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Robots Becoming More Prevalent

Robots have increasing capabilities and are becoming
cheaper to manufacture
"About 1.2 million additional advanced robots are expected to
be deployed in the U.S. by 2025" - Boston Consulting Group
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Need to Learn Skills
Desire robots to be autonomous—with more robots less likely
to have a person trained to directly control them
Have robots perform complex tasks consisting of multiple
skills

Click to start

(video from DARPA)
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DRCfalls.mp4
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Need Robots to Work Together

Have multiple robots in the same environment
Want robots to coordinate and work together

Click to start

(video from https://youtu.be/Ew_Ih779FwY)
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DronesFail.mp4
Media File (video/mp4)

https://youtu.be/Ew_Ih779FwY


Thesis Question(s)

Combining a desire for robots to be able to act autonomously and
coordinate their movement ...

Skill Learning

How to use machine learning to optimize multiple skills or
behaviors for mobile robots that work well together (such as
walking and pushing an object)?

Movement Coordination

Once we have optimized these skills, how can we get robots
to coordinate their movement and complete tasks, ideally in
as little time as possible, without running into each other?
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Outline

RoboCup 3D Simulation Domain Description

Overlapping Layered Learning

SCRAM: Scalable Collision-avoiding Role Assignment with
Minimal-makespan

Summary and Future Work
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RoboCup 3D Simulation Domain

Teams of 11 vs 11 autonomous robots play soccer
Realistic physics using Open Dynamics Engine (ODE)
Simulated robots modeled after Nao robot
Robot receives noisy visual information about environment
Robots can communicate with each other over limited bandwidth channel
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Example of RoboCup 3D Simulation Game

Click to start

RoboCup 2016 Final
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3DGameExample.mp4
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UT Austin Villa RoboCup 3D Simulation Team 2007-2009

Click to start

No games won; no goals scored
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2007-2009.mov
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UT Austin Villa RoboCup 3D Simulation Team 2010

Click to start

Record of 4 wins, 6 losses, 1 tie; 11 goals scored and 17 conceded

Patrick MacAlpine (UT Austin) PhD Defense 10


sing.mp4
Media File (video/mp4)



Competition Results

RoboCup 2010 2011-2016
Goals For: 11

469

Goals Against: 17

7

Record (W-L-T): 4-6-1

101-3-6

Place: Outside Top-8

1st 5X, 2nd 1X

BIG IMPROVEMENT!
* RoboCup (2011-2016) *

Titles: 5 championships, 1 second place
Record (W - L - T): 101 - 3 - 6
Goals (For - Against): 469 - 7
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Overlapping Layered Learning

Overlapping Layered Learning

UT Austin Villa 2014: RoboCup 3D Simulation League Champion via
Overlapping Layered Learning

Patrick MacAlpine, Mike Depinet, and Peter Stone
AAAI 2015
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Skills Do Not Always Work Together

Click to start

Hard to get kick skill to work well with walk skill
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Reinforcement Learning Direct Policy Search

Learn a parameterized policy that determine an agent’s behavior
(what actions an agent chooses based on state of environment)
Optimization algorithm produces candidate parameters to evaluate
on optimization task
Optimization task evaluates parameters and returns fitness to
optimization algorithm

Patrick MacAlpine (UT Austin) PhD Defense 15



CMA-ES (Covariance Matrix Adaptation Evolutionary Strategy)

(image from wikipedia)

Evolutionary numerical optimization method

Candidates sampled from multidimensional Gaussian and evaluated for their
fitness

Weighted average of members with highest fitness used to update mean of
distribution

Covariance update using evolution paths controls search step sizes

Hansen, N., S.D. Müller and P. Koumoutsakos. Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), 2003.
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Layered Learning:
Hierarchical machine learning paradigm that enables learning of complex behaviors by
incrementally learning a series of sub-behaviors. Higher layers directly depend on the
learned lower layers.

