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Abstract

Applications increasingly seek to solve problems involving
uncertain data, from sensors (such as GPS), probabilistic
models, machine learning, approximate computing, and myr-
iad other sources. Programmers reason about such uncertain
data using programming languages. Unfortunately, existing
programming languages represent uncertain data with simple
discrete types (floats, integers, booleans, etc.), encouraging
the programmer to pretend the data is not probabilistic. This
illusion of certainty causes random, transient, and hard-to-
reproduce bugs in applications.

We introduce the uncertain type, Uncertain(T), a program-
ming language abstraction for uncertain data. In contrast to
prior work, Uncertain(T) balances expressiveness with acces-
sibility to non-expert programmers, who are on the front lines
of the increasing variety of problems involving uncertainty.
We implement a novel Bayesian network semantics for com-
putation on uncertain data, and intuitive conditional operators
for answering questions under uncertainty. The Uncertain(T)
runtime uses goal-oriented random sampling and hypothesis
testing to evaluate computations and conditionals lazily and
efficiently. We show through three case studies how these
contributions create an accessible abstraction that improves
program correctness. Uncertain{T) provides a compelling
programming model for a computing landscape which in-
creasingly faces the challenge of uncertainty.

This work appeared at ASPLOS 2014 [2].

1. Problem and Motivation

Modern applications increasingly face the challenge of com-
puting under uncertainty from many sources. Limited sensor
resolution creates uncertainty about true values. Approximate
computations and algorithms save energy or improve perfor-
mance, but introduce uncertainty into their results. Machine
learning produces inherently uncertain predictions, learned
from a finite set of training data. Or the uncertainty might
be an inherent part of a probabilistic model, to reason about
problems that are random and yet structured.

Regardless of the source of the uncertainty, programmers
reason about it using programming languages. But most pro-
gramming languages do not distinguish between uncertain
and certain values, simplistically representing both with dis-
crete types such as floats, integers, and booleans. These sim-
ple types belie the complexity of uncertainty, and encourage
programmers to treat uncertain data as exact. While motivated
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Figure 1. A naive GPS application produces absurd walking
speeds.

programmers can reason about uncertainty with these types,
most who face this challenge simply ignore it. For example,
our survey of 100 popular smartphone applications that use
GPS data (which is uncertain) found only one application
reasons about the uncertainty in that data.

Figure 1| shows speed data collected from a GPS fitness
application while walking. While Usain Bolt runs 100 m at
24 mph, and the average human walks at 3 mph, this data
shows a walking speed of 59 mph, and repeated walking
speeds above 7 mph (a running speed). Programming lan-
guages foster these errors because simplistic types do not
reflect the compounding effect of computation on uncertainty.

Uncertainty also pervades conditional operators, particu-
larly nefarious given that the goal of most computer programs
is to make decisions with data. [Esmaeilzadeh et altrain a
neural network to approximate the Sobel operator s(p), com-
monly used in image processing [6]. The resulting predictor
achieves 3% average error, indicating a good approxima-
tion. But using this same network to evaluate a conditional
s(p) > 0.1 has a 36% false positive rate. The cause is the
failure to consider the output’s uncertainty, encouraged by
the allure of a simple type system or API (in this case, a
neural network library that returns a single predicted value).

2. Background and Related Work

Many disciplines understand the challenges of computation
and decision making under uncertainty. Existing approaches
try to help programmers with these challenges through im-
proved programming language abstractions. The most suc-
cessful of these approaches are probabilistic programming
languages, in which program variables are random variables
and program statements describe dependences between them.



earthquake = Bernoulli (0.0001)
burglary = Bernoulli (0.001)
alarm = earthquake or burglary
if (earthquake)

phoneWorking = Bernoulli (0.7)
else

phoneWorking = Bernoulli (0.99)

observe (alarm) # If the alarm goes off...
query (phoneWorking) # ...does the phone still work?

Figure 2. A simple probabilistic program [5]].

Early work recognised that probability distributions form a
monad [8} [14]. Popular probabilistic programming languages
include Infer. NET/Fun [1]], BUGS [7]], and Church [9].

