
Disciplined Inconsistency with Consistency Types
Brandon Holt James Bornholt Irene Zhang Dan Ports Mark Oskin Luis Ceze

University of Washington
{bholt,bornholt,iyzhang,drkp,oskin,luisceze}@cs.uw.edu

Abstract
Distributed applications and web services, such as online
stores or social networks, are expected to be scalable, avail-
able, responsive, and fault-tolerant. To meet these steep re-
quirements in the face of high round-trip latencies, network
partitions, server failures, and load spikes, applications use
eventually consistent datastores that allow them to weaken
the consistency of some data. However, making this transi-
tion is highly error-prone because relaxed consistency mod-
els are notoriously difficult to understand and test.

In this work, we propose a new programming model for
distributed data that makes consistency properties explicit
and uses a type system to enforce consistency safety.With the
Inconsistent, Performance-bound, Approximate (IPA) stor-
age system, programmers specify performance targets and
correctness requirements as constraints on persistent data
structures and handle uncertainty about the result of datas-
tore reads using new consistency types. We implement a pro-
totype of this model in Scala on top of an existing datastore,
Cassandra, and use it to make performance/correctness trade-
offs in two applications: a ticket sales service and a Twitter
clone. Our evaluation shows that IPA prevents consistency-
based programming errors and adapts consistency automat-
ically in response to changing network conditions, perform-
ing comparably to weak consistency and 2-10× faster than
strong consistency.
Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed databases
Keywords consistency, type system, programming model
1. Introduction
To provide good user experiences, modern datacenter appli-
cations andweb servicesmust balance the competing require-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4525-5/16/10…$15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987559

ments of application correctness and responsiveness. For ex-
ample, a web store double-charging for purchases or keep-
ing users waiting too long (each additional millisecond of
latency [26, 36]) can translate to a loss in traffic and revenue.
Worse, programmers must maintain this balance in an unpre-
dictable environment where a black and blue dress [42] or
Justin Bieber [38] can change application performance in the
blink of an eye.

Recognizing the trade-off between consistency and per-
formance, many existing storage systems support config-
urable consistency levels that allow programmers to set the
consistency of individual operations [4, 11, 34, 58]. These
allow programmers to weaken consistency guarantees only
for data that is not critical to application correctness, retain-
ing strong consistency for vital data. Some systems further
allow adaptable consistency levels at runtime, where guaran-
tees are only weakened when necessary to meet availability
or performance requirements (e.g., during a spike in traffic
or datacenter failure) [59, 61]. Unfortunately, using these
systems correctly is challenging. Programmers can inadver-
tently update strongly consistent data in the storage system
using values read from weakly consistent operations, propa-
gating inconsistency and corrupting stored data. Over time,
this undisciplined use of data from weakly consistent oper-
ations lowers the consistency of the storage system to its
weakest level.

In this paper, we propose a more disciplined approach to
inconsistency in the Inconsistent, Performance-bound, Ap-
proximate (IPA) storage system. IPA introduces the follow-
ing concepts:
• Consistency Safety, a new property that ensures that val-
ues from weakly consistent operations cannot flow into
stronger consistency operations without explicit endorse-
ment from the programmer. IPA is the first storage system
to provide consistency safety.

• Consistency Types, a new type system inwhich type safety
implies consistency safety. Consistency types define the
consistency and correctness of the returned value from
every storage operation, allowing programmers to reason
about their use of different consistency levels. IPA’s type
checker enforces the disciplined use of IPA consistency
types statically at compile time.

Showings

! Grand Theater

Star Wars 7pm
Remaining:

STAR WARS 7pm

5

Purchase"Star Wars 9pm

Spectre 6:30pm

// adjust price based on number of tickets left

def computePrice(ticketsRemaining: Int): Float

// called from purchaseTicket & displayEvent

def getTicketCount(event: UUID): Int =

 // use weak consistency for performance

 readWeak(event+"ticket_count")

def purchaseTicket(event: UUID) = {

 val ticket = reserveTicket(event)

 val remaining = getTicketCount(event)

 // compute price based on inconsistent read

 val price = computePrice(remaining)

 display("Enter payment info. Price: ", price)

}

STAR WARS 7pm

Enter payment info.

Price: $15

Figure 1. Ticket sales service. To meet a performance tar-
get in displayEvent, developer switches to a weak read for
getTicketCount, not realizing that this inconsistent read will be
used elsewhere to compute the ticket price.

• Error-bounded Consistency. IPA is a data structure store,
like Redis [54] or Riak [11], allowing it to provide a
new type of weak consistency that places numeric error
bounds on the returned values. Within these bounds, IPA
automatically adapts to return the strongest IPA consis-
tency type possible under the current system load.

We implement an IPA prototype based on Scala and Cassan-
dra and show that IPA allows the programmer to trade off
performance and consistency, safe in the knowledge that the
type system has checked the program for consistency safety.
We demonstrate experimentally that these mechanisms al-
low applications to dynamically adapt correctness and per-
formance to changing conditions with three applications: a
simple counter, a Twitter clone based on Retwis [55] and a
Ticket sales service modeled after FusionTicket [1].
2. The Case for Consistency Safety
Unpredictable Internet traffic and unexpected failures force
modern datacenter applications to trade off consistency for
performance. In this section, we demonstrate the pitfalls of
doing so in an undisciplined way. As an example, we de-
scribe a movie ticketing service, similar to AMC or Fan-
dango. Because ticketing services process financial transac-
tions, they must ensure correctness, which they can do by
storing data in a strongly consistent storage system. Unfortu-
nately, providing strong consistency for every storage opera-
tion can cause the storage system and application to collapse
under high load, as several ticketing services did in October
2015, when tickets became available for the new Star Wars
movie [21].

To allow the application to scale more gracefully and
handle traffic spikes, the programmer may choose to weaken
the consistency of some operations. As shown in Figure 1, the

ticket application displays each showing of the movie along
with the number of tickets remaining. For better performance,
the programmer may want to weaken the consistency of the
read operation that fetches the remaining ticket count to give
users an estimate, instead of themost up-to-date value. Under
normal load, even with weak consistency, this count would
often still be correct because propagation is typically fast
compared to updates. However, eventual consistency makes
no guarantees, so under heavier traffic spikes, the values
could be significantly incorrect and the application has no
way of knowing by how much.

While this solves the programmer’s performance problem,
it introduces a data consistency problem. Suppose that, like
Uber’s surge pricing, the ticket sales application wants to
raise the price of the last 100 tickets for each showing to $15.
If the application uses a strongly consistent read to fetch the
remaining ticket count, then it can use that value to compute
the price of the ticket on the last screen in Figure 1. How-
ever, if the programmer reuses getTicketCount which used
a weak read to calculate the price, then this count could be
arbitrarily wrong. The application could then over- or under-
charge some users depending on the consistency of the re-
turned value. Worse, the theater expects to make $1500 for
those tickets with the new pricing model, which may not hap-
pen with the new weaker read operation. Thus, programmers
need to be careful in their use of values returned from stor-
age operations withweak consistency. Simplyweakening the
consistency of an operation may lead to unexpected conse-
quences for the programmer (e.g., the theater not selling as
many tickets at the higher surge price as expected).

In this work, we propose a programming model that can
prevent using inconsistent values where they were not in-
tended, as well as introduce mechanisms that allow the stor-
age system to dynamically adapt consistency within prede-
termined performance and correctness bounds.

3. Programming Model
We propose a programming model for distributed data that
uses types to control the consistency–performance trade-off.
The Inconsistent, Performance-bound, Approximate (IPA)
type system helps developers trade consistency for perfor-
mance in a disciplined manner. This section presents the
IPA programming model, including the available consis-
tency policies and the semantics of operations performed
under the policies. §4 will explain how the type system’s
guarantees are enforced.

3.1. Overview
The IPA programming model consists of three parts:
• Abstract data types (ADTs) implement common data
structures (such as Set[T]) on distributed storage.

• Consistency policies on ADTs specify the desired con-
sistency level for an object in application-specific terms
(such as latency or accuracy bounds).

ADT / Method Consistency(Strong) Consistency(Weak) LatencyBound(_) ErrorTolerance(_)

Counter.read() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Set.size() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Set.contains(x) Consistent[Bool] Inconsistent[Bool] Rushed[Bool] N/A
List[T].range(x,y) Consistent[List[T]] Inconsistent[List[T]] Rushed[List[T]] N/A
UUIDPool.take() Consistent[UUID] Inconsistent[UUID] Rushed[UUID] N/A
UUIDPool.remain() Consistent[Int] Inconsistent[Int] Rushed[Int] Interval[Int]

Table 1. Example ADT operations; consistency policies determine the consistency type of the result.

• Consistency types track the consistency of operation re-
sults and enforce consistency safety by requiring develop-
ers to consider weak outcomes.

