
Copyright

by

Vikas Agarwal

2004

The Dissertation Committee for Vikas Agarwal
certifies that this is the approved version of the following dissertation:

Scalable Primary Cache Memory Architectures

Committee:

Lizy K. John, Supervisor

Stephen W. Keckler, Supervisor

Craig M. Chase

Nur A. Touba

Douglas C. Burger

Scalable Primary Cache Memory Architectures

by

Vikas Agarwal, M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2004

Dedicated to my parents.

Acknowledgments

I wish to thank the numerous people who helped and supported me. I

would like to thank my advisor, Dr. Stephen W. Keckler, for the motivation

and guidance that he has provided over the years.

Funding for this research was provided, in part, by The Department of

Computer Sciences at The Univeristy of Texas at Austin, and in part by IBM

Co-operative Fellowships for the years 2000-2003.

v

Scalable Primary Cache Memory Architectures

Publication No.

Vikas Agarwal, Ph.D.

The University of Texas at Austin, 2004

Supervisors: Lizy K. John
Stephen W. Keckler

For the past decade, microprocessors have been improving in overall

performance at a rate of approximately 50–60% per year by exploiting a rapid

increase in clock rate and improving instruction throughput. A part of this

trend has included the growth of on-chip caches which in modern processor

can be as large as 2MB. However, as smaller technologies become prevalent,

achieving low average memory access time (AMAT) by simply scaling existing

designs becomes more difficult because of process limitations.

The goal of this research is to achieve low AMAT and high instruction

throughput at small feature sizes, using a combination of circuit and architec-

tural techniques. Technology based models are developed to estimate cache

access times that are used for architectural experiments. As a part of this

research using a multi-banked design for a clustered processor in combination

with selected data mapping techniques to achieve acceptable hit rate while

vi

maintaining low cache access time is investigated. Additionally, predictive in-

struction steering strategies that help improve the performance of the clustered

processor design are developed and evaluated.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xv

Chapter 1. Introduction 1

1.1 Scaling of Conventional Architectures 1

1.2 Clustered Primary Memory Systems 4

1.3 Increasing Local Cache Bank Hits 7

Chapter 2. Related Work 9

2.1 Scaling of Conventional Processors 9

2.2 Design of Clustered Caches . 13

2.3 Instruction Steering . 16

Chapter 3. Technology Trends 18

3.1 Analytical Wire Model . 19

3.2 Wire Scaling . 24

3.3 Clock Scaling . 25

3.4 Wire Delay Impact on Microarchitecture 29

3.5 ECACTI Analytical Models 32

3.6 Microarchitectural Structures 38

3.6.1 Caches . 39

3.6.2 Register Files . 41

3.6.3 Content Addressable Memories 43

3.6.4 Validation . 45

3.7 Summary . 46

viii

Chapter 4. Scaling of Conventional Architectures 49

4.1 Experimental Methodology . 50

4.1.1 Target Microprocessor 51

4.1.2 Simulation Parameters 52

4.1.3 Modeling Deeper Pipelines 54

4.2 Pipeline versus Capacity Scaling 55

4.3 Performance Measurements . 59

4.3.1 Architectural Performance 60

4.3.2 Instruction Throughput 61

4.4 Discussion . 63

4.4.1 Processor scaling . 64

4.4.2 Clustered Caches . 64

Chapter 5. Clustered Caches 67

5.1 Microarchitecture . 68

5.2 Simulation Environment . 71

5.3 Baseline Processor Choices . 73

5.4 Statically Interleaved Caches 77

5.5 Topology Variation . 78

5.6 Dynamically Mapped Caches 83

5.6.1 Cache Parameters . 84

5.6.2 Design of the Dynamically Mapped Cache 86

5.7 Performance of Dynamically Mapped Caches 87

5.8 Discussion . 91

Chapter 6. Steering Policies for Clustered Cache Architectures 95

6.1 Bank Predictive Steering . 97

6.2 Experimental Parameters . 100

6.3 Performance of Bank Predictive Steering 101

6.4 Hybrid Steering . 103

6.5 Discussion . 109

Chapter 7. Conclusions 111

ix

Appendices 117

Appendix A. Structure Access Times 118

A.1 Cache Access Times . 118

A.2 Register File Access Time . 133

A.3 Content Addressable Memory Access Time 136

Appendix B. SPEC CPU2000 Benchmark Description 140

Appendix C. Scaling IPC 142

Appendix D. Clustered Cache Performance 150

D.1 Baseline Choices . 150

D.2 Round Robin Steering . 155

D.3 Dependence Steering . 159

D.4 Predictive Steering . 163

Bibliography 171

Index 180

Vita 181

x

List of Tables

3.1 Terms in our capacitance model and their sum for a 1µm wire. 22

3.2 Projected fabrication technology parameters. 25

3.3 Projected chip area and clock rate. 28

3.4 Latency in cycles for a 64KB, 2-way set associative, 2 ported,
32B block cache in various technologies. 41

3.5 Latency in cycles for a 128 entry, 10 ported, 80-bits per entry
register file in various technologies. 42

3.6 Comparison of access times (ns) generated from ECACTI ver-
sus access time generated by the SPICE deck for a 2-way set
associative cache. 46

3.7 Projected access time (cycles) at 35nm. 48

4.1 Capacities of structures used in delay calculations 53

4.2 Access times (in cycles) using pipeline scaling with f16, f8, and
fITRS clock scaling. 57

4.3 Structure sizes and access times (in subscripts) using capacity
scaling with f16, f8, and fITRS clock scaling. 59

4.4 Geometric mean of IPC for each technology across the SPEC
CPU2000 benchmarks. 60

4.5 Geometric mean of performance (billions of instructions per sec-
ond) for each technology across the SPEC CPU2000 benchmarks. 62

5.1 Cache bank latency for the various cache configurations. . . . 72

5.2 Processor Configuration . 77

5.3 Inter-cluster latencies in cycles for various topologies. 80

6.1 Legend of steering algorithms used in the graphs. 100

A.1 Cache access time in ns for various cache configurations in a
250nm technology. 119

A.2 Cache access time in ns for various cache configurations in a
250nm technology. 120

xi

A.3 Cache access time in ns for various cache configurations in a
180nm technology. 121

A.4 Cache access time in ns for various cache configurations in a
180nm technology. 122

A.5 Cache access time in ns for various cache configurations in a
130nm technology. 123

A.6 Cache access time in ns for various cache configurations in a
130nm technology. 124

A.7 Cache access time in ns for various cache configurations in a
100nm technology. 125

A.8 Cache access time in ns for various cache configurations in a
100nm technology. 126

A.9 Cache access time in ns for various cache configurations in a
70nm technology. 127

A.10 Cache access time in ns for various cache configurations in a
70nm technology. 128

A.11 Cache access time in ns for various cache configurations in a
50nm technology. 129

A.12 Cache access time in ns for various cache configurations in a
50nm technology. 130

A.13 Cache access time in ns for various cache configurations in a
35nm technology. 131

A.14 Cache access time in ns for various cache configurations in a
35nm technology. 132

A.15 Register file access time in ns for various configurations in a
250nm technology. 133

A.16 Register file access time in ns for various configurations in a
180nm technology. 133

A.17 Register file access time in ns for various configurations in a
130nm technology. 134

A.18 Register file access time in ns for various configurations in a
100nm technology. 134

A.19 Register file access time in ns for various configurations in a
70nm technology. 134

A.20 Register file access time in ns for various configurations in a
50nm technology. 135

A.21 Register file access time in ns for various configurations in a
35nm technology. 135

xii

A.22 CAM time in ns for various configurations in a 250nm technol-
ogy. 136

A.23 CAM time in ns for various configurations in a 180nm technol-
ogy. 137

A.24 CAM time in ns for various configurations in a 130nm technol-
ogy. 137

A.25 CAM time in ns for various configurations in a 100nm technol-
ogy. 138

A.26 CAM time in ns for various configurations in a 70nm technology. 138

A.27 CAM time in ns for various configurations in a 50nm technology. 139

A.28 CAM time in ns for various configurations in a 35nm technology. 139

B.1 List of Integer Benchmarks used in this research. 140

B.2 List of Floating Point Benchmarks used in this research. . . . 141

C.1 IPC for integer benchmarks for Pipeline scaling. 143

C.2 IPC for integer benchmarks for Capacity scaling. 145

C.3 IPC for floating point benchmarks for Pipeline scaling. 147

C.4 IPC for floating point benchmarks for Capacity scaling. 149

D.1 IPC for integer benchmarks for varying issue widths. 150

D.2 IPC for floating point benchmarks for varying issue widths. . . 151

D.3 IPC for integer benchmarks as a function of unified DL1 capacity.151

D.4 IPC for floating point benchmarks as a function of unified DL1
capacity. 152

D.5 IPC for integer benchmarks as a function of L2 organization. . 153

D.6 IPC for floating point benchmarks as a function of L2 organi-
zation. 154

D.7 IPC for integer benchmarks as a function of DL1 bank size for
round robin steering. 156

D.8 IPC for floating point benchmarks as a function of DL1 bank
size for round robin steering. 158

D.9 IPC for integer benchmarks as a function of DL1 bank size for
dependence steering. 160

D.10 IPC for floating point benchmarks as a function of DL1 bank
size for dependence steering. 162

xiii

D.11 IPC for integer benchmarks for various predictive steering policies.164

D.12 IPC for floating point benchmarks for various predictive steering
policies. 166

D.13 Transfer instructions (millions) for integer benchmarks for var-
ious predictive steering policies. 168

D.14 Transfer instructions (millions) for floating point benchmarks
for various predictive steering policies. 170

xiv

List of Figures

1.1 Processor clock rates and normalized processor performance
(SpecInt/Clock rate), 1995-2000. 4

1.2 Instructions per cycle (IPC) for SPEC2000 integer benchmarks
as a function of (a) cache latency (b) number of cache ports. . 6

3.1 The components of the capacitance in our analytical capaci-
tance model. 20

3.2 The RC network used to calculate wire delay in Equation 3.2
for a buffered wire . 22

3.3 Clock scaling measured in FO4 inverter delays 27

3.4 Reachable chip area in top-level metal, where area is measured
in six-transistor SRAM cells. 29

3.5 Fraction of total chip area reachable in one cycle. 31

3.6 Access time for various L1 data cache capacities. 40

3.7 Access time vs. issue window size across technologies. 44

4.1 Performance increases for different scaling strategies. 63

4.2 IPC for SPEC2000 integer benchmarks as a function of (a) cache
latency (b) number of cache ports. 65

5.1 The baseline hardware that is considered for this research. . . 69

5.2 Mean IPC values as a function of the issue width. 73

5.3 Mean IPC values for unified DL1 from 32KB to 512KB in capacity. 74

5.4 Average IPC for varying L2 configurations for (a) integer and
(b) floating point benchmarks. 76

5.5 Different physical topologies 79

5.6 IPC values for integer benchmarks with statically mapped data
for (a) cluster centric and (b) cache centric topologies. 81

5.7 IPC values for floating point benchmarks with statically mapped
data for (a) cluster centric and (b) cache centric topologies. . . 82

xv

5.8 IPC values for integer benchmarks with dynamically mapped
data without replication for (a) cluster centric and (b) cache
centric topologies. 89

5.9 IPC values for floating point benchmarks with dynamically mapped
data without replication for (a) cluster centric and (b) cache
centric topologies. 90

5.10 Mean miss rate as a function of DL1 bank size for the cluster
centric topology. 91

5.11 IPC values for integer benchmarks with dynamically mapped
data with replication for (a) cluster centric and (b) cache centric
topologies. 92

5.12 IPC values for floating point benchmarks with dynamically mapped
data with replication for (a) cluster centric and (b) cache centric
topologies. 93

6.1 Code fragment to show how different steering algorithms work. 96

6.2 Example of instruction mapping for dependence and round robin
steering. 96

6.3 Microarchitecture structures used for Memory Predicted steering 98

6.4 Example of instruction mapping for bank predictive steering. . 99

6.5 Example of instruction mapping for oracle steering. 100

6.6 IPC values of integer benchmarks for statically mapped data
and cluster centric topology. 101

6.7 IPC values of floating point benchmarks for statically mapped
data and cluster centric topology. 102

6.8 Microarchitecture structures used in Hybrid steering 103

6.9 IPC of integer benchmarks for hybrid steering algorithm. . . . 104

6.10 IPC of floating point benchmarks for hybrid steering algorithm. 104

6.11 Total transfer instructions for integer benchmarks with dynam-
ically mapped data. 105

6.12 Total transfer instructions for floating point benchmarks with
dynamically mapped data. 106

6.13 For integer benchmarks with dynamically mapped data (a) misses
that could hit in other clusters (b) instruction balance across
the clusters. 107

6.14 For floating point benchmarks with dynamically mapped data
(a) misses that could hit in other clusters (b) instruction balance
across the clusters. 108

xvi

7.1 Projected performance scaling over a 17-year span for a conven-
tional microarchitecture. 113

7.2 Mean IPC for various steering algorithms for integer and float-
ing point benchmarks. 115

xvii

Chapter 1

Introduction

Microprocessor performance improvements have been driven by progress

in fabrication technology that has caused transistor as well as wires to get

smaller and faster. The smaller feature sizes have provided the benefits of

more complex microarchitecture as well as faster gate switching times. This

research investigates the impact of technology scaling on processor perfor-

mance. The increasing communication delay [8] between microarchitectural

structures limits the improvement in performance that can be achieved as

feature sizes decrease. This research proposes and evaluates using clustered

caches in conjunction with clustered execution units as a means to improve the

performance of processors in the face of increasing communication delays. The

results show that 39% improvement in performance can be achieved by using

a combination of dynamic data mapping and aggressive predictive instruction

steering.

