Synthesizing Memory Models
from Framework Sketches
and Litmus Tests

James Bornholt
Emina Torlak University of Washington

Memory consistency models define memory
reordering behaviors on multiprocessors

Memory consistency models define memory
reordering behaviors on multiprocessors

...correctness of
my compiler...

Compiler 5=
writers A4

Memory consistency models define memory
reordering behaviors on multiprocessors

...correctness of ...rules to verify
my compiler... against...
Compiler Verification /°

L © (ON®)
writers A tools i

Memory consistency models define memory
reordering behaviors on multiprocessors

...correctness of ...rules to verify ...possible low-
my compiler... against... level behaviors...
Compiler = Verification - Kernel/library &

0,0
writers 4= tools % developers &

Memory consistency models define memory
reordering behaviors on multiprocessors

...correctness of ...rules to verify ...possible low-
my compiler... against... level behaviors...
Com!aller x Verification Kernel/library @

writers 448 tools - developers &

Litmus tests
and prose

Memory consistency models define memory
reordering behaviors on multiprocessors

...correctness of ...rules to verify ...possible low-
my compiler... against... level behaviors...
Com!aller 53) Verification Kernel/library @

writers 448 tools - developers &

vV3=>€N
N

cC AN U

Litmus tests Formal
and prose specifications

Memory consistency models define memory
reordering behaviors on multiprocessors

...correctness of
my compiler...

Compiler =
writers A

...possible low-
level behaviors...

...rules to verify
against...

o)

Verification /.~

Kernel/library 2
0,0 ~
tools e é

developers &

Litmus tests
and prose

X86 [Sewell et al, CACM’'10]
V
PowerPC [Alglave et al, CAV'10, etc] . A4 3 =>€ X
N
ARM [Flur et al, POPL'16] > C A U
Formal

specifications

MemSynth

vV3=>l><1
N -

c AN U

Litmus tests Formal
specifications

MemSynth

&, ~— Synthesize specifications

vV3=>><1
N -

c AN U

Litmus tests Formal
specifications

MemSynth

Framework sketch
\ 4

&, ~— Synthesize specifications

vV3=>><1
N -

c AN U

Litmus tests Formal
specifications

MemSynth

Framework sketch

A4
&~ Synthesize specifications
_ g V =
- v =X

c AN U

Litmus tests Detect ambiguities Formal

specifications

MemSynth

Framework sketch

A4
&~ Synthesize specifications
_ g V =
- v =X

c AN U

Litmus tests Detect ambiguities Formal

specifications

MemSynth

‘&, ~— Synthesize specifications
T Detect ambiguities

vV3=>l><1
N -

cC AN U

MemSynth

- Synthesize specifications
Detect ambiguities

Framework sketches
define a class of memory models

vV3=>b<1
N -

cC AN U

MemSynth

‘&, ~ Synthesize specifications
Detect ambiguities

Framework sketches
define a class of memory models

vV3=>b<1
N -

cC AN U

MemSynth engine

verification, equivalence, synthesis, ambiguity

MemSynth

‘&, ~ Synthesize specifications
Detect ambiguities

Framework sketches
define a class of memory models

vV3=>b<1
N -

cC AN U

MemSynth engine

verification, equivalence, synthesis, ambiguity

Results
synthesize real-world memory model specs

Memory models and
framework sketches

Litmus tests illustrate memory model behavior

Thread 1 Thread 2
1 X =1 3Y =1
2r1 =Y 4r2 = X

Canrl=0Ar2=0?

Litmus tests illustrate memory model behavior

Thread 1 Thread 2
1 X = 1 3Y = 1
2r1l =Y 4r2 = X

Canrl=0Ar2=0?

Sequential consistency: no

Litmus tests illustrate memory model behavior

Thread 1 Thread 2
1 X = 1 3Y = 1
2r1l =Y 4r2 = X

Canrl=0Ar2=0?
Sequential consistency: no

x86: yes!

Litmus tests illustrate memory model behavior

Thread 1 Thread 2
1 X =1 3Y =1
2r1 =Y 4r2 = X

Canrl=0Ar2=0?
Sequential consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible executions (outcomes) of a program.

Litmus tests illustrate memory model behavior

Thread 1 Thread 2
1 X =1 3Y =1
2r1 =Y 4r2 = X

Canrl=0Ar2=0?
Sequential consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible executions (outcomes) of a program.

Memory model M allows litmus test T if there exists an
execution that satisfies M’s constraints.

Litmus tests illustrate memory model behavior

Memory model

Thread 1 Thread 2 M allows test T:
3 E. M(T,E)

1 X = 1 3Y = 1

2r1 =Y 4r2 = X

Canrl=0Ar2=0?
Sequential consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible executions (outcomes) of a program.