Programmmers annotate ADTs with consistency policies to
choose their desired level of consistency. The consistency
policy on the ADT operation determines the consistency type
of the result. Table 1 shows some examples; the next few
sections will introduce each of the policies and types in
detail. Together, these three components provide two key
benefits for developers. First, the IPA type system enforces
consistency safety, tracking the consistency level of each re-
sult and preventing inconsistent values from flowing into
consistent values. Second, the programming interface en-
ables performance–correctness trade-offs, because consis-
tency policies on ADTs allow the runtime to select a consis-
tency level for each individual operation that maximizes per-
formance in a constantly changing environment. Together,
these systems allow applications to adapt to changing condi-
tions with the assurance that the programmer has expressed
how it should handle varying consistency.

3.2. Abstract Data Types
The base of the IPA type system is a set of abstract data types
(ADTs) for distributed data structures. ADTs present a clear
abstract model through a set of operations that query and up-
date state, allowing users and systems alike to reason about
their logical, algebraic properties rather than the low-level
operations used to implement them. Though the simplest key-
value stores only support primitive types like strings for val-
ues, many popular datastores have built-in support for more
complex data structures such as sets, lists, and maps. How-
ever, the interface to these datatypes differs: from explicit
sets of operations for each type in Redis, Riak, and Hyper-
dex [11, 25, 31, 54] to the pseudo-relational model of Cas-
sandra [32]. IPA’s extensible library of ADTs allows it to
decouple the semantics of the type system from any particu-
lar datastore, though our reference implementation is on top
of Cassandra, similar to [57].

Besides abstracting over storage systems, ADTs are an
ideal place from which to reason about consistency and
system-level optimizations. The consistency of a read de-
pends on the write that produced the value. Annotating ADTs
with consistency policies ensures the necessary guarantees

for all operations are enforced, which we will expand on in
the next section.

Custom ADTs can express application-level correctness
constraints. IPA’s Counter ADT allows reading the current
value as well as increment and decrement operations. In our
ticket sales example, we must ensure that the ticket count
does not go below zero. Rather than forcing all operations
on the datatype to be linearizable, this application-level in-
variant can be expressed with a more specialized ADT, such
as a BoundedCounter, giving the implementation more lat-
itude for enforcing it. IPA’s library is extensible, allowing
custom ADTs to build on common features; see §5.

3.3. Consistency Policies
Previous systems [4, 11, 34, 58, 61] require annotating each
read and write operation with a desired consistency level.
This per-operation approach complicates reasoning about the
safety of code using weak consistency, and hinders global
optimizations that can be applied if the system knows the
consistency level required for future operations. The IPA
programming model provides a set of consistency policies
that can be placed on ADT instances to specify consistency
properties for the lifetime of the object. Consistency policies
come in two flavors: static and dynamic.

Static policies are fixed, such as Consistency(Strong)
which states that operations must have strongly consistent
behavior. Static annotations provide the same direct control
as previous approaches but simplify reasoning about correct-
ness by applying them globally on the ADT.

Dynamic policies specify a consistency level in terms
of application requirements, allowing the system to decide
at runtime how to meet the requirement for each executed
operation. IPA offers two dynamic consistency policies:
• A latency policy LatencyBound(x) specifies a target la-
tency for operations on the ADT (e.g., 20 ms). The run-
time can choose the consistency level for each issued op-
eration, optimizing for the strongest level that is likely to
satisfy the latency bound.

• An accuracy policy ErrorTolerance(x%) specifies the
desired accuracy for read operations on the ADT. For ex-
ample, the size of a Set ADT may only need to be ac-
curate within 5% tolerance. The runtime can optimize the
consistency of write operations so that reads are guaran-
teed to meet this bound.

Rushed[T]

⊤ := Consistent[T]

⊥ := Inconsistent[T]

LocalQuorum[T]Interval[T] ...

Datastore-specific

consistency levels

Figure 2. IPA Type Lattice parameterized by a type T.
Dynamic policies allow the runtime to extract more perfor-
mance from an application by relaxing the consistency of in-
dividual operations, safe in the knowledge that the IPA type
system will enforce safety by requiring the developer to con-
sider the effects of weak operations.

Static and dynamic policies can apply to an entire ADT
instance or on individual methods. For example, one could
declare List[Int] with LatencyBound(50 ms), in which
case all read operations on the list are subject to the bound.
Alternatively, one could declare a Set with relaxed consis-
tency for its size but strong consistency for its contains
predicate. The runtime is responsible for managing the in-
teraction between these policies. In the case of a conflict
between two bounds, the system can be conservative and
choose stronger policies than specified without affecting cor-
rectness.

In the ticket sales application, the Counter for each
event’s tickets could have a relaxed accuracy policy, spec-
ified with ErrorTolerance(5%), allowing the system to
quickly read the count of tickets remaining. An accuracy
policy is appropriate here because it expresses a domain
requirement—users want to see accurate ticket counts. As
long as the system meets this requirement, it is free to relax
consistency and maximize performance without violating
correctness. The List ADT used for events has a latency
policy that also expresses a domain requirement—that pages
on the website load in reasonable time.
3.4. Consistency Types
The key to consistency safety in IPA is the consistency
types—enforcing type safety directly enforces consistency
safety. Read operations of ADTs annotated with consistency
policies return instances of a consistency type. These con-
sistency types track the consistency of the results and en-
force a fundamental non-interference property: results from
weakly consistent operations cannot flow into computations
with stronger consistency without explicit endorsement. This
could be enforced dynamically, as in dynamic information
flow control systems, but the static guarantees of a type sys-
tem allow errors to be caught at compile time.

The consistency types encapsulate information about the
consistency achieved when reading a value. Formally, the
consistency types form a lattice parameterized by a primi-
tive type T, shown in Figure 2. Strong read operations return
values of type Consistent[T] (the top element), and so (by
implicit cast) behave as any other instance of type T. Intu-
itively, this equivalence is because the results of strong reads

are known to be consistent, which corresponds to the control
flow in conventional (non-distributed) applications. Weaker
read operations return values of some type lower in the lat-
tice (weak consistency types), reflecting their possible incon-
sistency. The bottom element Inconsistent[T] specifies an
object with the weakest possible (or unknown) consistency.
The other consistency types follow a subtyping relation≺ as
illustrated in Figure 2.

The only possible operation on Inconsistent[T] is to en-
dorse it. Endorsement is an upcast, invoked by endorse(x),
to the top element Consistent[T] from other types in the
lattice:

Γ ⊢ e1 : τ[T] T ≺ τ[T]

Γ ⊢ endorse(e1) : T

The core type system statically enforces safety by prevent-
ing weaker values from flowing into stronger computations.
Forcing developers to explicitly endorse inconsistent val-
ues prevents them from accidentally using inconsistent data
where they did not determine it was acceptable, essentially
inverting the behavior of current systems where inconsistent
data is always treated as if it was safe to use anywhere. How-
ever, endorsing values blindly in this way is not the intended
use case; the key productivity benefit of the IPA type system
comes from the other consistency types which correspond to
the dynamic consistency policies in §3.3 which allow devel-
opers to handle dynamic variations in consistency, which we
describe next.
3.4.1. Rushed types
The weak consistency type Rushed[T] is the result of read
operations performed on an ADT with consistency policy
LatencyBound(x). Rushed[T] is a sum (or union) type, with
one variant per consistency level available to the implemen-
tation of LatencyBound. Each variant is itself a consistency
type (though the variants obviously cannot be Rushed[T] it-
self). The effect is that values returned by a latency-bound
object carry with them their actual consistency level. A re-
sult of type Rushed[T] therefore requires the developer to
consider the possible consistency levels of the value.

For example, a system with geo-distributed replicas may
only be able to satisfy a latency bound of 50 ms with a
local quorum read (that is, a quorum of replicas within a
single datacenter). In this case, Rushed[T] would be the
sum of three types Consistent[T], LocalQuorum[T], and
Inconsistent[T]. Amatch statement destructures the result
of a latency-bound read operation:

set.contains() match {

case Consistent(x) => print(x)

case LocalQuorum(x) => print(x+", locally")

case Inconsistent(x) => print(x+"???")

}

The application may want to react differently to a local quo-
rum as opposed to a strongly or weakly consistent value.
Note that because of the subtyping relation on consistency

types, omitted cases can be matched by any type lower in
the lattice, including the bottom element Inconsistent(x);
other cases therefore need only be added if the application
should respond differently to them. This subtyping behavior
allows applications to be portable between systems support-
ing different forms of consistency (of which there are many).
3.4.2. Interval types
Tagging values with a consistency level is useful because it
helps programmers tell which operation reorderings are pos-
sible (e.g. strongly consistent operations will be observed to
happen in program order). However, accuracy policies pro-
vide a different way of dealing with inconsistency by express-
ing it in terms of value uncertainty. They require knowing
the abstract behavior of operations in order to determine the
change in abstract state which results from each reordered
operation (e.g., reordering increments on a Counter has a
known effect on the value of reads).

