
Uncertain<T>: Uncertain data as a first-order type

James Bornholt ∗

Australian National University
u4842199@anu.edu.au

1. Introduction
Developers are increasingly working with estimated data
to sense and reason about the physical world. For example,
GPS sensors estimate a user’s location in space, and software
benchmarking estimates the performance of different con-
figurations. Uncertainty, in the form of random error, is the
difference between estimation and fact.

To program correctly with estimated data, developers must
account for this uncertainty. Failing to do so introduces un-
certainty bugs: unexpected or incorrect output due to random
error. For example, an application using GPS estimates to
calculate speed may report the user walking at 59 mph.

Current programming language abstractions for uncer-
tainty are insufficient. On one hand, simplistic abstractions
such as GPS APIs are too high-level and use deterministic
types (floats, integers, etc.) to represent stochastic data. This
impedance mismatch leads to incorrect computation on es-
timated data. On the other hand, probabilistic programming
languages require expertise in statistics to use, forcing devel-
opers to rephrase even simple problems in complex ways.

We introduce the uncertain type, a programming language
abstraction that captures probability distributions for esti-
mated values. By overloading familiar operators and offering
tools to work with distributions, the uncertain type allows
programmers to work correctly and efficiently with estimated
data. The uncertain type propagates uncertainty through cal-
culations, forces developers to ask the right questions of their
data, and allows advanced developers to improve estimates
by using background knowledge.

2. Motivation
We consider applications that compute with GPS location
estimates as a motivating example. These applications often
experience uncertainty bugs, which fall into three categories.

Using an estimate as fact. GPS sensors estimate location.
Treating these estimates as facts produces incorrect results,
like locating the user in an ocean while driving.

Computation compounds errors. Because GPS sensors es-
timate location, subsequent calculations like calculating

∗ This work was performed as a Microsoft Research intern, supervised by
Kathryn McKinley and Todd Mytkowicz.

speed from two locations are also estimates. These compu-
tations compound uncertainty, resulting in absurd speeds
even if the location estimates are very accurate.

Inference. Estimated data cannot answer deterministic infer-
ences such as “are you speeding?”. Trying to do so leads
to false positives – answering yes based on random error
when the true answer is no.

Fixing these bugs requires accounting for uncertainty. Since
general purpose programming languages are deterministic,
most developers simply ignore uncertainty. We find only one
of the top 100 Windows Phone applications reasons about
uncertainty in GPS readings.

3. Background
Random variables model estimation processes using proba-
bility distributions, which assign likelihoods to each possible
value of the variable. Jaroszewicz and Korzeń [1] present the
PaCAL software library for computing with probability dis-
tributions, and Infer.NET [2] is a framework for performing
Bayesian inference using probability distributions in a gen-
eral programming language. Experts can use tools like these
to correctly account for uncertainty. But PaCAL requires
developers to explicitly specify the distributions and opera-
tions they are performing, and can only handle distributions
that have closed forms. Infer.NET requires a strong grasp
of Bayesian statistics to phrase problems in the language of
graphical models. Our uncertain type achieves the same goal
of correctly addressing uncertainty but without the complex
background knowledge.

4. Uncertainty as a first-order type
We propose a new generic data type, Uncertain〈T 〉, to capture
and manipulate uncertainty. This uncertain type is an abstrac-
tion over distributions. For example, the uncertain type encap-
sulates GPS coordinates as type Uncertain〈GeoCoordinate〉,
a distribution over coordinates.

4.1 Defining distributions
The distribution to use for a particular estimate is necessar-
ily domain-specific. In many cases, library developers will
provide distributions. Third party developers consume these
distributions. For example, we have developed a GPS library



0 

10 

20 

30 

40 

S
pe

ed
 (m

ph
) 

Time 

GPS speed 
Model speed 

59 

Figure 1: The uncertain type easily incorporates additional
models and data into estimation processes. Above a physics
model improves the GPS estimation of speed. The shaded
area is the 95% confidence interval for the modelled speed.

with distributions based on models of GPS error and ported
applications to use it. For more advanced problems, devel-
opers will define their own distributions, based on theory or
empirical results.