DESCRIPTIONS:
Sequential Layered Learning: Freeze parameters of layer after
learning before learning of the next layer (P. Stone, 2000)

Concurrent Layered Learning: Keep parameters of layer open during
learning of the next layer (S. Whiteson and P. Stone, 2003)
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Layered Learning:
Hierarchical machine learning paradigm that enables learning of complex behaviors by
incrementally learning a series of sub-behaviors. Higher layers directly depend on the
learned lower layers.

PROBLEMS:
Sequential Layered Learning: Can be too limiting in the joint behavior
policy seach space

Concurrent Layered Learning: The increased dimensionality can
make learning harder or intractable
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Layered Learning:
Hierarchical machine learning paradigm that enables learning of complex behaviors by
incrementally learning a series of sub-behaviors. Higher layers directly depend on the
learned lower layers.

SOLUTION:
Overlapping Layered Learning: Tradeoff between freezing or keeping
open previous learned behaviors

Optimizes “seam” or overlap between behaviors: keeps some parts of
previously learned layers open during subsequent learning

Patrick MacAlpine (UT Austin) PhD Defense 17



Overlapping Layered Learning:
Layered learning both in series and parallel, in which some but not necessairly all,
parts of previously learned layers are left open during learning of subsequent layers.

MacAlpine P., Depinet M., and Stone P. UT Austin Villa 2014: RoboCup 3D Simulation
League Champion via Overlapping Layered Learning, AAAI 2015.

Combining
Independently Learned Behaviors: Two or more behaviors learned independently
and then combined by relearning subset of behaviors’ parameters
Partial Concurrent Layered Learning: Only part, but not all, of a previously learned
layer’s behaviors are left open
Previous Learned Layer Refinement: After a layer is learned and frozen, and then a
subsequent layer is learned, part of all of the previous layer is unfrozen
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Dribbling and Kicking the Ball in the Goal

Learn different walk parameter sets for different subtasks
I Going to a target
I Sprinting forward (+/- 15◦ of current heading)
I Positioning around the ball when dribbling
I Approaching the ball to kick it

Learn fixed kick

Combine kick with walk through
overlapping behavior layer

Patrick MacAlpine (UT Austin) PhD Defense 19



Initial Walk Parameters

25 different parameters
Designed and hand-tuned to work on the actual Nao robot
Provides a slow and stable walk

Click to start

Patrick MacAlpine (UT Austin) PhD Defense 20


init.mp4
Media File (video/mp4)



Sequential Layered Learning of Walk Behaviors

Click to start

Red ’T’ = GoToTarget parameters, yellow ’S’ = Sprint parameters

Optimizing parameters for omnidirectional walk engine
(step height, frequency, balance, etc.)
Agent rewarded for distance traveled toward magenta target
First GoToTarget layer optimized and frozen,
then Sprint layer learned through sequential layered learning

Patrick MacAlpine (UT Austin) PhD Defense 21


gototargetfast.mov
Media File (video/quicktime)



Without Layered Learning

Click to start

Attempt to transition between Dribble walk parameters (red ’D’) and
Fast walk parameters (yellow ’F’)

Unstable when not using layered learning to learn transition
between walks

Patrick MacAlpine (UT Austin) PhD Defense 22
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Walk_PositionToDribble Optimization

Click to start

Red ’T’ = GoToTarget , yellow ’S’ = Sprint ,
cyan ’P’ = Positioning parameters

Dribble ball toward goal for 15 seconds from
multiple starting points around ball
Reward for distance ball dribbled toward goal

Patrick MacAlpine (UT Austin) PhD Defense 23
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Kick Learning

Kicks represented as series of fixed poses
Poses are parameterized by joint angles

Patrick MacAlpine (UT Austin) PhD Defense 24



Kick_Long_Primitive Optimization

Click to start

Optimize joint positions that make up a series of
fixed frame poses for executing kicking motion
Kick ball from fixed standing position
Reward for kick distance and accuracy
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FixedKickOpt.mp4
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Kick_Long_Behavior Optimization

