N ≥ 0→ F)

for all formulas F over σ2. The set of the universal closures of its instances will
be denoted by Ind .

The deductive system HTC is defined as first-order intuitionistic logic for
the signature σ2 extended by

� axiom schemas (6) and (7) for all formulas F , G, H over σ2, and

� axioms Std , Ind , D0 and D1.

This deductive system has property (5):

Theorem 1. For any programs Π1 and Π2, if the formula τ∗Π1 ↔ τ∗Π2 is
provable in HTC then Π1 and Π2 are strongly equivalent.

As discussed in Section 7, HTC is an extension of the system with prop-
erty (5) introduced by Lifschitz [2022]. Furthermore, in Section 4 we show that
HTC is sufficiently strong for proving the equivalence between τ∗A and τ∗B for
the programs A and B from the introduction.

3.2 Some theorems of HTC

The characterization of Atleast and Atmost given by the axioms D1 can be
simplified, if we replace the variable Y by an integer variable:

Proposition 1. The formulas

∀VN(AtleastX;V
F (V, N)↔ ∃XStartX;V

F (X,V, N)) (10)

and
∀VN(AtmostX;V

F (V, N)↔ ¬AtleastX;V
F (V, N + 1)) (11)

are provable in HTC.

9

A few other theorems of HTC :

Proposition 2. The formulas

∀VN(N ≤ 0→ AtleastX;V
F (V, N)), (12)

∀V(AtleastX;V
F (V, 1)↔ ∃XF), (13)

∀X(F → G)→ ∀XVN(StartX;V
F (X,V, N)→ StartX;V

G (X,V, N)), (14)

∀ZVN(StartX;V
F (Z,V, N) ∧N > 0→ FX

Z) (15)

are provable in HTC.

An expression of the form ExactlyX;V
F (t, t) is shorthand for the conjunction

AtleastX;V
F (t, t) ∧AtmostX;V

F (t, t)

(t is a tuple of terms, and t is a term). By (11), ExactlyX;V
F (X, N) is equivalent

in HTC to
AtleastX;V

F (X, N) ∧ ¬AtleastX;V
F (X, N + 1).

Proposition 3. The formulas

∀XY (ExactlyX;V
F (X, Y)→ ∃N(Y = N ∧N ≥ 0)) (16)

and
∀X(F ↔ G)→ ∀XY (ExactlyX;V

F (X, Y)↔ ExactlyX;V
G (X, Y)) (17)

are provable in HTC.

4 An example of reasoning about programs

In this section we show that τ∗A is equivalent to τ∗B, for the programs A and B
from the introduction, in the logic of here-and-there with counting, defined in
the previous section. The proof consists of three parts.

4.1 Part 1: Simplification

The translation τ∗ transforms program A into the conjunction of the formulas

∀Z(Z = a→ p(Z)) (18)

and
∀Y Z(∃Z1(Z1 = Y ∧AtleastX;

F (Z1))∧
∃Z2(Z2 = Y ∧AtmostX;

F (Z2)) ∧ Z = Y
→ q(Z)),

(19)

where F stands for τB(p(a) ∧ X 6= a). Formula (18) is equivalent to p(a),
and (19) is equivalent to

∀Y (AtleastX;
F (Y) ∧AtmostX;

F (Y)→ q(Y)). (20)

10

The antecedent of this implication can be written as ExactlyX;
F (Y). By (16), it

follows that the variable Y can be replaced by the integer variable N . Further-
more, by (17), formula (20) can be further rewritten as

∀N(ExactlyX;
p(a)∧X 6=a(N)→ q(N)), (21)

because F is equivalent to p(a) ∧X 6= a.
The result of applying τ∗ to B is the conjunction of (18) and

∀Y Z(∃Z1(Z1 = Y ∧AtleastX;
G (Z1))∧

∃Z2(Z2 = Y ∧AtmostX;
G (Z2))∧

∃IJ(I = Y ∧ J = 1 ∧ Z = I + J)
→ q(Z)),

where G stands for τB(p(X)). This formula can be equivalently rewritten as

∀I(ExactlyX;
G (I + 1)→ q(I))

and further as
∀I(ExactlyX;

p(X)(I + 1)→ q(I)), (22)

because G is equivalent to p(X).
Thus the claim that τ∗A is equivalent to τ∗B will be proved if we prove the

formula

p(a)→ ∀N(ExactlyX;
p(X)∧X 6=a(N + 1)↔ ExactlyX;

p(X)(N)).

It is clearly a consequence of the formula

p(a)→ ∀N(AtleastX;
p(X)∧X 6=a(N + 1)↔ AtleastX;

p(X)(N)), (23)

which is proved below.

4.2 Part 2: Three lemmas

Three lemmas will be proved in the next section:

∀XN(N > 0 ∧X > a ∧ StartX;
p(X)(X,N)→ StartX;

p(X)∧X 6=a(X,N)), (24)

∀XN(N > 0 ∧X 6= a ∧ StartX;
p(X)(X,N + 1)→ StartX;

p(X)∧X 6=a(X,N)), (25)

and

∀XN(N > 0 ∧X < a ∧ p(a) ∧ StartX;
p(X)∧X 6=a(X,N)→

StartX;
p(X)(X,N + 1)).

(26)

Using these lemmas, we will now prove (23). Assume p(a); our goal is to show
that

AtleastX;
p(X)∧X 6=a(N + 1)↔ AtleastX;

p(X)(N).

11

We consider three cases, according to the axiom

∀N(N < 0 ∨N = 0 ∨N > 0)

from Std .
If N < 0 then both sides of the equivalence are true by (12). If N = 0

then the right-hand side is true by (12), and the left-hand side follows from p(a)
by (13). Assume that N > 0.

Left-to-right: assume AtleastX;
p(X)(N + 1). By (10), there exists X such that

StartX;
p(X)(X,N + 1). (27)

Case 1: X = a, so that StartX;
p(X)(a,N + 1). By D0,

p(a) ∧ ∃U(a < U ∧ StartX;
p(X)(U,N)).

Take U such that a < U and StartX;
p(X)(U,N). By (24), it follows that

StartX;
p(X)∧X 6=a(U,N).

Then AtleastX;
p(X)∧X 6=a(N) by (10). Case 2: X 6= a. By (27) and (25),

StartX;
p(X)∧X 6=a(X,N).

By (10), it follows that AtleastX;
p(X)∧X 6=a(N).

Right-to-left: assume AtleastX;
p(X)∧X 6=a(N). Then, for some X,

StartX;
p(X)∧X 6=a(X,N) (28)

by (10), and consequently StartX;
p(X)(X,N) by (14). Case 1: X > a. Then

p(a) ∧ ∃U(a < U ∧ StartX;
p(X)(U,N))

(take U to be X). By D0, we can conclude that StartX;
p(X)(a,N + 1). Then

AtleastX;
p(X)(N+1) follows by (10). Case 2: X ≤ a. From (28) and (15), X 6= a,

so that X < a. From (28) and (26), StartX;
p(X)(X,N + 1); AtleastX;

p(X)(N + 1)

follows by (10).

4.3 Part 3: Proofs of the lemmas

Proofs of all three lemmas use induction in the form

FN
1
∧ ∀N

(
N ≥ 1 ∧ F → FN

N+1

)
→ ∀N(N ≥ 1→ F), (29)

12

which follows from Ind and Std .

Proof of (24). We need to show that for all positive N ,

∀X(X > a ∧ StartX;
p(X)(X,N)→ StartX;

p(X)∧X 6=a(X,N)). (30)

If N is 1 then (30) is equivalent to

∀X(X > a ∧ p(X)→ p(X) ∧X 6= a)

by D0; this formula follows from Std . Assume (30) for a positive N ; we need to
prove

∀X(X > a ∧ StartX;
p(X)(X,N + 1)→ StartX;

p(X)∧X 6=a(X,N + 1)).

Assume X > a ∧ StartX;
p(X)(X,N + 1). From the second conjunctive term,

p(X) ∧ ∃U(X < U ∧ StartX;
p(X)(U,N))

by D0. Take U such that X < U and StartX;
p(X)(U,N). Then U > a, so that

by the induction hypothesis, StartX;
p(X)∧X 6=a(U,N). Since p(X), X 6= a, and

X < U ,
StartX;

p(X)∧X 6=a(X,N + 1))

follows by D0.

Proof of (25). We need to show that for all positive N ,

∀X(X 6= a ∧ StartX;
p(X)(X,N + 1)→ StartX;

p(X)∧X 6=a(X,N)). (31)

To prove this formula for N equal to 1, assume that X 6= a ∧ StartX;
p(X)(X, 2).