The weak consistency type Interval[T] is the result of
operations performed on an ADT with consistency policy
ErrorTolerance(x%). Interval[T] represents an interval
of values within which the true (strongly consistent) result
lies. The interval reflects uncertainty in the true value cre-
ated by relaxed consistency, in the same style as work on
approximate computing [15].

The key invariant of the Interval type is that the inter-
val must include the result of some linearizable execution.
Consider a Set with 100 elements. With linearizability, if
we add a new element and then read the size (or if this or-
dering is otherwise implied), we must get 101 (provided no
other updates are occurring). However, if size is annotated
with ErrorTolerance(5%), then it could return any interval
that includes 101, such as [95,105] or [100,107], so the client
cannot tell if the recent add was included in the size. This
frees the system to optimize to improve performance, such
as by delaying synchronization. While any partially-ordered
domain could be represented as an interval (e.g., a Set with
partial knowledge of its members), in this work we consider
only numeric types.

In the ticket sales example, the counter ADT’s accuracy
policy means that reads of the number of tickets return an
Interval[Int]. If the entire interval is above zero, then
users can be assured that there are sufficient tickets remain-
ing. In fact, because the interval could represent many pos-
sible linearizable executions, in the absence of other user
actions, a subsequent purchase must succeed. On the other
hand, if the interval overlaps with zero, then there is a chance
that tickets could already be sold out, so users could be
warned. Note that ensuring that tickets are not over-sold is a
separate concern requiring a different form of enforcement,
which we describe in §5. The relaxed consistency of the in-
terval type allows the system to optimize performance in the
common case where there are many tickets available, and
dynamically adapt to contention when the ticket count dimin-
ishes.

4. Enforcing consistency policies
The consistency policies introduced in the previous section
allow programmers to describe application-level correctness
properties. Static consistency policies (e.g. Strong) are en-
forced by the underlying storage system; the annotated ADT
methods simply set the desired consistency level when is-
suing requests to the store. The dynamic policies each re-
quire a new runtime mechanism to enforce them: parallel
operations with latency monitoring for latency bounds, and
reusable reservations for error tolerance. But first, we briefly
review consistency in Dynamo-style replicated systems.

To be sure a strong read sees a particular write, the two
must be guaranteed to coordinate with overlapping sets of
replicas (quorum intersection). For a write and read pair to
be strongly consistent (in the CAP sense [17]), the replicas
acknowledging the write (W) plus the replicas contacted for
the read (R) must be greater than the total number of replicas
(W +R > N). This can be achieved, for example, by writing
to a quorum ((N+1)/2) and reading from a quorum (QUORUM
in Cassandra), or writing to N (ALL) and reading from 1
(ONE) [22].

Because overall consistency is dependent on both the
strength of reads and writes, it really does not make sense
to specify consistency policies on individual operations in
isolation. Declaring consistency policies on an entire ADT,
however, allows the implementer of the ADT to ensure that
all combinations of reads and writes achieve the specified
consistency.
4.1. Static bounds
Static consistency policies are typically enforced by the un-
derlying datastore, but they require the designer of each ADT
to carefully choose how to implement them. To support the
Consistency(Strong) policy, the designer of each ADT
must choose consistency levels for its operations which to-
gether enforce strong consistency. For example, if a devel-
oper knows that updates to a Counter aremore common, they
may choose to require the read operation to synchronizewith
all replicas (ALL), permitting increment and decrement to
wait for only a single replica (ONE) without violating strong
consistency.
4.2. Latency bounds
The time it takes to achieve a particular level of consistency
depends on current conditions and can vary over large time
scales (minutes or hours) but can also vary significantly for
individual operations. During normal operation, strong con-
sistency may have acceptable performance while at peak traf-
fic times the application would fall over. Latency bounds
specified by the application allow the system to dynamically
adjust to maintain comparable performance under varying
conditions.

Our implementation of latency-bound types takes a generic
approach: it issues read requests at different consistency lev-

els in parallel. It composes the parallel operations and returns
a result either when the strongest operation returns, or with
the strongest available result at the specified time limit. If no
responses are available at the time limit, it waits for the first
to return.

This approachmakes no assumptions about the implemen-
tation of read operations, making it easily adaptable to differ-
ent storage systems. Some designs may permit more efficient
implementations: for example, in a Dynamo-style storage
system we could send read requests to all replicas, then com-
pute the most consistent result from all responses received
within the latency limit. However, this requires deeper ac-
cess to the storage system implementation than is tradition-
ally available.
4.2.1. Monitors
The main problem with our approach is that it wastes work
by issuing parallel requests. Furthermore, if the system is re-
sponding slower due to a sudden surge in traffic, then it is
essential that our efforts not cause additional burden on the
system. In these cases, we should back off and only attempt
weaker consistency. To do this, the system monitors current
traffic and predicts the latency of different consistency lev-
els.

Each client in the system has its own Monitor (though
multi-threaded clients can share one). The monitor records
the observed latencies of reads, grouped by operation and
consistency level. The monitor uses an exponentially de-
caying reservoir to compute running percentiles weighted to-
ward recent measurements, ensuring that its predictions con-
tinually adjust to current conditions.

Whenever a latency-bound operation is issued, it queries
the monitor to determine the strongest consistency likely to
be achieved within the time bound, then issues one request
at that consistency level and a backup at the weakest level,
or only weak if none can meet the bound. In §6.2.1 we show
empirically that even simple monitors allow clients to adapt
to changing conditions.
4.3. Error bounds
We implement error bounds by building on the concepts of
escrow and reservations [27, 44, 48, 50]. These techniques
have been used in storage systems to enforce hard limits,
such as an account balance never going negative, while per-
mitting concurrency. The idea is to set aside a pool of per-
missions to perform certain update operations (we’ll call
them reservations or tokens), essentially treating operations
as a manageable resource. If we have a counter that should
never go below zero, there could be a number of decrement
tokens equal to the current value of the counter. When a
client wishes to decrement, it must first acquire sufficient to-
kens before performing the update operation, whereas incre-
ments produce new tokens. The insight is that the coordina-
tion needed to ensure that there are never too many tokens
can be done off the critical path: tokens can be produced

lazily if there are enough around already, and most impor-
tantly for this work, they can be distributed among replicas.
This means that replicas can perform some update operations
safely without coordinating with any other replicas.

4.3.1. Reservation Server
Reservations require mediating requests to the datastore to
prevent updates from exceeding the available tokens. Fur-
thermore, each server must locally know how many tokens
it has without synchronizing. We are not aware of a com-
mercial datastore that supports custom mediation of requests
and replica-local state, so we need a custom middleware
layer to handle reservation requests, similar to other systems
which have built stronger guarantees on top of existing data-
stores [8, 10, 57].

Any client requests requiring reservations are routed to
one of a number of reservation servers. These servers then
forward operations when permitted along to the underlying
datastore. All persistent data is kept in the backing store;
these reservation servers keep only transient state tracking
available reservations. The number of reservation servers
can theoretically be decoupled from the number of datastore
replicas; our implementation simply colocates a reservation
server with each datastore server and uses the datastore’s
node discovery mechanisms to route requests to reservation
servers on the same host.

4.3.2. Enforcing error bounds
Reservations have been used previously to enforce hard
global invariants in the form of upper or lower bounds on val-
ues [10], integrity constraints [9], or logical assertions [37].
However, enforcing error tolerance bounds presents a new
design challenge because the bounds are constantly shifting.
Consider a Counter with a 10% error bound, shown in Fig-
ure 3. If the current value is 100, then 10 increments can
be done before anyone must be told about it. However, we
have 3 reservation servers, so these 10 reservations are dis-
tributed among them, allowing each to do some increments
without synchronizing. If only 10 outstanding increments
are allowed, reads are guaranteed to maintain the 10% error
bound.

In order to perform more increments after a server has
exhausted its reservations, it must synchronize with the oth-
ers, sharing its latest increments and receiving any changes
of theirs. This is accomplished by doing a strong write (ALL)
to the datastore followed by a read. Once that synchroniza-
tion has completed, those 3 tokens become available again
because the reservation servers all temporarily agree on the
value (in this case, at least 102).