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

no ~(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

no ~(ws + fr + po + rf + fences) & iden

Binary relations over
program instructions

[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

happens-before order
(\

no ~(ws + fr + po + rf + fences) & iden

Binary relations over
program instructions

[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

happens-before order is acyclic
(N \

no ~(ws + fr + po + rf + fences) & iden

Binary relations over
program instructions

[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

happens-before order is acyclic
(N \

no “(ws + fr + po + rf + fences) & iden

From program syntax Binary relations over
program instructions

[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

happens-before order is acyclic

' N \
no ~(ws + fr + po + rf + fences) & iden

From program syntax Binary relations over
program instructions

Thread 1 Thread 2
1 X = 1 3Y = 1
2r1 =Y 4$r2 = X

Canrl=0Ar2=07? |
[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

happens-before order is acyclic

' N \
no ~(ws + fr + po + rf + fences) & iden

From program syntax Binary relations over
program instructions

Thread 1 Thread 2

LY = 7 NV Progran;(orde;:(;
0O = 1,2), (3,4

2rl =Y 4r2 = X P

Canrl=0Ar2=07? |
[Alglave et al, CAV’10]

Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

Part of execution; implicitly
existentially quantified

happens-before order is acyclic

' N \
no ~(ws + fr + po + rf + fences) & iden

From program syntax Binary relations over
program instructions

Thread 1 Thread 2

LY = 1 NV Progran;(orde;:(;
0O = 1,2), (3,4

2rl =Y 4r2 = X P

Canrl=0Ar2=07? |
[Alglave et al, CAV’10]

Framework sketches

A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

no ~(ws + fr + po + rf + fences) & iden

Framework sketches

A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

Expression holes
for a synthesizer
to complete

no ~(ws + fr + 2?2 + 2?7 + 7?7) & iden

Framework sketches

A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

Expression holes

for a synthesizer
to complete

no ~(ws + fr + 2?2 + 2?7 + 7?7) & iden

Framework sketches are the key design tool for synthesizing

memory model specifications — they define the “interesting”
candidate models

Memory model frameworks

no ~(ws + fr + 72?2 + 72?7 + 2?7) & iden

[Alglave et al, CAV’10]

Memory model frameworks

no ~(ws + fr + ppo + grf + fences) & iden

Preserved program Global reads Fence cumulativity
order (same-thread from (inter- (for Power, ARM,
reorderings) thread order) etc)

[Alglave et al, CAV’10]

Memory model frameworks

no ~(ws + fr + ppo + grf + fences) & iden

Preserved program Global reads Fence cumulativity

order (same-thread from (inter- (for Power, ARM,
reorderings) thread order) etc)
Sequential 00 ¢ >

consistency

[Alglave et al, CAV’10]

Memory model frameworks

no ~(ws + fr + ppo + grf + fences) & iden

Preserved program Global reads Fence cumulativity

order (same-thread from (inter- (for Power, ARM,
reorderings) thread order) etc)
Seq.uentlal 00 ¢ >
consistency
Total store po - (Wr-Rd) rf & SameThd %)
order (x86)

[Alglave et al, CAV’10]

Memory model frameworks are common

Axiomatic “must-
Global time not-reorder”
relational model functions
[Alglave et al, CAV'10] [Mador-Haim et al,
DAC'11]

Exexcutable
distributed

consistency models
[Yang et al, IPDPS’04]

Ocelot: relational logic with holes
A relational logic DSL with synthesis support

Built on the Rosette solver-aided language [Torlak & Bodik, PLDI'14]

Expression holes
for a synthesizer
to complete

no ~(ws + fr + ?? + 7?7 + 7?7) & iuden

#2) Available as a Racket package: raco pkg install ocelot

Ocelot: relational logic with holes

A relational logic DSL with synthesis support

Built on the Rosette solver-aided language [Torlak & Bodik, PLDI'14]

Expression holes
for a synthesizer
to complete

no ~(ws + fr + ?? + 7?7 + ?7?) & iden

Completions are expressions in
relational logic with chosen
operators, terminals, and depth.

#2) Available as a Racket package: raco pkg install ocelot

Ocelot: relational logic with holes

A relational logic DSL with synthesis support

Built on the Rosette solver-aided language [Torlak & Bodik, PLDI'14]

Expression holes
for a synthesizer
to complete

no ~(ws + fr + ?? + 7?7 + ?7?) & iden

Completions are expressions in
relational logic with chosen

operators, terminals, and depth. operators = {+, &}

terminals = {po, ws}
depth =1

#2) Available as a Racket package: raco pkg install ocelot

Ocelot: relational logic with holes 4 ;3}%
A relational logic DSL with synthesis support ‘;}; }(’,‘}%

Built on the Rosette solver-aided language [Torlak & Bodik, PLDI'14]

Expression holes
for a synthesizer
to complete

o “(ws + fr + 2?2 + 22 + 72?2) & iden

Completions are expressions in
relational logic with chosen DO

operators, terminals, and depth. operators = {+, &}

; WS
terminals = {po, Wws
P ’ PO + WS
depth =1
po & ws

#2) Available as a Racket package: raco pkg install ocelot

Queries

» Verification
» Equivalence
» Synthesis

» Ambiguity

Verification and equivalence

Memory model
Common queries for automated memory model Mallows testT:

. 3 E. M(T,E)
reasoning tools
Herd [Alglave et al, CAV'10]; MemAlloy [Wickerson et al, POPL'17]; etc.