Click to start

Approach ball and kick it
Reward for kick distance and accuracy
Relearning overlap kick parameters for positioning
and stability with walk (combining independently
learned behaviors)
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KickApproachOpt.mp4
Media File (video/mp4)



Layered Learning Paradigm Comparisons

Learning the Kick_Fast_Behavior

Concurrent Layered Learning struggles learning kick and approach at same time
Sequential Layered Learning difficulty learning kick in presence of walk approach
Overlapping Layered Learning (CILB), where walk approach and kick are learned
independently in isolation and then combined, performs the best

Patrick MacAlpine (UT Austin) PhD Defense 27
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Dribbling and Kicking the Ball

Click to start

Red ’T’ = GoToTarget parameters, yellow ’S’ = Sprint parameters,
cyan ’P’ = Positioning parameters, orange ’A’ = Approach parameters
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AllWalkParams.mp4
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Learned Layers (2014)

19 learned behaviors for standing up, walking, and kicking
(more than 3X behaviors of previous layered learning systems)

I CILB, PCLL, PLLR

Over 500 parameters optimized during the course of learning using
CMA-ES algorithm

I frozen, open

Patrick MacAlpine (UT Austin) PhD Defense 29



Learned Layers (2014)

Computation

≈ 700k parameter sets evaluated
≈ 1.5 years compute time (≈ 5 days on distributed computing cluster)

Patrick MacAlpine (UT Austin) PhD Defense 29



Learned Layers (2014)

Entering 2017 Competition

25 new kicks added since 2014 (variable distance, directional, fast walk)
69 total learned behaviors

Patrick MacAlpine (UT Austin) PhD Defense 29



Backwards Kick

Click to start

RoboCup 2016 Game Action
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2ITA815.mp4
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Scoring on a Kickoff

Click to start

Kickoffs are indirect (can’t score with a single kick)
Learn touch and fixed kick behaviors independently
Combining touch and kick by relearning positioning
parameters (combining independently learned
behaviors) and also learning new timing parameter
(partial concurrent layered learning)
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KickoffSuccess.mp4
Media File (video/mp4)



Kickoff Fail

Click to start

Robots interfer with each other when trying to learn a kick with a touch

Patrick MacAlpine (UT Austin) PhD Defense 32
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Overlapping Layered Learning Summary

Introduced three paradigms for Overlapping Layered Learning
I Combining Independently Learned Behaviors, Partial Concurrent Layered Learning,

Previous Learned Layer Refinement

Showed effectiveness of Overlapping Layered Learning for learning
complex behaviors in the RoboCup 3D simulation domain

I Learned 19 behaviors while optimizing over 500 parameters

Demonstrated generality of Overlapping Layered Learning to
multiple robot models

I Able to successfully learn behaviors for 5 different robot types

Overlapping Layered Learning is a paradigm, not an algorithm
I Automating the selection of overlapping parameters and behaviors is future work
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Other Hierarchical Reinforcement Learning Methods
MAXQ algorithm (Dietterich, 2000)

I Learns at all levels of the heirarchy simultaneously – learned
subtasks are locally optional not hierarchically optimal

I Unlike MAXQ layered learning allows for using different learning
algorithms at each level of the hierarchy

Options (Sutton et al., 1999)
I Learned policies with initiation and termination conditions used

to complete subtasks

Options: want to transition from one sub-behavior to another

Overlapping layered learning—learns efficient behaviors that can
transition between and work well with each other

Patrick MacAlpine (UT Austin) PhD Defense 34
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SCRAM

SCRAM: Scaleable Collision-avoiding
Role Assignment with Minimal-makespan

SCRAM: Scalable Collision-avoiding Role Assignment with Minimal-makespan
for Formational Positioning

Patrick MacAlpine, Eric Price, and Peter Stone
AAAI 2015
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Robots Do Not Work Well With Each Other

Click to start

Robots collide instead of coordinating where they are moving

Patrick MacAlpine (UT Austin) PhD Defense 37


collide.mp4
Media File (video/mp4)



Role Assignment Problem

Problem:
How to assign n interchangeable robots to n targets in a one-to-one mapping
so that the makespan is minimized and collisions are avoided.