Read operations for these types go through reservation
servers as well: the server does a weak read from any replica,
then determines the interval based on howmany reservations
there are. For the read in Figure 3, there are 10 reservations
total, but Server B knows that it has not used its local reser-


Replica 1


Replica 2

incr(1)

incr(1)

Counter with ErrorTolerance(10%)

read() =

localTokens: 5/5

totalTokens: 10

100
100

R1: 5

R2: 5
allocated:

maxAlloc: 10

Reserva0on Server 2

localTokens: 3/5

totalTokens: 10

Reserva0on Server 1

Interval[Int](100..105)

+2

B

D

C

A

102

Alloca.on Table

Figure 3. Enforcing error bounds on a Counter: (A) Each replica
has some number of tokens allocated to it, must add up to less than
the max (in this case, 10% of the current value). (B) Reservation
Server 1 has sufficient tokens available, so both increments con-
sume a token and proceed to Replica 1. (C) Reads return the range
of possible values, determined by total number of allocated tokens;
in this case, it reads the value 100, knows that there are 10 tokens
total, but 5 of them (local to RS2) are unused, so it returns 100..105.
(D) Eventually, when the increments have propagated, reservation
server reclaims its tokens.

vations, so it knows that there cannot be more than 6 and can
return the interval [100,106].
4.3.3. Narrowing bounds
Error tolerance policies set an upper bound on the amount of
error; ideally, the interval returned will be more precise than
the maximum error when conditions are favorable, such as
when there are few update operations. Rather than assuming
the total number of tokens is always the maximum allowable
by the error bound, we instead keep an allocation table for
each record that tracks the number of tokens allocated to each
reservation server. If a reservation server receives an update
operation and does not have enough tokens allocated, it up-
dates the allocation table to allocate tokens for itself. The al-
location table must preserve the invariant that the total does
not exceed themaximum tokens allowed by the current value.
For example, for a value of 100, 10 tokens were allowed, but
after 1 decrement, only 9 tokens are allowed. Whenever this
occurs, the server that changed the bound must give up the
“lost” token out of its own allocations. As long as these up-
dates are done atomically (in Cassandra, this is done using
linearizable conditional updates), the global invariant holds.
Because of this synchronization, reading and writing the al-
location table is expensive and slow, so we use long leases
(on the order of seconds) within each reservation server to
cache their allocations. When a lease is about to expire, the
server preemptively refreshes its lease in the background so
that writes do not block unnecessarily.

For each type of update operation there may need to be
a different pool of reservations. Similarly, there could be
different error bounds on different read operations. It is up
to the designer of the ADT to ensure that all error bounds
are enforced with appropriate reservations. Consider a Set
with an error tolerance on its size operation. This requires
separate pools for add and remove to prevent the overall size
from deviating by more than the bound in either direction,

so the interval is [v− remove.delta,v+ add.delta] where
v is the size of the set and delta computes the number of
outstanding operations from the pool. In some situations,
operations may produce and consume tokens in the same
pool – e.g., increment producing tokens for decrement –
but this is only allowable if updates propagate in a consistent
order among replicas, which may not be the case in some
eventually consistent systems.

5. Implementation
IPA is implemented mostly as a client-side library to an off-
the-shelf distributed storage system, though reservations are
handled by a custom middleware layer which mediates ac-
cesses to any data with error tolerance policies. Our imple-
mentation is built on top of Cassandra, but IPA could work
with any replicated storage system that supports fine-grained
consistency control, which many commercial and research
datastores do, including Riak [11].

IPA’s client-side programming interface is written in
Scala, using the asynchronous futures-based Phantom [45]
library for type-safe access to Cassandra data. Reservation
server middleware is also built in Scala using Twitter’s
Finagle framework [63]. Communication is done between
clients and Cassandra via prepared statements, and between
clients and reservation servers via Thrift remote-procedure-
calls [6]. Due to its type safety features, abstraction capabil-
ity, and compatibility with Java, Scala has become popular
for web service development, including widely-used frame-
works such as Akka [35] and Spark [5], and at established
companies such as Twitter and LinkedIn [2, 18, 29].

The IPA type system, responsible for consistency safety,
is also simply part of our client library, leveraging Scala’s so-
phisticated type system. The IPA type lattice is implemented
as a subclass hierarchy of parametric classes, using Scala’s
support for higher-kinded types to allow them to be destruc-
tured in match statements, and implicit conversions to allow
Consistent[T] to be treated as type T. We use traits to im-
plement ADT annotations; e.g. when the LatencyBound trait
is mixed into an ADT, it wraps each of the methods, redefin-
ing them to have the new semantics and return the correct
IPA type.

IPA comes with a library of reference ADT implemen-
tations used in our experiments, but it is intended to be ex-
tended with custom ADTs to fit more specific use cases. Our
implementation provides a number of primitives for build-
ing ADTs, some of which are shown in Figure 4. To support
latency bounds, there is a generic LatencyBound trait that
provides facilities for executing a specified read operation
at multiple consistency levels within a time limit. For im-
plementing error bounds, IPA provides a generic reservation
pool which ADTs can use. Figure 4 shows how a Counter
with error tolerance bounds is implemented using these pools.
The library of reference ADTs includes:

trait LatencyBound {

 // execute readOp with strongest consistency possible

 // within the latency bound

 def rush[T](bound: Duration,

 readOp: ConsistencyLevel => T): Rushed[T]

}

/* Generic reservaton pool, one per ADT instance.

 `max` recomputed as needed (e.g. for % error) */

class ReservationPool(max: () => Int) {

 def take(n: Int): Boolean // try to take tokens

 def sync(): Unit // sync to regain used tokens

 def delta(): Int // # possible ops outstanding

}

/* Counter with ErrorBound (simplified) */

class Counter(key: UUID) with ErrorTolerance {

 def error: Float // % tolerance (defined by instance)

 def maxDelta() = (cassandra.read(key) * error).toInt

 val pool = ReservationPool(maxDelta)

 def read(): Interval[Int] = {

 val v = cassandra.read(key)

 Interval(v - pool.delta, v + pool.delta)

 }

 def incr(n: Int): Unit =

 waitFor(pool.take(n)) { cassandra.incr(key, n) }

}

Figure 4. Some of the reusable components provided by IPA and
an example implemention of a Counter with error bounds.

• Counter based on Cassandra’s counter, supporting incre-
ment and decrement, with latency and error bounds

• BoundedCounter CRDT from [10] that enforces a hard
lower bound even with weak consistency. Our implemen-
tation adds the ability to bound error on the value of the
counter and set latency bounds.

• Set with add, remove, contains and size, supporting
latency bounds, and error bounds on size.

• UUIDPool generates unique identifiers, with a hard limit
on the number of IDs that can be taken from it; built on
top of BoundedCounter and supports the same bounds.

• List: thin abstraction around a Cassandra table with a
time-based clustering order, supports latency bounds.

Figure 4 shows Scala code using reservation pools to imple-
ment a Counter with error bounds. The actual implementa-
tion splits this functionality between the client and the reser-
vation server.
6. Evaluation
The goal of the IPA programming model and runtime system
is to build applications that adapt to changing conditions, per-
forming nearly as well as weak consistency but with stronger
consistency and safety guarantees. To that end, we evaluate
our prototype implementation under a variety of network con-
ditions using both a real-world testbed (Google Compute En-
gine [28]) and simulated network conditions. We start with
microbenchmarks to understand the performance of each of
the runtime mechanisms independently. We then study two
applications in more depth, exploring qualitatively how the
programming model helps avoid potential programming mis-
takes in each and then evaluating their performance against
strong and weakly consistent implementations.

Network Condition Latencies (ms)
Simulated Replica 1 Replica 2 Replica 3
Uniform / High load 5 5 5
Slow replica 10 10 100
Geo-distributed (EC2) 1 ± 0.3 80 ± 10 200 ± 50
Actual Replica 1 Replica 2 Replica 3
Local (same rack) <1 <1 <1
Google Compute Engine 30 ± <1 100 ± <1 160 ± <1

Table 2. Network conditions for experiments: latency from client
to each replicas, with standard deviation if high.
6.1. Simulating adverse conditions
To control for variability, we perform our experiments with
a number of simulated conditions, and then validate our
findings against experiments run on globally distributed ma-
chines in Google Compute Engine.We use a local test cluster
with nodes linked by standard ethernet and Linux’s Network
Emulation facility [62] (tc netem) to introduce packet de-
lay and loss at the operating system level. We use Docker
containers [24] to enable fine-grained control of the network
conditions between processes on the same physical node.

Table 2 shows the set of conditions we use in our exper-
iments. The uniform 5ms link simulates a well-provisioned
datacenter; slow replicamodels contention or hardware prob-
lems that cause one replica to be slower than others, and geo-
distributed replicates the latencies between virtual machines
in the U.S., Europe, and Asia on Amazon EC2 [3]. These
simulated conditions are validated by experiments onGoogle
Compute Engine with virtual machines in four datacenters:
the client in us-east, and the storage replicas in us-central,
europe-west, and asia-east. We elide the results for Local
(same rack in our testbed) except in Figure 11 because the
differences between policies are negligible, so strong consis-
tency should be the default there.
6.2. Microbenchmark: Counter
We start by measuring the performance of a simple appli-
cation that randomly increments and reads from a number
of counters with different IPA policies. Random operations
(incr(1) and read) are uniformly distributed over 100 coun-
ters from a single multithreaded client (allowing up to 4000
concurrent operations).
6.2.1. Latency bounds
Latency bounds provide predictable performance while max-
imizing consistency; when latencies and load are low it is
often possible to achieve strong consistency. Figure 5 com-
pares the latency of 10ms and 50ms latency bounds with
strong and weak consistency. As expected, there is a signifi-
cant cost to strong consistency under all network conditions.
IPA cannot achieve strong consistency under 10ms in any
case, so the system must always default to weak consistency.
With a 50ms bound, IPA can achieve strong consistency in
conditions when network latency is low (i.e., the single dat-

100%100% 0% 0% 100%100% 0% 0% 100% 83% 0% 0% 100% 0% 0% 0%

(809 ms)

Uniform
(5ms)

High load Slow replica
Geo-

distributed

0

10

25

50

75

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

M
e

a
n

 l
a
te

n
cy

 (
m

s)

Figure 5. Counter: latency bounds, mean latency.Beneath each bar
is the % of strong reads. Strong consistency is never possible for the
10ms bound, but 50ms bound achievesmostly strong, only resorting
to weak when network latency is high.

acenter case). Cassandra load balances clients, so with one
slow replica, IPA will attempt to achieve strong consistency
for all clients but not succeed. In our experiments, IPA was
able to get strong consistency 83% of the time. In the geo-
distributed case, there are no 2 replicas within 50ms of our
client, so strong consistency is never possible and IPA adapts
to only attempt weak.