1.1 Scaling of Conventional Architectures

For the past decade, microprocessors have been improving in overall

performance at a rate of approximately 50–60% per year. These substantial

1

performance improvements have been mined from two sources. First, designers

have been increasing clock rates rapidly, both by scaling technology and by

reducing the number of levels of logic per cycle. Second, designers have been

exploiting the increasing number of transistors on a chip, plus improvements

in compiler technology, to improve instruction throughput (IPC). Although

designers have generally opted to emphasize one over the other, both clock

rates and IPC have been improving consistently. Figure 1.1 shows that while

some designers have chosen to optimize the design for fast clocks (Compaq

Alpha), and others have optimized their design for high instruction throughput

(HP PA-RISC), the past decade’s performance increases have been a function

of both.

If the cycle time of a processor is dominated by gate delay, then faster

transistor contribute directly to higher performance. However, increasingly

wire delay contributes a significant portion of the clock cycle time. This re-

search develops an analytical wire model based on empirical results from a 3D

field solver to study the scalability of interconnects as we move to smaller fea-

ture sizes. The results from the wire model show that only 10% of a 400mm2

chip will be accessible at 35nm for an aggressively clocked microprocessor.

The wire model is further used in a model to estimate the access time of vari-

ous register file and cache like memory structures in the microprocessor. The

model shows that with an aggressive clock rate it will take as much as 7 cy-

cles to access a 64KB primary data cache at 35nm for an aggressive 13.5 GHz

clock. These microarchitecture latency models are used to evaluate the impact

2

of technology scaling on the performance of a processor architecture.

Achieving high performance in future microprocessors will be a tremen-

dous challenge, as both components of performance improvement are facing

emerging technology-driven limitations. Designers will soon be unable to sus-

tain clock speed improvements at the past decade’s annualized rate of 50% per

year. With detailed wire and component models, we show that today’s designs

scale poorly with technology, improving at best 12.5% per year over the next

fourteen years [1]. The results show that designers must select among deeper

pipelines, smaller structures, or slower clocks, and that none of these choices,

nor the best combination, will result in scalable performance. Whether design-

ers choose an aggressive clock and lower IPC, or a slower clock and a higher

IPC, today’s designs cannot sustain the performance improvements of the past

decades.

One tremendously important contributor to the performance of modern

microprocessors is the primary cache design. For maximal processor perfor-

mance, the primary cache should be as large as possible, while at the same

time reducing the average memory access time and sustaining reasonable hit

rates. In the past, the trend in cache design has been to increase the ca-

pacity to improve the hit rate. However, recently there have been divergent

approaches to the design of level-1 caches. One approach has been to design

around the increased access latency of a level-1 data cache by increasing the

pipeline depth. The other has been to reduce the capacity of the level-1 data

cache in order to maintain a low access latency: for example the Pentium 4

3

1995 1996 1997 1998 1999 2000
0

100

200

300

400

500

600

700

800

C
lo

ck
 S

pe
ed

 (
M

H
z)

HP
Mips
AMD
Alpha
Pentium
PowerPC
Sun

1995 1996 1997 1998 1999 2000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Sp
ec

In
t/

M
H

z

HP
Mips
AMD
Alpha
Pentium
PowerPC
Sun

Figure 1.1: Processor clock rates and normalized processor performance
(SpecInt/Clock rate), 1995-2000.

has a 8K DL1 as compared to the 16K DL1 in the Pentium III. However,

as smaller technologies become prevalent, achieving low average memory ac-

cess time by simply scaling existing designs becomes more difficult because of

process limitations. The circuit issues that will need to be considered when

designing high speed primary caches include stability, noise immunity, access

latency, and power consumption.

1.2 Clustered Primary Memory Systems

Wider issue processors with increasing numbers of execution units re-

quire low latency and high bandwidth data cache access. However, adding

ports to a monolithic data cache increases both latency and area. In addition,

increases in on-chip wire latency encourages partitioning so that the size and

delay of critical structures, such as caches and register files, are limited. The

simplest way to increase the available cache ports is to the partition the caches

into independently accessible cache banks. This research proposes and evalu-

4

ates a group of clustered cache architectures connected to a clustered processor

architecture.

While the Alpha 21264 was an early example of a commercial clustered

microprocessor [32], an enormous amount of research has been done address-

ing clustered architectures. While most of the work on clustering has focused

on the processor core, relatively little has addressed the effect on the memory

system. Wider issue processors seek to increase issue-rate of all instruction,

including loads and stores. Unfortunately, just adding load/store execution

units merely increases bandwidth and latency pressures on traditional mono-

lithic level-1 caches. Since clusters must be spread spatially across some frac-

tion of the chip, the distance between a cluster and a centralized level-1 cache

increases, thus increasing cache access latency. Figure 1.2a shows the effect

of increasing level-1 cache latency in a 16-wide monolithic processor across a

spectrum of the SPEC2000 benchmark suite. Reducing the level-1 cache la-

tency from 3 cycles to 1 cycle increases average instructions per clock (IPC) by

an average to 19%. Similar improvements result when the latency is reduced

from 5 cycles to 3 cycles. Adding load/store execution units without increasing

the level-1 cache bandwidth will elevate average memory access time because

of level-1 cache contention. Figure 1.2b shows that increasing the number of

level-1 cache ports from 1 to 3 results in an average IPC boost of 39%.

While a monolithic cache forces the design to trade off bandwidth for

latency, a partitioned design allows for high bandwidth and higher capacity

with low access latency. Placing a cache bank near a cluster improves average

5

0 2 4 6 8

Latency

0

2

4

6

8

IP
C

bzip2
gzip
parser
gcc
gap
vpr
perlbmk

(a)

0 2 4 6 8

Ports

0

2

4

6

8

IP
C

bzip2
gzip
parser
gcc
gap
vpr
perlbmk

(b)

Figure 1.2: Instructions per cycle (IPC) for SPEC2000 integer benchmarks as
a function of (a) cache latency (b) number of cache ports.

6

cache bandwidth and the best-case memory latency when the needed data is

found in the local bank. The goal of the architectures and algorithms pre-

sented in this research is to increase the likelihood that a load or a store finds

its data in the local cache bank. We first discuss floor-planning and place-

ment alternatives of processor and memory clusters that affect memory and

inter-cluster communication latency, including a cluster centric topology that

minimizes inter-cluster communication and a memory-centric topology that

reduces access latency to remote cache banks.

1.3 Increasing Local Cache Bank Hits

In addition to the data placement policies, two methods to match load

and store instructions with the cluster containing the data are evaluated: steer-

ing instructions to the clusters predicted to have the data or dynamically

migrating data to the cluster with the instruction requiring the data. Two al-

gorithms for steering memory instructions (i) dependence based steering, and

(ii) predictive steering are examined. This research examines each of these

steering policies with clustered caches that are either statically mapped or

that allow dynamic data mapping. Our results show that static mapping pro-

vides little performance improvement over a slower monolithic cache, but that

combining a dynamically mapped cache that allows data migration with the

appropriate steering algorithm provides performance improvements of up to

51% over a monolithic cache. The results also indicate that some benchmarks

do not respond well to cache bank prediction, which motivated the design

7

and evaluation of a hybrid steering scheme that dynamically selects between

dependence-based steering and cache bank prediction steering.

Chapter 2 discusses topics related to this research and differentiates

it from this work. Chapter 3 describes the technology models developed to

estimate latencies of various memory structures in a microprocessor. Chapter

4 uses the latency models to evaluate the impact of shrinking feature sizes on

the performance of a given processor design as well as the impact of increas-

ing cache latency on the performance of the memory sub-system. Chapter 5

proposes and evaluates the design of clustered caches for a clustered micro-

processor. Chapter 6 investigates the interaction between the steering policy

used to map instructions to the execution clusters and the placement of data

in the clustered cache. Finally, Chapter 7 summarizes the contributions of this

research.

8

Chapter 2

Related Work

This research investigates how conventional processor architectures scale

with feature size along with how to improve the performance of the primary

data cache in future generations of processors using a combination of clustered

caches and instruction steering policies. This chapter discusses prior work in

the areas of processor scaling, design of clustered caches and instruction steer-

ing, and at the same time differentiating it from the work in this dissertation.

2.1 Scaling of Conventional Processors

The traditional approach to improving performance has been to im-

prove both clock rate and instruction throughput. However at small feature

sizes this research shows that for conventional architectures clock rate and

IPC will become antagonistic limiting the performance growth achievable by

conventional microarchitectures. The limits to which a conventional pipeline

can be scaled at smaller feature sizes and aggressively scaled clock rates has

already been covered elsewhere [24, 28, 29, 57]. Also, wider issue processors

with increasing numbers of execution units require low latency register files

with a large number of ports. However, adding a large number of ports to a

9

register increases the area and latency of the register file leading to the design

of partitioned processors.

Several studies as well as a commercial microprocessor have suggested

methods of partitioning conventional microarchitectures. Palacharla, et. al.

studied critical paths in microprocessors and concluded that both the wake-

up/selection logic for an instruction window and the data bypassing paths

would scale poorly with future technologies [42]. To combat this problem, the

authors propose a partitioning scheme that decomposes the execution units

into clusters with separate register files. The centralized instruction window is

replaced by a collection of distributed queues that hold streams of dependent

instructions. The penalty for this partitioning is reported to be a 5% reduction

in IPC. The Trace processor architecture is an extension to the complexity-

effective superscalar architecture described above [50]. Instead of partitioning

the instructions into different queues on the fly, traces are built dynamically

and stored in a centralized trace cache. The trace scheduling logic fetches a

trace and delivers it to one of many processing elements, where it is executed.

Reinman, et. al. propose a scalable architecture for providing high instruction

fetch bandwidth [45]. It includes a fetch target queue which allows the branch

predictor to operate independently from the instruction cache, and a large

fetch target buffer (FTB). To improve access time to the FTB, it is split into

multiple levels, much like an L1 and L2 cache hierarchy. Finally, the Compaq

Alpha 21264 actually implements a physical clustering scheme to reduce the

register file size and the complexity of the bypass wires [31]. The integer units

10

are divided into two clusters, each with a copy of the physical register file.

Instructions read operands from the cluster register file and write results to

both the local and remote register files.

The Ultrascalar architecture suggests that existing microarchitectures

are scalable to large numbers of execution units [26]. The Ultrascalar pro-

cessing elements are connected using a hierarchical fat-tree network which is

used to route all available register values to all of the instructions distributed

throughout the processing elements at the end of each clock cycle. While

the Ultrascalar II architecture reduces the global wiring requirements by only

transmitting those values that are necessary, global communication is still re-

quired [36]. With substantial wire delays in future fabrication processes, this

architecture must choose between slow clock rates or a substantial number of

clock cycles to bypass data between remote processing elements. While the

authors do not report IPC penalties, they will clearly be substantial enough

to render the architecture uncompetitive with even conventional cores.

The Multicluster architecture suggested by Farkas, et. al. also parti-

tions the execution units into clusters [19]. Each cluster has its own instruc-

tion dispatch queue, register file, and local bypass paths. Since the register

namespace is split across the clusters, additional instructions are sometimes

generated by the instruction distribution logic to move an operand to the other

cluster. While programs can run unmodified, substantially better performance

can be achieved with assistance from the compiler to balance the number of

instructions that are delivered each cluster and to reduce the number of inter-

11

cluster communications. With two clusters, the authors report a reduction of

10-25% in IPC.