Verification and equivalence

Memory model
Common queries for automated memory model Mallows testT:

. 3 E. M(T,E)
reasoning tools
Herd [Alglave et al, CAV'10]; MemAlloy [Wickerson et al, POPL'17]; etc.

Litmus test > SAT
\AS 22 = or
Memory model = UNSAT

Verification and equivalence

Memory model
Common queries for automated memory model Mallows testT:

. 3 E. M(T,E)
reasoning tools
Herd [Alglave et al, CAV'10]; MemAlloy [Wickerson et al, POPL'17]; etc.

Litmus test > SAT
\AS 22 = or
Memory model = UNSAT

Reduces to SAT (since
litmus tests are loop-free)

Verification and equivalence

Memory model
Common queries for automated memory model Mallows testT:

. 3 E. M(T,E)
reasoning tools
Herd [Alglave et al, CAV'10]; MemAlloy [Wickerson et al, POPL'17]; etc.

Litmus test SAT

VERIFY Rkl

Memory model UNSAT

Reduces to SAT (since
litmus tests are loop-free)

Memory model Ma = Litmus test

EQUIV [kl

Memory model Mg = UNSAT

Verification and equivalence

Memory model
Common queries for automated memory model Mallows testT:

. 3 E. M(T,E)
reasoning tools
Herd [Alglave et al, CAV'10]; MemAlloy [Wickerson et al, POPL'17]; etc.

Litmus test SAT
VERIFY K2kl
Memory model UNSAT
Reduces to SAT (since

litmus tests are loop-free)

Memory model Ma = Litmus test

EQUIV [kl
UNSAT

UNSAT = bounded equivalence
(“equivalent up to tests of size k”)

Memory model Mg =+

Synthesis

Find a memory model consistent with a set
of litmus tests

Allowed litmus tests =
SNOUGE » Memory model
Forbidden litmus tests =

4

Framework sketch

Synthesis

Find a memory model consistent with a set
of litmus tests

>

>

4

Framework sketch

Synthesis

Find a memory model consistent with a set
of litmus tests

>

>

4

Framework sketch

x86

Synthesis

Find a memory model consistent with a set
of litmus tests

2 allowed tests
» 3 5 =p

2 4 6 7 8 9 10 =p

8 forbidden tests

4

Framework sketch

Synthesis

Find a memory model consistent with a set
of litmus tests

2 allowed tests
» 3 5 =p

S0z ¥ Total store order

2 4 6 7 8 9 10 =p

8 forbidden tests

4

Framework sketch

Synthesis

Find a memory model consistent with a set

of litmus tests Memory model
M allows test T:

3 E. M(T,E)

Allowed litmustests T+ =
% Memory model
Forbidden litmus tests 1= =

4
M

Framework sketch

Synthesis

Find a memory model consistent with a set

of litmus tests Memory model
M allows test T:

3 E. M(T,E)

Allowed litmus tests T+ = T/E\T+ 3 E. M(T,E)

% Memory model
Forbidden litmus tests T~ =

4
M

Framework sketch

Synthesis

Find a memory model consistent with a set

of litmus tests Memory model
M allows test T:

3 E. M(T,E)

Allowed litmus tests T+ = T/E\T+ 3 E. M(T,E)

% Memory model
Forbidden litmus tests T- = T/E\T_ v E. -M(T,E)

4
M

Framework sketch

Synthesis

Find a memory model consistent with a set

of litmus tests Memory model
M allows test T:

3 E. M(T,E)

Allowed litmus tests T+ = T/E\T+ 3 E. M(T,E)

% Memory model
Forbidden litmus tests T- = T/E\T_ v E. -M(T,E)

4

Solved incrementally, like M
counterexample-guided Framework sketch
inductive synthesis (CEGIS)

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =

Forbidden litmus tests = BWAWNI:(E

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =

Forbidden litmus tests = BWAWNI:(E

Memory model Ma =

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =

Forbidden litmus tests = BWAWNI:(E

Memory model Ma =

4

Framework sketch

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =

Memory model Mg
Forbidden litmus tests = BWANYI:][clm =

Litmus test
Memory model Ma =

4

Framework sketch

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =

Memory model Mg

Forbidden litmus tests = BWAWYI:[cll =
Litmus test

Memory model Ma =

4

The new memory model
Framework sketch must be semantically
different from the input:
Ma and Mg must disagree
about a new test T

