UTCS Artificial Intelligence
courses
talks/events
demos
people
projects
publications
software/data
labs
areas
admin
Symbolic and Neural Learning Algorithms: An Experimental Comparison (1991)
J.W. Shavlik,
Raymond J. Mooney
and G. Towell
Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with the perception and backpropagation neural learning algorithms have been performed using five large, real-world data sets. Overall, backpropagation performs slightly better than the other two algorithms in terms of classification accuracy on new examples, but takes much longer to train. Experimental results suggest that backpropagation can work significantly better on data sets containing numerical data. Also analyzed empirically are the effects of (1) the amount of training data, (2) imperfect training examples, and (3) the encoding of the desired outputs. Backpropagation occasionally outperforms the other two systems when given relatively small amounts of training data. It is slightly more accurate than ID3 when examples are noisy or incompletely specified. Finally, backpropagation more effectively utilizes a distributed output encoding.
View:
PDF
,
PS
Citation:
Machine Learning
, Vol. 6 (1991), pp. 111-143. Reprinted in {it Readings in Knowledge Acquisition and Learning}, Bruce G. Buchanan and David C. Wilkins (eds.), Morgan Kaufman, San Mateo, CA, 1993..
Bibtex:
@Article{shavlik:mlj91, title={Symbolic and Neural Learning Algorithms: An Experimental Comparison}, author={J.W. Shavlik and Raymond J. Mooney and G. Towell}, volume={6}, journal={Machine Learning}, key={ID3 backprop perceptron}, pages={111-143}, note={Reprinted in {it Readings in Knowledge Acquisition and Learning}, Bruce G. Buchanan and David C. Wilkins (eds.), Morgan Kaufman, San Mateo, CA, 1993.}, url="http://www.cs.utexas.edu/users/ai-lab?shavlik:mlj91", year={1991} }
People
Raymond J. Mooney
Faculty
mooney [at] cs utexas edu
Areas of Interest
Inductive Learning
Machine Learning
Neural-Symbolic Learning
Labs
Machine Learning