Makespan = time for all robots to reach their assigned target positions
(equivalent to the time for the the robot with the longest distance to travel to
reach its assigned target position)

ASSUMPTIONS:
No two robots or targets occupy the same position
Robots are treated as zero width point masses
Robots move at same constant speed along straight line paths to targets

Patrick MacAlpine (UT Austin) PhD Defense 38
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Role Assignment Problem

Required properties of a role assignment function to be CM Valid
(Collision-avoiding with Minimal-makespan):
1. Minimizing makespan - it minimizes the maximum distance from a robot to

target, with respect to all possible mappings
2. Avoiding collisions - robots do not collide with each other

Desirable but not necessary to be CM Valid:
3. Dynamically consistent - role assignments don’t change or switch as

robots move toward target positions

Not include a2 → p5 (longest possible distance), instead a1 → p3 (minimal
longest distance)
a1 → p1 and a2 → p2 would cause a collision between a1 and a2
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Role Assignment Problem

Bipartite Graph Perfect Matching
n! possible mappings
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Motivation

Scenarios for which the bottleneck is the time it takes for the last robot to
get to its target (e.g. robots procuring items for an order to be shipped)
Tasks requiring robots be synchronized when they start jobs at their target
positions (e.g. robots on an assembly line)

Patrick MacAlpine (UT Austin) PhD Defense 39



Minimum Maximal Distance Recursive (MMDR) Role Assignment
Function

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

Mapping cost = vector of distances sorted in decreasing order
Optimal mapping = lexicographically sorted lowest cost mapping

Patrick MacAlpine (UT Austin) PhD Defense 40



Hungarian Algorithm

Finds a maximum/minimum weight (sum of weights) perfect
matching in a bipartite graph (solves the assignment problem)
Runs in O(n3) time

Can we transform MMDR into the assignment problem? YES!
1. Convert edge distances to ordered bit vector weights
2. Run Hungarian algorithm with modified weights returns MMDR
Time: O(n2) bit vector weights X O(n3) Hungarian algorithm = O(n5)
Scales to 100s of robots
MMDR is dynamically consistent

Patrick MacAlpine (UT Austin) PhD Defense 41



Hungarian Algorithm

Finds a maximum/minimum weight (sum of weights) perfect
matching in a bipartite graph (solves the assignment problem)
Runs in O(n3) time

Can we transform MMDR into the assignment problem?

YES!
1. Convert edge distances to ordered bit vector weights
2. Run Hungarian algorithm with modified weights returns MMDR
Time: O(n2) bit vector weights X O(n3) Hungarian algorithm = O(n5)
Scales to 100s of robots
MMDR is dynamically consistent

Patrick MacAlpine (UT Austin) PhD Defense 41



Hungarian Algorithm

Finds a maximum/minimum weight (sum of weights) perfect
matching in a bipartite graph (solves the assignment problem)
Runs in O(n3) time

Can we transform MMDR into the assignment problem? YES!
1. Convert edge distances to ordered bit vector weights
2. Run Hungarian algorithm with modified weights returns MMDR
Time: O(n2) bit vector weights X O(n3) Hungarian algorithm = O(n5)

Scales to 100s of robots
MMDR is dynamically consistent

Patrick MacAlpine (UT Austin) PhD Defense 41



Hungarian Algorithm

Finds a maximum/minimum weight (sum of weights) perfect
matching in a bipartite graph (solves the assignment problem)
Runs in O(n3) time

Can we transform MMDR into the assignment problem? YES!
1. Convert edge distances to ordered bit vector weights
2. Run Hungarian algorithm with modified weights returns MMDR
Time: O(n2) bit vector weights X O(n3) Hungarian algorithm = O(n5)
Scales to 100s of robots