By (15), the second conjunctive term implies p(X); StartX;
p(X)∧X 6=a(X, 1) follows

by D0. Now assume (31) for a positive N ; we need to prove

∀X(X 6= a ∧ StartX;
p(X)(X,N + 2)→ StartX;

p(X)∧X 6=a(X,N + 1)). (32)

Assume X 6= a ∧ StartX;
p(X)(X,N + 2). From the second conjunctive term we

conclude by D0 that p(X) and, for some U ,

U > X ∧ StartX;
p(X)(U,N + 1). (33)

Case 1: U = a, so that StartX;
p(X)(a,N + 1). By D0, it follows that for some V ,

V > a ∧ StartX;
p(X)(V,N). Then, by (24), StartX;

p(X)∧X 6=a(V,N). On the other

hand, p(X)∧X 6= a and V > a = U > X; the consequent of (32) follows by D0.
Case 2: U 6= a. By the induction hypothesis, from the second conjunctive term
of (33) we conclude that StartX;

p(X)∧X 6=a(U,N). Since U > X and p(X)∧X 6= a,

the consequent of (32) follows by D0.

13

Proof of (26). We need to show that for all positive N ,

∀X(X < a ∧ p(a) ∧ StartX;
p(X)∧X 6=a(X,N)→ StartX;

p(X)(X,N + 1)). (34)

To prove this formula for N equal to 1, assume that

X < a ∧ p(a) ∧ StartX;
p(X)∧X 6=a(X, 1).

By D0, the second conjunctive term implies StartX;
p(X)(a, 1), and the third term

implies p(X). Hence

p(X) ∧ ∃U(X < U ∧ StartX;
p(X)(U, 1))

(take U to be a). By D0, it follows that StartX;
p(X)(X, 2). Now assume (34) for

a positive N ; we need to prove

∀X(X < a ∧ p(a) ∧ StartX;
p(X)∧X 6=a(X,N + 1)→ StartX;

p(X)(X,N + 2)).

Assume X < a ∧ p(a) ∧ StartX;
p(X)∧X 6=a(X,N + 1). From the last conjunctive

term we conclude by D0 that p(X) and there exists U such that

X < U ∧ StartX;
p(X)∧X 6=a(U,N). (35)

From the second conjunctive term of (35), by (15), p(U) and U 6= a. Case 1:

U < a. By the induction hypothesis, StartX;
p(X)(U,N + 1). Since p(X) and

X < U , we can conclude by D0 that StartX;
p(X)(X,N + 2). Case 2: U > a.

By (14), the second conjunctive term of (35) implies StartX;
p(X)(U,N). Since

p(a) and a < U , StartX;
p(X)(a,N + 1) follows by D0. Then, since p(X) and

X < a, StartX;
p(X)(X,N + 2) follows in a similar way.

5 Comparison with the original formalization

The deductive system from the previous paper on mgc programs [Lifschitz,
2022] operates with formulas over the signature σ1 (that is, σ2 without Start
predicates). Its definition uses the following notation. If r is a precomputed
term, X is a tuple of distinct general variables, and F is a formula over σ0, then
the expression ∃≥rXF stands for

∃X1 · · ·Xn

(∧n
i=1 F

X
Xi
∧
∧
i<j ¬(Xi = Xj)

)
if r = n > 0,

>, if r ≤ 0,
⊥, if r > n for all integers n.

Here X1, . . . ,Xn are disjoint tuples of distinct general variables that do not
occur in F . The symbols > and ⊥ denote the logical constants true, false.
The equality between tuples X1, X2, . . . and Y1, Y2, . . . is understood as the

14

conjunction X1 = Y1∧X2 = Y2∧· · · . The three cases in this definition cover all
precomputed terms r, because the set of numerals is contiguous (Section 2.1).
Similarly, ∃≤rXF stands for

∀X1 · · ·Xn+1

(∧n+1
i=1 F

X
Xi
→
∨
i<jXi = Xj

)
if r = n ≥ 0,

⊥, if r < 0,
>, if r > n for all integers n.

By Defs we denote the set of all sentences of the forms

∀V
(

AtleastX;V
F (V, r)↔ ∃≥rXF

)
(36)

and
∀V

(
AtmostX;V

F (V, r)↔ ∃≤rXF
)
. (37)

These formulas are similar to the axioms D1 of HTC (Section 3.1) in the sense
that both Defs and D1 can be viewed as definitions of Atleast and Atmost . But
each formula in Defs refers to a specific value r of the last argument of Atleast ,
Atmost , whereas the last argument of Atleast , Atmost in D1 is a variable. This
difference explains why HTC may be a better tool for proving strong equivalence
than deductive systems with the axioms Defs.

Theorem 2. The formulas Defs are provable in HTC .

The formulas Defs are the only axioms of the deductive system from the
previous publication [Lifschitz, 2022] that are not included in HTC . So the
theorem above shows that all formulas provable in that system are provable in
HTC as well.

6 Deductive system HTC ′

In this section we show that combining τ∗ with an additional syntactic trans-
formation γ allows us to replace HTC by a classical first-order theory.

The signature σ′2 is obtained from the signature σ2 (Section 3.1) by adding,
for every predicate symbol p other than comparison symbols (1), a new predicate
symbol p′ of the same arity. The formula ∀X(p(X)→ p′(X)), where X is a tuple
of distinct general variables, is denoted by A(p). The set of all formulas A(p)
is denoted by A.

For any formula F over the signature σ2, by F ′ we denote the formula over σ′2
obtained from F by replacing every occurrence of every predicate symbol p other
than comparison symbols by p′. The translation γ, which relates the logic of
here-and-there to classical logic, maps formulas over σ2 to formulas over σ′2. It
is defined recursively:

� γF = F if F is atomic,

� γ(¬F) = ¬F ′,

15

� γ(F ∧G) = γF ∧ γG,

� γ(F ∨G) = γF ∨ γG,

� γ(F → G) = (γF → γG) ∧ (F ′ → G′),

� γ(∀X F) = ∀X γF ,

� γ(∃X F) = ∃X γF .

To apply γ to a set of formulas means to apply γ to each of its members.
By HTC ′ we denote the classical first-order theory over the signature σ′2

with the axioms A, γ(Ind), Std , γD0 and γD1.

Theorem 3. A sentence F ↔ G over the signature σ2 is provable in HTC iff
γF ↔ γG is provable in HTC ′.

Corollary 1. A sentence F over the signature σ2 is provable in HTC iff γF is
provable in HTC ′.

Proof. In Theorem 3, take G to be >.

From Theorems 1 and 3 we conclude that mgc programs Π1 and Π2 are
strongly equivalent if the formula γτ∗Π1 ↔ γτ∗Π2 is provable in HTC ′.

7 Deductive system HTC ω

In case of the language mini-gringo, using inference rules with infinitely many
premises allows us to define a deductive system that satisfies not only condi-
tion (5) but also its converse: programs Π1, Π2 are strongly equivalent if and
only if τ∗Π1 and τ∗Π2 can be derived from each other [Fandinno and Lifschitz,
2023a, Theorem 6]. In this section we define a deductive system with the same
property for the language mgc. This system, like the deductive system from
the previous publication on mgc [Lifschitz, 2022], does not require extending
the signature σ1.

The system HTCω is an extension of first-order intuitionistic logic formalized
as the natural deduction system Int [Fandinno and Lifschitz, 2023a, Section 5.1]

for the signature σ1. Its derivable objects are sequents—expressions Γ ⇒ F ,
where Γ is a finite set of formulas over σ1 (“assumptions”), and F is a formula
over σ1. A sequent of the form ⇒ F is identified with the formula F . The
system HTCω is obtained from Int by adding

� axiom schemas (6) and (7) for all formulas F , G, H over σ1,

� axioms Std and Defs, and

� the ω-rules
Γ⇒ FXt for all precomputed terms t

Γ⇒ ∀X F
,

16

where X is a general variable, and

Γ⇒ FNn for all integers n

Γ⇒ ∀N F
,

where N is an integer variable.

Induction axioms are not on this list, but the instances of the induction
schema Ind for all formulas F over σ1 are provable in HTCω. Indeed, we can
prove in HTCω the sequents

FN
0
∧ ∀N

(
N ≥ 0 ∧ F → FN

N+1

)
⇒ n ≥ 0→ F

for all integers n; then Ind can be derived by the second ω-rule followed by
implication introduction.

Theorem 4. For any mgc programs Π1 and Π2, the formula τ∗Π1 ↔ τ∗Π2 is
provable in HTCω iff Π1 and Π2 are strongly equivalent.

The system HTCω is not an extension of HTC , because its axioms say
nothing about the predicate symbols StartX;V

F . But all theorems of HTC that
do not contain these symbols are provable in HTCω:

Theorem 5. Every sentence over the signature σ1 provable in HTC is provable
in HTCω.

8 Proofs of Propositions 1–3

8.1 A few more theorems of HTC

The symbols ≤ and < between tuples refer to lexicographic order, as in Sec-
tion 3.1.

Claim: If X, W are disjoint tuples of distinct general variables of the same
length, and the variables W are not free in F , then the formula

∀XWVN(StartX;V
F (X,V, N) ∧W ≤ X ∧ FX

W → StartX;V
F (W,V, N)) (38)

is provable in HTC .

Proof. By D0, if N ≤ 0 then StartX;V
F (W,V, N); also, if N = 1 then

FX
W → StartX;V

F (W,V, N).