The more obvious partitioning of a large future chip is a single chip

multiprocessor architecture (CMP) [23, 41]. This is a natural transition as

long network latencies between processors in today’s multiprocessors can be

mapped directly onto the long on-chip wire delays. However, latency to ac-

cess shared on-chip resources, such as the L1 or L2 cache must still be taken

into account. Assigning a private L1 cache to each processor rather than

sharing one across multiple processors will be more important in wire domi-

nated technologies as the latency to access a globally shared structure will be

substantial. Of course, like their larger ancestors, CMP architectures require

parallel workloads to achieve speedup. The RAW architecture at MIT is an

extension to a CMP that tightly couples an on-chip network to each proces-

sor [61]. The architecture scales well with technology as each processor has

its own execution core, cache, and local memory. The compiler is responsible

for discovering instruction and memory level parallelism, partitioning the pro-

gram into instruction streams, and coordinating the communication through

the tightly coupled and low-overhead network [7, 37]. Explicit communication

between independent processors through an on-chip network is well matched

to wire-delay constrained technologies. The Power4 [5, 17] is an example of a

commercial CMP that also implements clustered functional units within the

two processors that constitute the CMP. The Power5 [30] extends the Power4

design to support simultaneous multi threading [18] in addition to being a

12

CMP with clustered execution units.

While each of these architectures pay an IPC penalty for partitioning,

each benefits from the higher clock rates enabled by smaller clusters. This

research focuses on improving processor performance by using dynamic data

mapping on partitioned primary data caches for a processor with clustered

execution resources that require explicit communication to transfer values be-

tween clusters.

2.2 Design of Clustered Caches

Prior research has suggested that cache miss rates could be improved

by partitioning the cache and directing different types of reference to each

partition. Wolfe and Boleyn [63] proposed splitting the data cache and ded-

icating half to integer data and half to floating point data. The type of the

load or store (integer versus floating-point) then determines which partition

to access. Cho, et al. proposed splitting the data cache between the stack

and the heap memory regions, with address ranges determining the cache par-

tition [14]. Such techniques have the advantage that each sub-cache can be

smaller and faster than a larger unified cache. However, these strategies do

not necessarily use cache capacity effectively if the reference stream is strongly

weighted toward one data type or the other. In addition, if the partitioning

is not absolute in the sense that data could reside in either cache, additional

coherence overhead must be paid. An interesting refinement is the cache ar-

chitecture of the Itanium-2 in which all floating point data is delivered directly

13

from the level-2 cache and is not loaded into the level-1 cache [47]. This logical

partitioning enable the level-1 cache to be smaller and faster without being

polluted by floating point data which often exhibits poor temporal locality.

Many previous studies have suggested various forms of banked caches

to provide better bandwidth to a monolithic processor architecture. Rivers,

et al. studied the effect of cache banks as an alternative to adding ports and

suggested bandwidth saving optimizations, such as re-ordering and combining

references to reduce conflicts [48]. Parallel cachelets add a dynamic data map-

ping strategy to a banked to reduce bank conflicts exhibited by a statically

mapped cache [38]. Loads are dynamically assigned in round-robing fashion

to cachelets and subsequent instances of the load are assigned to the same

cachelet. Data can be replicated on demand to provide higher bandwidth.

Kim et. al. have proposed partitioning the level-2 cache as a means of reduc-

ing the average access latency of the level-2 cache [33]. The Access Region

Cache partitions the data into stack and non-stack regions, and within each

region statically map the data across a multi-banked cache [59]. A predictor

uses the program counter to select the cache bank before the address is com-

puted. Yoaz, et al. also describe a predictor preceding a statically mapped

and banked cache to determine a cache bank before the address is known [64].

Early bank identification is used to prevent simultaneous issuing of instruc-

tions that must access the same cache bank. In addition, the predictor enables

a faster partitioned cache architecture because in the common case an address

generator must communicate only with a local cache bank. Partitioned caches

14

with static address interleaving have been examined in the context of a stati-

cally scheduled VLIW processors [21]. Here the compiler is responsible for for

performing memory address disambiguation and cluster assignment.

The most relevant prior work is that of Racunas and Patt, which pro-

poses a combined load/store steering algorithm and a migration scheme for an

architecture with multiple address generation units [44]. Load and store in-

structions are tagged with partition assignments which are kept in a partition

assignment table (PAT) and accessed at decode time. These instructions are

steered to the assigned load/store units, each of which has its own ache parti-

tion. If a miss occurs in the level-1 cache, the data is serviced from the level-2

cache; if the data was available in another cache bank, the instruction can

be reassigned to that partition, or the data can be migrated to the instruc-

tions partition. Our work differs from that of Racunas and Patt in several

substantial ways. Most importantly, we explore the interaction (particularly

in steering policies) between processor clustering and data cache clustering,

where Racunas and Patt focus solely on the memory system and assume a

monolithic execution unit architecture for non-memory instructions. Second,

we examine the effect of the floor plan on the performance of a fully clustered

architecture. Finally, we study the trade-off between static data placement

and dynamic data migration with replication.

15

2.3 Instruction Steering

In addition to mechanisms that control the mapping of the data in

the primary data cache, the steering policies used to map instructions to the

clustered execution resources have a significant impact on performance. Prior

work on steering instructions to clusters has been based on using either load

balance [6, 20] or instruction dependencies [12, 13, 42] to map instruction to

execution clusters. Round robin steering maps groups of three consecutive

instructions to each cluster in succession [6]. The advantage of this policy is

that each cluster executes an equal number of instructions leading to perfect

load balance across the execution units. However, with round robing steer-

ing an average of 86% of the instructions require an operand from a remote

cluster. The large number of remote operands are a consequence of dependent

instructions being mapped to different execution clusters. Dependence based

steering as proposed by Palacharla et. al. [42] reduces the number of remote

operands required by instructions by mapping instructions to the cluster that

contains the producer of the value required by the instruction. This causes a

sharp drop in the number of instructions that require a remote operand from

the 86% for round robin steering to 8% for dependence steering. This drop

in the number in remote operands while reducing the inter-cluster communi-

cation disrupts the load balance across the execution clusters. Even though

dependence based steering outperforms round-robin steering for the architec-

ture under investigation, it is on the opposite end of the spectrum as far as

load balance and inter-cluster communication are concerned. Chapter 6 shows

16

how the predictive and hybrid steering policies proposed in this research find

the middle ground between the good load balance of the round robin steering

policy and low communication overhead of dependence based steering in order

to achieve better performance than either of these two basic steering policies.

17

Chapter 3

Technology Trends

Development in silicon technology and decreases in transistor sizes has

driven microprocessor performance improvements. Reduced feature sizes have

provided two benefits. First, smaller transistors allow more devices on a single

die, providing area for more complex microarchitectures. Second, technology

scaling reduces transistor gate length and hence transistor switching time. If

gate delay dominates microprocessor cycle times, greater quantities of faster

transistors contribute directly to higher performance. However, faster clock

rates and slower wires will limit the number of transistors reachable in a sin-

gle cycle to be a small fraction of those available on a chip. Reducing the

feature sizes has caused wire width and height to decrease, resulting in larger

wire resistance due to smaller wire cross-sectional area. Unfortunately, wire

capacitance has not decreased proportionally. Even though wire surface area

is smaller, the spacing between wires on the same layer is decreasing with each

technology generation. Consequently, the increased coupling capacitance to

neighboring wires offsets the decreased parallel-plate capacitance.

This chapter describes the development of an analytical wire delay

model based on empirical capacitance results from a 3D field solver. The

18

effects of technology scaling on chip-wide communication delays and clock

rate are demonstrated using simple first-order models. Since the latency in

clock cycles is more relevant than the absolute delay along a segment of wire,

trends in the clock rate and the impact clock rate can have on wire latency

are analyzed using the delay model. The analytical wire model augments a

cache-timing model to estimate the access latencies of memory structures like

caches, register files and instruction windows. The models that are developed

are used to reason about how designers can expect future microarchitectures

will scale.

3.1 Analytical Wire Model

Since the delay of a wire is directly proportional to the product of its

resistance and capacitance, developing models for these parameters across all

of the technology generations of interest is essential. To compute wire re-

sistance per unit length (Ω/µm), the simple equation Rwire = ρ
W×H

is used,

where ρ is wire resistance, W is wire width, and H is wire height. Computing

capacitance per unit length (fF/µm) is more complicated due to the interac-

tions among multiple conductors. To model the capacitance, empirical results

obtained from Space3D, a three-dimensional field solver [60] are used. Wire

capacitance includes components for conductors in lower and higher metal

layers as well as coupling capacitance to neighboring wires in the same layer.

For each fabrication technology, Space3D uses the geometry for a given wire

with other wires running parallel to it on the same layer and perpendicular

19

���
���
���
��� �������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���

���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��

��
��
�

��
��
�

C3
C2

C4

C5

W

L

S

C1

C3

Figure 3.1: The components of the capacitance in our analytical capacitance
model.

on the layers above and below. The layers above and below are assumed to

have a dense distribution of wires on them. Space3D uses varying wire height,

width, and spacing as inputs, and least-mean-squared curve fitting to derive

the coefficients for the model. The capacitance model is optimistic compared

to the worst-case environment of a wire in a real system because it assumes

the grounding of all conductors other than the modeled wire, and thus not

accounting for Miller-effect coupling capacitance.

The analytical capacitance model used the simple Equation 3.1 based

on Figure 3.1 to generate the parasitic capacitance for a wire of length L, width

W and having spacing S from the adjacent wires.

20

Cwire = C1 + C2 + C3 + C4 + C5

= L× CL + W × CW + S × CS + L×W × CLW +
L

S
× CLS(3.1)

The first and second terms (C1 = L × CL and C2 = W × CW) in

this equation refer to the edge capacitance from the edges of the wire to the

substrate. The third term (C3 = S × CS) represents the increased fringing

capacitance to ground as the wires are placed further and further apart. The

fourth term (C4 = L×W×CLW) is the term representing the area capacitance

to ground which goes up as the area of the wire increases. The last term

(C5 = L
S
× CLS) represents the coupling capacitance to the adjacent wire,

which increases as the length (L) of the wire increases and decreases as the

wires a placed further apart (S). Table 3.1 shows the values of all five terms of

our analytical model and the total capacitance for a 1µm wire in mid and top

level metal from technologies from 250nm down to 35nm. As can be seen from

the table capacitance per unit length of wire stays roughly constant across the

various technology generations. The reason for the constant capacitance per

unit length is that, as the capacitance to the substrate decreases as the wire

dimensions get smaller, the coupling capacitance increases, as the placement

of adjacent wires is closer to each other.

The derived values for Rwire and Cwire form the core of our wire delay

model. Given the fabrication technology, and the wire length, width, and

spacing, our model computes the end-to-end wire transmission delay. The

21

Gate (nm) Level C1(fF) C2(fF) C3(fF) C4(fF) C5(fF)
250 mid 0.066 0.030 0.023 0.033 0.051

top 0.066 0.042 0.032 0.046 0.036
180 mid 0.066 0.022 0.069 0.035 0.140

top 0.065 0.034 0.063 0.033 0.154
130 mid 0.064 0.019 0.063 0.032 0.158

top 0.061 0.024 0.062 0.029 0.182
100 mid 0.063 0.009 0.057 0.029 0.174

top 0.061 0.021 0.054 0.026 0.198
70 mid 0.062 0.003 0.056 0.028 0.183

top 0.060 0.013 0.058 0.026 0.204
50 mid 0.059 0.000 0.053 0.026 0.204

top 0.058 0.004 0.058 0.025 0.213
35 mid 0.059 0.000 0.053 0.025 0.211

top 0.056 0.001 0.052 0.023 0.233

Table 3.1: Terms in our capacitance model and their sum for a 1µm wire.

R C C

R

C

w

0 w
2 2

w g

Figure 3.2: The RC network used to calculate wire delay in Equation 3.2 for
a buffered wire

22

load on the remote end of the wire is a minimum-size inverter, which has

a small gate capacitance relative to the wire capacitance. Optimal repeater

placement is assumed in our model to reduce the delay’s dependence on wire

length from quadratic to linear. Each repeater is an inverter with PFET and

NFET sizes chosen to minimize overall wire delay. A π circuit (as shown in

figure 3.2) is used to model each wire segment in a repeated wire, as described

in [4]. Equation 3.2 uses the delay of each segment to calculate overall delay

as a function of wire length L.