MMDR is dynamically consistent

Patrick MacAlpine (UT Austin) PhD Defense 41



Hungarian Algorithm

Finds a maximum/minimum weight (sum of weights) perfect
matching in a bipartite graph (solves the assignment problem)
Runs in O(n3) time

Can we transform MMDR into the assignment problem? YES!
1. Convert edge distances to ordered bit vector weights
2. Run Hungarian algorithm with modified weights returns MMDR
Time: O(n2) bit vector weights X O(n3) Hungarian algorithm = O(n5)
Scales to 100s of robots
MMDR is dynamically consistent
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Minimum Maximal Distance + Minimum Sum Distance2

(MMD+MSD2) Role Assignment Function

Find a perfect matching M that:

1. Has a minimum-maximal edge

Find minimal-maximum edge with weight w using Ford-Fulkerson
Remove all edges with weight greater than w

2. Minimizes the sum of distances squared

Run Hungarian Algorithm

M′′ := {X ∈M | ‖X‖∞ = min
M∈M

(‖M‖∞)} (1)

M∗ := argmin
M∈M′′

(‖M‖22) (2)

Time: O(n3) Ford-Fulkerson Alg. + O(n3) Hung. Alg. = O(n3)

Scales to 1000s of robots

MMD+MSD2is not dynamically consistent
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Role Assignment Function Properties

Function Properties
Function Min. Makespan No Collisions Dyn. Consistent

MMD+MSD2 Yes Yes No
MMDR Yes Yes Yes
MSD2 No Yes No
MSD No No No

Random No No No
Greedy No No No

MSD: Minimize sum of distances between robots and targets.

MSD2: Minimize sum of distances2 between robots and targets.

Greedy: Assign robots to targets in order of shortest distances.

Random: Random assignment of robots to targets.
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Role Assignment Functions Video

Click to start

Yellow robots moving to green targets turn red if they collide
Robot paths turn light blue if robot switches targets
(not dynamically consistent)
Background turns green when all robots have reached targets
(makespan completed)
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RoboCup 3D Positioning Video

Click to start

Each position is shown as a color-coded number corresponding to the robots’s uniform
number assigned to that position. Robots update their role assignments and move to

new positions as the ball or a robot is beamed (moved) to a new location.
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RoboCup 2D

Click to start comp

Yellow team (SCRAM) vs red team (static)
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Marking Against Setplays

Click to start

What went wrong?
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FCPKickoffMarkingNotPrioritizedTrim.mov
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Marking Against Setplays

What went wrong?
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SCRAM Prioritized Role Assignment

Large priority value P added to the costs of reaching high priority targets (H) for any
agents outside the priority distance of H (purple circle).
MacAlpine P. and Stone P., Prioritized Role Assignment for Marking, RoboCup
Symposium, 2016.
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Marking with SCRAM Prioritized Role Assignment

Click to start

Goals Against Across 1000 Games
Opponent No Marking Marking

FCPortugal 160 21
FUT-K 288 63

UTAustinVilla 667 290
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SCRAM Summary

SCRAM minimizes the makespan or longest distance any robot has
to travel

SCRAM avoids collisions between robots

SCRAM role assignment algorithms run in polynomial time and
scales to 1000s of robots

SCRAM is effective in complex RoboCup domains

Fast C++ implementation:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/scram.html
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SCRAM Compared to Related Work in Role Assignment

Other work has considered topics of collision avoidance, path
planning, minimizing sum of distances, and minimizing the
makespan

SCRAM focuses on simultaneous combination of minimizing
the makespan and avoiding collisions

SCRAM first to consider dynamic consistency
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Outline

RoboCup 3D Simulation Domain Description

Overlapping Layered Learning

SCRAM: Scalable Collision-avoiding Role Assignment with
Minimal-makespan

Summary and Future Work
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Thesis Contributions