It remains to prove

N > 0∧StartX;V
F (X,V, N+1)∧W ≤ X∧FX

W → StartX;V
F (W,V, N+1). (39)

(This assertion is justified by the formula

∀N(N ≤ 0 ∨N = 1 ∨ ∃M(N = M + 1 ∧M > 0)),

17

which belongs to Std .) Assume the antecedent of (39). From the first two
conjunctive terms, by D0, we can conclude that there exists U such that

X < U ∧ StartX;V
F (U,V, N).

In combination with the last two conjunctive terms, we get

FX
W ∧W < U ∧ StartX;V

F (U,V, N).

Now the consequent of (39) follows by D0.

Claim: The formula

∀XVN(StartX;V
F (X,V, N + 1)→ StartX;V

F (X,V, N)) (40)

is provable in HTC .

Proof. If N ≤ 0 then the consequent of (40) follows from D0. If N > 0 then,
by D0, the antecedent of (40) implies

F ∧ ∃U(X < U ∧ StartX;V
F (U,V, N)).

Thus there exists U such that StartX;V
F (U,V, N)∧X < U∧F . The consequent

of (40) follows by (38).

Claim: The formula

∀XVMN(StartX;V
F (X,V,M) ∧M ≥ N → StartX;V

F (X,V, N)) (41)

is provable in HTC .

Proof. Since M ≥ N is equivalent to ∃K(K ≥ 0 ∧M = N + K), formula (41)
can be rewritten as

∀K(K ≥ 0→ ∀XVN(StartX;V
F (X,V, N +K)→ StartX;V

F (X,V, N))).

The proof is by induction Ind . The basis

∀XVN(StartX;V
F (X,V, N)→ StartX;V

F (X,V, N + 0))

follows from the Std axiom ∀N(N + 0 = N). The induction hypothesis is

K ≥ 0 ∧ ∀XVN(StartX;V
F (X,V, N +K)→ StartX;V

F (X,V, N));

we need to derive

∀XVN(StartX;V
F (X,V, N +K + 1)→ StartX;V

F (X,V, N)).

Assume StartX;V
F (X,V, N + K + 1). Then, by (40), StartX;V

F (X,V, N + K),

and StartX;V
F (X,V, N) follows by the induction hypothesis.

18

8.2 Proof of Proposition 1

Proof of (10). By D1, the left-hand side of (10) is equivalent to

∃XM(StartX;V
F (X,V,M) ∧M ≥ N).

From (41) we can conclude that

∃M(StartX;V
F (X,V,M) ∧M ≥ N)

is equivalent to StartX;V
F (X,V, N).

Claim: The formula

∀VN(AtmostX;V
F (V, N)↔ ¬∃XStartX;V

F (X,V, N + 1)) (42)

is provable in HTC .

Proof. By D1, the left-hand side of (42) is equivalent to

∀XM(StartX;V
F (X,V,M)→M ≤ N)

and consequently to

¬∃XM(StartX;V
F (X,V,M) ∧M > N).

The formula
∃M(StartX;V

F (X,V,M) ∧M > N)

is equivalent to
∃M(StartX;V

F (X,V,M) ∧M ≥ N + 1)

and, by (41), to StartX;V
F (X,V, N + 1).

Formula (11) follows from (10) and (42).

8.3 Proof of Proposition 2

Formulas (12) and (13) follow from (10) and D0.

Claim: Formula (14) is provable in HTC .

Proof. Assume ∀X(F → G). If N ≤ 0 then StartX;V
G (X,V, N) by D0. For

positive N , the proof is by induction (29). The basis

StartX;V
F (X,V, 1)→ StartX;V

G (X,V, 1)

is equivalent to F → G by D0. Take a positive N and assume

∀XV(StartX;V
F (X,V, N)→ StartX;V

G (X,V, N));

19

we want to show that

∀XV(StartX;V
F (X,V, N + 1)→ StartX;V

G (X,V, N + 1)). (43)

Assume StartX;V
F (X,V, N + 1). By D0,

F ∧ ∃U(X < U ∧ StartX;V
F (U,V, N)).

Then G and, by the induction hypothesis,

∃U(X < U ∧ StartX;V
G (U,V, N)).

The consequent of (43) follows by D0.

Claim: Formula (15) is provable in HTC .

Proof. Since

∀N(N > 0→ N = 1 ∨ ∃M(N = M + 1 ∧M > 0))

(Group Std axiom), it is sufficient to show that

∀Z(StartX;V
F (Z,V, 1)→ FX

Z)

and
∀ZVN(StartX;V

F (Z,V, N + 1) ∧N > 0→ FX
Z).

Both formulas follow from axioms D0.

8.4 Proof of Proposition 3

Proof of (16). Assume ExactlyX;V
F (X, Y). Then AtmostX;V

F (X, Y). From D0

and D1 we can conclude that

∀VY (AtmostX;V
F (V, Y)→ 0 ≤ Y).

Hence 0 ≤ Y . On the other hand, AtleastX;V
F (X, Y), so that ∃N(N ≥ Y) by D1.

Thus ∃N(0 ≤ Y ≤ N). It remains to observe that the formula

∀Y (∃N(0 ≤ Y ≤ N)→ ∃N(Y = N ∧N ≥ 0))

is a group Std axiom, because the set of numerals is contiguous.

Claim: The formula

∀X(F → G)→ ∀XY (AtleastX;V
F (X, Y)→ AtleastX;V

G (X, Y)) (44)

is provable in HTC .

20

Proof. Assume ∀X(F → G) and AtleastX;V
F (X, Y). By D1,

∃XN(StartX;V
F (X,V, N) ∧N ≥ Y)).

Then ∃XN(StartX;V
G (X,V, N)∧N ≥ Y)) by (14), and AtleastX;V

G (X, Y) follows
by D1.

Claim: The formula

∀X(F → G)→ ∀XY (AtmostX;V
G (X, Y)→ AtmostX;V

F (X, Y)) (45)

is provable in HTC .

Proof. Assume ∀X(F → G) and AtmostX;V
G (X, Y). By D1,

∀XN(StartX;V
G (X,V, N)→ N ≤ Y)).

Then ∀XN(StartX;V
F (X,V, N) → N ≤ Y)) by (14), and AtmostX;V

F (X, Y)
follows by D1.

Formula (17) follows from (44) and (45).

9 Proof of Theorem 2

9.1 A few more theorems of HTC, continued

Claim: Let F be a formula over σ0, let U, W are disjoint tuples of distinct
general variables of the same length such that the variables W are not free
in F , and let n is a positive integer. The formula

∃≥n+1UF ↔ ∃U(F ∧ ∃≥nW(U <W ∧ FU
W)) (46)

is provable in HTC .

Proof. Left-to-right: take U1, . . . ,Un+1 such that

n+1∧
i=1

FU
Ui
∧
∧
i<j

¬(Ui = Uj). (47)

We reason by cases, using the axiom

n+1∨
k=1

n+1∧
i=1

Uk ≤ Ui

from Std (“for some k, Uk is lexicographically first among U1, . . . ,Un+1”).

Consider the k-th case
∧n+1
i=1 Uk ≤ Ui. From (47),

Uk < Ui and FU
Ui

(i = 1, . . . , n+ 1; i 6= k)

21

and
¬(Ui = Uj) (1 ≤ i < j ≤ n+ 1; i, j 6= k).

Hence ∃≥nW(Uk <W ∧ FU
W). Since FU

Uk
, it follows that

∃U(F ∧ ∃≥nW(U <W ∧ FU
W)).

Right-to-left: assume

∃U

F ∧ ∃W1 · · ·Wn

 n∧
i=1

(U <Wi ∧ FU
Wi

) ∧
∧
i<j

¬(Wi = Wj)

 .

This formula is equivalent to

∃UW1 · · ·Wn

F ∧ n∧
i=1

(U <Wi ∧ FU
Wi

) ∧
∧
i<j

¬(Wi = Wj)


and can be rewritten as

∃W0W1 · · ·Wn

FU
W0
∧

n∧
i=1

(W0 <Wi ∧ FU
Wi

) ∧
∧

1≤i<j≤n

¬(Wi = Wj)

 .

It implies

∃W0W1 · · ·Wn

 n∧
i=0

FU
Wi
∧

∧
0≤i<j≤n

¬(Wi = Wj)

 ,

which is equivalent to ∃≥n+1UF .

Claim: If X, U are disjoint tuples of distinct general variables of the same
length, the variables U are not free in F , and n > 0, then the sentence

∀XV(∃U(X < U ∧ StartX;V
F (U,V, n))↔ ∃≥nU(X < U ∧ FX

U)) (48)

is provable in HTC .