Dwire =
L

l0
(R0(Cg + Cwire) + p + Rwire(

Cwire

2
+ Cg)) (3.2)

R0 is the on-resistance of the repeater, Cg is the gate capacitance of the

repeater, l0 is the length of a wire segment between repeaters, p is the intrinsic

delay of a repeater, and Rwire and Cwire are the resistance and capacitance of

the wire segment between two repeaters. Using this equation, the transmission

delay for a 5mm top-level wire more than doubles from 170ps to 390ps over

the range of 250nm to 35nm technologies. When possible, increasing the wire

width is an attractive strategy for reducing wire delay. Increasing the wire

width and spacing by a factor of four for top level metal reduces the delay for

a 5mm wire from 390ps to 210ps in a 35nm process, at a cost of four times

the wire tracks for each signal. This study evaluates the wire widths shown in

Table 3.2.

23

3.2 Wire Scaling

Our source for future technology parameters pertinent to wire delay

is the 2001 ITRS [51]. Although the roadmap outlines the targets for future

technologies, the parameters described within are not assured. Nonetheless,

the model assumes that the roadmap’s aggressive technology scaling predic-

tions (particularly those for conductor resistivity ρ and dielectric permittivity

κ) can be met. This research uses the roadmap’s convention of subdividing

the wiring layers into three categories: (1) local for connections within a cell,

(2) intermediate, or mid-level, for connections across a module, and (3) global,

or top-level, for chip-wide communication. To reduce communication delay,

wires are both wider and taller in the mid-level and top-level metal layers.

Our study of wire delay focuses on mid-level and top-level wires, using the

wire width, height, and spacing projected in the roadmap.

Table 3.2 displays the wire parameters from 250nm to 35nm technolo-

gies, including the derived wire resistance per unit length (Rwire) and capac-

itance per unit length (Cwire) for both mid-level and top-level metal layers.

The values are based on our analytical model as described in greater detail

in Section 3.5. Rwire increases enormously across the technology parameters,

with notable discontinuities at the transition to 180nm, due to copper wires,

and 70nm, due to an anticipated drop in resistivity from materials improve-

ments projected in the ITRS [51]. However, to limit the effect of shrinking

wire width, wire aspect ratio (ratio of wire height to wire width) is predicted to

increase up to a maximum of three. Larger aspect ratios increase the coupling

24

Gate Mid-Level Metal
Length Dielectric Metal ρ Width Aspect Rwire Cwire

(nm) Constant κ (µΩ-cm) (nm) Ratio (mΩ/µm) (fF/µm)
250 3.9 3.3 500 1.4 107 0.202
180 2.7 2.2 320 2.0 107 0.333
130 2.7 2.2 230 2.2 188 0.336
100 1.6 2.2 170 2.4 316 0.332
70 1.5 1.8 120 2.5 500 0.331
50 1.5 1.8 80 2.7 1020 0.341
35 1.5 1.8 60 2.9 1760 0.348

Gate Top-Level Metal
Length Dielectric Metal ρ Width Aspect Rwire Cwire

(nm) Constant κ (µΩ-cm) (nm) Ratio (mΩ/µm) (fF/µm)
250 3.9 3.3 700 2.0 34 0.222
180 2.7 2.2 530 2.2 36 0.350
130 2.7 2.2 380 2.5 61 0.359
100 1.6 2.2 280 2.7 103 0.361
70 1.5 1.8 200 2.8 164 0.360
50 1.5 1.8 140 2.9 321 0.358
35 1.5 1.8 90 3.0 714 0.366

Table 3.2: Projected fabrication technology parameters.

capacitance component of Cwire, which is somewhat mitigated by reductions

in the dielectric constant of the insulator between the wires. Even with the

advantages of improved materials, the intrinsic delay of a wire, Rwire×Cwire,

is increasing with every new technology generation. These results are similar

to those found in other studies by Horowitz [27] and Sylvester [58].

3.3 Clock Scaling

While wires have slowed down, transistors have been getting dramati-

cally faster. To first order, transistor switching time, and therefore gate delay,

is directly proportional to the gate length. This research uses the fanout-

of-four (FO4) delay metric to estimate circuit speeds independent of process

technology technologies [27]. FO4 delay is the time for an inverter to drive four

25

copies of itself. Thus, a given circuit limited by transistor switching speed has

the same delay measured in number of FO4 delays, regardless of technology.

Reasonable models show that under typical conditions, the FO4 delay, mea-

sured in picoseconds (ps) is equal to 360×Ldrawn, where Ldrawn is the minimum

gate length for a technology, measured in microns. Using this approximation,

the FO4 delay decreases from 90ps in a 250nm technology to 9ps in 50nm

technology, resulting in circuit speeds improving by a factor of seven, just due

to technology scaling.

The FO4 delay metric is important as it provides a fair means to mea-

sure processor clock speeds across technologies. The number of FO4 delays per

clock period is an indicator of the number of levels of logic between on-chip

latches. Microprocessors that have a small number of FO4 delays per clock

period are more deeply pipelined than those with more FO4 delays per clock

period. As shown by Kunkel and Smith [35], pipelining to arbitrary depth in

hopes of increasing the clock rate does not result in higher performance. Over-

head for the latches between pipeline stages becomes more significant as the

number of levels of logic within a stage decreases too much. Pipelining in a mi-

croprocessor is also limited by dependencies between instructions in different

pipeline stages. To execute two dependent instructions in consecutive clock

cycles, the first instruction must compute its result in a single cycle. With

current microarchitectures this requirement can be viewed as a lower bound

on the amount of work that can be performed in a useful pipeline stage, and

could be represented as the computation of an addition instruction. Under this

26

1992 ’95 ’97 ’99 2002 ’05 ’08 ’11 ’14
0
5

10
15
20
25
30
35
40
45
50
55

C
lo

ck
 P

er
io

d
(F

O
4

m
et

ri
c)

ITRS Scaling
Intel Data
ISSCC Data

8 FO4

16 FO4

500nm
350nm

250nm 180nm 130nm 100nm

70nm 50nm 35nm

Figure 3.3: Clock scaling measured in FO4 inverter delays. The aggressive (8
FO4) and conservative (16 FO4) clocks are constant across technologies, but
the ITRS roadmap projects less than 6 FO4 delays at 50nm and below.

assumption, a strict lower bound on the clock cycle time is 5.5 FO4 delays,

which is the computation delay of a highly optimized 64-bit adder, as described

by Naffziger [40]. When accounting for latch overhead and the time to bypass

the output of the adder back to the input for the next instruction, reducing

the clock period to 8 FO4 delays will present significant design challenges.

Figure 3.3 plots microprocessor clock periods (measured in FO4 delays)

from 1992 to 2014. The horizontal lines represent the 8 FO4 and 16 FO4 clock

periods. The clock periods projected by the ITRS shrink dramatically over the

years and reach 5.6 FO4 delays at 50nm, before increasing slightly to 5.9 FO4

delays at 35nm. The Intel data represent five generations of x86 processors

and show the reduction in the number of FO4 delays per pipeline stage from 53

in 1992 (i486DX2) to 15 in 2000 (Pentium III) to 10 in 2001 (Pentium 4) to 8.5

in 2004 (Pentium 4/Prescott), indicating substantially deeper pipelines. The

isolated circles represent data from a wider variety of processors published in

27

Gate Chip Area 16FO4 Clk 14FO4 Clk 12FO4 Clk 10FO4 Clk
(nm) (mm2) f16 (GHz) f14 (GHz) f12 (GHz) f10 (GHz)
250 400 0.69 0.79 0.93 1.11
180 450 0.97 1.10 1.29 1.54
130 567 1.34 1.53 1.78 2.14
100 622 1.74 1.98 2.31 2.78
70 713 2.48 2.83 3.31 3.97
50 817 3.47 3.97 4.63 5.56
35 937 4.96 5.67 6.61 7.94

Gate Chip Area 8FO4 Clk 6FO4 Clk ITRS Clk
(nm) (mm2) f8 (GHz) f6 (GHz) fITRS (GHz)
250 400 1.39 1.85 0.75
180 450 1.93 2.57 1.25
130 567 2.67 3.56 2.10
100 622 3.47 4.63 3.50
70 713 4.96 6.61 6.00
50 817 6.94 9.26 10.00
35 937 9.92 13.20 13.50

Table 3.3: Projected chip area and clock rate.

the proceedings of the International Solid State Circuits Conference (ISSCC)

from 1994 to 2004. Both the Intel and ISSCC data demonstrate that clock

rate improvements have come from a combination of technology scaling and

deeper pipelining, with each improving approximately 15-20% per year. While

the trend toward deeper pipelining will continue, reaching eight FO4 delays

will be difficult, and attaining the ITRS projected clock rate is highly unlikely.

Table 3.3 shows the resulting clock rates across the spectrum of technologies,

assuming varying level of pipelining from six FO4 gate delay per pipeline stage

to sixteen FO4 per pipeline stage.

28

250 180 130 100 70 50 35
Technology (nm)

1E+06

1E+07

1E+08

1E+09

Sp
an

 (
R

ea
ch

ab
le

 B
it

s)

f
f
f
Total bits

16

8

SIA

Figure 3.4: Reachable chip area in top-level metal, where area is measured in
six-transistor SRAM cells.

3.4 Wire Delay Impact on Microarchitecture

The widening gap between the relative speeds of gates and wires will

have a substantial impact on microarchitectures. With increasing clock rates,

the distance that a signal can travel in a single clock cycle decreases. When

combined with the growth in chip area anticipated for high-performance mi-

croprocessors, the time (measured in clock periods) to send a signal across one

dimension of the chip will increase dramatically. Our analysis below uses the

clock scaling described above and the projected chip areas from the ITRS, as

shown in Table 3.3.

Based on the wire delay model, the chip area that is reachable in a single

clock cycle is computed. Our unit of chip area is the size of a six-transistor

SRAM cell, which shrinks as feature size is reduced. To normalize for different

feature sizes across the technologies, the SRAM cell size is measured in λ,

29

which is equal to one-half the gate length in each technology. The SRAM

cell is estimated to have an area of 700λ2, which is the median cell area from

several recently published SRAM papers [9, 54, 65]. Our area metric does not

include overheads found in real SRAM arrays, such as the area required for

decoders, power distribution, and sense-amplifiers. Additionally, it does not

reflect the size of a single-cycle access memory array; the area metric includes

all bits reachable within a one-cycle, one-way transmission delay from a fixed

location on the chip, ignoring parasitic capacitance from the SRAM cells.

Figure 3.4 shows the absolute number of bits that can be reached in

a single clock cycle, which is termed span, using top-level wires for f16, f8,

and fITRS clock scaling. The wire width and spacing are set to the minimum

specified in the ITRS for top-level metal at each technology. Using f16 clock

scaling, the span first increases as the number of bits on a chip increases and

the entire chip can still be reached in a single cycle. As the chip becomes

communication bound at 130nm, multiple cycles are required to transmit a

signal across its diameter. In this region, decreases in SRAM cell size are

offset equally by lower wire transmission velocity, resulting in a constant span.

Finally, the span begins to decrease at 50nm when the wire aspect ratio stops

increasing and resistance becomes more significant. The results for f8 are

similar except that the plateau occurs at 180nm and the span is a factor of

four lower than that of f16. However, in fITRS the span drops steadily after

180nm, because the clock rate is scaled superlinearly with decreasing gate

length. These results demonstrate that clock scaling has a significant impact

30

250 180 130 100 70 50 35
Technology (nm)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 C
hi

p
R

ea
ch

ed

f
f
f

16

8

SIA

Figure 3.5: Fraction of total chip area reachable in one cycle.

on architectures as it demands a trade-off between the size and partitioning of

structures. Using high clock rates to meet performance targets limits the size

of pipeline stages and microarchitectural structures, while tightly constraining

their placement. If lower clock rates can be tolerated, then microarchitects can

give less consideration to the communication delay to reach large and remote

structures.

Figure 3.5 shows the fraction of the total chip area that can be reached

in a single clock cycle. Using f8 in a 35nm technology, less than 0.4% of the

chip area can be reached in one cycle. Even with f16, only 1.4% of the chip can

be reached in one cycle. Similar results have been observed in prior work [39].

If microarchitectures do not change over time, this phenomenon would be

unimportant, since the area required to implement them would decrease with

feature size. However, microarchitectures have become more complex because

architects acquired more transistors with each new fabrication technology, and

31

used them to improve overall performance. In future technologies, substantial

delay penalties must be paid to reach the state or logic in a remote region

of the chip, so microarchitectures that rely on large structures and global

communication will face more serious challenges in the future than they do

today.

3.5 ECACTI Analytical Models

This research develops an analytical access time model in order to study

the effect of the various technology trends on the access time of microar-

chitectural structures. To achieve this, we modify an existing cache model

(ECACTI) using the analytical wire model described in section 3.4. This sec-

tion explains the modifications to ECACTI used to incorporate the analytical

wire model.