Figure 7 shows the 95th percentile latencies for the same
workload. The tail latency of the 10ms bound is comparable
to weak consistency, whereas the 50ms bound overloads the
slow server with double the requests, causing it to exceed the
latency 5% of the time. There is a gap between latency-bound
and weak consistency in the geo-distributed case because the
weak condition uses weak reads and writes, while our rushed
types, in order to have the option of getting strong reads
without requiring a read of ALL, must do QUORUM writes.
6.2.2. Error bounds
This experiment measures the cost of enforcing error bounds
using the reservation system described in §4.3, and its preci-
sion. Reservations move synchronization off the critical path:
by distributing write permissions among replicas, reads can
get strong guarantees from a single replica. Note that reser-
vations impact write performance, so we must consider both.

Figure 6a shows latencies for error bounds of 1%, 5%,
and 10%, plotting the average of read and increment opera-
tions. As expected, tighter error bounds increase latency be-
cause it forces more frequent synchronization between repli-
cas. The 1% error bound provides most of the benefit, except
in the slow replica and geo-distributed environments where
it forces synchronization frequently enough that the added la-
tency slows down the system. 5-10% error bounds provide la-
tency comparable to weak consistency. In the geo-distributed
case, the coordination required for reservations makes even
the 10% error bound 4× slower than weak consistency, but
this is still 28× faster than strong consistency.

While we have verified that error-bounded reads remain
within our defined bounds, we also wish to know what error
occurs in practice. We modified our benchmark to observe
the actual error fromweak consistency by incrementing coun-
ters a predetermined amount and reading the value; results
are shown in Figure 6b. We plot the percent error of weak
and strong against the actual observed interval width for a
1% error bound, going from a read-heavy (1% increments)
to write-heavy (all increments, except to check the value).

First, we find that the mean interval is less than the 1%
error bound because, for counters that are less popular, IPA
is able to return a more precise interval. At low write rate,
this interval becomes even smaller, down to .5% in the geo-
distributed experiment. On the other hand, we find that the
mean error for weak consistency is also less than 1%; how-
ever, the maximum error observed is up to 60%. This mo-
tivates error bounded consistency to ensure that applications
never see drastically incorrect values from weakly consistent
operations. Further, using the Interval type, IPA is able to
give the application an estimate of the variance in the weak
read, which is often more precise than the upper bound set
by the error tolerance policy.
6.3. Applications
Next, we explore the implementation of two applications in
IPA and compare their performance against Cassandra using
purely strong or weak consistency on our simulated network
testbed and Google Compute Engine.
6.3.1. Ticket service
Our Ticket sales web service, introduced in §2, is modeled
after FusionTicket [1], which has been used as a benchmark
in recent distributed systems research [65, 66]. We support
the following actions:
• browse: List events by venue
• viewEvent: View the full description of an event includ-
ing number of remaining tickets

• purchase: Purchase a ticket (or multiple)
• addEvent: Add an event at a venue.
Figure 8 shows a snippet of code from the IPA implementa-
tion (compare with Figure 1). Tickets are modeled using the
UUIDPool type, which generates unique identifiers to reserve
tickets for purchase. The ADT ensures that, even with weak
consistency, it never gives out more than the maximum num-
ber of tickets, so it is safe to endorse the result of the take
operation (though there is a possibility of a false negative).
We use an error tolerance annotation to bound the inaccuracy
of ticket counts better than the weak read from Figure 1. Now
getTicketCount returns an Interval, forcing us to decide
how to handle the range of possible ticket counts. We decide
to use the max value to compute the ticket price to be fair
to users; the 5% error bound ensures we don’t sacrifice too
much profit.

We run a workload modelling a typical small-scale de-
ployment: 50 venues and 200 events, with an average of 2000

Uniform
(5ms)

High load Slow replica
Geo-

distributed

0

5

10

15

20

0

5

10

15

20

0

20

40

60

0

200

400

600

800

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10%

w
ea

k

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10%

w
ea

k

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10%

w
ea

k

st
ro

ng

er
ro

r:
1%

er
ro

r:
5%

er
ro

r:
10%

w
ea

k

O
v

e
ra

ll
m

e
a
n

 l
a
te

n
cy

 (
m

s)

(a) Mean latency (increment and read).

Local High load Slow replica
Geo-

distributed

0.00

0.25

0.50

0.75

1.00

0

20

40

m
e

a
n

 %
 e

rr
o

r
m

a
x

 %
 e

rr
o

r

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

fraction increment ops

Bounds strong error: 1% weak

(b) Observed % error for weak and strong, compared with the actual
interval widths returned for 1% error tolerance.

Figure 6. Counter benchmark: error tolerance. In (a), we see that wider error bounds reduce mean latency because fewer synchronizations
are required, matching weak around 5-10%. In (b), we see actual error of weak compared with the actual interval for a 1% error bound with
varying fraction of writes; average error is less than 1% but maximum error can be extremely high: up to 60%.

(2162 ms)

Uniform
(5ms)

High load Slow replica
Geo-

distributed

0
10

50

100

150

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

st
ro

ng

la
te

ncy
: 5

0m
s

la
te

ncy
: 1

0m
s

w
ea

k

9
5

th
 p

e
rc

e
n

ti
le

 l
a
te

n
cy

Figure 7. Counter: 95th percentile latency. Latency bounds keep
tail latency down, backing off to weak when necessary.
tickets each (gaussian distribution centered at 2000, stddev
500); this ticket-to-event ratio ensures that some events run
out tickets. Because real-world workloads exhibit power law
distributions [20], we use a moderately skewed Zipf distribu-
tion with coefficient of 0.6 to select events.

Figure 9 shows the average latency of a workload consist-
ing of 70% viewEvent, 19% browse, 10% purchase, and 1%
addEvent. We use a log scale because strong consistency has
over 5× higher latency. The purchase event, though only
10% of the workload, drives most of the latency increase
because of the work required to prevent over-selling tickets.
We explore two different IPA implementations: one with a
20ms latency bound on all ADTs aiming to ensure that both
viewEvent and browse complete quickly, and one where the
ticket pool size (“tickets remaining”) has a 5% error bound.
Both perform with nearly the same latency as weak con-
sistency. The latency bound version has 92% strong reads
in low-latency conditions (uniform and high load), but falls
back to weak for the more adverse conditions.

Figure 9 also shows results on Google Compute Engine
(GCE).We see that the results of real geo-replication validate
the findings of our simulated geo-distribution results.

// creates a table of pools, so each event gets its own

// 5% error tolerance on `remaining` method, weak otherwise

val tickets = UUIDPool() with Consistency(Weak)

 with Remaining(ErrorTolerance(0.05))

// called from displayEvent (& purchaseTicket)

def getTicketCount(event: UUID): Interval[Int] =

 tickets(event).remaining()

def purchaseTicket(event: UUID) = {

 // UUIDPool is safe even with weak consistency (CRDT)

 endorse(tickets(event).take()) match {

 case Some(ticket) =>

 // imprecise count returned due to error tolerance

 val remaining = getTicketCount(event)

 // use maximum count possible to be fair

 val price = computePrice(remaining.max)

 display("Ticket reserved. Price: $" + price)

 prompt_for_payment_info(price)

 case None =>

 display("Sorry, all sold out.")

 }

}

Figure 8. Ticket service code demonstrating consistency types.
On this workload, we observe that the 5% error bound

performs well even under adverse conditions, which differs
from our findings in the microbenchmark. This is because
ticket pools begin full, with many tokens available, requiring
less synchronization until they are close to running out. Con-
trast this with the microbenchmark, where counters started at
small numbers (average of 500), where a 5% error tolerance
means fewer tokens.
6.3.2. Twitter clone
Our second application is a Twitter-like service based on the
Redis datamodeling example, Retwis [55]. The datamodel is
simple: each user has a Set of followers, and a List of tweets
in their timeline. When a user tweets, the tweet ID is eagerly
inserted into all of their followers’ timelines. Retweets are
tracked with a Set of users who have retweeted each tweet.