Proof. By induction on n. If n = 1 then StartX;V
F (U,V, n) in the left-hand side

of (48) is equivalent to FX
U by D0, and the right-hand side of (48) is equivalent

to ∃U(X < U ∧ FX
U). Induction step: we will show that the formula

∀XV(∃U(X < U ∧ StartX;V
F (U,V, n+ 1))↔ ∃≥n+1U(X < U ∧ FX

U)) (49)

is derivable from (48) in HTC . By (46), the right-hand side of (49) is equivalent
to

∃U(X < U ∧ FX
U ∧ ∃≥nW(U <W ∧X <W ∧ FX

W)). (50)

22

In the presence of X < U, the subformula U < W ∧X < W is equivalent to
U <W. Hence (50) is equivalent to

∃U(X < U ∧ FX
U ∧ ∃≥nW(U <W ∧ FX

W)). (51)

On the other hand, (48) can be rewritten as

∀XV(∃W(X <W ∧ StartX;V
F (W,V, n))↔ ∃≥nW(X <W ∧ FX

W)),

and it implies

∃W(U <W ∧ StartX;V
F (W,V, n))↔ ∃≥nW(U <W ∧ FX

W).

It follows that (51) is equivalent to

∃U(X < U ∧ FX
U ∧ ∃W(U <W ∧ StartX;V

F (W,V, n))).

By D0, this formula is equivalent to the left-hand side of (49).

Claim: If U is a tuple of distinct general variables of the same length as X such
that its members do not belong to X and are not free in F then the sentence

∀V(∃UStartX,VF (U,V, n)↔ ∃≥nUFX
U) (52)

is provable in HTC .

Proof. The following is one of the axioms of Std :

n ≤ 0 ∨ n = 1 ∨ n > 1.

Case 1: n ≤ 0. The right-hand side of (52) is > and its left-hand side follows
from D0. Case 2: n = 1. The right-hand side of (52) is ∃X1F

X
X1

and (52) is

immediate from D0. Case 3: n > 1. The left-hand side of (52) is equivalent to

∃X(F ∧ ∃U(X < U ∧ StartX;V
F (U,V, n− 1)))

by D0, and the right-hand side is equivalent to

∃X(F ∧ ∃≥n−1U(X < U ∧ FX
U))

by (46). These two formulas are equivalent to each other by (48).

Claim: For any formula F over σ0 and any nonnegative integer n, the formula

∃≤nXF ↔ ¬∃≥n+1XF. (53)

is provable in HTC .

23

Proof.

¬∃≥n+1XF = ¬∃X1 · · ·Xn+1

(∧n+1
i=1 F

X
Xi
∧
∧
i<j ¬(Xi = Xj)

)
↔ ∀X1 · · ·Xn+1¬

(∧n+1
i=1 F

X
Xi
∧
∧
i<j ¬(Xi = Xj)

)
↔ ∀X1 · · ·Xn+1

(∧n+1
i=1 F

X
Xi
→ ¬

∧
i<j ¬(Xi = Xj)

)
↔ ∀X1 · · ·Xn+1

(∧n+1
i=1 F

X
Xi
→
∨
i<jXi = Xj

)
= ∃≤nXF.

9.2 Proof of Theorem 2, Part 1

We will show now that for every precomputed term r, sentence (36) is provable
in HTC .

Case 1: r ≤ 0; (36) is

∀V
(

AtleastX;V
F (V, r)↔ >

)
. (54)

From D1,

∀VX(StartX;V
F (X,V, 0) ∧ 0 ≥ r → AtleastX;V

F (V, r)).

The conjunctive term StartX;V
F (X,V, 0) follows from D0, and second conjunc-

tive term 0 ≥ r is an axiom of Std . Consequently AtleastX;V
F (V, r), which is

equivalent to (54).

Case 2: for all n, r > n; (36) is

∀V
(

AtleastX;V
F (V, r)↔ ⊥

)
. (55)

Assume AtleastX;V
F (V, r). From D1,

∀V(AtleastX;V
F (V, r)→ ∃XN(StartX;V

F (X,V, N) ∧N ≥ r)).

Consequently ∃N(N ≥ r), which contradicts the Std axiom ∀N¬(N ≥ r).

Case 3: for some n, 0 < r ≤ n. Since the set of numerals is contiguous, r is a
numeral m (m > 0). By (10), formula (36) can be rewritten as

∀V
(
∃XStartX;V

F (X,V,m)↔ ∃≥mXF
)
,

which is the universal closure of (52).

24

9.3 Proof of Theorem 2, Part 2

We will show now that for every precomputed term r, sentence (37) is provable
in HTC .

Case 1: r < 0; (37) is

∀V
(

AtmostX;V
F (V, r)↔ ⊥

)
. (56)

From D1,

AtmostX;V
F (V, r)→ ∀X(StartX;V

F (X,V, 0)→ 0 ≤ r).

By D0, StartX;V
F (X,V, 0), so that

AtmostX;V
F (V, r)→ 0 ≤ r.

From the Std axiom ¬(0 ≤ r) we conclude that ¬AtmostX;V
F (V, r), which is

equivalent to (56).

Case 2: for all n, r > n; (37) is

∀V
(

AtmostX;V
F (V, r)↔ >

)
. (57)

From D1,

∀V(∀XN(StartX;V
F (X,V, N)→ N ≤ r)→ AtmostX;V

F (V, r)).

The antecedent ∀XN(StartX;V
F (X,V, N)→ N ≤ r) follows from the Std axiom

∀N(N ≤ r). Hence AtmostX;V
F (V, r), which is equivalent to (57).

Case 3: for some n, 0 ≤ r ≤ n. Since the set of numerals is contiguous r is a
numeral m (m ≥ 0), so that (37) is

∀V
(

AtmostX;V
F (V,m)↔ ∃≤mXF

)
.

By (11) and (53), this formula is equivalent to

∀V
(
¬AtleastX;V

F (V,m+ 1)↔ ¬∃≥m+1XF
)
,

which follows from (36).

10 Review: HT-interpretations

A propositional HT-interpretation is a pair 〈X ,Y〉, where Y is a set of propo-
sitional atoms, and X is a subset of Y. In terms of Kripke models with two
worlds, X is the here-world, and Y is the there-world. The recursive defini-
tion of the satisfaction relation between HT-interpretations and propositional

25

formulas can be extended to infinitary propositional formulas [Truszczynski,
2012, Definition 2]. Equilibrium models of a set of formulas [Pearce, 1997,
Pearce, 1999] are defined as its HT-models satisfying a certain minimality con-
dition. A set X of atoms is a stable model of a set of infinitary propositional
formulas iff 〈X ,X〉 is an equlibrium model of that set [Truszczynski, 2012, The-
orem 3]. Thus stable models of an mgc program Π can be characterized as
sets X such that 〈X ,X〉 is an equlibrium model of τΠ.

The definition of a many-sorted HT-interpretation [Fandinno et al., 2024,
Appendices A and B] extends this construction to many-sorted first-order lan-
guages. In classical semantics of first-order formulas, the recursive definition
of the satisfaction relation between an interpretation I of a signature σ and
a sentence F over σ involves extending σ by new object constants d∗, which
represent elements d of the domain of I [Lifschitz et al., 2008, Section 1.2.2].
The extended signature is denoted by σI . In the definition of a many-sorted
HT-interpretation, the predicate symbols of σ are assumed to be partitioned
into extensional and intensional. For any interpretation I of such a signature σ,
I↓ stands for the set of all atomic sentences over σI that have the form p(d∗),
where p is intensional, d is a tuple of elements of appropriate domains of σ, and
I |= p(d∗). An HT-interpretation of a many-sorted signature σ is a pair 〈H, I〉,
where I is an interpretation of σ, and H is a subset of I↓. In terms of Kripke
models, I is the there-world, and H describes the intensional predicates in the
here-world.

The satisfaction relation between HT-interpretations and sentences is de-
noted by |=ht, to distinguish it from classical satisfaction. According to the
persistence property of this relation, 〈H, I〉 |=ht F implies I |= F for every
sentence F over σ [Fandinno et al., 2024, Proposition 3(a)].

The soundness and completeness theorem for the many-sorted logic of here-
and-there [Fandinno and Lifschitz, 2023a, Theorem 2] can be stated as follows:

For any set Γ of sentences over a many-sorted signature σ and any sentence F
over σ, the following two conditions are equivalent:

(i) every HT-interpretation of σ satisfying Γ satisfies F ;

(ii) F can be derived from Γ in first-order intuitionistic logic extended by

– axiom schemas (6) and (7) for all formulas F , G, H over σ;

– the axioms
X = Y ∨X 6= Y, (58)

where X and Y are variables of the same sort;

– the axioms
p(X) ∨ ¬p(X), (59)

where p is an extensional predicate symbol, and X is a tuple of distinct
variables of appropriate sorts.

The deductive system described in clause (ii) is denoted by SQHT = [Fandinno
and Lifschitz, 2023a, Section 5.1].