To model the various storage-oriented components of a modern micro-

processor, an extended version of the original CACTI cache-modeling tool [62],

called ECACTI [46] is used. Given the capacity, block size, associativity, num-

ber ports, and number of data and address bits, ECACTI considers a number

of alternative cache organizations and computes the minimum access time.

ECACTI automatically splits the cache into banks and chooses the number

and layout of banks that incurs the lowest delay. When modeling large mem-

ory arrays, ECACTI presumes multiple decoders, with each decoder serving

a small number of banks. For example with a 4MB array, ECACTI produces

16 banks and 4 decoders in a 35nm technology. Note that this model is op-

32

timistic, because it does not account for driving the address from a central

point to each of the distributed decoders.

This research modifies ECACTI to include technology scaling, using the

projected parameters from the ITRS. SRAM cell sizes and transistor parasitics,

such as source and drain capacitances, scale according to their anticipated

reduction in feature size for future technologies. The word-lines assume that

they run from a decoder across its neighboring banks in mid-level metal, and

that the world lines in mid-level metal do not affect the size of the SRAM

cell. The model assumes that parameters that are not explicitly specified in

the ITRS obey simple scaling rules e.g. load capacitance decreases linearly

with feature size. Unlike Amrutur and Horowitz [4] this model makes the

optimistic assumption that the sense-amplifier threshold voltage will decrease

linearly with technology, which gives better sense times than if the threshold

voltage does not scale.

The input parameters to ECACTI are the following (in order):

• Size of cache in bytes

• Block size in bytes

• Associativity (FA for fully associative)

• Number of read-write ports (optional, default 1)

• Number of extra read ports (optional)

33

• Number of extra write ports (optional)

• Number of sub-banks in the cache

An example of a typical ECACTI run is as follows:

cacti.05 65536 32 2 1 0 0 2

The above example is a simulation of a 64KB, 1-ported, 2-way set associative

cache in a 50 nm technology with a block size of 32 bytes. Such a run will

produce an output like:

Cache Parameters:

Number of Subbanks: 2

Total Cache Size: 65536

Size in bytes of Subbank: 32768

Number of sets: 512

Associativity: 2

Block Size (bytes): 32

Read/Write Ports: 1

Read Ports: 0

Write Ports: 0

Technology Size: 0.03um

Vdd: 0.4V

Access Time: 0.207206

34

Cycle Time (wave pipelined) (ns): 0.0864705

Total Power all Banks (nJ): 0.052435

Total Power Without Routing (nJ): 0.052435

Total Routing Power (nJ): 0

Maximum Bank Power (nJ): 0.0262175

Best Ndwl (L1): 2

Best Ndbl (L1): 2

Best Nspd (L1): 1

Best Ntwl (L1): 1

Best Ntbl (L1): 4

Best Ntspd (L1): 2

Nor inputs (data): 3

Nor inputs (tag): 2

Area Components:

Aspect Ratio Total height/width: 2.118090

Data array (cm^2): 0.000642

Data predecode (cm^2): 0.000002

Data colmux predecode (cm^2): 0.000000

Data colmux post decode (cm^2): 0.000000

35

Data write signal (cm^2): 0.000000

Tag array (cm^2): 0.000069

Tag predecode (cm^2): 0.000001

Tag colmux predecode (cm^2): 0.000000

Tag colmux post decode (cm^2): 0.000000

Tag output driver decode (cm^2): 0.000001

Tag output driver enable signals (cm^2): 0.000000

Percentage of data ramcells alone of total area: 75.578653 %

Percentage of tag ramcells alone of total area: 5.609353 %

Percentage of total control alone of total area: 18.811993 %

Subbank Efficiency : 81.188007

Total Efficiency : 45.010768

Total area One Subbank (cm^2): 0.000716

Total area subbanked (cm^2): 0.002584

Time Components:

data side (with Output driver) (ns): 0.205683

tag side (with Output driver) (ns): 0.207206

address routing delay (ns): 0

36

address routing power (nJ): 0

decode_data (ns): 0.0864705

(nJ): 0.000536434

wordline and bitline data (ns): 0.0761042

wordline power (nJ): 7.30985e-06

bitline power (nJ): 0.00143317

sense_amp_data (ns): 0.0159375

(nJ): 0.0184999

decode_tag (ns): 0.0301116

(nJ): 0.000187212

wordline and bitline tag (ns): 0.0278823

wordline power (nJ): 2.86444e-06

bitline power (nJ): 0.000141301

sense_amp_tag (ns): 0.0159375

(nJ): 0.00512602

compare (ns): 0.0319608

(nJ): 1.75964e-05

mux driver (ns): 0.0694994

(nJ): 3.56579e-05

sel inverter (ns): 0.00464361

(nJ): 4.86469e-07

data output driver (ns): 0.0271711

(nJ): 0.000229532

37

total_out_driver (ns): 0

(nJ): 0

total data path (without output driver) (ns): 0.178512

total tag path is set assoc (ns): 0.180035

Note that there exists a family of ECACTI simulators with one for each

technology generation from 250nm down to 35nm. The example show above

corresponds to using the simulator for the 50nm technology. Instead, to model

the same cache in a 35nm technology, use cacti.03.

Aside from modeling direct-mapped and set associative caches, the ex-

tended version of ECACTI is used to explore other microarchitectural struc-

tures. For example, a register file is essentially a direct mapped cache with

more ports, but fewer address and data bits than a typical L1 data cache.

Content addressable memories (CAMs) are modeled as fully associative struc-

tures with the appropriate number of tag and data bits per entry. A similar

methodology is used to examine issue windows, reorder buffers, branch pre-

diction tables, and TLBs.

3.6 Microarchitectural Structures

In addition to reducing the chip area reachable in a clock cycle, both

the widening gap between wire and gate delays and superlinear clock scaling

has a direct impact on the scaling of microarchitectural structures in future

38

microprocessors. Clock scaling is more significant than wire delay for small

structures, while both wire delay and clock scaling are significant in larger

structures. The large memory-oriented elements, such as the caches, register

files, instruction windows, and reorder buffers, will be unable to continue in-

creasing in size while remaining accessible within one clock cycle. This section

uses the analytical models to examine the access time of different structures

from 250nm to 35nm technologies based on the structure organization and

capacity. The results demonstrate the trade-offs between access time and ca-

pacity that are necessary for the various structures across the technology gen-

erations. The next chapter investigates the impact on processor performance

of the trade-off between the access time and capacity of various microarchi-

tectural structures.

3.6.1 Caches

The extended version of ECACTI, estimates memory structure access

times, while varying cache capacity, block size, associativity, number of ports,

and process technology. While cache organization characteristics do affect

access time, the most critical characteristic is capacity. Figure 3.6 plots the

access time versus capacity for a dual-ported, two-way set associative cache.

The maximum cache capacities that can be reached in 3 cycles for the f16, f8

and fITRS clocks are also plotted as “isobars”. Note that the capacity for a

three cycle access cache decreases moderately for f16 and f8, but falls off the

graph for fITRS.

39

4 10 100 1000 4096

Cache Capacity (KB)

0.1 ns

1 ns

10 ns

100 ns

A
cc

es
s

T
im

e

250 nm
180 nm
130 nm
100 nm
70 nm
50 nm
35 nm

f SIA

f8

f16

Figure 3.6: Access time for various L1 data cache capacities.

For each technology, the access time increases as the cache capacity

increases. Even with substantial banking, the access time goes up dramatically

at capacities greater than 256KB. For a given cache capacity, the transition

to smaller feature sizes decreases the cache access time, but not as fast as

projected increases in clock rates. In a 35nm technology, a 32KB cache takes

one to six cycles to access depending on the clock frequency. One alternative

to slower clocks or smaller caches is to pipeline cache accesses and allow each

access to complete in multiple cycles. Due to the non-linear scaling of capacity

with access time, adding a small number of cycles to the cache access time

substantially increases the available cache capacity. For example, increasing

the access latency from four to seven cycles increases the reachable cache

capacity by about a factor of 16 in a 35nm technology. The results shown in

Figure 3.6 apply to all of the cache-like microarchitectural structures that are

40

Gate (nm) 16FO4 14FO4 12FO4 10FO4 8FO4 6FO4 ITRS
Clk Clk Clk Clk Clk Clk Clk

250 2 2 3 3 4 5 2
180 2 2 3 3 4 5 3
130 2 2 3 3 4 5 3
100 2 2 3 3 4 5 4
70 2 2 3 3 4 5 5
50 2 3 3 4 4 6 6
35 3 3 3 4 5 6 6

Table 3.4: Latency in cycles for a 64KB, 2-way set associative, 2 ported, 32B
block cache in various technologies.

examined in this study, including L1 instruction and data caches, L2 caches,

register files, branch target buffers, and branch prediction tables.

Table 3.4 shows the latency in clock cycles to access a 64KB, 2-way set

associative, 2 ported, 32B block size cache for the various clock rates specified

in Table 3.3. A comprehensive set of access times for various cache configura-

tions and technology generations is shown in Tables A.1 to A.14 in Appendix A.

3.6.2 Register Files

While our cache model replicates current design methodologies, our

register file model is more aggressive in design. Although register files have

traditionally been built using single-ended full swing bit lines [49], larger ca-

pacity register files will need faster access provided by differential bit-lines

and low-voltage swing sense-amplifiers similar to those in our model. For our

register file modeling, the cache block size is set to the register width and

41

Gate (nm) 16FO4 14FO4 12FO4 10FO4 8FO4 6FO4 ITRS
Clk Clk Clk Clk Clk Clk Clk

250 1 2 2 2 2 3 1
180 1 2 2 2 2 3 2
130 1 2 2 2 2 3 2
100 1 2 2 2 2 3 2
70 1 2 2 2 2 3 3
50 2 2 2 2 3 3 3
35 2 2 2 2 3 3 3

Table 3.5: Latency in cycles for a 128 entry, 10 ported, 80-bits per entry
register file in various technologies.

the associativity is set to 1. The main difference between a register file and

direct mapped cache is that the register file has a significantly higher number

of ports. For multi-ported register files, the size of each cell in the register file

increases linearly in both dimensions with the number of ports. Also, when

modeling a register file, the number of output bits needs to match the size of

each entry in the register file.

Our capacity results for the register file are similar to those seen in

caches. Our results show that register files with many ports will incur larger

access times. For example, in a 35nm technology, going from ten ports to 32

ports increases the access time of a 64-entry register file from 172ps to 274ps.

Increased physical size and access time makes attaching more execution units

to a single global register file impractical. Table 3.5 shows the latency in clock

cycles to access a 128 entry, 10 ported, 80 bits per entry register file for the

various clock rates specified in Table 3.3. A comprehensive set of access times

42

for various simple register file configuration from a 250nm technology down to

a 35nm technology can be found in Tables A.15 to A.21 in Appendix A.

3.6.3 Content Addressable Memories

Lastly, we model components that require global address matching

within the structure, such as the instruction window and the TLB. These com-

ponents are typically implemented as content addressable memories (CAMs)

and can be modeled using the tag array of a fully associative cache. Our ini-

tial model of the instruction window includes a combination of an eight-bit

wide CAM and a 40-bit wide direct mapped data array for the contents of

each entry. The issue window has eight ports, which are used to insert four

instructions, write back four results, and extract four instructions simultane-

ously. Since the eight-ported CAM cell and corresponding eight-ported data

array cell are assumed to be port-limited, the area of these cells is computed

based on the width and number of bit-lines and word-lines used to access them.

Note that only the structure access time is modeled and not the latency of the

instruction selection logic.

Figure 3.7 shows the access time for this configuration as a function

of the number of instructions in the window. As with all of the memory

structures, the access time increases with capacity. The increase in access

time is not as significant as in the case of the caches, because the capacities

considered are small and all must pay an almost identical penalty for the fully

associative match on the tag bits. Thus, in this structure, once the initial

43

16 100 1000 4096
Number of Instructions in Window

0.1 ns

1 ns

10 ns

100 ns

A
cc

es
s

T
im

e

250 nm
180 nm
130 nm
100 nm
70 nm
50 nm
35 nm

Figure 3.7: Access time vs. issue window size across technologies.

tag match delay has been computed, the delay for the rest of the array does

not increase significantly with capacity. A 128-entry, eight-port, eight-bit tag

instruction window has an access time of 227ps in a 35nm process, while a

12-bit tag raises the access time of a same size window to 229ps. A 128-entry,

32-port, eight-bit tag instruction window (as might be required by a 16-issue

processor) has an access time of 259ps in a 35nm technology. Note that all of

these results ignore the increase in complexity of the selection logic as the issue

window size and the port count in the issue window increases. It is anticipated

that the capacity and port count of the register file and the complexity of the

selection logic will ultimately place a limit on the issue width of superscalar

microarchitectures [42].