Contributions toward enabling autonomous robot behavior through skill
learning and movement coordination:

1 Methodologies for learning complex robot skills that work well
together:
Overlapping Layered Learning

2 Development and analysis of multirobot role assignment functions:
SCRAM role assignment functions

3 Novel algorithms for multirobot movement coordination:
SCRAM roles assignment algorithms

4 Empirical evaluation of learning methodologies and coordination
algorithms:
Evaluation in RoboCup 3D simulation domain

5 Complete autonomous robot soccer playing agent:
UT Austin Villa RoboCup 3D simulation team agent and public base
code release
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Code Release

Code Release URL: https://github.com/LARG/utaustinvilla3d

Click to start

Demo Behavior
Second place HARTING Open Source Prize, RoboCup 2016

MacAlpine P. and Stone P., UT Austin Villa RoboCup 3D Simulation Base Code Release, RoboCup Symp., 2016.
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UTABaseCodeReleaseDemoBehavior.mp4
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Future Work

Automated Selection of Overlapping Parameters and Layers
I Segment motion with Hidden Markov Models (HMMs) - Niekum et al., Learning and

generalization of complex tasks from unstructured demonstrations, 2012.
I Learning options - Daniel et al, Probabilistic inference for determining options in

reinforcement learning, 2016.

Relaxation of SCRAM Point Mass Approximation
I Turpin et al., CAPT: Concurrent assignment and planning of trajectories for multiple

robots, 2014.

Simultaneous Learning and Reshaping of Surrogate Optimization
Tasks

I P. MacAlpine, E. Liebman, and P. Stone, Simultaneous learning and reshaping of an
approximated optimization task, 2013.

I P. MacAlpine, E. Liebman, and P. Stone, Adaptation of surrogate tasks for bipedal walk
optimization, 2016.
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Future Work — Other Domain Applications

Overlapping Layered Learning
I Video games
I Genetic Programming

SCRAM Role Assignment
I Vehicle routing problems

F Hanna et al., Minimum Cost Matching for Autonomous Carsharing, 2016.

I Warehouse operations
I Quadrotor formation control
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Moving Pixel Drones

Click to start

(video from https://youtu.be/POtyYqDt_fA)
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SuperBowlDrones.mp4
Media File (video/mp4)
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RoboCup Goal

Have a team of fully autonomous humanoid robot soccer players beat the
human World Cup champions by 2050

Click to start

Humans vs Robots
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HumansVsRobotsFull.mov
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UT Austin Villa RoboCup 3D Simulation Team Members
Frank Barrera - Undergraduate Student (2011)
Samuel Barrett - Graduate Student (2011-2014)
Yinon Bentor - Graduate Student (2009-2010)
Min Bi - Undergraduate Student (2016)
Nick Collins - Undergraduate Student (2011-2012)
Mike Depinet - Undergraduate Student (2013-2014)
Josiah Hanna - Graduate Student (2015)
Shivaram Kalyanakrishnan - Graduate Student (2007-2011)
Jason Liang - Graduate Student (2014-2015)
Adrian Lopez-Mobilia - Undergraduate Student (2011-2012)
Patrick MacAlpine - Graduate Student (2010-present)
Mahmut Tarik Ozkaya - Undergraduate Student (2016)
Michael Quinlan - Research Scientist (2011)
Art Richards - Undergraduate Student (2011)
Andrew Sharp - Undergraduate Student (2013)
Nicu Stiurca - Undergraduate Student (2011)
Peter Stone - Professor (2007-present)
Jordan Torres - Undergraduate Student (2016)
Matt Union - Undergraduate Student (2016)
Daniel Urieli - Graduate Student (2010-2011)
Victor Vu - Undergraduate Student (2011)
Xinyi Wang - Undergraduate Student (2016)
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More Information

RoboCup 3D Simulation Homepage:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

(Google "UT Austin Villa 3D Simulation")

Click to start

RoboCup 2016 Highlights
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