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Abstract

We survey the applications of Galois theory to the computability of certain graph drawings. First, we
review some abstract algebra and Galois theory. Then we discuss graphs which can or cannot be drawn
in certain models of computation. Finally, we conclude with a novel corollary extending the results

1 Introduction

Galois theory concerns itself with the connections between the structure of fields and the structure of groups.
In fact, the Fundamental Theorem of Galois Theory provides an explicit correspondence between fields and
groups which makes certain problems involving fields reducible to problems in group theory and vice versa.
Upon immediate gaze, it may appear that Galois theory has scarce relevance to graph drawing. This paper
reverses the prior assertion by introducing applications of Galois theory to questions of feasibility in graph
drawing. We explore the role of Galois theory in two approaches to graphs: their structure and their
representation.

Graphs are essentially mathematical structures which is by nature exactly what algebra aims to study.
Among the properties of graphs susceptible to algebraic inspection are the characteristic polynomials of
matrices such as the Laplacian and the adjacency matrix. In particular, a significant result due to Abel
and Ruffini of Galois theory is the (non)existence of algebraic solutions for polynomials in general which has
implications for the feasibility of drawing a graph in certain models of computation - especially for models
built upon radicals. This part of the project will look at the relationship between solvable groups and the
drawing of graphs in certain algebraic models of computation.

Drawings, on the other hand, are ultimately geometric creatures. Drawings of graphs - doubly so. A
classical application of Galois theory looks at compass and straightedge constructions and, by doing so, we
can discern which graphs can be drawn in computation models equivalent to classical constructions. This
part of the project considers the results in classical geometry from a Galois theoretic perspective and their
implications for graph drawing.

We will begin by introducing some algebraic structures such as groups, fields, etc. Following will be an
overview of Galois theory and some of its applications. The third section concerns itself with examples of
graphs that cannot be drawn. Finally, we conclude with a discussion of future work and some classification
results.

Proofs of most theorems and lemmas in algebra will be omitted since the results of interest are those
pertaining to graph drawing and because the proofs can be found in most standard algebra texts [1l B]. Most
of the results involving graph drawing are from [2].



2 Groups and Fields

2.1 Groups

Groups are a fundamental structure in algebra upon which many other structures are constructed. They
formalize and generalize some intuitive notions we obtain from arithmetic regarding how elements interact
with each other under certain operations. We begin with some definitions.

Definition 2.1. A group is a couple (G,+) where G is a set and 4+ : G x G — G a binary operation such
that

1. for any a,b,c € G
(a+b)+c=a+(b+c),

2. there is a 0 € G such that
O+a=a

for any a € G,

3. for any a € G, there is a —a € G such that

a+ (—a)=0.

We may write G when + is clear.
Some examples of groups are the integers under addition (Z, +) or modulo n, ie.
Z/nZ=1{0,1,2,...,n —1}.
We also note that groups can contain other groups.

Definition 2.2. Given a group (G, +), a subgroup of G is a subset H C G such that H is also a group
under +. Write H < G.

Note that any group has itself and the trivial group {0} as subgroups.

2.1.1 The Symmetric Group
Of particular relevance to Galois theory are the permutation groups S,,.

Definition 2.3. A permutation on n items is a bijection {1,...,n} — {1,...,n}. We write S,, for all the
permutations on n items, ie.

Sn={p:{1,...,n} & {1,...,n}}

It is a matter of checking to see that .S, forms a group under function composition. The identity of S,
is the identity function and inverses are inverse functions. We call S,, the symmetric group.
Regarding notation, permutations may sometimes be written in Cauchy two-line form, ie.

o 1 2 3 - n
“\o(l) o(2) o(3) -+ o(n)
Now, here is an interesting result regarding the subgroups of S,,:
Lemma 2.4. Suppose a subgroup H < .S, contains:

1. a permutation o such that o*(x) = z for a unique * € H and fixes all elements not of the form o*(z)
(ie. a cycle)

2. a permutation that only swaps two elements (ie. a transposition).

Then H = S,,.