A comprehensive set of access times for various simple CAM configu-

ration from a 250nm technology down to a 35nm technology can be found in

44

Tables A.22 to A.28 in Appendix A.

3.6.4 Validation

This research validates the modified ECACTI model in order to achieve

greater confidence in the access times predicted by the model. We compare

the latencies output by the analytical models to HSPICE simulations of corre-

sponding circuits. The HSPICE simulations show that with simple linear tech-

nology scaling, below 100nm, the delay of an inverter simulated in HSPICE

does not match expected delay from analytical models. In order to achieve

a better match between the HSPICE and analytical models, we adjust the

CMOS transistor parameters. The list of adjusted HSPICE model parameters

includes the substrate doping, the threshold voltage and the mobility.

In order to better validate our analytical structure model based on

the ECACTI code, the access times of various structures as predicted by the

analytical model is compared to the latency output by a netlist representing a

cross-section of the circuit simulated in ECACTI. The access times generated

by ECACTI and the HSPICE deck for a 2-ported, 2-way associative cache are

listed in Table 3.6. This level of accuracy is comparable to the accuracy of the

original ECACTI model when compared to equivalent HSPICE results. The

ECACTI and HSPICE models start diverging at small feature sizes and large

capacities. The divergence is the result of the lack of accuracy of the pi model

for long wires, used to estimate wire delay in the HSPICE netlist.

Our analytical model compares favorably to other models and related

45

Technology Capacity 4 8 16 32 64 128 256 512
250nm ECACTI 1.37 1.43 1.54 1.67 1.85 2.17 2.55 3.30

HSPICE 1.06 1.10 1.35 1.43 1.69 2.28 2.70 3.52
180nm ECACTI 1.17 1.21 1.29 1.40 1.54 1.72 2.01 2.58

HSPICE 0.94 0.97 1.14 1.20 1.70 1.81 2.07 2.56
130nm ECACTI 0.83 0.86 0.92 1.00 1.11 1.25 1.49 1.95

HSPICE 0.67 0.70 0.85 0.90 1.09 1.49 1.73 2.12
100nm ECACTI 0.63 0.66 0.70 0.77 0.85 0.99 1.19 1.60

HSPICE 0.45 0.49 0.56 0.71 0.77 1.17 1.44 1.86
70nm ECACTI 0.41 0.43 0.47 0.51 0.58 0.67 0.81 1.10

HSPICE 0.31 0.34 0.34 0.47 0.55 1.00 1.25 1.67
50nm ECACTI 0.31 0.32 0.35 0.49 0.46 0.54 0.68 0.94

HSPICE 0.23 0.34 0.46 0.62 0.67 1.01 1.22 1.62
35nm ECACTI 0.21 0.23 0.25 0.28 0.33 0.39 0.50 0.70

HSPICE 0.28 0.29 0.25 0.43 0.47 1.12 1.23 1.57

Table 3.6: Comparison of access times (ns) generated from ECACTI versus
access time generated by the SPICE deck for a 2-way set associative cache.

implementations. In a 250nm technology, the access time for a 64KB L1 data

cache is computed to be 2.4ns. This access time is comparable to that of

the 700MHz Alpha 21264 L1 data cache. Furthermore, for a 4MB cache in a

70nm technology, our model predicts an access time of 33 FO4 delays which

matches the 33 FO4 access time generated by Amrutur and Horowitz for a

similar cache [4].

3.7 Summary

While transistor speeds are scaling approximately linearly with feature

size, wires are getting slower with each new technology. Even assuming low-

46

resistivity conductors, low-permittivity dielectrics, and higher aspect ratios,

the absolute delay for a fixed-length wire in top-level metal with optimally

placed repeaters is increasing with each generation. Only when the wire width

and spacing is increased substantially can the wire delay be kept constant.

Due to increasing clock frequencies, wire delays are increasing at an even

higher rate. As a result, chip performance will no longer be determined solely

by the number of transistors that can be fabricated on a single integrated

circuit (capacity bound), but instead will depend upon the amount of state

and logic that can be reached in a sufficiently small number of clock cycles

(communication bound).

The argument made by Sylvester and Keutzer [58] that wire delays

will not affect future chip performance holds only if wire lengths are reduced

along with gate lengths in future technologies. Traditional microprocessor

microarchitectures have grown in complexity with each technology generation,

using all of the silicon area for a single monolithic core. Current trends in

microarchitectures have increased the sizes of all of the structures, and added

more execution units. With future wire delays, structure size will be limited

and the time to bypass results between pipeline stages will grow. If clock rates

increase at their projected rates, both of these effects will have substantial

impact on instruction throughput.

Because of increasing wire delays and faster transistors, memory ori-

ented microarchitectural structures are not scaling with technology. To access

caches, register files, branch prediction tables, and instruction windows in a

47

Structure Name fITRS f8 f16

L1 cache
64K (2 ports) 7 5 3
Integer register file
64 entry (10 ports) 3 2 1
Integer issue window
20 entry (8 ports) 3 2 1
Reorder buffer
64 entry (8 ports) 3 2 1

Table 3.7: Projected access time (cycles) at 35nm.

single cycle will require the capacity of these structures to decrease as clock

rates increase. In Table 3.7 shows the number of cycles needed to access the

structures from the Compaq Alpha 21264, scaled to a 35nm process for each

of the three methods of clock scaling. With constant structure capacities, the

L1 cache will take up to seven cycles to access, depending on how aggressively

the clock is scaled.

The next chapter reports experimental results that show how the pro-

jected scaling of microarchitectural components affects overall processor per-

formance. Using the results of the analytical models discussed in this chapter

as inputs to SimpleScalar-based timing simulation, the performance of current

microarchitectures when scaled from 250nm to 35nm technology are investi-

gated.

48

Chapter 4

Scaling of Conventional Architectures

As communication delays increase relative to computation delays, su-

perlinear clock rate scaling and today’s techniques for exploiting instruction

level parallelism (ILP) work against one another. The wire model in the pre-

vious chapter demonstrated that aggressively scaling the clock reduces the

amount of state that can be used to exploit ILP for a fixed pipeline depth.

The designer is faced with two interacting choices: how aggressively to push

the clock rate by reducing the number of levels of logic per cycle, and how

to scale the size and pipeline depth of different microarchitectural structures.

Using the results of the analytical models from the previous chapter as inputs

to SimpleScalar-based timing simulation, we track the performance of current

microarchitectures when scaled from 250nm to 35nm technology, using differ-

ent approaches for scaling the clock and the microarchitecture. We measure

the effect of three different clock scaling strategies on the microarchitecture:

setting the clock at 16 fanout-of-four (FO4) delays, setting the clock at 8 FO4

delays, and scaling the clock according to the ITRS projections. For a given

target frequency, we define two approaches for scaling the microarchitecture

to smaller technologies:

49

• Capacity scaling: Shrink the microarchitectural structures such as caches,

register files and re-order buffers, sufficiently so that their access penal-

ties are constant across technologies. We define access penalty as the

access time for a structure measured in clock cycles.

• Pipeline scaling: Hold the capacity of a structure constant and increase

the pipeline depth as necessary to cover the increased latency across

technologies.

While these trade-offs of clock versus structure size scaling manifest

themselves in every design process, their importance will grow as communi-

cation delay creates more interference between clock speed and ILP optimiza-

tions.

This chapter explores the effect of capacity and pipeline scaling strate-

gies upon instructions per cycle (IPC) and overall performance. For each

scaling strategy, and at three different clock scaling rates (f16, f8, and fITRS

projections), we measure IPC for our target microarchitecture at technologies

ranging from 250nm to 35nm. The analysis will show that a monolithic mi-

croarchitecture does not scale well at high clock rates, motivating the design

of clustered architectures.

4.1 Experimental Methodology

We perform our microarchitectural timing simulations with an extended

version of the SimpleScalar tool set [10], version 3.0. We also use the Sim-

50

pleScalar memory hierarchy extensions, which simulate a one-level page table,

hardware TLB miss handling, finite miss status holding registers (MSHRs) [34],

and simulation of bus contention at all levels [11].

4.1.1 Target Microprocessor

The SimpleScalar tools use a Register Update Unit (RUU) [56] to track

out-of-order issue of instructions. The RUU acts as a unified reorder buffer,

issue window, and physical register file. Because of the large number of ports

required for the RUU in a four-wide machine, implementing it is not feasible

at high clock frequencies. We therefore split the structures logically in Sim-

pleScalar, effectively simulating a separate reorder buffer, issue window, and

physical register file.

We also modified SimpleScalar’s target processor core to model a four-

wide superscalar pipeline organization roughly comparable to the Compaq

Alpha 21264 [31]. Our target is intended to model a microarchitecture typical

of those found in current-generation processors; it is not intended to model

the 21264 microarchitecture itself. However, we chose as many parameters as

possible to resemble the 21264, including the pipeline organization and mi-

croarchitectural structure capacities. Our target processor uses a seven-stage

pipeline for integer operations in our simulated base case, with the following

stages: fetch, decode, map, queue, register read, execute, and writeback. As

in the 21264, reorder buffer accesses occur off of the critical path, physical

registers are read after instruction issue, and instructions are loaded into the

51

issue queues in program order.

Our target differs from the 21264 in the following respects. We as-

sume that the branch target buffer is a distinct structure, as opposed to a line

predictor embedded in the instruction cache. We simulate a two-level gshare

predictor instead of the 21264’s local history, global history, and choice predic-

tors. We remove instructions from the issue queue immediately after they are

issued, rather than implementing load-use speculation and waiting two cycles

for its resolution. We simulate a combined floating-point and integer issue

queue (they are split in the 21264), but model them from a timing perspective

as if they were split. We do not implement the functional unit and register

file clustering found in the 21264. Instead of the six instructions per cycle

that the 21264 can issue (four integer and two floating-point), we permitted

only four. We use the default SimpleScalar issue prioritization policy, which

issues ready loads with highest priority, followed by the oldest ready instruc-

tions. The 21264 always issues the oldest ready instruction regardless of its

type. Finally, we do not simulate the 21264 victim cache, which contains an

eight-entry victim buffer.

4.1.2 Simulation Parameters

Our baseline processor parameters include the following: a four-way

issue superscalar processor with a 40-entry issue window for both integer and

floating point operations, a 64-entry load/store queue, commit bandwidth of

eight instructions per cycle, an eight-entry return address stack, and a branch

52

Capacity (bits) # entries Bits/entry Ports
Branch pred. 32K 16K 2 1

BTB 48K 512 96 1
Reorder buffer 8K 64 128 8
Issue window 800/160 20 40 8
Integer RF 5K 80 64 10

FP RF 5K 80 64 10
L1 I-Cache 512K 1K 512 1
L1 D-Cache 512K 1K 512 2
L2 Cache 16M 16K 1024 2

I-TLB 14K 128 112 2
D-TLB 14K 128 112 2

Table 4.1: Capacities of structures used in delay calculations

mispredict rollback latency equal to the reorder buffer access delay plus three

cycles. We set the number and delays of the execution units to those of the

21264 [31]. We show the default sizes of the remaining structures in Table 4.1.

In our baseline memory system, we use separate 64KB, two-way set

associative level-one instruction and data caches, with a 2MB, four-way set-

associative, unified level-two cache. The L1 caches have 64-byte lines, and the

L2 cache has 128-byte lines. The L1/L2 cache bus is 128 bits wide, requires

one cycle for arbitration, and runs at the same speed as the processing core.

Each cache contains eight MSHRs with four combining targets per MSHR.

We assume a DRAM system that is aggressive by today’s standards.

The L2/memory bus is 64 bits wide, requires one bus cycle for arbitration,

and runs at half the processor core speed. That speed ratio, assuming a

tightly coupled electrical interface to memory, is similar to modern Rambus

memory channels. We assumed that the base DRAM access time is 50ns, plus

53

a somewhat arbitrary 20ns for the memory controller. That access time of

70ns is typical for what was available in 1997. For each year beyond 1997, we

reduce the DRAM access time by 10%, using that delay and the clock rate

for a given year to compute the DRAM access penalty, in cycles, for the year

in question. We model access time and bus contention to the DRAM array,

but do not model page hits, precharging overhead, refresh cycles, or bank

contention. The benchmarks we use exhibit low miss rates from the large L2

caches in our simulations. We simulate a subset of the SPEC CPU2000 [25]

benchmarks for 500 million instructions using the ref input set.