26

11 Proof of Theorem 3

In the special case of the signature σ2 (Section 3.1), we designate compari-
son symbols (1) as extensional, and all other predicate symbols (that is, p/n,

AtleastX;V
F , AtmostX;V

F and StartX;V
F) as intensional. This convention allows

us to generalize some of the definitions from Section 6 to arbitrary many-sorted
signatures with predicate constants classified into extensional and intensional.
For any such signature σ, by σ′ we denote the signature obtained from it by
adding, for every intensional constant p, a new predicate constant p′ of the same
arity. The formula

∀X(p(X)→ p′(X)), (60)

where p is intensional and X is a tuple of distinct variables of appropriate sorts,
is denoted by A(p), and A stands for the set of these formulas for all intensional
predicate constants p. For any formula F over the signature σ, by F ′ we denote
the formula over σ′ obtained from F by replacing every occurrence of every
intensional predicate symbol p by p′. Then the transformation γ is defined as
in Section 6.

For any HT-interpretation 〈H, I〉 of σ, IH stands for the interpretation of σ′

that has the same domains as I, interprets function constants and extensional
predicate constants of σ in the same way as I, and interprets the other predicate
constants p, p′ as follows:

IH |= p(d∗) iff p(d∗) ∈ H;
IH |= p′(d∗) iff I |= p(d∗).

(61)

From the second line of (61) we can derive a more general assertion:

IH |= p′(t) iff I |= p(t) (62)

for every tuple t of ground terms over the signature σI . Indeed, the value

assigned to t by the interpretation IH (symbolically, tI
H

) is the same as the
value tI , assigned to t by I, because IH and I interpret all symbols occurring
in t in the same way. In the second line of (61), take d to be the common value

of tI
H

and tI . Then

IH |= p′
((

tI
H
)∗)

iff I |= p
((

tI
)∗)

,

which is equivalent to (62).

Lemma 1. An interpretation of the signature σ′ satisfies A iff it can be repre-
sented in the form IH for some HT-interpretation 〈H, I〉.

Proof. For the if-part, take any formula (60) from A. We need to show that IH

satisfies all sentences of the form p(d∗) → p′(d∗). Assume that IH |= p(d∗).
Then p(d∗) ∈ H ⊆ I↓, and consequently I |= p(d∗), which is equivalent to
IH |= p′(d∗).

27

For the only-if part, take any interpretation J of σ′ that satisfies A. Let I be
the interpretation of σ that has the same domains as J , interprets function con-
stants and extensional predicate constants in the same way as J , and interprets
every intensional p in accordance with the condition

I |= p(d∗) iff J |= p′(d∗). (63)

Take H to be the set of all atoms of the form p(d∗) with intensional p that are
satisfied by J . Since J satisfiesA, J satisfies p′(d∗) for every atom p(d∗) fromH.
By (63), it follows that all atoms from H are satisfied by I, so that H is a subset
of I↓. It follows that 〈H, I〉 is an HT-interpretation. Let us show that IH = J .
Each of the interpretations IH and J has the same domains as I and interprets
all function constants and extensional predicate constants in the same way as I.
For every intensional p and any tuple d of elements of appropriate domains,
each of the conditions IH |= p(d∗), J |= p(d∗) is equivalent to p(d∗) ∈ H, and
each of the conditions IH |= p′(d∗), J |= p′(d∗) is equivalent to I |= p(d∗).

Lemma 2. For every HT-interpretation 〈H, I〉 of σ and every sentence F over
the signature σI , IH |= F ′ iff I |= F .

Proof. We will consider the case when F is a ground atom p(t); extension to
arbitrary sentences by induction is straightforward. If p is intensional then F ′

is p′(t), so that the assertion of the lemma turns into property (62). If p is
extensional then F ′ is p(t); IH |= p(t) iff I |= p(t) because IH interprets all
symbols occurring in F in the same way as I.

Lemma 3. For every HT-interpretation 〈H, I〉 of σ and every sentence F over
the signature σI , IH |= γF iff 〈H, I〉 |=ht F .

Proof. The proof is by induction on the number of propositional connectives
and quantifiers in F . We consider below the more difficult cases when F is an
atomic formula, a negation, or an implication.

Case 1: F is an atomic formula p(t). Then γF is p(t) too; we need to check
that

IH |= p(t) iff 〈H, I〉 |=ht p(t). (64)

Case 1.1: p is intensional. Let d be the common value of tI
H

and tI . The left-
hand side of (64) is equivalent to IH |= p(d∗) and consequently to p(d∗) ∈ H.

The right-hand side of (64) is equivalent to p
((

tI
)∗) ∈ H, which is equivalent

to p(d∗) ∈ H as well.

Case 1.2: p is extensional. Each of the conditions IH |= p(t), 〈H, I〉 |=ht p(t) is
equivalent to I |= p(t).

Case 2: F is ¬G. Then γF is ¬G′; we need to check that

IH 6|= G iff 〈H, I〉 |=ht ¬G′.

28

By Lemma 2, the left-hand side is equivalent to I 6|= G′. From the definition
of |=ht we can conclude that the right-hand side is equivalent to I 6|= G′ as well.

Case 3: F is G → H. Then γF is (γG → γH) ∧ (G′ → H ′), so that the
condition IH |= γF holds iff

IH 6|= γG or IH |= γH (65)

and
IH |= G′ → H ′. (66)

By the induction hypothesis, (65) is equivalent to

〈H, I〉 6|=ht G or 〈H, I〉 |=ht H. (67)

By Lemma 2, (66) is equivalent to

I |= G→ H. (68)

The conjunction of (67) and (68) is equivalent to 〈H, I〉 |=ht G→ H.

Proof of Theorem 3. To prove a formula in HTC means to derive it in first-
order intuitionistic logic from (6), (7), Std , Ind , D0 and D1. Since the universal
closures of (58) and (59) belong to Std , it follows that a formula is provable in
HTC iff it can be derived from Std , Ind , D0 and D1 in SQHT =. Consequently
F ↔ G is provable in HTC iff

G can be derived in SQHT = from Std , Ind , D0, D1 and F (69)

and
F can be derived in SQHT = from Std , Ind , D0, D1 and G. (70)

By the soundness and completeness theorem quoted in Section 10, (69) is equiv-
alent to the condition

G is satisfied by every HT-interpretation of σ2

that satisfies Std , Ind , D0, D1 and F .

By Lemma 3, this condition can be further reformulated as follows:

for every HT-interpretation 〈H, I〉 of σ2, IH satisfies γG
if IH satisfies γ(Ind), γ(Std), γD0, γD1 and γF .

Then, by Lemma 1, (69) is equivalent to the condition

γG is satisfied by every interpretation of σ′2
that satisfies A, γ(Ind), γ(Std), γD0, γD1 and γF .

Similarly, (70) is equivalent to the condition

γF is satisfied by every interpretation of σ′2
that satisfies A, γ(Ind), γ(Std), γD0, γD1 and γG.

29

Consequently F ↔ G is provable in HTC iff

γF ↔ γG is satisfied by every interpretation of σ′2
that satisfies A, γ(Ind), γ(Std), γD0, and γD1.

Since all predicate constants occurring in Std are comparisons, γ(Std) is equiv-
alent to Std , so that γ(Std) here can be replaced by Std . It remains to observe
that A, γ(Ind), Std , γD0 and γD1 is the list of all axioms of HTC ′.

12 Standard HT-interpretations

In preparation for the proof of Theorem 4, we describe here the class of standard
HT-interpretations of the signature σ1 and prove the soundness and complete-
ness of HTCω with respect to standard HT-interpretations.

An interpretation of σ1 is standard if its restriction to σ0 is standard (see
Section 2.5) and it satisfies Defs. For every set X of precomputed atoms, X ↑
stands for the standard interpretation of σ1 defined by the following conditions:

(a) a precomputed atom is satisfied by X ↑ iff it belongs to X ;

(b) an extended precomputed atom AtleastX;V
F (v, r) is satisfied by X ↑ iff

X ↑ |= (∃≥rXF)
V
v ;

(c) an extended precomputed atom AtmostX;V
F (v, r) is satisfied by X ↑ iff

X ↑ |= (∃≤rXF)
V
v .

The operation X 7→ X ↑ is opposite to the operation I 7→ I↓ defined in Section 10,
in the sense that

� for any standard interpretation I of σ1, (I↓)↑ = I, and

� for any set X of precomputed atoms, the set of precomputed atoms in (X ↑)↓
is X .

This construction is extended to HT-interpretations as follows. An HT-inter-
pretation 〈H, I〉 of σ1 is standard if the restriction of I to σ0 is standard and
〈H, I〉 satisfies Defs. For any standard HT-interpretation 〈H, I〉, I satisfies
Defs by the persistence property of HT-interpretations (Section 10), so that I
is standard as well. For any pair X , Y of sets of precomputed atoms such that
X ⊆ Y, the pair

〈
X ,Y↑

〉
is an HT-interpretation of σ1, because X ⊆ Y ⊆ (Y↑)↓.

LetH be the superset of X obtained from it by adding all extended precomputed
atoms AtleastX;V

F (v, r) such that〈
X ,Y↑

〉
|=ht (∃≥rXF)

V
v

30

and all extended precomputed atoms AtmostX;V
F (v, r) such that〈

X ,Y↑
〉
|=ht (∃≤rXF)

V
v .