2.1.2 Abelian Groups

For sufficiently large n, there is a fundamental difference between the symmetric group S,, and the other
examples such as (Z,+) and (Z/nZ,+). The notion of addition in Z comes not only with associativity, but
also the property of commutativity. That is to say, for any a,b € Z, we have

a+b=>b+a.

Definition 2.5. If all elements in a group G commutes, then we call G abelian.

Note that S,, is not abelian for sufficiently large n > 3. However, while S3 and S; are not abelian
themselves, they happen to be constructible from abelian groups.

2.1.3 Solvable Groups

Consider the cyclic group
Z/nZ={0,1,...,n—1}.

The notation invokes some pensivity. In particular, the notation nZ actually refers to a group
nZ={n-m|meZ}.

By removing all the elements of nZ from Z, we obtain Z/nZ. We call Z/nZ a quotient group.
Quotient groups are only introduced because we wish to consider solvability.

Definition 2.6. A group G is solvable if there is a chain of subgroups
{1} =Go2G, 4--- 4G, =G
such that G,11/G; is abelian.

Corollary 2.7. From the definition, we can see that the subgroup of a solvable group is itself solvable by
simply taking a shorter chain.

Theorem 2.8. The symmetric group S, is not solvable for n > 5.

The name solvable is used due to the connotation with polynomials solvable by radicals. In fact, we will
see that Theorem [2.8]is the reason there are no general closed form solutions for polynomials of degree 5 or
higher.

2.2 Fields

We begin with some basic definitions and examples.

Definition 2.9. A field is a triple (F,+, ) such that (F,+), (F — {0}, -) are abelian groups that satisfy the
distributive property, ie.
x(y+z2)=zy+az

Examples of fields include Q, R, and C. Similar with groups, we can consider fields that contain other

fields. In this instance, we have
QcRcC

so we may say Q is a subfield of R. However, in the context of Galois theory, instead of looking from the
“outside-in” as we do with groups, we usually look at fields from the “inside-out”.



Definition 2.10. A field F is an extension of a field F' if E D F. If there is a chain of extensions
FCE,CEyC---

then we call F' the base field. One writes E/F.

Now given a base field, usually Q in this article, we can construct more fields. For example, consider
Q(V2) = {a+bV2]|a,beQ}.

Checking the axioms shows that Q(v/2) is indeed a field. Moreover, it contains Q so Q(v/2) is an extension
of Q. By adjoining Q with v/2, a field extension has been constructed. One can continue to adjoin roots

Q(V2)(V3) ~Q(V2,V3) = {a+bV2 + V3 +dV6 | a,b,c,d € Q}.

Note that the inclusion of v/6 as an element since v/2v/3 = v/6 ¢ Q so in order to satisfy closure, we must
include it explicitly.

Observe that every element of Q(v/2,v/3) is a linear combination of 1,v/2,1/3,v/6. Indeed, not only is
Q(v2,4/3) an extension of Q, it is also a vector space over Q. And like with any vector space, we can
consider its dimension.

Definition 2.11. Let E/F be a field extension. Call the dimension of E/F as a vector space the degree of
E/F and write [E : F].

Lemma 2.12. If £ D K D F as fields, then

[E:F]=[E:K|K:F|

2.2.1 Splitting Fields

Note that most examples of fields extensions up to this point consisted of adjoining roots of polynomials
such as v/2, /3, etc. Indeed, we can define fields by how polynomials act in them. For example, Q(v/2)
contains the roots of p(z) = 22 — 2 = (z — v2)(z + V/2) so we may factor p(z) over Q(v/2). Moreover, p(z)
is the minimal polynomial of v/2 since it is the polynomial of smallest degree with v/2 as a root. On the
other hand, p(z) does not factor over Q since V2 ¢ Q. In this case, we say p(z) is irreducible over Q.

Definition 2.13. The splitting field of a polynomial p over a base field F is the field extension of smallest
degree in which p splits into linear factors. Write split(p)/F

Conversely, a field extension F that happens to be the splitting field of a polynomial over F' is called a
normal extension of F. A field that happens to split the minimal polynomial of all its elements is called
separable.