Figure 11 shows the data model with policy annotations:
latency bounds on followers and timelines and an error bound

Uniform
(5ms)

High load Slow replica
Geo-

distributed
GCE

(actual)

10

20

10

20

50

100

10

20

50

100

10

20

50

100

500

1000

10

20

50

100

500

1000

st
ro

ng

er
ro

r:
5%

la
te

ncy
: 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

ncy
: 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

ncy
: 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

ncy
: 2

0m
s

w
ea

k

st
ro

ng

er
ro

r:
5%

la
te

ncy
: 2

0m
s

w
ea

k

M
e

a
n

 l
a
te

n
cy

 (
m

s)

Figure 9. Ticket service: mean latency, log scale. Strong consis-
tency is far too expensive (>10× slower) except when load and la-
tencies are low, but 5% error tolerance allows latency to be compa-
rable to weak consistency. The 20ms latency-bound variant is either
slower or defaults to weak, providing little benefit. Note: the ticket
Pool is safe even when weakly consistent.

0k

1k

2k

3k

0 1000 2000 3000 4000

concurrent clients

T
h

ro
u

g
h

p
u

t
(a

ct
io

n
s/

s)

Bounds

strong

error: 5%

latency: 20ms

weak

Figure 10. Ticket service: throughput on Google Compute Engine
globally-distributed testbed. Note that this counts actions such as
tweet, which can consist of multiple storage operations. Because
error tolerance does mostly weak reads and writes, its performance
tracks weak. Latency bounds reduce throughput due to issuing the
same operation in parallel.
on the retweets. This ensures that when tweets are displayed,
the retweet count is not grossly inaccurate. As shown in
displayTweet, highly popular tweets with many retweets
can tolerate approximate counts – they actually abbreviate
the retweet count (e.g. “2.4M”) – but average tweets, with
less than 20 retweets, will get an exact count. This is impor-
tant because average users may notice if a retweet of one of
their tweets is not reflected in the count, and this does not
cost much, whereas popular tweets, like Ellen Degeneres’s
record-breaking celebrity selfie [7] with 3 million retweets,
have more slack due to the 5% error tolerance.

The code for viewTimeline in Figure 11 demonstrates
how latency-bound Rushed[T] types can be destructured
with a match statement. In this case, the timeline (list of
tweet IDs) is retrieved with a latency bound. Tweet content
is added to the store before tweet IDs are pushed onto time-
lines, so with strong consistency we know that the list of IDs
will all be able to load valid tweets. However, if the latency-
bound type returns with weak consistency (Inconsistent
case), then this referential integrity property may not hold.
In that case, we must guard the call to displayTweet and
retry if any of the operations fails.

class User(id: UserID, name: String,

 followers: Set[UserID] with LatencyBound(20 ms),

 timeline: List[TweetID] with LatencyBound(20 ms))

class Tweet(id: TweetID, user: UserID, text: String,

 retweets: Set[UserID] with Size(ErrorTolerance(5%)))

def viewTimeline(user: User) = {

 // `range` returns `Rushed[List[TweetID]]`

 user.timeline.range(0,10) match { // use match to unpack

 case Consistent(tweets) =>

 for (tweetID <- tweets)

 displayTweet(tweetID)

 case Inconsistent(tweets) =>

 // tweets may not have fully propagated yet

 for (tweetID <- tweets)

 // guard load and retry if there's an error

 Try { displayTweet(tweetID) } retryOnError

 }

}

def displayTweet(id: TweetID, user: User) = {

 val rct: Interval[Int] = tweets(id).retweets.size()

 if (rct > 1000) // abbreviate large counts (e.g. "2k")

 display("${rct.min/1000}k retweets")

 else if (rct.min == rct.max) // count is precise!

 display("Exactly ${rct.min} retweets")

 //...

 // here, `contains` returns `Consistent[Boolean]`

 // so it is automatically coerced to a Boolean

 if (tweets(id).retweets.contains(user))

 disable_retweet_button()

}

Figure 11. Twitter data model with policy annotations, Rushed[T]
helps catch referential integrity violations and Interval[T] repre-
sents approximate retweet counts.

Local
Uniform

(5ms)
High load

Slow
replica

Geo-
distributed

GCE
(actual)

0

20

40

60

0

25

50

75

100

0

100

200

300

400

0

250

500

750

0

1000

2000

3000

4000

0

2000

4000

6000

st
ro

ng
IP

A
w

ea
k

st
ro

ng
IP

A
w

ea
k

st
ro

ng
IP

A
w

ea
k

st
ro

ng
IP

A
w

ea
k

st
ro

ng
IP

A
w

ea
k

st
ro

ng
IP

A
w

ea
k

M
e

a
n

 l
a
te

n
cy

 (
m

s)

Figure 12. Twitter clone: mean latency (all actions). The IPA ver-
sion performance comparably with weak consistency in all but one
case, while strong consistency is 2-10× slower.

We simulate a realistic workload by generating a synthetic
power-law graph, using a Zipf distribution to determine the
number of followers per user. Our workload is a randommix
with 50% timeline reads, 14% tweet, 30% retweet, 5%
follow, and 1% newUser.

We see in Figure 12 that for all but the local (same rack)
case, strong consistency is over 3× slower. Our implemen-
tation, combining latency and error-bounds, performs com-
parably with weak consistency but with stronger guarantees
for the programmer. Our simulated geo-distributed condition
turns out to be the worst scenario for IPA’s Twitter, with
latency over 2× slower than weak consistency. This is be-

cause weak consistency performed noticeably better on our
simulated network, which had one very close (1ms latency)
replica that it used almost exclusively.

7. Related Work
Consistency models. IPA’s consistency types could be ex-
tended to more of the thriving ecosystem of consistencymod-
els from sequential consistency [33] and linearizability [30],
to eventual consistency [64]. A variety of intermediate mod-
els fit elsewhere in the spectrum, eachmaking different trade-
offs balancing performance against ease of programming.
Session guarantees, including read-your-writes, strengthen
ordering for individual clients but reduce availability [60].
Many datastores allow fine-grained consistency control: Cas-
sandra [4] per operation, Riak [11] on an object granularity,
and others [34, 58]. The Conit consistency model [67] breaks
down the consistency spectrum into numerical error, order er-
ror, and staleness, but requires annotating each operation and
explicit dependency tracking, rather than annotating ADTs.

Higher-level consistency requirements. Some program-
ming models allow users to express application correctness
criteria directly. InQuelea [57], programmerswrite contracts
to describe visibility and ordering constraints and the system
selects the necessary consistency. In Indigo [9], program-
mers write invariants over abstract state and annotate post-
conditions on actions in terms of the abstract state and the
system adds coordination logic, employing reservations for
numeric bounds. Neither Indigo nor Quelea, however, allow
programmers to specify approximations or error tolerances,
nor do they enforce any kind of performance bounds.

IPA’s latency-bound policies were inspired by Pileus’s [61]
consistency-based SLAs. Consistency SLAs specify a target
latency and consistency level (e.g. 100 ms with read-my-
writes), associated with a utility. Each operation specifies a
set of SLAs, and the system predicts which is most likely to
be met, attempting to maximize utility, and returns both the
value and the achieved consistency level. Other systems, in-
cluding PRACTI [12], PADS [13], and WheelFS [59], have
given developers ways of expressing their desired perfor-
mance and correctness requirements through semantic cues.

The principle that applications may be willing to tolerate
slightly stale data in exchange for improve performance has
a long history in databases [14, 46, 49, 51] and distributed
caches [43, 47]. These systems generally require developers
to explicitly specify staleness bounds on each transaction in
terms of absolute time (although Bernstein et al.’s model can
generate these from error bounds when a value’s maximum
rate of change is known).

The above techniques are relevant but largely orthogonal
to our work: they provide techniques which could be used in
IPA to trade off correctness in new ways. This work builds
on those insights, introducing a new error tolerance mecha-
nism, proposing ADT annotations rather than per-operation,
but most importantly, providing consistency safety via con-

sistency types, which ensure that all possible cases are han-
dled whenever the system adjusts consistency to meet per-
formance targets. Previous systems gave some feedback to
programs about achieved consistency, but did not provide fa-
cilities to ensure developers use the information correctly.

Types for approximation. IPA’s type system is inspired
by work on approximate computing, in which computations
can be selectively made inaccurate to improve energy effi-
ciency and performance. EnerJ [16, 53] and Rely [19, 39]
track the flow of approximate values to prevent them from in-
terfering with precise computation. IPA’s interval types are
similar to Uncertain<T>’s probability distributions [15] and
to interval analysis [40]. One key difference for IPA is that
inconsistent values can be strengthened if desired with addi-
tional synchronization.

