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MemSynth engine

verification, equivalence, synthesis, ambiguity

Results
synthesize real-world memory model specs
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Canrl=0Ar2=0?
Sequential consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible executions (outcomes) of a program.

Memory model M allows litmus test T if there exists an
execution that satisfies M’s constraints.
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Thread 1 Thread 2 M allows test T:
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Memory models, formally

o . . Memory model
Common formalizations based on relational logic Vi 2lllgmie et

3 E. M(T,E)
Example for sequential consistency:

Part of execution; implicitly
existentially quantified

happens-before order is acyclic

' N \
no ~(ws + fr + po + rf + fences) & iden

From program syntax  Binary relations over
program instructions

Thread 1 Thread 2

LY = 1 NV Progran;(orde;:( ;
0O = 1,2), (3,4

2rl =Y 4r2 = X P

Canrl=0Ar2=07? |
[Alglave et al, CAV’10]
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Framework sketches

A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

Expression holes

for a synthesizer
to complete

no ~(ws + fr + 2?2 + 2?7 + 7?7 ) & iden

Framework sketches are the key design tool for synthesizing

memory model specifications — they define the “interesting”
candidate models
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Memory model frameworks

no ~(ws + fr + ppo + grf + fences) & iden

Preserved program Global reads Fence cumulativity

order (same-thread from (inter- (for Power, ARM,
reorderings) thread order) etc)
Seq.uentlal 00 ¢ >
consistency
Total store po - (Wr-Rd) rf & SameThd %)
order (x86)

[Alglave et al, CAV’10]



Memory model frameworks are common

Axiomatic “must-
Global time not-reorder”
relational model functions
[Alglave et al, CAV'10] [Mador-Haim et al,
DAC'11]

Exexcutable
distributed

consistency models
[Yang et al, IPDPS’04]
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Ocelot: relational logic with holes 4 ;3}%
A relational logic DSL with synthesis support ‘;}; }(’,‘}%

Built on the Rosette solver-aided language [Torlak & Bodik, PLDI'14]

Expression holes
for a synthesizer
to complete

o “(ws + fr + 2?2 + 22 + 72?2 ) & iden

Completions are expressions in
relational logic with chosen DO

operators, terminals, and depth. operators = {+, &}

; WS
terminals = {po, Wws
P ’ PO + WS
depth =1
po & ws

#2) Available as a Racket package: raco pkg install ocelot
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Verification and equivalence

Memory model
Common queries for automated memory model Mallows testT:

. 3 E. M(T,E)
reasoning tools
Herd [Alglave et al, CAV'10]; MemAlloy [Wickerson et al, POPL'17]; etc.

Litmus test SAT
VERIFY K2kl
Memory model UNSAT
Reduces to SAT (since

litmus tests are loop-free)

Memory model Ma = Litmus test

EQUIV [kl
UNSAT

UNSAT = bounded equivalence
(“equivalent up to tests of size k”)

Memory model Mg =+
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Synthesis

Find a memory model consistent with a set

of litmus tests Memory model
M allows test T:

3 E. M(T,E)

Allowed litmus tests T+ = T/E\T+ 3 E. M(T,E)

%  Memory model
Forbidden litmus tests T- = T/E\T_ v E. -M(T,E)

4

Solved incrementally, like M
counterexample-guided Framework sketch
inductive synthesis (CEGIS)
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ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =
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Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

Key idea: after synthesis, is
there a different memory
model that explains the tests?

Allowed litmus tests =

Memory model Mg

Forbidden litmus tests = BWAWYI:[cll =
Litmus test

Memory model Ma =

4

The new memory model
Framework sketch must be semantically
different from the input:
Ma and Mg must disagree
about a new test T

Similar to oracle-guided
synthesis [Jha et al, ICSE'10]
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Ambiguity

Find a distinguishing litmus test that exposes an
ambiguity in a model

|s there another semantically
different memory model that

1 ?
Thread 1 Thread 2 also allows this test:

1 X =1 3 Y =1
v >
2rl =Y 4r2 =X
Canrl=0Ar2=0?

Total store order (x86) =

Partial store order (SPARC)
Thread1 Thread 2

1 X = 1 s r1 =Y v PSO
DY =1 ar2 =X XTSO
Canrl=1Ar2=07?

AMBIG ke
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The Synthesis-Ambiguity Cycle

SYNTH

3 5 6 \
1 2 4

Litmus tests Memory model

\ specification

AMBIG \

Unique memory model
(within framework sketch)
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Synthesizing existing memory models

Synthesis Ambiguity

PowerPC /68 tests | v 12 seconds 9 new tests
[Alglave et al, CAV’10]
Search space: 21406 sync, lwsync, etc.
Not equivalent to
published model!
10 tests
x86 v 2 seconds 4 new tests

7 @ 3
&
e " §)
o RS S
S o

Search space: 2°%4 mfence, xchg

Not equivalent to
TSO!
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Other results

Implemented another framework sketch [Mador-Haim et al, DAC'11]
Found typo in paper; couldn’t fix by hand, but synthesized repair

Order of magnitude faster than the Alloy general-purpose
relational solver for verification and equivalence

Ocelot offers finer-grained control over relational constraints

Comparable performance to existing custom memory model
tool for verification (Herd [alglave et al, cAV'10])



Framework sketches
define a class of memory models

MemSynth engine

verification, equivalence, synthesis, ambiguity

Results
synthesize real-world memory model specs
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