Note that a splitting field will contain all the roots of the polynomial of interest.

2.2.2 Cyclotomic Fields

From the definitions and examples of field extensions, we see that R(i) = C where i is the root to i +1 = 0.
(Incidentally, R? ~ C over R due a dimensionality argument). However, the more algebraically interesting
structure is Q(4). In fact, we may generalize the notion of 4.

Definition 2.14. The n-th root of unity is the complex number (,, that satisfies (' = 1.



Figure 1: The powers of (4 =i

By this definition, i = (4 is the 4-th root of unity. As desirable as it may be, unfortunately Q(¢,) does
not have degree n over Q. Looking at

Qi) ={a+bi|a,beQ}
makes this clear. Instead, the result is even more astonishing.

Definition 2.15. The Euler-¢ function counts the number of positive integers relatively prime up to a
specified natural, ie.
©(n) = # of positive integers relatively prime to n.

Theorem 2.16.
[Q(¢n) : Q] = p(n).

3 Galois Theory

Galois theory provides a correspondence between fields and groups. Interestingly, there is an application to
compass and straightedge constructions despite the historical gap between the Ancient Greeks and Evariste
Galois. We begin by introducing automorphisms.

3.1 Automorphism and Galois Groups

A common method of investigating algebraic structures is by looking at the maps between them. In our
case, it is sufficient to look at maps from fields to themselves.

Definition 3.1. An automorphism of a field F' is a bijection 7 : FF — F that is linear in addition and
multiplication, ie.
T(xy + 2) = 7(2)7(y) + 7(2)

for all x,y,z € F.

As with the permutations, the set of automorphisms also form a group.



Definition 3.2. Let Aut(E/F) denote the set automorphisms over a field extension E/F. This forms a
group under function composition. We call Aut(E/F) the automorphism group of E/F.

If E/F is normal and separable, then we call E a Galois extension of E. The automorphism group of
E/F is then called its Galois group and we write Gal(E/F).

Recall again that one may view finite field extensions as vector spaces and linear maps on vector spaces
are defined by how the act on the basis. If the field of interest is the splitting field of a polynomial irreducible
over the base field, then the basis contains the roots of the polynomial. By necessity, the automorphism
must send the roots to other roots. In this sense, the automorphisms are really permutations on the roots.
For example, the automorphism group of Q(v/2) = split(z? — 2) consists of

(39 (% )

so Gal(Q(+/2)/Q) = Ss. Notice that Gal(Q(v/2,v/3)) = Gal(split((2? — 2)(2% — 3))) must contain automor-
phisms that move the roots of 2% — 2 but fix those of 22 — 3. These automorphisms, then, are equivalent
to id and o - the automorphisms of Gal(Q(v/2)/Q) ~ S,. Hence, we must know Sy is a subgroup of
Gal(Q(v/2,v3)/Q). Yet, Q(v/2) is also a subfield of Q(+/2,/3). This is no coincidence. Indeed, the Funda-
mental Theorem of Galois Theory provides a correspondence between the subgroups of a Galois group and
the subfields of the field in question. We forgo the statement of the theorem here and instead conclude the
section with some results involving Galois groups.

Theorem 3.3. Suppose a can be written as an expression using radicals and is a root of an irreducible
polynomial p with coefficients in Q. Let K = split(p). Then Gal(K/Q) cannot contain S,, for n > 5 as a
subgroup.

Proof. Tt is a known result Gal(K/Q) must be solvable from the given hypotheses. From Corollary
we know that subgroups of solvable groups are solvable. Hence, S,, for n > 5 cannot be a subgroup by
Theorem O

Theorem 3.4. Let ¢(z) be an irreducible monic polynomial with integer coefficients. Let d be the dis-
criminant of ¢q. Let p be prime not dividing d. If ¢(x) splits over Z/pZ into irreducible polynomials of
degrees di, ds, . .., d,, then Gal(split(q)/Q) contains a permutation that is the composition of disjoint cycles
of lengths dy,ds, ..., d,.