Figure [2] shows an example of a probabilistic program
that infers the likelihood that a phone is working given that
an alarm goes off [5]]. The model captures the dependences
between variables: the phone is less likely to work after an
earthquake, but either an earthquake or a burglary can trigger
the alarm, and a burglary is much more likely. The query first
observes that an alarm goes off and then infers the posterior
probability that the phone works. Of course, probabilistic
programs can express much more complex models, including
those with continuous variables.

The machine learning community has eagerly adopted
probabilistic programming languages because they provide
an elegant abstraction of probabilistic graphical models, and
so lend themselves to a wide range of common problems. But
this expressiveness and flexibility also limits their relevance
and adoption outside machine learning, because they require
programmers to phrase their problems in terms of probabilis-
tic models. As an increasingly variety of problem domains
require reasoning about uncertainty, it is unlikely that the
programmers facing these challenges will have the requisite
statistics or machine learning expertise for such tools.

Various domain-specific approaches to uncertainty also
exist. In robotics, [Thrun/ demonstrates a C++ library for prob-
abilistic variables (e.g., prob<int>) with simple distribu-
tions [[15]. In databases, |Kumar et al.| propose that program-
mers write Markov logic networks to query probabilistic
databases [10]. In scientific computing, interval analysis is a
well-known technique for propagating uncertainty through
computations [[11]. In approximate computing, Carbin et al.
statically reason about the effect of unreliable hardware on
the accuracy of program computations [4]. Unfortunately, as
with probabilistic programming, these domain-specific solu-
tions often require significant expertise and are unlikely to
see wide adoption in new applications.

One of the key tenets of programming language research
is abstraction: the idea that we hide unnecessary complexity
from programmers while empowering them to solve more
ambitious problems. The challenge lies in balancing these
two competing goals, to expose sufficient detail to create a
useful class of applications while hiding enough complexity
to ease the burden on the programmer. Existing solutions to
the challenge of uncertain data either overwhelm non-experts
with too much detail (probabilistic programming languages)
or ignore uncertainty completely in pursuit of a simple

abstraction (existing APIs for sensor data, machine learning
libraries, etc.). In contrast, our work recognises that while
uncertainty is not a vice to abstract away, most programmers
are not statistics experts and so will not make onerous
statistical demands of the abstraction. We will show that
a simple, accessible, efficient abstraction is still sufficiently
expressive to solve many common and emerging problems.

3. Approach and Uniqueness

We introduce Uncertain(T), a generic data type with oper-
ations that capture and manipulate uncertain data as prob-
ability distributions. The operations propagate uncertainty
through computations by operator overloading, and provide
an intuitive semantics for conditional expressions under un-
certainty. We implement Uncertain(T) in C#, as well as C++
and Python prototypes, to demonstrate the abstraction’s gen-
erality. Figure [3] shows a simple GPS fitness application,
implemented (a) without and (b) with the uncertain type.
Our unique approach focuses on creating an accessible
interface for non-expert programmers to solve increasingly
uncertain problems. We make four key contributions:

e We show that representing uncertainty using sampling
functions allows Uncertain(T) to represent many interest-
ing application domains effectively.

e We provide a Bayesian network semantics for computa-
tions, in which arithmetic operators dynamically construct
graph representations of their computations.

® We define a new semantics for conditional expressions
involving the uncertain type, which is intuitive but expres-
sive in balancing false positives and false negatives.

¢ Our implementation exploits these contributions through
goal-oriented sampling, which uses hypothesis tests and
insights from medical clinical trials to dynamically bal-
ance performance and accuracy.

3.1 Representing Uncertainty

An object of type Uncertain(T) is a random variable of
a numeric type T. Uncertain{(T) captures uncertainty as a
probability distribution, which it stores as a sampling function.
A sampling function is a function of no arguments that
returns a new random sample from its distribution on each
invocation [[13]]. Other approaches that store closed-form
representations of distributions are not sufficiently expressive
for the growing class of problems involving uncertainty.
For example, many important distributions for sensors, road
maps, approximate hardware, and machine learning do not
have closed forms. Closed form representation also results
in symbolic explosion; for example, even the sum of two
distributions requires evaluating a difficult integral.
Sampling functions obviate these shortcomings, but are
necessarily approximate. Sampling functions can be arbi-
trarily accurate given sufficient time and space [[16], and so
sampling creates an efficiency-accuracy trade-off. Our other
contributions demonstrate how Uncertain{T) optimises this
trade-off dynamically for each particular computation.