Similar to oracle-guided
synthesis [Jha et al, ICSE'10]

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Thread1l Thread 2

1 X =1 3 Y =1
v >

2rl =Y 4r2 =X

Canrl=0Ar2=07

Total store order (x86) =

AMBIG ke

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

|s there another semantically
different memory model that

1 ?
Thread 1 Thread 2 also allows this test:

1 X =1 3 Y =1
v >
2rl =Y 4r2 =X
Canrl=0Ar2=0?

Total store order (x86) =

AMBIG ke

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

|s there another semantically
different memory model that

1 ?
Thread 1 Thread 2 also allows this test:

1 X =1 3 Y =1
v >
2rl =Y 4r2 =X
Canrl=0Ar2=0?

Total store order (x86) =

Partial store order (SPARC)

AMBIG ke

Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

|s there another semantically
different memory model that

1 ?
Thread 1 Thread 2 also allows this test:

1 X =1 3 Y =1
v >
2rl =Y 4r2 =X
Canrl=0Ar2=0?

Total store order (x86) =

Partial store order (SPARC)
Thread1 Thread 2

1 X = 1 s r1 =Y v PSO
DY =1 ar2 =X XTSO
Canrl=1Ar2=07?

AMBIG ke

The Synthesis-Ambiguity Cycle

Litmus tests

The Synthesis-Ambiguity Cycle

;"’
& @ ¢
w

S Documentation
Random/systematic Y
generation L\ e
[
W o o .
s=4 =, Architects
I 3
3 5
1 2 4

Litmus tests

The Synthesis-Ambiguity Cycle

Litmus tests

The Synthesis-Ambiguity Cycle

SYNTH

Litmus tests Memc?ry mf)del
specification

The Synthesis-Ambiguity Cycle

SYNTH

3 5 6 \
1 2 4

Litmus tests Memory model

\ specification

AMBIG

The Synthesis-Ambiguity Cycle

SYNTH

3 5 6 \
1 2 4

Litmus tests Memory model

\ specification

AMBIG \

Unique memory model
(within framework sketch)

Results

Synthesizing existing memory models

PowerPC

x86

Synthesizing existing memory models

/68 tests
PowerPC [Alglave et al, CAV'10]
10 tests
x86

74 @ -
ny
e >
— N S
&

Synthesizing existing memory models

Synthesis

/68 tests
PowerPC ‘Alglave et al, CAV'10] v 12 seconds

Search space: 21406

10 tests
x86

v 2 seconds

Search space: 2624

Synthesizing existing memory models

Synthesis
/68 tests
rP 12 seconds
PowerPC [Alglave et al, CAV'10] v
Search space: 21406
Not equivalent to
published model!
10 tests
x86 v 2 seconds

& ‘@ ;
R
e “a 2
L i L
: g

Search space: 2624

Synthesizing existing memory models

Synthesis
/68 tests
rP 12 seconds
PowerPC [Alglave et al, CAV'10] v
Search space: 21406
Not equivalent to
published model!
10 tests
x86 v 2 seconds

& ‘@ ;
R
e “a 2
L i L
: g

Search space: 2624

Not equivalent to
TSO!

Synthesizing existing memory models

Synthesis Ambiguity

PowerPC /68 tests | v 12 seconds 9 new tests
[Alglave et al, CAV’10]
Search space: 21406 sync, lwsync, etc.
Not equivalent to
published model!
10 tests
x86 v 2 seconds 4 new tests

7 @ 3
&
e " §)
o RS S
S o

Search space: 2°%4 mfence, xchg

Not equivalent to
TSO!

Other results

Implemented another framework sketch [Mador-Haim et al, DAC'11]
Found typo in paper; couldn’t fix by hand, but synthesized repair

Other results

Implemented another framework sketch [Mador-Haim et al, DAC'11]
Found typo in paper; couldn’t fix by hand, but synthesized repair

Order of magnitude faster than the Alloy general-purpose
relational solver for verification and equivalence

Ocelot offers finer-grained control over relational constraints

Other results

Implemented another framework sketch [Mador-Haim et al, DAC'11]
Found typo in paper; couldn’t fix by hand, but synthesized repair

Order of magnitude faster than the Alloy general-purpose
relational solver for verification and equivalence

Ocelot offers finer-grained control over relational constraints

Comparable performance to existing custom memory model
tool for verification (Herd [alglave et al, cAV'10])

Framework sketches
define a class of memory models

MemSynth engine

verification, equivalence, synthesis, ambiguity

Results
synthesize real-world memory model specs

memsynth.uwplse.org

http://memsynth.uwplse.org