3.2 Compass and Straightedge Constructions

The ancient Greeks did not have the benefits of modern algebra we do today. Instead of manipulating
equations with numbers and polynomials, they instead considered constructions achievable by compass and
straightedge, ie. circles and lines. In fact, Euclid’s original proof of the infinitude of primes was achieved in
this fashion. These are the rules of their constructions:

Definition 3.5. Start with two points pg, p1. We may
1. draw lines intersecting any two previously constructible points,
2. draw circles centered at a previously constructible point through another constructible point,

3. take the points of intersection of any combination of constructible circles and lines as constructible
points.



Figure 2: A compass and straightedge construction

If we take the distance between pg, p1 as the unit length, then addition, subtraction, multiplication, and
division are straightforward along with the construction of N, Z, and Q. Moreover, it is a matter checking
that the constructible numbers form a field under the usual operations of R. The following result provides
a characterization of the constructible objects.

Theorem 3.6. Any constructible point must have coordinates in a field extension over a constructible base
field as subsets of R with a degree that is a power of 2.

Proof. Any constructible point is the root of intersections of circles
(z—a)?+(@y—b*—c=0
or lines
ar +by+c=0

or both. These are polynomial equations of degree two or lower. So our point must have coordinates in
extensions of degree two or lower. The only possibilities are degrees 1 or 2 which are both powers of two.
By Lemma the multiplicity of degrees with respect to extensions means any constructible point must
have coordinates in fields with degrees that are powers of 2. O

This essentially says that we can find any constructible point using the usual operations of arithmetic
and square roots.

4 Feasibility Results of Graph Drawing

First we describe the models of computation in which we compute the coordinates of graph. Then we provide
examples of graphs that are impossible to draw using three different graph drawing techniques.

4.1 Models of Computation

Two similar models of computation are of interest. One of which is equivalent to the classical compass and
straightedge constructions which the ancient Greeks originally levied.

Definition 4.1. Consider an algebraic computation tree where at each vertex one may perform square roots,
complex conjugation, and the usual operations of arithmetic on previously computed values. We call this a
quadratic computation tree.



Definition 4.2. Consider an algebraic computation tree where at each vertex one may perform k-th roots,
complex conjugation, and the usual operations of arithmetic on previously computed values. We call this a
radical computation tree.

Figure 3: A possible quadratic (or radical) computation tree

By Theorem [3.6] quadratic computation trees can compute any point constructible by compass and
straightedge. Moreover, despite the difference in strength between the two models, the only difference is
that a quadratic computation tree is a radical computation tree but with the restriction k = 2.

4.2 Impossible Force Directed Drawings

We consider force-directed drawings by by Fruchterman and Reingold although similar results hold for other
force-directed techniques. Fruchterman and Reingold defined for each vertex v an attractive force

d2
fa (d) = &
towards its neighbours and a repulsive force
k2
r d)=—
fold) = =

away from all vertices. Here, d is the distance between vertices and k a constant. The vertices are placed
such that the total force on each vertex is zero, ie. at an equilibrium. For a cyclic graph C,,, this amounts
to vertices spaced evenly apart on a circle. However, consider CY.



Figure 4: A Fruchterman and Reingoldman force-directed drawing C'

The vertices are positioned exactly at the powers of (7 in the complex plane.
Theorem 4.3. The Fruchterman and Reingoldman force-directed drawing of C; cannot be drawn using

coordinates computed by a quadratic computation tree.

Proof. The vertices of C; in a Fruchterman and Reingoldman force-directed drawing are positioned exactly
at the powers of (7 in the complex plane. However,

[Q(¢7) : Q] = ¢(7) = 6

is not a power of 2. So they are not contained in a tower of square roots (nor computable using the usual

operations of arithmetic) and cannot be computed by a quadratic computation tree. O]
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Figure 5: The powers of (7



4.3 Impossible Spectral Drawings

Spectral graph drawing positions vertices according to the eigenpairs of the Laplacian of a graph. Recall,
the Laplacian of a graph G = (V| E) is a matrix defined to be

L=D-A
where D is the degree matrix and A is the adjacency matrix of the graph, ie.