double dt = 5.0; // seconds
GeoCoordinate L1 = GPS.GetLocation();

while (true) {
Sleep (dt); // wait for dt seconds
GeoCoordinate L2 = GPS.GetLocation();
double Distance = GPS.Distance (L2, L1);
double Speed = Distance / dt;

print ("Speed: " + Speed);
if (Speed > 4) GoodJob();
else SpeedUp () ;
L1l = L2; // Last Location = Current Location;

(a) Without Uncertain(T)

double dt = 5.0; // seconds
Uncertain<GeoCoordinate> L1 = GPS.GetLocation();

while (true) {
Sleep(dt); // wait for dt seconds
Uncertain<GeoCoordinate> L2 = GPS.GetLocation();
Uncertain<double> Distance = GPS.Distance (L2, L1);
Uncertain<double> Speed = Distance / dt;
print ("Speed: " + Speed.E());
if (Speed > 4) GooddJob () ;
else if ((Speed < 4).Pr(0.9)) SpeedUp();
Ll = L2; // Last Location = Current Location;

(b) With Uncertain(T)

Figure 3. A simple fitness application implemented with and without Uncertain(T).

3.2 Computations Under Uncertainty

Rather than eagerly perform computation, Uncertain{(T)’s
overloaded arithmetic operators dynamically construct a
Bayesian network graph representation of computations.
Nodes in these directed acyclic graphs are random variables,
and edges represent conditional dependences. Leaf nodes
represent known distributions defined in libraries by expert
programmers, while inner nodes represent computations on
random variables. For example, the program:

Uncertain<double> a
Uncertain<double> b
Uncertain<double> c

results in a simple Bayesian network

new Gaussian(4, 1);
new Gaussian(5, 1);
a + b;

¢

with two leaf nodes (shaded) and one inner node (white)
associated with the addition operation.

Each node in the Bayesian network is an instance of
Uncertain(T) and so has a sampling function. Expert pro-
grammers define the leaf nodes by providing sampling func-
tions; for example, the Gaussian type uses the Box-Muller
transform to draw its random samples [3]]. For an inner node,
Uncertain(T) uses the well-known ancestral sampling tech-
nique, which draws a sample from each of the node’s par-
ents, and applies the node’s associated operator to those
samples. This implementation is far more tractable than if
Uncertain(T) were to manipulate algebraic representations,
which tend to grow explosively even in simple programs.

3.3 Conditional Expressions

Most programs use data to make decisions, which program-
ming languages express with conditional expressions. Condi-
tional expressions are straightforward when a program stores
data in simple types: if Speed is of type double then evalu-
ating Speed > 4 is trivial. But what if Speed is uncertain?
Uncertain(T) defines the semantics of conditional expres-
sions involving uncertain data by computing evidence for a
conclusion. Figure 4{shows that the probability distribution
of the variable Speed induces a probability that Speed > 4
equal to the shaded area under the curve. To evaluate the
conditional, Uncertain(T) asks whether this probability is at
least 50%, so whether the condition is more likely than not

4 mph Pr[Speed > 4]
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Figure 4. With uncertain data there is a probability that a
condition is true.

to be true. This semantics gives a reasonable and accessible
definition to the conditional Speed > 4, easing the demand
on programmers in adopting a new abstraction.

Using an explicit conditional operator, programmers can
also specify a probability threshold to compare against. For
example, a programmer may ask if the probability is at least
90% by writing (Speed > 4) .Pr (0.9). The probability
threshold helps the programmer to control the balance be-
tween false positives and false negatives. Higher thresholds
require stronger evidence, and produce fewer false positives
(extra reports when ground truth is false) but more false nega-
tives (missed reports when ground truth is true). Unlike exist-
ing abstractions, which hide this balance from the program-
mer and lock them into a single configuration, Uncertain{T)
allows programmers to express how sensitive their program
is to each class of decision error.