4.1.3 Modeling Deeper Pipelines

To simulate pipeline scaling in SimpleScalar, we added the capability

to simulate variable-length pipelines by specifying the access latency for each

major structure as a command-line parameter. We assume that all structures

can begin at most m accesses every cycle, where m is the number of ports. We

do not account for any pipelining overheads due to latches or clock skew [35].

Furthermore, we assume that an n-cycle access to a structure will cause an n−1

cycle pipeline stall as specified below. We perform the following accounting

for access delays in which n > 1:

• Instruction-Cache: Pipeline stalls affect performance only when a branch

is predicted taken. We assume that fetches with no changes in control

flow can be pipelined.

54

• Issue window: Additional cycles to access the issue window cause delays

when instructions are removed from the queue (wakeup and select), not

when instructions are written into the issue window.

• Reorder buffer: As in the 21264, writes to the reorder buffer and commits

occur off the critical path. We therefore add reorder buffer delays only

to the rollback latency, which in turn is incurred only upon a branch

misprediction.

• Physical register file: Register access penalties are paid only on non-

bypassed register file reads. Register file writes are queued and bypassed

to dependent instructions directly.

• Branch predictor and BTB: Multi-cycle predictor accesses create pipeline

bubbles only when a prediction must be made. Multi-cycle BTB accesses

cause the pipeline to stall only when a branch is predicted taken. We

assume that the two structures are accessed in parallel, so that pipeline

bubbles will be the maximum, rather than the sum, of the two delays.

4.2 Pipeline versus Capacity Scaling

We use the simulated microarchitecture described above to measure

IPC across the benchmark suite. The access latencies for the microarchitec-

tural structures are derived from the models described in Chapter 3. From the

access latencies, we compute the access penalties for each of the three clock

scaling rates (f16, f8, and fITRS).

55

Table 4.1 shows both the number of bits per entry and the number

of ports for each of the baseline structures. These parameters are used to

compute the delay as a function of capacity and technology as well as the

capacity as a function of access penalty and technology. In the issue window

entry, we show two bit capacities, one for the instruction queue and one for

the tag-matching CAM.

The third column of Table 4.1 shows the baseline structure sizes that

we use for our pipeline scaling experiments. Table 4.2 shows the actual access

penalty of the structures for the fixed baseline capacities. Note that as the

feature size decreases, the access penalty to the fixed size structures increases,

and is dependent on the clock rate. Consequently, deeper pipelines are required

as a fixed-capacity microarchitecture is scaled to smaller technologies.

Table 4.3 shows the parameters for the capacity scaling experiments.

Because the access penalties are held nearly constant, the capacities of the

structures decrease dramatically as smaller technologies and higher clock rates

are used. For each technology generation, we set each structure to be the

maximum size possible while ensuring that it remains accessible in the same

number of cycles as our base case (one cycle for most of the structures, and

ten cycles for the L2 cache).

In future technologies, some of the structures become too small to be

useful at their target access penalty. In such cases, we increase the access

penalty slightly, permitting a structure that is large enough to be useful. The

access penalties are shown in the subscripts in Table 4.3. Note that for tech-

56

250nm 180nm 130nm 100nm
Structure f16/f8/fITRS f16/f8/fITRS f16/f8/fITRS f16/f8/fITRS

Branch pred. 1/2/2 2/3/2 2/3/2 2/3/3
BTB 1/2/1 1/2/2 1/2/2 1/2/2

Reorder buffer 1/2/1 1/2/2 1/2/2 1/2/2
Issue window 1/2/1 1/2/2 1/2/2 1/2/2
Integer RF 1/2/1 1/2/2 1/2/2 1/2/2

FP RF 1/2/1 1/2/2 1/2/2 1/2/2
L1 I-Cache 2/3/2 2/3/2 2/3/3 2/3/3
L1 D-Cache 2/4/2 2/4/3 2/4/3 2/4/4
L2 Cache 11/21/11 10/19/12 11/21/17 11/23/23

I-TLB 2/3/2 2/3/2 2/3/3 2/3/3
D-TLB 2/3/2 2/3/2 2/3/3 2/3/3

70nm 50nm 35nm
Structure f16/f8/fITRS f16/f8/fITRS f16/f8/fITRS

Branch pred. 2/3/3 2/3/4 2/3/4
BTB 1/2/3 1/2/3 1/2/3

Reorder buffer 1/2/3 1/2/3 1/2/3
Issue window 1/2/3 1/2/3 1/2/3
Integer RF 1/2/2 1/2/3 1/2/3

FP RF 1/2/2 1/2/3 1/2/3
L1 I-Cache 2/3/4 2/4/5 2/4/5
L1 D-Cache 2/4/5 3/5/7 3/5/7
L2 Cache 12/24/29 17/34/49 19/38/52

I-TLB 2/3/4 2/3/4 2/3/4
D-TLB 2/3/4 2/3/4 2/3/4

Table 4.2: Access times (in cycles) using pipeline scaling with f16, f8, and
fITRS clock scaling.

57

250nm 180nm
Structure f16/f8/fITRS f16/f8/fITRS

BPred 8K1/8K2/8K1 8K1/8K2/1K1

BTB 1K1/1K2/5121 5121/5122/4K2

ROB 2561/5122/1281 1281/1282/8K2

IW 5121/5122/1281 641/642/8K2

Int. RF 2561/2562/1281 2561/2562/351

FP RF 2561/2562/1281 2561/2562/351

L1 I$ 256K2/64K3/256K2 256K2/64K3/64K2

L1 D$ 64K2/32K3/64K2 64K2/16K3/32K2

L210 2M/256K/1M 2M/256K/1M
I-TLB 32K2/5123/32K2 32K2/5123/4K2

D-TLB 32K2/5123/32K2 32K2/5123/4K2

130nm 100nm
Structure f16/f8/fITRS f16/f8/fITRS

BPred 4K1/8K2/2561 4K1/4K2/4K2

BTB 5121/5122/2K2 5121/5122/5122

ROB 1281/1282/2K3 1281/1282/1282

IW 641/642/2K2 641/642/642

Int. RF 1281/1282/5122 1281/1282/1282

FP RF 1281/1282/5122 1281/1282/1282

L1 I$ 256K2/64K3/16K2 256K2/64K3/64K3

L1 D$ 64K2/16K3/2K2 64K2/16K3/16K3

L210 1M/256K/1M 1M/256K/256K
I-TLB 32K2/5123/4K3 16K2/5123/2K3

D-TLB 32K2/5123/4K3 16K2/5123/2K3

58

70nm 50nm 35nm
Structure f16/f8/fITRS f16/f8/fITRS f16/f8/fITRS

BPred 4K1/4K2/2K2 4K1/4K2/2562 4K1/4K2/5122

BTB 5121/5122/1282 2561/2562/5123 2561/2562/5123

ROB 1281/1282/2K3 641/642/2564 641/642/2563

IW 641/642/2K3 641/642/1283 641/642/2563

Int. RF 1281/1282/642 1281/1282/1283 1281/1282/1283

FP RF 1281/1282/642 1281/1282/1283 1281/1282/1283

L1 I$ 128K2/64K3/16K3 128K2/32K3/32K4 128K2/32K3/32K4

L1 D$ 64K2/16K3/4K3 32K2/8K3/4K4 32K2/8K3/8K4

L210 1M/256K/128K 512K/256K15/128K15 512K/256K15/128K15

I-TLB 16K2/5123/4K4 16K2/2563/1K4 16K2/2563/1K4

D-TLB 16K2/5123/4K4 16K2/2563/1K4 16K2/2563/1K4

Table 4.3: Structure sizes and access times (in subscripts) using capacity scal-
ing with f16, f8, and fITRS clock scaling.

nologies smaller than 130nm, no structure can be accessed in less than two

cycles for the f8 and fITRS frequency scales. Note that all of the L2 cache

access penalties are ten cycles except for f8 and fITRS, for which we increased

the access penalty to 15 cycles at 50nm and 35nm.

4.3 Performance Measurements

The performance scaling is measured using two major evaluation tech-

niques. The first uses Instructions per Cycle (IPC) which is a measure of

the architectural performance to evaluate the impact of scaling. The second

uses instruction throughput to measure performance, which incorporates the

impact of both architecture as well as clock rate.

59

Scaling Clock Rate 250nm 180nm 130nm 100nm 70nm 50nm 35nm
f16 2.12 1.77 1.77 1.77 1.77 1.71 1.71

Pipeline f8 1.24 1.06 1.06 1.06 1.06 0.94 0.94
fITRS 1.77 1.44 1.28 1.06 0.86 0.70 0.70
f16 2.11 2.11 2.07 2.07 2.07 2.04 2.04

Capacity f8 1.32 1.30 1.30 1.27 1.28 1.25 1.25
fITRS 2.12 1.47 1.23 1.28 1.03 0.79 0.84

Table 4.4: Geometric mean of IPC for each technology across the SPEC
CPU2000 benchmarks.

4.3.1 Architectural Performance

Table 4.4 shows the geometric mean of the measured IPC values across

the subset of the SPEC CPU2000 benchmarks used for the experiments. The

results include both pipeline scaling and capacity scaling experiments at each

of the three clock scaling targets.

In general, the IPC decreases as the technology is scaled from 250nm

to 35nm. For linear clock scaling (f16 and f8), this effect is caused by longer

structure access penalties due to sub-linear scaling of the wires. For fITRS, the

superlinear reduction in cycle time causes a larger increase in access penalty

than f16 or f8, resulting in a sharper drop in IPC. Detailed IPC values can be

found in Tables C.1 to C.4 in Appendix C.

There are several cases in which IPC increases when moving from a

larger technology to a smaller one. These small increases are caused by dis-

cretization limitations in our model: if the structure capacity at a given tech-

nology becomes too small to be useful, we increase the access penalty by one

cycle. This increase occasionally results in a larger structure than in the pre-

60

vious technology, causing a small increase in IPC. One example of this effect

is evident for capacity scaling at fITRS clock rates when moving from 130nm

to 100nm. In Table 4.3, the branch predictor, L1 I-Cache, and L1 D-Cache

all become noticeably larger but one cycle slower. A similar effect occurs for

fITRS capacity scaling at the transition from 70nm to 50nm.

With the slower clock rates (f16 and fITRS), the IPCs at 250nm for

capacity scaling are considerably higher than those for pipeline scaling. While

the capacity scaling methodology permits structure sizes larger than chips of

that generation could contain, the pipeline scaling methodology sets the sizes

to be roughly equivalent to the 21264. The capacity scaling results at 250nm

and 180nm thus show the IPCs if the chip was not limited by area. As the

wires grow slower in the smaller technologies, and the core becomes communi-

cation bound rather than capacity bound, the capacity scaling strategy loses

its advantage. The pipeline scaling shows higher IPC than capacity scaling

for fast clocks at the smallest technologies. The highest IPC at 35nm, unsur-

prisingly, is for capacity scaling at the slowest clock available–that point is the

one at 35nm for which the microarchitectural structures are the largest. Even

with capacity scaling at the f16 clock scale, however, IPC decreases by 20%

from 250nm to 35nm.

4.3.2 Instruction Throughput

For either scaling strategy, of course, IPC decreases as clock rates are

increased for smaller technologies. However, performance estimates must in-

61

Scaling Clock Rate 250nm 180nm 130nm 100nm 70nm 50nm 35nm Speedup
f16 1.46 1.72 2.38 3.09 4.41 5.96 8.52 5.80

Pipeline f8 1.68 2.05 2.84 3.70 5.29 6.55 9.37 5.57
fITRS 1.33 1.80 2.69 3.73 5.21 7.06 9.53 7.14
f16 1.45 2.05 2.77 3.60 5.13 7.09 10.14 6.95

Capacity f8 1.78 2.51 3.48 4.42 6.38 8.69 12.42 6.95
fITRS 1.59 1.84 2.60 4.50 6.22 7.90 11.41 7.16

Table 4.5: Geometric mean of performance (billions of instructions per second)
for each technology across the SPEC CPU2000 benchmarks.

clude the clock as well. In Table 4.5, we show the geometric mean performance

of the SPEC CPU2000 benchmarks, measured in billions of instructions per

second (BIPS), for each of the microarchitectural and clock scales. Most strik-

ing about the results is the similarity in performance improvements across the

board, especially given the different clock rates and scaling methodologies.

The small magnitudes of the speedups, ranging from five to seven for 35nm is

remarkable (for all our normalized numbers, the base case is pipeline scaling

performance at f16 and 250nm).

For all technologies through 50nm and for both scaling strategies, faster

clocks result in uniformly greater performance. For capacity scaling at 35nm,

however, the faster clocks show worse performance: f16 has the highest BIPS,

f8 is second, and fITRS has the lowest performance. This inversion is caused

mainly by the memory system, since the 35nm cache hierarchy has considerably

less capacity for the faster clocks.