For every atom AtleastX;V
F (v, r) in H,

Y↑ |= (∃≥rXF)
V
v

by persistence. Consequently every such atom belongs to (Y↑)↓. Similarly, every

atom AtmostX;V
F (v, r) in H belongs to (Y↑)↓ as well. It follows that

〈
H,Y↑

〉
is

an HT-interpretation of σ1. We denote this HT-interpretation by 〈X ,Y〉↑.
This HT-interpretation is standard. Indeed, a precomputed atom of the form

AtleastX;V
F (v, r) belongs to H iff the formula (∃≥rXF)

V
v is satisfied by 〈X ,Y〉↑,

because this HT-interpretation interprets sentences over the signature σ0 in the
same was as

〈
X ,Y↑

〉
. Similarly, AtmostX;V

F (v, r) belongs to H iff the formula

(∃≤rXF)
V
v is satisfied by 〈X ,Y〉↑. It follows that 〈X ,Y〉↑ satisfies Defs.

Conversely, every standard HT-interpretation of σ1 can be represented in the
form 〈X ,Y〉↑. Indeed, for any standard HT-interpretation 〈H, I〉 of σ1, take X
to be the set of precomputed atoms in H, and take Y to be I↓. Then

X ⊆ H ⊆ I↓ = Y

and
〈X ,Y〉↑ =

〈
H,Y↑

〉
=
〈
H, (I↓)↑

〉
= 〈H, I〉.

Soundness and Completeness Theorem. For any set Γ of sentences over σ1

and any sentence F over σ1, F can be derived from Γ in HTCω iff every standard
HT-interpretation satisfying Γ satisfies F .

The proof of the theorem refers to ω-interpretations of many-sorted sig-
natures [Fandinno and Lifschitz, 2023a, Section 5.2]. In case of the signa-
tures σ0, σ1 and σ2, ω-interpretations are characterized by two conditions:

� every element of the domain of general variables is represented by a pre-
computed term;

� every element of the domain of integer variables is represented by a nu-
meral.

An ω-model of a set Γ of sentences is an HT-interpretation 〈H, I〉 satisfying Γ
such that I is an ω-interpretation.

Lemma 4. An HT-interpretation of σ1 is isomorphic to a standard HT-inter-
pretation iff it is an ω-model of Std and Defs.

Proof. The only-if part is obvious. If 〈H, I〉 is an ω-model of Std and Defs then
the function that maps every precomputed term to the corresponding element
of the domain of general variables in I is an isomorphism between a standard
HT-interpretation and 〈H, I〉.

31

Proof of the soundness and completeness theorem. The deductive system SQHTω

[Fandinno and Lifschitz, 2023a, Section 5.3] for the signature σ1 can be described
as SQHT = (see Section 10) extended by the two ω-rules from Section 7. Ac-
cording to Theorem 4 from that paper, for any set Γ of sentences over σ1 and
any sentence F over σ1, F can be derived from Γ in SQHTω iff every ω-model
of Γ satisfies F . On the other hand, HTCω can be described as SQHTω ex-
tended by the axioms Std and Defs. It follows that for any set Γ of sentences
over σ1 and any sentence F over σ1, F can be derived from Γ in HTCω iff every
ω-model of Std , Defs and Γ satisfies F . The assertion of the theorem follows by
Lemma 4.

13 Grounding

Recall that in Section 11 we subdivided the predicate symbols of the signature σ2

into extensional and intensional. This classification applies, in particular, to
the predicate symbols of σ1: comparison symbols (1) are extensional, and the

symbols p/n, AtleastX;V
F and AtmostX;V

F are intensional. Extended precomputed
atoms are atomic formulas p(t) over the signature σ1 such that p is intensional,
and t is a tuple of precomputed terms.

The proof of Theorem 4 refers to the grounding transformation F 7→ F prop,
which converts sentences over σ0 into infinitary propositional combinations of
precomputed atoms, and sentences over σ1 into infinitary propositional combina-
tions of extended precomputed atoms [Truszczynski, 2012, Section 3], [Lifschitz
et al., 2019, Section 5], [Lifschitz, 2022, Section 10], [Fandinno et al., 2024,
Section 8].3 This transformation is defined as follows:

� if F is p(t), where p is intensional, then F prop is obtained from F by
replacing each member of t by the precomputed term obtained from it by
evaluating arithmetic functions;

� if F is t1 ≺ t2, then F prop is > if the values of t1 and t2 are in the
relation ≺, and ⊥ otherwise;

� (¬F)prop is ¬F prop;

� (F �G)prop is F prop �Gprop for every binary connective �;

� (∀X F)prop is the conjunction of the formulas (FXt)prop over all precom-
puted terms t if X is a general variable, and over all numerals t if X is an
integer variable;

� (∃X F)prop is the disjunction of the formulas (FXt)prop over all precom-
puted terms t if X is a general variable, and over all numerals t if X is an
integer variable.

3In some of these papers, the transformation F 7→ Fprop is denoted by gr . We take the
liberty to identify precomputed terms t with their names t∗.

32

For any set Γ of sentences over σ1, Γprop stands for {F prop : F ∈ Γ}.
The lemma below relates the meaning of a sentence over σ1 to the meaning

of its grounding. It is similar to Proposition 4 from Truszczynski’s article [2012]
and can be proved by induction in a similar way.

Lemma 5. For any HT-interpretation 〈H, I〉 of σ1 such that the restriction of I
to σ0 is standard, and any sentence F over σ1,

〈H, I〉 |=ht F iff
〈
H, I↓

〉
|=ht F

prop.

The next lemma relates (τ∗Π)prop to τΠ.

Lemma 6. For any mgc program Π, every propositional HT-interpretation
satisfying Defsprop satisfies also the formula (τ∗Π)prop ↔ τΠ.

Proof. It is sufficient to consider the case when Π is a single pure rule R. The
equivalence (τ∗R)prop ↔ τR is provable in the deductive systemHT∞+Defsprop

[Lifschitz, 2022, Theorem 1]. The assertion of the lemma follows from this
theorem, because every HT-interpretation satisfies all axioms of HT∞, and
satisfaction is preserved by the inference rules of HT∞.

14 Proof of Theorem 4

Lemma 7. For any mgc program Π and any sets X , Y of precomputed atoms
such that X ⊆ Y,

〈X ,Y〉↑ |=ht τ
∗Π (71)

iff 〈X ,Y〉 |=ht τΠ.

Proof. Condition (71) can be rewritten as
〈
H,Y↑

〉
|=ht τ

∗Π, and, by Lemma 5,
it is equivalent to 〈

H, (Y↑)↓
〉
|=ht (τ∗Π)prop. (72)

On the other hand, 〈
H,Y↑

〉
= 〈X ,Y〉↑ |=ht Defs.

By Lemma 5, it follows that
〈
H, (Y↑)↓

〉
satisfies Defsprop. By Lemma 6, we can

conclude that (72) is equivalent to〈
H, (Y↑)↓

〉
|=ht τΠ.

This codition is equivalent to 〈H,Y〉 |=ht τΠ, because the formula τΠ is formed
from precomputed atoms.

Proof of the theorem. We need to show that the formula τ∗Π1 ↔ τ∗Π2 is
provable in HTCω iff τΠ1 is strongly equivalent to τΠ2. This formula is provable
in HTCω iff

τ∗Π2 is derivable in HTCω from τ∗Π1 (73)

33

and
τ∗Π1 is derivable in HTCω from τ∗Π2. (74)

On the other hand, the characterization of strong equivalence of infinitary propo-
sitional formulas in terms of propositional HT-interpretations [Harrison et al.,
2017, Theorem 3] shows that τΠ1 is strongly equivalent to τΠ2 iff

for every propositional HT-interpretation 〈X ,Y〉,
if 〈X ,Y〉 |=ht τΠ1 then 〈X ,Y〉 |=ht τΠ2

(75)

and
for every propositional HT-interpretation 〈X ,Y〉,

if 〈X ,Y〉 |=ht τΠ2 then 〈X ,Y〉 |=ht τΠ1
(76)

We will show that conditions (73) and (75) are equivalent to each other; the
equivalence between (74) and (76) is proved in a similar way.

Assume that condition (73) is satisfied but condition (75) is not, so that
〈X ,Y〉 |=ht τΠ1 and 〈X ,Y〉 6|=ht τΠ2 for some propositional HT-interpretation

〈X ,Y〉. By Lemma 7, 〈X ,Y〉↑ |=ht τ
∗Π1 and 〈X ,Y〉↑ 6|=ht τ

∗Π2. Thus there
exists a standard HT-interpretation of σ1 that satisfies τ∗Π1 but does not satisfy
τ∗Π2. This is in contradiction with the fact that HTCω is sound with respect
to standard interpretations (Section 12).