4.2 Computing with random variables
The uncertain type lifts the normal arithmetic operations on
type T to work on distributions over T , allowing developers
to work with distributions in a natural way. But if two random
variables are dependent, the developer must define the joint
probability distribution of the two variables for computations
to be correct.

4.3 Inference using random variables
Developers commonly use variables in conditionals to make
decisions. Distributions complicate this style of inference,
because there is more than one way to interpret the question
A < B for distributions A and B.

Confidence intervals. One approach is to use confidence
intervals. For example, given a random variable Speed we
may ask “are you speeding?”, that is, if Speed > 60. But we
cannot answer this deterministic question with stochastic data.
What we can ask is “are you speeding with 99% confidence?”.
We only answer yes if the evidence is very strong, thus
controlling false positives. But this creates a ternary logic,
because the evidence may not be sufficient to say either
Speed > 60 or Speed ≤ 60.

Expected values. We can also interpret conditionals with
expected values. If we have two random variables DistanceToA
and DistanceToB, we may ask if DistanceToA>DistanceToB.
We can interpret this as E[DistanceToA] > E[DistanceToB].
Since the expected value is a real number, this defines a binary
logic, avoiding the unexpected ternary logic of confidence
intervals.

By providing both interpretations, developers can choose
the right approach for their particular problem.

5. Using the uncertain type
We demonstrate the uncertain type on GPS data. The first
step is to define the distribution for a GPS sample, which we
put in a library. Based on prior work, we model GPS error
based on the Rayleigh distribution [3].

We build a simple application that estimates walking speed
based on GPS samples. The application obtains two GPS
samples, one second apart, and calculates speed based on the
formula Speed = Distance

Time . We use data from a 15 min walk
around the local neighborhood.

5.1 Identifying absurd values
Without considering uncertainty, this application produces
absurd results as shown by the blue line in Figure 1. At one
point the user walks at 59 mph, and walks for 30 seconds
at over 7 mph (a running pace). With the uncertain type,
uncertainty propagates through the calculation of speed. The
uncertain type shows that the 95% confidence interval for
speed reaches a peak of ±300 mph. The absurd values are
therefore simply a result of random noise.

5.2 Producing improved estimates
A key advantage of the uncertain type is that it makes it easy
to produce better estimates by incorporating prior data. In
the walking application, the developer may provide a prior
distribution over speed that reflects normal walking speeds.
The developer then uses Bayesian inference to incorporate
this prior with GPS data.

The dark orange line in Figure 1 shows that adding such a
physics model removes the absurd spikes from the data, and
the 95% confidence interval (the shaded area) is smaller.

6. Conclusion
Applications are increasingly using uncertain data. Other
areas of science require proper statistical techniques when
working with estimates. We argue that programmers should
too. The uncertain type provides an abstraction that allows
developers to work correctly with uncertain data. By cap-
turing uncertainty as a first-order type, we can manage and
hide many of the advanced details of statistics from most
developers, and still expose the details to those who want
them. Programs using the uncertain type are therefore more
powerful and more correct.

References
[1] S. Jaroszewicz and M. Korzeń. Arithmetic operations on

independent random variables: A numerical approach. SIAM
Journal on Scientific Computing, 34:A1241–A1265, 2012.

[2] T. Minka, J. Winn, J. Guiver, and D. Knowles. In-
fer.NET 2.5, 2012. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[3] F. van Diggelen. GNSS Accuracy: Lies, Damn Lies, and
Statistics. GPS World, 18(1):26–32, 2007.


	Introduction
	Motivation
	Background
	Uncertainty as a first-order type
	Defining distributions
	Computing with random variables
	Inference using random variables

	Using the uncertain type
	Identifying absurd values
	Producing improved estimates

	Conclusion