3.4 Goal-Oriented Sampling

Uncertain(T) defers most computation by constructing
Bayesian networks. But when encountering a conditional
branch such as if (Speed > 4), the execution must make
a concrete decision about which branch to enter, and so cannot
continue deferring work. Uncertain({T) makes this concrete
decision by establishing a hypothesis test to decide the result
of the conditional. The null hypothesis is Pr[Speed > 4] < 0.5
and the alternate hypothesis is Pr[Speed > 4] > 0.5. If we
can reject the null hypothesis, we have shown (at a certain
confidence level) that Speed > 4 is more likely than not to
be true. If a programmer provides an explicit probability
threshold, the hypotheses use that value instead.

To gather samples for use in this hypothesis test, the run-
time calls the sampling function for the Bernoulli distribution
Speed > 4. Just as with arithmetic operators, Uncertain(T)
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Figure 5. Uncertain(T) makes GPS fitness data more useful
and accurate.

overloads the comparison operator > to instead construct a
Bayesian network node, with operands Speed and 4 and asso-
ciated operator >. To sample this node the runtime samples
each operand and applies the operator to the samples.

The runtime uses goal-oriented sampling to decide how
many samples to draw for the hypothesis test. This technique
adapts a sequential sampling approach, Wald’s sequential
probability ratio test (SPRT) [[17], which is widely used in
medical clinical trials to optimise the number of trial partici-
pants to ensure both statistical significance and minimal cost.
The intuition is that the test can examine the results of the hy-
pothesis test incrementally, and terminate early once a result
is obvious. The SPRT governs these inspections to guarantee
the desired statistical significance. Most importantly, because
the SPRT is dynamic, it adapts to the individual conditional
the runtime is evaluating, and so can exploit the structure of
the particular problem. In contrast, existing work must fix a
sample size in advance, and so risks being either too slow or
too inaccurate for any given problem.

4. Results and Contributions

We use three case studies to demonstrate the utility and
efficiency of Uncertain(T). (1) We show how Uncertain(T)
improves accuracy of speed computations from GPS data.
(2) We show how Uncertain(T) can minimise the effect of
random noise in digital sensors. (3) We demonstrate how
Uncertain(T) encourages programmers to reason about false
positives and negatives in machine learning. More detailed
analyses of these case studies appear in our recent paper [2]].

4.1 Uncertain<T> for GPS Data

Many popular smartphone applications use data from GPS
sensors. A common use of this data is computing the user’s
current speed, or their distance travelled. Because GPS data
is uncertain, so too are these derivative calculations. Figure E]
showed that ignoring this uncertainty leads to absurd results.

Figure[3(b)|shows a simple GPS fitness application written
with Uncertain(T). The application uses GPS observations
to compute the user’s walking speed, and either congratulates
them on a good workout or encourages them to speed up.
While the congratulations message uses the default seman-
tics for conditionals, the speed up message uses an explicit
conditional (Speed < 4).Pr (0.9). This increased proba-

Figure 6. Using Uncertain(T) (SensorLife and BayesLife)
improves accuracy of the noisy Game of Life.

bility threshold prefers false negatives over false positives, to
ensure we do not unfairly chastise a user due to random error.

Figure [5| shows data from this improved version of the
GPS fitness application. The blue line shows the same data as
in Figure|l] but Uncertain(T)’s propagation of error through
computations means we can now provide a 95% confidence
interval, showing that the data is very inaccurate.

Because Uncertain(T) encapsulates distributions, more
knowledgable programmers (such as those implementing
the platform’s GPS library) can use Bayesian statistics to
improve the quality of data. In Figure[5] the red data reflects
the same GPS data but with a physics model applied using
Bayesian statistics. This model eliminates the major errors
by noting that humans cannot walk at such absurd speeds.
Unlike existing work, Uncertain(T) enables such corrections
without resorting to ad hoc heuristics.

4.2 Uncertain<T> for Digital Sensors

One shortcoming of studying GPS is the lack of ground truth
data for comparison. This case study artificially injects Gaus-
sian noise into a binary sensor to show how Uncertain(T)
can improve the accuracy of sensor applications.