Assume now that (73) is not satisfied. Since HTCω is complete with respect
to standard interpretations (Section 12), there exists a standard interpretation
that satisfies τ∗Π1 but does not satisfy τ∗Π2. Consider a representation of
this interpretation in the form 〈X ,Y〉↑. By Lemma 7, 〈X ,Y〉 |=ht τΠ1 and
〈X ,Y〉 6|=ht τΠ2, so that condition (75) is not satisfied either.

15 Proofs of Theorems 1 and 5

15.1 Deductive system HTC ω
2

Proofs of Theorems 1 and 5 refer to the deductive system HTCω
2 , which is a

straightforward extension of HTCω to the signature σ2. Its derivable objects
are sequents over σ2. Its axioms and inference rules are those of intuitionistic
logic for the signature σ2 extended by

� axiom schemas (6) and (7) for all formulas F , G, H over σ2,

� axioms Std and Defs, and

� the ω-rules from Section 7 extended to sequents over σ2.

Any sentence provable in HTC can be derived in HTCω
2 from D0 and D1.

Indeed, the only axioms of HTC that are not included in HTCω
2 are Ind , D0

and D1, and all instances of Ind can be proved using the second ω-rule, as
discussed in Section 7. We will prove a stronger assertion:

Lemma 8. Any sentence provable in HTC can be derived in HTCω
2 from D0.

34

We will prove also the following conservative extension property:

Lemma 9. Every sentence over the signature σ1 derivable in HTCω
2 from D0

is provable in HTCω.

The assertion of Theorem 5 follows from these two lemmas. The lemmas are
proved in Sections 15.3 and 15.4.

The assertion of Theorem 1 follows from Theorems 4 and 5.

15.2 Some formulas derivable in HTC ω and HTC ω
2

In Section 9.1 we showed that formula (46) is provable in HTC . All axioms
of HTC used in that proof are among the axioms of HTCω, so that this formula
is provable in HTCω as well.

Claim: For any formula F over σ0 and any integers m, n such that m ≥ n, the
formula

∃≥mUF → ∃≥nUF (77)

is provable in HTCω.

Proof. It is sufficient to consider the case when m = n + 1; then the general
case will follow by induction. We can also assume that n is positive, because
otherwise the consequent of (77) is >. From (46),

∃≥n+1UF → ∃W(∃≥nU(W < U ∧ F)).

We can rewrite the consequent of this implication as

∃WU1 · · ·Un

 n∧
i=1

(
W < Ui ∧ FU

U1

)
∧
∧
i<j

¬(Ui = Uj)

 .

It implies

∃U1 · · ·Un

 n∧
i=1

FU
U1
∧
∧
i<j

¬(Ui = Uj)

 ,

which is the consequent of (77).

Claim: For any formula F over σ0, any integer n, and any precomputed term r,
the formula

n ≥ r ∧ ∃≥nUF → ∃≥rUF (78)

is provable in HTCω.

Proof. If n < r then the antecedent of (78) is equivalent to ⊥. If r ≤ 0 then the
consequent of (78) is >. If n ≥ r > 0 then r is a numeral m, because the set of
numerals is contiguous, so that (78) follows from (77).

35

In Section 9.1 we showed that formula (53) is provable in HTC . All axioms
of HTC used in that proof are among the axioms of HTCω, so that this formula
is provable in HTCω as well.

Claim: The formula

∀VN(N ≥ 0→ (AtmostX;V
F (V, N)↔ ¬AtleastX;V

F (V, N + 1))) (79)

is provable in HTCω
2 .

Proof: By Defs and (53), for every nonnegative n,

AtmostX;V
F (V, n)↔ ∃≤nUF ↔ ¬∃≥n+1UF ↔ ¬AtleastX;V

F (V, n+ 1).

It follows that for every integer n,

∀V(n ≥ 0→ (AtmostX;V
F (V, n)↔ ¬AtleastX;V

F (V, n+ 1))).

Formula (79) follows by the second ω-rule.

Claim: The formula

∀VY
(
∃N

(
N ≥ Y ∧AtleastX;V

F (V, N)
)
↔ AtleastX;V

F (V, Y)
)

(80)

is provable in HTCω
2 .

Proof. Left-to-right: take any integer n and precomputed term r. By (36), the
universal closure of (78) can be rewritten as

∀V
(
n ≥ r ∧AtleastX;V

F (V, n)→ AtleastX;V
F (V, r)

)
.

By the ω-rules, it follows that

∀NYV
(
N ≥ Y ∧AtleastX;V

F (V, N)→ AtleastX;V
F (V, Y)

)
,

which is equivalent to the implication to be proved.
Right-to-left: We will show that

∀V
(

AtleastX;V
F (V, r)→ ∃N

(
N ≥ r ∧AtleastX;V

F (V, N)
))

(81)

for every precomputed term r; then the implication to be proved will follow
by the second ω-rule. Since the set of numerals is contiguous, three cases are
possible: (1) r < n for all integers n; (2) r is a numeral; (3) r > n for all
integers n. In the last case, the antecedent of (81) is equivalent to ⊥ by (36).

Otherwise, assume AtleastX;V
F (V, r); we need to find N such that N ≥ r and

AtleastX;V
F (V, N). If r < n for all n then take N = 0; AtleastX;V

F (V, 0) follows
from (36). If r is a numeral then take N = r.

36

In Section 9.1 we showed that formula (52) is provable in HTC . The ax-
ioms D1 are not used in that proof. It follows that formula (52) is derivable
in HTCω

2 from D0.

Claim: The sentence

∀VN
(
∃XStartX,VF (X,V, N)↔ AtleastX;V

F (V, N)
)

(82)

is derivable in HTCω
2 from D0.

Proof. For every integer n, the sentence

∀V(∃XStartX,VF (X,V, n)↔ AtleastX;V
F (V, n))

is derivable in HTCω
2 from D0, because it follows from (36) and (52). Then (82)

follows by the second ω-rule.

15.3 Proof of Lemma 8

To prove Lemma 8, we need to show that all instances of D1 can be derived
in HTCω

2 from D0.

Proof of (8). By (80), AtleastX;V
F (V, Y) is equivalent to

∃N(N ≥ Y ∧AtleastX;V
F (V, N)).

By (82), this formula is equivalent to

∃N(N ≥ Y ∧ ∃XStartX;V
F (X,V, N)),

which can be further rewritten as

∃XN(StartX;V
F (X,V, N) ∧N ≥ Y).

Proof of (9). We will prove the equivalence

AtmostX;V
F (V, Y)↔ ∀XN(StartX;V

F (X,V, N)→ N ≤ Y) (83)

by cases, using the Std axiom

Y < 0 ∨ ∀M(M < Y) ∨ ∃M(M = Y ∧M ≥ 0).

Case 1: Y < 0. By Defs, the left-hand side of (83) is equivalent to ⊥. Fur-

thermore, by D0, StartX,VF (U,V, 0) and thus the right-hand side of (83) is
equivalent to ⊥ as well.

Case 2: ∀M(M < Y). By Defs, the left-hand side of (83) is equivalent to >.
The right-hand side is equivalent to > as well.

37

Case 3: M = Y and M ≥ 0. Formula (83) can be rewritten as

AtmostX;V
F (V,M)↔ ∀XN(StartX;V

F (X,V, N)→ N ≤M). (84)

By (79), the left-hand side is equivalent to ¬AtleastX;V
F (V,M + 1). Hence,

by (8), it is equivalent to

¬∃XN(StartX;V
F (X,V, N + 1) ∧N + 1 ≥M + 1)

and furthermore to

¬∃XN(StartX;V
F (X,V, N) ∧N ≥M + 1).

This formula can be further rewritten as

∀XN(StartX;V
F (X,V, N)→ ¬(N ≥M + 1)),

which is equivalent to the right-hand side of (84).

15.4 Proof of Lemma 9

Let F be a sentence over the signature σ1 that is derivable in HTCω
2 from D0.

We will show that every standard HT-interpretation of σ1 satisfies F ; then the
provability of F in HTCω will follow from the completeness of HTCω (Sec-
tion 12).

Consider a standard HT-interpretation 〈H, I〉 of σ1. Let I ′ be the extension
of I to the signature σ2 defined by the condition: an extended precomputed
atom StartX,VF (x,v, n) is satisfied by I ′ iff n ≤ 0 or

� n > 0,

� I |= FX,V
x,v , and

� there exist at least n tuples y of precomputed terms such that y ≥ x and
I |= FX,V

y,v .

Since 〈H, I〉 is standard, I ′ is an ω-iterpretation. Furthermore, let H′ be the
set of extended precomputed atoms obtained from H by adding the atoms
StartX,VF (x,v, n) such that n ≤ 0 or

� n > 0,

� 〈H, I〉 |=ht F
X,V
x,v , and

� there exist at least n tuples y of precomputed terms such that y ≥ x and
〈H, I〉 |=ht F

X,V
y,v .

From the persistence property of HT-interpretations (Section 10) we can con-
clude that each of the atoms added to H is satisfied by I ′. Hence 〈H′, I ′〉 is an
HT-interpretation of σ2.