Types for distributed and secure systems. Convergent
(or conflict-free) replicated data types (CRDTs) [56] are data
types designed for eventual consistency that guarantee con-
vergence by forcing all updates to commute. CRDTs can be
useful because they allow concurrent updates with meaning-
ful semantics, but they are still only eventually (or causally)
consistent, so users must still deal with temporary divergence
and out-of-date reads, and they do not incorporate perfor-
mance bounds or variable accuracy. The Bounded Counter
CRDT [10] informed the design of our reservations for error
bounds, but enforces global value bounds and does not bound
uncertainty. Information flow tracking systems [23, 41, 52],
also use static type checking and dynamic analysis to enforce
non-interference between sensitive data and untrusted chan-
nels, but, to the best of our knowledge, those techniques have
not been applied to enforce consistency safety by separating
weakly and strongly consistent data.

8. Conclusion
The IPA programming model provides programmers with
disciplined ways to trade consistency for performance in dis-
tributed applications. By specifying application-specific per-
formance and accuracy targets in the form of latency and er-
ror tolerance bounds, they tell the system how to adapt when
conditions change and provide it with opportunities for opti-
mization. Meanwhile, consistency types ensure consistency
safety, ensuring that all potential weak outcomes are handled,
and allowing applications to make choices based on the accu-
racy of the values the system returns. The policies, types and
enforcement systems implemented in this work are a sam-
ple of what is possible within the framework of Inconsistent,
Performance-bound, and Approximate types.

Acknowledgments
We thank the anonymous reviewers for their feedback. This
research was funded in part by NSF under grant #1518703,
DARPA under contract FA8750–16–2–0032, C-FAR, one of
the six SRC STARnet Centers, sponsored by MARCO and
DARPA, and gifts by Google and Microsoft.

References
[1] Fusion ticket. http://fusionticket.org.
[2] Scala in the enterprise. http://www.scala-lang.org/old/

node/1658, March 2009.
[3] AmazonWeb Services, Inc. Elastic compute cloud (ec2) cloud

server & hosting – aws. https://aws.amazon.com/ec2/,
2016 .

[4] Apache Software Foundation. Cassandra. http://cassandra.
apache.org/, 2015.

[5] Apache Software Foundation. Apache spark - lightning-fast
cluster computing. http://spark.apache.org/, 2016a.

[6] Apache Software Foundation. Apache thrift. https://
thrift.apache.org/, 2016b.

[7] Lisa Baertlein. Ellen’s Oscar ’selfie’ crashes Twitter, breaks
record. http://www.reuters.com/article/2014/03/03/
us-oscars-selfie-idUSBREA220C320140303, March 2014.

[8] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Bolt-on causal consistency. In Proceedings
of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 761–772, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5.
doi:10.1145/2463676.2465279.

[9] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc
Shapiro. Putting consistency back into eventual consis-
tency. In Proceedings of the Tenth European Confer-
ence on Computer Systems, EuroSys, pages 6:1–6:16, New
York, NY, USA, 2015a. ACM. ISBN 978-1-4503-3238-5.
doi:10.1145/2741948.2741972.

[10] Valter Balegas, Diogo Serra, Sergio Duarte, Carla Ferreira,
Marc Shapiro, Rodrigo Rodrigues, and Nuno Preguiça. Ex-
tending eventually consistent cloud databases for enforcing nu-
meric invariants. 34th International Symposium on Reliable
Distributed Systems (SRDS 2015), September 2015b.

[11] Basho Technologies, Inc. Riak. http://docs.basho.com/
riak/latest/, 2015.

[12] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun
Venkataramani, Praveen Yalagandula, and Jiandan Zheng.
Practi replication. In Proceedings of the 3rd Conference
on Networked Systems Design & Implementation - Volume
3, NSDI’06, pages 5–5, Berkeley, CA, USA, 2006. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=
1267680.1267685.

[13] Nalini Belaramani, Jiandan Zheng, Amol Nayate, Robert
Soulé, Mike Dahlin, and Robert Grimm. Pads: A policy ar-
chitecture for distributed storage systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI’09, pages 59–73, Berkeley,
CA, USA, 2009. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1558977.1558982.

[14] Philip A. Bernstein, Alan Fekete, Hongfei Guo, Raghu Ra-
makrishnan, and Pradeep Tamma. Relaxed currency serializ-
ability for middle-tier caching and replication. In Proceedings
of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, Chicago, IL, USA, June 2006. ACM.

[15] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley.
Uncertain<T>: A First-Order Type for Uncertain Data. In
Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems - ASPLOS 14, ASPLOS. Association for Computing
Machinery (ACM), 2014. doi:10.1145/2541940.2541958.

[16] Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze.
Probability type inference for flexible approximate program-
ming. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 470–487,
2015. doi:10.1145/2814270.2814301.

[17] Eric A. Brewer. Towards robust distributed systems. In
Keynote at PODC (ACM Symposium on Principles of Dis-
tributed Computing). Association for Computing Machinery
(ACM), 2000. doi:10.1145/343477.343502.

[18] Travis Brown. Scala at scale at Twitter (talk). http://
conferences.oreilly.com/oscon/open-source-2015/
public/schedule/detail/42332, July 2015.

[19] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Ver-
ifying quantitative reliability for programs that execute on un-
reliable hardware. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, pages 33–
52, 2013. doi:10.1145/2509136.2509546.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ra-
makrishnan, and Russell Sears. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM sympo-
sium on Cloud computing - SoCC 10. Association for Comput-
ing Machinery (ACM), 2010. doi:10.1145/1807128.1807152.

[21] Hayley C. Cuccinello. ’star wars’ presales crash ticket-
ing sites, set record for fandango. http://www.forbes.
com/sites/hayleycuccinello/2015/10/20/star-wars-
presales-crash-ticketing-sites-sets-record-for-
fandango/, October 2015.

[22] Datastax, Inc. How are consistent read and write operations
handled? http://docs.datastax.com/en/cassandra/3.x/
cassandra/dml/dmlAboutDataConsistency.html, 2016.

[23] Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flow. Communications of the
ACM, 20 (7): 504–513, July 1977.

[24] Docker, Inc. Docker. https://www.docker.com/, 2016.
[25] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hy-

perDex. In Proceedings of the ACM SIGCOMM Conference.
Association for Computing Machinery (ACM), August 2012.
doi:10.1145/2342356.2342360.

[26] Brady Forrest. Bing and google agree: Slow pages lose users.
Radar, June 2009. http://radar.oreilly.com/2009/06/
bing-and-google-agree-slow-pag.html.

[27] Dieter Gawlick and David Kinkade. Varieties of Concurrency
Control in IMS/VS Fast Path. IEEE Database Engineering
Bulletin, 8 (2): 3–10, 1985.

[28] Google, Inc. Compute engine — google cloud platform.
https://cloud.google.com/compute/, 2016.

[29] Susan Hall. Employers can’t find enough scala tal-
ent. http://insights.dice.com/2014/04/04/employers-

http://fusionticket.org
http://www.scala-lang.org/old/node/1658
http://www.scala-lang.org/old/node/1658
https://aws.amazon.com/ec2/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://spark.apache.org/
https://thrift.apache.org/
https://thrift.apache.org/
http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://dx.doi.org/10.1145/2463676.2465279
http://dx.doi.org/10.1145/2741948.2741972
http://docs.basho.com/riak/latest/
http://docs.basho.com/riak/latest/
http://dl.acm.org/citation.cfm?id=1267680.1267685
http://dl.acm.org/citation.cfm?id=1267680.1267685
http://dl.acm.org/citation.cfm?id=1558977.1558982
http://dl.acm.org/citation.cfm?id=1558977.1558982
http://dx.doi.org/10.1145/2541940.2541958
http://dx.doi.org/10.1145/2814270.2814301
http://dx.doi.org/10.1145/343477.343502
http://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/42332
http://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/42332
http://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/42332
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1145/1807128.1807152
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://www.forbes.com/sites/hayleycuccinello/2015/10/20/star-wars-presales-crash-ticketing-sites-sets-record-for-fandango/
http://docs.datastax.com/en/cassandra/3.x/cassandra/dml/dmlAboutDataConsistency.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/dml/dmlAboutDataConsistency.html
https://www.docker.com/
http://dx.doi.org/10.1145/2342356.2342360
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
https://cloud.google.com/compute/
http://insights.dice.com/2014/04/04/employers-cant-find-enough-scala-talent/

cant-find-enough-scala-talent/, March 2014.
[30] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a

correctness condition for concurrent objects. ACM Transac-
tions on Programming Languages and Systems, 12 (3): 463–
492, July 1990. doi:10.1145/78969.78972.

[31] Hyperdex. Hyperdex. http://hyperdex.org/, 2015.
[32] Avinash Lakshman and Prashant Malik. Cassandra: A

decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44 (2): 35–40, April 2010. ISSN 0163-5980.
doi:10.1145/1773912.1773922.

[33] Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transac-
tions on Computers, C-28 (9): 690–691, September 1979.
doi:10.1109/tc.1979.1675439.

[34] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguiça, and Rodrigo Rodrigues. Making geo-
replicated systems fast as possible, consistent when neces-
sary. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12),
pages 265–278, Hollywood, CA, 2012. USENIX. ISBN 978-1-
931971-96-6. URL https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/li.