We take Conway’s Game of Life, a cellular automaton
that operates on a two-dimensional grid of cells that are
each either dead or alive in each generation. To move to
the next generation, each cell senses the current states of its
neighbours and applies simple rules to the results to decide
if the cell should be alive in the next generation. We inject
zero-mean Gaussian random noise N (0, o) into the result of
each sensor, where ¢ is the amplitude of the noise, so that
each sensor now returns a real number.

The rules of the Game of Life compare the number of
live neighbours to different thresholds; for example, if a live
cell has less than two live neighbours, it dies in the next
generation to simulate underpopulation. The number of live
neighbours is the sum of the sensor values from sensing each
neighbour. We define three versions of our noisy Game of
Life: NaiveLife uses a single noisy value from each sensor,
SensorLife applies Uncertain{T) to each sensor, and BayesLife
uses Bayesian statistics to improve the results.

We compare these three noisy versions against non-noisy
(ground truth) results from the same game grid, and count the
number of incorrect survival decisions each version makes.
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Figure 7. Uncertain(T) helps to balance false positives and
negatives in machine learning.

Figure[6] shows the results across different values of the noise
amplitude o on the x-axis. NaiveLife has a constant error rate
of 8%. SensorLife wraps each sensor with Uncertain(T), and
so is able to mitigate the error at low noise levels by exploiting
hypothesis testing and guided sampling. BayesLife builds on
SensorLife’s use of Uncertain{T) with Bayesian statistics,
observing that underlying each noisy sensor is an (unknown)
boolean value, and makes no mistakes at all. These results
quantitatively demonstrate that Uncertain(T) can improve
the accuracy of sensor applications.

4.3 Uncertain<T> for Machine Learning

Machine learning algorithms, which predict the value of an
unavailable function, produce uncertain output. One particu-
lar source of uncertainty is generalisation error, caused by
the finite set of training data not covering all possible inputs.
For example, Parrot trains a neural network to approximate
the Sobel operator s(p), commonly used in image processing
for edge detection [[6]. The resulting network achieves an
average error of 3% on an evaluation set, suggesting that this
predictor generalises well to unseen data.

As with other sources of uncertainty, generalisation error
compounds under computation. On the same neural network
and evaluation data set as above, the conditional s(p) >
0.1 has a 36% false positive rate. To better reason about
generalisation error, machine learning practitioners apply
Bayesian methods, which consider a posterior predictive
distribution of potential predictions, weighted by the training
performance of the predictor(s) that generate them.

We applied this Bayesian method to the Sobel operator
example, using the hybrid Monte Carlo algorithm to sample
from the posterior predictive distribution [12]]. The prediction
function returns an instance of Uncertain(T) that encapsu-
lates the posterior predictive distribution, allowing program-
mers to compute and ask questions about the prediction of
the algorithm while propagating uncertainty correctly. In the
spirit of Parrot [6], we call our framework Parakeet.

We used this framework to evaluate the same condi-
tional s(p) > 0.1 that returned 36% false positives. We
also varied the probability threshold o in the conditional
Pr[s(p) > 0.1] > « to examine its effect on false positives
and negatives. Figure[7]shows the results, with ¢ on the x-axis
and precision/recall on the y-axis. Parrot fixes a single balance

between precision (false positives) and recall (false negatives)
because it learns only a single predictor. In contrast, Parakeet
uses Uncertain(T) to explore a frontier of precision-recall
trade-offs, and Uncertain(T)’s semantics place the selection
of this trade-off in the hands of the programmer.

5. Conclusion

Making decisions under uncertainty is difficult, and many
disciplines have evolved sophisticated techniques for such
problems. Unfortunately, programmers are unlikely to be
experts in these techniques, and yet increasingly confront
the same problems. Existing solutions focus on the needs of
experts, and leave non-experts stranded and forced to ignore
uncertainty in the name of convenience. It is time for the
programming language community to bear the burden of
providing sound, thoughtful abstractions for these problems.
Our experience with Uncertain(T) suggests it is such an
abstraction. With a new semantics for computation and con-
ditionals, and implementation insights in sampling, our case
studies demonstrate that Uncertain(T) balances simplicity
and efficiency with expressiveness to solve real problems.
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