38

We will show that

〈H′, I ′〉 satisfies Std , Defs, and D0. (85)

Then the assertion of the lemma will follow. Indeed, the deductive system HTCω
2

can be described as SQHTω (see Section 12) over σ2 extended by the ax-
ioms Std and Defs. Hence F is derivable in SQHTω over σ2 from Std , Defs
and D0. By (85), 〈H′, I ′〉 is an ω-model of these sentences. By the soundness
of SQHTω [Fandinno and Lifschitz, 2023a, Theorem 4], it follows that F is sat-
isfied by 〈H′, I ′〉. Since F is a sentence over σ1, we conclude that F is satisfied
by 〈H, I〉.

Proof of (85):

For Defs and Std , this assertion follows from the fact that 〈H′, I ′〉 extends the
interpretation 〈H, I〉 of σ1, which satisfies Defs and Std because it is standard.

For D0, consider the more difficult axiom schema in this group, the last one.
We need to check that for any tuples x and v of precomputed terms and any
positive n, 〈H′, I ′〉 satisfies

StartX;V
F (x,v, n+ 1)↔ FX,V

x,v ∧ ∃U(x < U ∧ StartX,VF (U,v, n)). (86)

We need to check, in other words, that I ′ satisfies the left-hand side of (86) iff I ′

satisfies the right-hand side, and similarly for 〈H′, I ′〉.
Assume that I ′ satisfies the left-hand side. Then I |= FX,V

x,v , and

there exist at least n+ 1 tuples y such that y ≥ x and I |= FX,V
y,v .

It follows that

there exist at least n tuples y such that y > x and I |= FX,V
y,v .

Pick such a group of n tuples, and let u be the least among them. Then u > x,
and

there exist at least n tuples y such that y ≥ u and I |= FX,V
y,v .

It follows that I satisfies x < u ∧ StartX,VF (u,v, n), and consequently satisfies
the right-hand side of (86).

Assume now that I ′ satisfies the right-hand side of (86). Then I ′ |= FX,V
x,v ,

and there exists a tuple u such that x < u and I ′ |= StartX,VF (u,v, n). Hence
I |= FX,V

x,v , and

there exist at least n tuples y such that y ≥ u and I |= FX,V
y,v .

It follows that

there exist at least n+ 1 tuples y such that y ≥ x and I |= FX,V
y,v ,

so that I ′ satisfies the left-hand side of (86).
For the HT-interpretation 〈H, I〉 the reasoning is similar.

39

16 Conclusion

In this paper we argue that strong equivalence of two programs with counting
can be established, in many cases, by proving the equivalence of the correspond-
ing first-order sentences in the deductive system HTC . We do not know if HTC
is complete for strong equivalence, that is to say, if τ∗Π1 ↔ τ∗Π2 is provable in
HTC for all pairs Π1, Π2 of strongly equivalent mgc programs. But the deduc-
tive system HTCω, which contains infinitary rules, is shown to be complete in
this sense.

Sentences F1, F2 are equivalent in HTC if and only if the sentences γF1, γF2

are equivalent in the classical first-order theory HTC ′. This fact suggests that it
may be possible to use theorem provers for classical theories, such as vampire
[Kovaćs and Voronkov, 2013], to verify strong equivalence of mgc programs.
Extending the proof assistant anthem [Fandinno et al., 2020, Heuer, 2020] in
this direction is a topic for future work.

A translation similar to τ∗ is used in anthem to verify another kind of
equivalence of mini-gringo programs—equivalence with respect to a user guide
[Fandinno et al., 2023, Hansen, 2023]. We plan to extend work on user guides
to programs with counting.

Finally, we would like to investigate the possibility of extending the deductive
systems described in this paper to aggregates other than counting.

References

[Chen et al., 2005] Yin Chen, Fangzhen Lin, and Lei Li. SELP — a system for
studying strong equivalence between logic programs. In Proceedings of Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning,
pages 442–446, 2005.

[Fandinno and Hansen, 2023] Jorge Fandinno and Zachary Hansen. Recursive
aggregates as intensional functions. In Proceedings of the Workshops co-
located with the 39th International Conference on Logic Programming, 2023.

[Fandinno and Lifschitz, 2023a] Jorge Fandinno and Vladimir Lifschitz.
Omega-completeness of the logic of here-and-there and strong equivalence of
logic programs. In Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning, 2023.

[Fandinno and Lifschitz, 2023b] Jorge Fandinno and Vladimir Lifschitz. On
Heuer’s procedure for verifying strong equivalence. In Proceedings of Eu-
ropean Conference on Logics in Artificial Intelligence, 2023.

[Fandinno et al., 2020] Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and
Torsten Schaub. Verifying tight logic programs with Anthem and Vampire.
Theory and Practice of Logic Programming, 20, 2020.

40

[Fandinno et al., 2022] Jorge Fandinno, Zach Hansen, and Yuliya Lierler. Ax-
iomatization of aggregates in answer set programming. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2022.

[Fandinno et al., 2023] Jorge Fandinno, Zachary Hansen, Yuliya Lierler,
Vladimir Lifschitz, and Nathan Temple. External behavior of a logic program
and verification of refactoring. Theory and Practice of Logic Programming,
2023.

[Fandinno et al., 2024] Jorge Fandinno, Vladimir Lifschitz, and Nathan Tem-
ple. Locally tight programs. Theory and Practice of Logic Programming,
2024.

[Ferraris et al., 2011] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
Stable models and circumscription. Artificial Intelligence, 175:236–263, 2011.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
Marius Lindauer, Max Ostrowski, Javier Romero, Torsten Schaub, and Sven
Thiele. Potassco User Guide. Available at https://github.com/potassco/
guide/releases/, 2019.

[Hansen, 2023] Zachary Hansen. Anthem-p2p: Automatically verifying the
equivalent external behavior of ASP programs. In Electronic Proceedings
in Theoretical Computer Science, volume 385, 2023.

[Harrison et al., 2017] Amelia Harrison, Vladimir Lifschitz, David Pearce, and
Agustin Valverde. Infinitary equilibrium logic and strongly equivalent logic
programs. Artificial Intelligence, 246:22–33, May 2017.

[Henkin, 1954] Leon Henkin. A generalization of the concept of ω-consistency.
The Journal of Symbolic Logic, 19:183–196, 1954.

[Heuer, 2020] Jan Heuer. Automated verification of equivalence properties in
advanced logic programs. Bachelor Thesis, University of Potsdam, 2020.

[Hosoi, 1966] Tsutomu Hosoi. The axiomatization of the intermediate proposi-
tional systems Sn of Gödel. Journal of the Faculty of Science of the University
of Tokyo, 13:183–187, 1966.

[Kovaćs and Voronkov, 2013] Laura Kovaćs and Andrei Voronkov. First-order
theorem proving and Vampire. In International Conference on Computer
Aided Verification, pages 1––35, 2013.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin Valverde.
Strongly equivalent logic programs. ACM Transactions on Computational
Logic, 2:526–541, 2001.

[Lifschitz et al., 2007] Vladimir Lifschitz, David Pearce, and Agustin Valverde.
A characterization of strong equivalence for logic programs with variables.
In Procedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 188–200, 2007.

41

[Lifschitz et al., 2008] Vladimir Lifschitz, Leora Morgenstern, and David
Plaisted. Knowledge representation and classical logic. In Frank van Harme-
len, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge
Representation, pages 3–88. Elsevier, 2008.

[Lifschitz et al., 2019] Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub.
Verifying strong equivalence of programs in the input language of gringo. In
Proceedings of the 15th International Conference on Logic Programming and
Non-monotonic Reasoning, 2019.

[Lifschitz, 2021] Vladimir Lifschitz. Here and there with arithmetic. Theory
and Practice of Logic Programming, 2021.

[Lifschitz, 2022] Vladimir Lifschitz. Strong equivalence of logic programs with
counting. Theory and Practice of Logic Programming, 22, 2022.

[Lin, 2002] Fangzhen Lin. Reducing strong equivalence of logic programs to
entailment in classical propositional logic. In Proceedings of International
Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 170–176, 2002.

[Pearce et al., 2009] David Pearce, Hans Tompits, and Stefan Woltran. Char-
acterising equilibrium logic and nested logic programs: Reductions and com-
plexity. Theory and Practice of Logic Programming, 9:565–616, 2009.

[Pearce, 1997] David Pearce. A new logical characterization of stable models
and answer sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski,
editors, Non-Monotonic Extensions of Logic Programming (Lecture Notes in
Artificial Intelligence 1216), pages 57–70. Springer, 1997.

[Pearce, 1999] David Pearce. From here to there: Stable negation in logic
programming. In D. Gabbay and H. Wansing, editors, What Is Negation?
Kluwer, 1999.

[Truszczynski, 2012] Miroslaw Truszczynski. Connecting first-order ASP and
the logic FO(ID) through reducts. In Esra Erdem, Joohyung Lee, Yuliya
Lierler, and David Pearce, editors, Correct Reasoning: Essays on Logic-Based
AI in Honor of Vladimir Lifschitz, pages 543–559. Springer, 2012.

42