D deg(v;) ifi=jy YD if (vi,v;) € E
K 0 otherwise ’ 771 0 otherwise

Finding the eigenvalues of £ reduces to finding the roots of the characteristic polynomial char(L). If we can
find a graph whose eigenvalues cannot be computed with roots, then we have found a graph whose spectral
drawing cannot be computed with a radical computation tree.

Indeed:

Theorem 4.4. The spectral drawing of the graph in cannot be computed with a radical computation
tree.

Figure 6: A graph whose spectral drawing cannot be computed with a radical computation tree.

Proof. Computing the characteristic polynomial of the graph gives
p(x) = 2% — 162® 4+ 1042”7 — 35425 + 6782 — 7302* + 41723 — 1102? + 9z.
Since the zero eigenvalue is not very interesting we may factor out x and obtain
q(z) = 28 — 1627 + 10425 — 3542° + 678" — 73023 + 4172% — 110z + 9.

By a computer algebra system or otherwise, we see that ¢ is irreducible. We claim there is a 7-cycle and a
transposition in subgroup of Gal(split(¢)/Q). Observe that ¢ factors into irreducibles

q(z) = (z + 27) (2" + 192° + 252° + 252* + 32% + 262 + 252 + 21) mod 31

and
q(z) = (z + 1)(z® + 152 + 39)(2° + 92* + 292° + 102% + 362 + 16) mod 41.

Now 31 and 41 are both primes not dividing the discriminant 9931583 - 2% of ¢. By Theorem the first
factorization admits the existence of a 7-cycle and the second admits the existence of a permutation ¢ that
is the composition of a 5-cycle and a transposition. Then ¢® is a transposition. By Lemma we have
Gal(split(q)/Q) ~ Ss. By Theorem we cannot compute the roots of ¢ with a radical computation tree.
Hence, the only computable eigenvalue is zero. O

10



4.4 Impossible Circle Packings

Figure 7: Bipyramid(7)

Circle packings are representations of graphs where nodes are represented with circles of arbitrary size and
contact between perimeters denote edges. For example, the Bypyramid(7) graph (see|Figure 7)) has the circle
packing seen in

Figure 8: The circle packing of Bipyramid(7)

However, this example is a poor one for qudratic computation trees.
Theorem 4.5. The circle packing of Bipyramid(7) cannot be drawn by a quadratic computation tree.

Proof. Each of the circles in the middle ring of the circle packing of Bypyramid(7) are centred at a power of
(7. Since

[Q(¢7) : Q] = ¢(7) = 6

is not a power of 2, it cannot be computed with a quadratic computation tree. O

11



Figure 9: The centres of the middle ring of circles are located at the powers of (7

5 Conclusion

We have seen that the tools of Galois theory leveraged correctly provide simple examples of graphs that have
drawings that cannot be computed under certain models. These simple examples can be generalized easily
to provide feasibility results (both positive and negative) for classes of graphs. For example:

Theorem 5.1. The Fruchterman and Reingold force-directed drawings of every cyclic graph C, where p is
a Fermat prime can be computed with a quadratic computation tree.

Proof. Equally spacing p vertices on a circle is equivalent to placing them on the powers of (,. Since p is a
Fermat prime, it is of the form p = 2¥ 4+ 1. Then

[Q(¢) Q=) =p—1=2"
is a power of two. Hence, the coordinates may be computed by a quadratic computation tree. O

From here, there are two potential directions to take - not mutually exclusive to each other. One is to
consider what tools from other areas of algebra (eg. algebraic geometry/topology, sheaf theory, etc.) can be
applied to questions of feasibility. Topology is particularly promising as embeddings between spaces is an
area of research that is well explored. The other is to look at other models of computation and investigate
the classes of graphs that can be drawn using them. One model of note is the root computation tree, ie. the
model that can compute all algebraic numbers. The obvious impossible results would stem from the graphs
with transcendental coordinates. Circle packings have an immediate connection here in the form of .
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