[35] Lightbend Inc. Akka. http://akka.io/, 2016.
[36] Greg Linden. Make data useful. Talk, November

2006. http://glinden.blogspot.com/2006/12/slides-
from-my-talk-at-stanford.html.

[37] Jed Liu, Tom Magrino, Owen Arden, Michael D. George,
and Andrew C. Myers. Warranties for faster strong consis-
tency. In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’14), pages 503–517, Seattle,
WA, April 2014. USENIX Association. ISBN 978-1-931971-
09-6. URL https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/liu_jed.

[38] Cade Metz. How Instagram Solved Its Justin Bieber Problem,
November 2015. URL http://www.wired.com/2015/11/
how-instagram-solved-its-justin-bieber-problem/.

[39] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi,
and Martin C. Rinard. Chisel: reliability- and accuracy-
aware optimization of approximate computational kernels.
In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2014, pages 309–328, 2014.
doi:10.1145/2660193.2660231.

[40] Ramon E. Moore. Interval analysis. Prentice-Hall, 1966.
[41] Andrew C. Myers. Jflow: Practical mostly-static information

flow control. In Proceedings of the 26th ACM Symposium on
Principles of Programing Languages (POPL ’99), San Anto-
nio, TX, USA, January 1999. ACM.

[42] Dao Nguyen. What it’s like to work on buzzfeed’s tech
team during record traffic. http://www.buzzfeed.com/
daozers/what-its-like-to-work-on-buzzfeeds-tech-
team-during-record-t, February 2015.

[43] Chris Olston, Boon Thau Loo, and Jennifer Widom. Adaptive
precision setting for cached approximate values. In Proceed-
ings of the 1999 ACM SIGMOD International Conference on

Management of Data, Santa Barbara, CA, USA, May 1999.
ACM.

[44] Patrick E. O’Neil. The escrow transactional method. ACM
Transactions on Database Systems, 11 (4): 405–430, Decem-
ber 1986. doi:10.1145/7239.7265.

[45] outworkers ltd. Phantom by outworkers. http://outworkers.
github.io/phantom/, March 2016.

[46] Christian Plattner and Gustavo Alonso. Ganymed: Scalable
replication for transactional web applications. In Proceed-
ings of the International Middleware Conference, Toronto,
Ontario, Canada, October 2004.

[47] Dan R. K. Ports, Austin T. Clements, Irene Zhang, Samuel
Madden, and Barbara Liskov. Transactional consistency and
automatic management in an application data cache. In Pro-
ceedings of the 9th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’10), Vancouver, BC,
Canada, October 2010. USENIX.

[48] Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and
Henrique Domingos. Reservations for conflict avoidance in
a mobile database system. In Proceedings of the 1st inter-
national conference on Mobile systems, applications and ser-
vices - MobiSys 03, MobiSys. Association for Computing Ma-
chinery (ACM), 2003. doi:10.1145/1066116.1189038.

[49] Calton Pu and Avraham Leff. Replica control in distributed
systems: An asynchronous approach. In Proceedings of the
1991 ACM SIGMOD International Conference on Manage-
ment of Data, Denver, CO, USA, May 1991. ACM.

[50] Andreas Reuter. Concurrency on high-traffic data elements.
ACM, New York, New York, USA, March 1982.

[51] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and Heiko
Schuldt. FAS — a freshness-sensitive coordination middle-
ware for a cluster of OLAP components. In Proceedings of
the 28th International Conference on Very Large Data Bases
(VLDB ’02), Hong Kong, China, August 2002.

[52] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21 (1): 1–15, January 2003.

[53] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen
Gnanapragasam, Luis Ceze, and Dan Grossman. En-
erj: approximate data types for safe and general low-
power computation. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, pages 164–174, 2011.
doi:10.1145/1993498.1993518.

[54] Salvatore Sanfilippo. Redis. http://redis.io/, 2015a.
[55] Salvatore Sanfilippo. Design and implementation of a sim-

ple Twitter clone using PHP and the Redis key-value store.
http://redis.io/topics/twitter-clone, 2015b.

[56] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Za-
wirski. Conflict-free ReplicatedData Types. InProceedings of
the 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS, pages 386–400, 2011.
ISBN 978-3-642-24549-7.

[57] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagan-
nathan. Declarative programming over eventually consistent
data stores. In Proceedings of the 36th ACM SIGPLAN Con-

http://insights.dice.com/2014/04/04/employers-cant-find-enough-scala-talent/
http://dx.doi.org/10.1145/78969.78972
http://hyperdex.org/
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/tc.1979.1675439
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
http://akka.io/
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
http://glinden.blogspot.com/2006/12/slides-from-my-talk-at-stanford.html
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
http://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/
http://www.wired.com/2015/11/how-instagram-solved-its-justin-bieber-problem/
http://dx.doi.org/10.1145/2660193.2660231
http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://www.buzzfeed.com/daozers/what-its-like-to-work-on-buzzfeeds-tech-team-during-record-t
http://dx.doi.org/10.1145/7239.7265
http://outworkers.github.io/phantom/
http://outworkers.github.io/phantom/
http://dx.doi.org/10.1145/1066116.1189038
http://dx.doi.org/10.1145/1993498.1993518
http://redis.io/
http://redis.io/topics/twitter-clone

ference on Programming Language Design and Implementa-
tion - PLDI 2015, PLDI. Association for Computing Machin-
ery (ACM), 2015. doi:10.1145/2737924.2737981.

[58] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang
Li. Transactional storage for geo-replicated systems. In
ACM Symposium on Operating Systems Principles - SOSP’11,
SOSP. Association for Computing Machinery (ACM), 2011.
doi:10.1145/2043556.2043592.

[59] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer,
Jinyang Li, M. Frans Kaashoek, and Robert Morris. Flexible,
wide-area storage for distributed systems with WheelFS. In
Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), NSDI’09, pages
43–58, Berkeley, CA, USA, 2009. USENIXAssociation. URL
http://dl.acm.org/citation.cfm?id=1558977.1558981.

[60] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M.
Theimer, and B.B. Welch. Session guarantees for weakly
consistent replicated data. In Proceedings of 3rd International
Conference on Parallel and Distributed Information Systems,
PDIS. Institute of Electrical
& Electronics Engineers (IEEE), 1994.
doi:10.1109/pdis.1994.331722.

[61] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla,
Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-
Libdeh. Consistency-based service level agreements for cloud
storage. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles - SOSP 13. ACM Press,

2013. doi:10.1145/2517349.2522731.
[62] The Linux Foundation. netem. http://www.

linuxfoundation.org/collaborate/workgroups/
networking/netem, November 2009.

[63] Twitter, Inc. Finagle. https://twitter.github.io/
finagle/, March 2016.

[64] Werner Vogels. Eventually consistent. Commu-
nications of the ACM, 52 (1): 40, January 2009.
doi:10.1145/1435417.1435432.

[65] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid
Yaghmazadeh, Lorenzo Alvisi, and Prince Mahajan. Salt:
Combining acid and base in a distributed database. In 11th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 495–509, Broomfield, CO,
October 2014. USENIX Association. ISBN 978-1-931971-
16-4. URL https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/xie.

[66] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos
Kapritsos, and Yang Wang. High-Performance ACID via
Modular Concurrency Control. In ACM Symposium on Oper-
ating Systems Principles (SOSP), SOSP, pages 276–291, 2015.
ISBN 978-1-4503-2388-8. doi:10.1145/2517349.2522729.

[67] Haifeng Yu and Amin Vahdat. Design and evaluation of a
conit-based continuous consistency model for replicated ser-
vices. ACM Transactions on Computer Systems (TOCS), 20
(3): 239–282, 2002.

http://dx.doi.org/10.1145/2737924.2737981
http://dx.doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=1558977.1558981
http://dx.doi.org/10.1109/pdis.1994.331722
http://dx.doi.org/10.1145/2517349.2522731
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
http://dx.doi.org/10.1145/1435417.1435432
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/xie
http://dx.doi.org/10.1145/2517349.2522729

	1. Introduction
	2. The Case for Consistency Safety
	3. Programming Model
	3.1. Overview
	3.2. Abstract Data Types
	3.3. Consistency Policies
	3.4. Consistency Types
	3.4.1. Rushed types
	3.4.2. Interval types

	4. Enforcing consistency policies
	4.1. Static bounds
	4.2. Latency bounds
	4.2.1. Monitors

	4.3. Error bounds
	4.3.1. Reservation Server
	4.3.2. Enforcing error bounds
	4.3.3. Narrowing bounds

	5. Implementation
	6. Evaluation
	6.1. Simulating adverse conditions
	6.2. Microbenchmark: Counter
	6.2.1. Latency bounds
	6.2.2. Error bounds

	6.3. Applications
	6.3.1. Ticket service
	6.3.2. Twitter clone

	7. Related Work
	8. Conclusion