For pipeline scaling, the caches all remain approximately the same size

regardless of clock scaling, and the benefit of faster clocks overcome the set-

62

1997 1999 2002 2005 2008 2011 2014

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

R
el

at
iv

e
P

er
fo

rm
an

ce

Pipeline - f
Capacity - f
Pipeline - f
Capacity - f
Pipeline - f
Capacity - f

250nm 180nm 130nm 100nm 70nm 50nm 35nm

16

16

8

8

SIA

SIA

Figure 4.1: Performance increases for different scaling strategies.

backs of higher access penalties. Thus at 35nm, the best-performing clock

scale is the most aggressive scale (fITRS).

4.4 Discussion

Figure 4.1 graphs total performance scaling with advancing technology.

The six lines represent pipeline or capacity scaling for each of the three clock

scaling rates. All performance numbers represent the geometric mean of the

SPEC CPU2000 benchmarks, and are normalized to our baseline.

Although the various scaling strategies perform differently for the inter-

mediate technologies, the overall performance at 35nm is remarkably consistent

across all experiments. Capacity scaling at fITRS shows a high variance; this

effect is due to the oscillating size of the L1 instruction cache, caused by the

discretization issue described earlier. The pipeline scaling at f16 is the only

strategy that performs qualitatively worse than the others. The fITRS and f16

clocks differ by nearly a factor of three at 35nm, and yet the overall perfor-

63

mance for both clocks at both scaling methodologies is nearly identical. The

maximal performance increase is a factor of 8.6, which corresponds to a 13.5%

annual improvement over that 17-year span.

4.4.1 Processor scaling

While careful selection of the clock rate, specific structure size, and

access penalty would result in small performance improvements above what

we have shown here, the consistency of these results indicates that they would

not be qualitatively superior. For a qualitative improvement in performance

growth, microarchitectures significantly different than those we measured will

be needed. Wider issue processors with increasing numbers of execution units

require low latency and high bandwidth cache access. However, adding ports

to a monolithic cache increases both latency and area. In addition, increases in

on-chip wire latency encourages partitioning so that the size and delay of crit-

ical structures, such as register files, are limited. While the Alpha 21264 was

an early example of a commercial clustered microprocessor [32], an enormous

amount of current research is addressing clustered architectures.

4.4.2 Clustered Caches

While most of the work on clustering has focused on the processor

core, relatively little has addressed the effect on the memory system. Wider

issue processors seek to increase issue-rate of all instruction, including loads

and stores. Unfortunately, just adding load/store execution units merely

64

0 2 4 6 8

Latency

0

2

4

6

8

IP
C

bzip2
gzip
parser
gcc
gap
vpr
perlbmk

(a)

0 2 4 6 8

Ports

0

2

4

6

8

IP
C

bzip2
gzip
parser
gcc
gap
vpr
perlbmk

(b)

Figure 4.2: IPC for SPEC2000 integer benchmarks as a function of (a) cache
latency (b) number of cache ports.

65

increases bandwidth and latency pressures on traditional monolithic level-1

caches. Since clusters must be spread spatially across some fraction of the

chip, the distance between a cluster and a centralized level-1 cache increases,

thus increasing cache access latency. Figure 4.2a shows the affect of increasing

level-1 cache latency in a 16-wide monolithic processor across a spectrum of

the SPEC2000 benchmark suite. Reducing the level-1 cache latency from 3

cycles to 1 cycle increases average instructions per clock (IPC) by an average

to 19%. Similar improvements result when the latency is reduced from 5 cycles

to 3 cycles. Adding load/store execution units without increasing the level-1

cache bandwidth will elevate average memory access time because of level-1

cache contention. Figure 4.2b shows that increasing the number of level-1

cache ports from 1 to 3 results in an average IPC boost of 39%.

While a monolithic cache forces the design to trade off bandwidth for la-

tency, a partitioned design allows for high bandwidth and higher capacity with

low access latency. In the rest of this research, we propose and evaluate clus-

tered cache architectures connected to a clustered processor architecture. The

next chapter details the architecture used to evaluate the steering algorithms

and clustered caches that are proposed in this research. The architecture is

then analyzed using dependence and round-robin steering to determine the

optimal cache parameters to use with the various steering algorithms.

66

Chapter 5

Clustered Caches

The results from the previous chapter show that scaling a monolithic

design to smaller feature sizes will only give us an average of 12.5% improve-

ment per year. The results also show that reducing the latency and improving

the bandwidth of the primary data cache lead to significant improvements in

processor performance. In this chapter we describe the microarchitecture of a

clustered primary data cache connected to a set of clustered execution units.

Partitioning the cache into independently accessible banks and placing the

banks close to the execution units is one way to reduce the average access la-

tency as well as allowing multiple independent accesses to occur simultaneous,

thus improving the bandwidth. The objective is to maximize the likelihood

that a given load or store instruction finds the data that it needs in the bank

closest to it. There are two aspects to matching load and store instructions

to a cache bank: steering the instruction to the appropriate cluster and the

physical organization of the cache. This chapter addresses the issues involved

in the physical organization while the next chapter deals with the instruction

steering issues.

67

5.1 Microarchitecture

The basic architecture examined in this research is shown in Figure 5.1.

The processor has a unified front end with the instruction fetch, decode and

map stages shared by all clusters. The map stage performs register renam-

ing and steers the instructions to one of the four clusters according to the

steering policy. Once instructions are mapped onto the cluster, they enter

the instruction window of the cluster, and issue out-of-order as the operands

are ready. Since dependent instructions potentially can be mapped on dif-

ferent clusters, transfer instructions are used to communicate values between

clusters. The cluster that needs the data, sends an instruction requesting the

data to the cluster with the data. The transfer instruction then executes on

the remote cluster and forwards data back to the cluster that requested it.

Transfer instructions consume execution resources and have finite latency to

communicate the value from one cluster to another just as in the MultiCluster

architecture [19].

The interconnect mechanism between the clusters and the primary data

cache banks can either be a full crossbar allowing any cluster to access any

cache bank or it can be a point-to-point connection only allowing access to the

local cache bank. With the point-to-point interconnect, data in remote banks

is only accessible by migrating it to the local cache bank. Data is mapped into

the primary data cache banks using a variety of different address mapping and

replacement policies. Data can either be statically mapped according to the

address to a fixed location in a specific bank or it can be dynamically mapped

68

Cluster 1 Cluster 2 Cluster 3

DL1

Bank 0

DL1

Bank 1

DL1 DL1

Bank 3Bank 2

Level−2 Cache

Interconnect

Map

Decode

Fetch

Cluster 0

IRF FRF

Issue W

Figure 5.1: The baseline hardware that is considered for this research.

to any of the cache banks. The interconnect between the primary data cache

and the unified L2 cache transfers data and maintains coherence.

This research investigates the performance of the processor while fo-

cusing on the primary data cache. Only load and store instructions access the

data cache and of these, only loads are timing critical. Load instructions may

encounter three scenarios:

69

• Local data, local consumer: The load, the instruction dependent on the

load, and the data accessed by the load are all mapped to the same

cluster. This is the optimal case, because it requires the least amount of

communication and shortest interconnection.

• Local data, remote consumer: The load and the data required by the

load are mapped on cluster i while the dependent instruction is mapped

on cluster j. This requires the data to be loaded into cluster i from bank

i and then transfered to the dependent instruction in cluster j. This

transfer of the value from cluster i to cluster j adds latency as well a

resource overhead to the execution of the instructions.

• Remote data: The load is mapped on cluster i while the data required by

the by the load is in bank j. Regardless of where the dependent consumer

instruction is mapped, this case has the highest overhead because cluster

i must send the request to bank j and then wait until the data returns.

Because this involves at least two inter-cluster transfers, this scenario

has the longest latency and highest resource overhead. The first inter-

cluster transfer is the remote request for the data to the cache bank

that has the data. The second is the transfer of the data from the

remote cache bank to the cluster requesting the data. Additionally, if

the consumer of the data is located in a different cluster, additional

inter-cluster communication is required to forward to the data to the

consumer.

70

The rest of this chapter investigates different options for data place-

ment, and topology that can reduce per access latency and increase the number

of instructions in the first category. In this chapter we consider round robin

and dependence based steering algorithms to map instructions to the respec-

tive clusters. The round robin algorithm steers groups of three instructions to

each cluster in a round robin manner. On the other hand dependence based

steering assigns dependent instructions to the same cluster. Further steering

algorithms are described and evaluated in Chapter 6.

5.2 Simulation Environment

We use a modified version of the sim-alpha [15] simulator to run our

performance modeling experiments, which is a validated simulator for the Al-

pha 21264 microprocessor. The simulator has been modified to support the

following features:

• Processor clustering where resources are split into clusters and inter-

cluster transfer instructions can be used to communicate values.

• Instruction steering algorithms including round-robin and dependence

based steering.

• Multiple cache configuration including unified, clustered, and supporting

several static and dynamic address mapping schemes.

The data cache is subdivided into a number of equal banks, based on

the number of execution clusters in the processor. Each execution cluster can

71

Cache Capacity Latency
32K 3
64K 4
128K 6
256K 10
512K 14

Table 5.1: Cache bank latency for the various cache configurations.

access the local cache bank directly or a remote cache bank through an inter-

connect. The memory subsystem uses a write through, write allocate, snooping

policy to keep the data coherent across the various L1 cache banks. A cache

line can either be present in only one cache bank at a time (no-replication),

or it can be potentially present in multiple cache banks simultaneously (repli-

cation). On a L1 cache miss the L2 is probed and if the data is present in the

L2, then the data is loaded from the L2. If the data is not present in the L2,

then the main memory is accessed to load the data.

We use a technology scaled version of the ECACTI [55] simulator to

estimate the cycle time of the various cache configurations used in this research

at the 50nm technology node with an 8 fanout-of-four (FO4) clock (13GHz at

50nm). All the caches have 2 read/write ports and are fully pipelined to allow a

new access to start every cycle. Table 5.1 lists the varying data cache capacities

with their corresponding latencies. As can be seen from Table 5.1, the access

latency increases significantly as the cache capacity increases beyond 128KB.

Even the jump from 32K to 64K adds a single critical cycle to the primary

cache access times. As shown in Chapter 4, these latencies will be more severe

72

4 8 16 32
Issue Width

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

Integer
Floating Point

Figure 5.2: Mean IPC values as a function of the issue width.

at smaller feature sizes.

The SPEC CPU2000 [25] benchmarks with the ref input set represent

the workload in this research. Table B.1 lists the integer benchmarks and

Table B.2 lists the floating point benchmarks along with a brief descriptions

of each benchmark. The benchmarks are compiled for Alpha EV6 ISA. The

SimPoint toolkit [53] is used to generate multiple weighted regions of 100

million instructions each. The regions generated are representative of overall

program behavior and thus allow simulation of overall program behavior in a

much shorter execution time.

5.3 Baseline Processor Choices

Figure 5.2 shows the average IPC for integer and floating point bench-

marks as a function of the issue width. The detailed IPC values for the in-

73

32 64 128 256 512
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

Integer
Floating Point

Figure 5.3: Mean IPC values for unified DL1 from 32KB to 512KB in capacity.

dividual benchmarks can be found in Tables D.1 and D.2. The issue width

and functional resources are equally divided across four clusters for these ex-

periments. The primary data cache consists of four statically mapped cache

banks of 128KB each, backed up with a 2MB, 4-way set associative L2. The

instructions are steered using dependence based steering. There is significant

performance improvement from four wide to thirty-two wide. However, since

there is negligible improvement in IPC from sixteen wide to thirty two wide,

the sixteen wide configuration is used for the processor that is studied in this

chapter.

Figure 5.3 shows the mean IPC for integer and floating point capacity

as a function of cache capacity for a unified data level-1 (DL1) cache. The

detailed IPC values for the individual benchmarks can be found in Tables D.3

and D.4. The DL1 is 2 way set associative with 2 read/write ports. The ports

74

are shared across all 4 clusters. Based on the experiments on the issue width,

these results are for a sixteen wide issue processor. Performance improves

initially because the increased capacity leads to an improvement in the hit rate

that offsets the increase in DL1 latency. However at capacities over 128KB,

the improvement in hit rate cannot offset the increased latency and that leads

to a decrease in the average IPC. This represents the baseline relative to which

all performance is measured.

Figure 5.4 shows the average IPC as a function of L2 cache capacity

corresponding to the individual benchmark IPC values listed in Tables D.5

and D.6. For the floating point benchmarks, performance steadily improves as

a function of the cache capacity, because of a constantly improving hit rate.

For the integer benchmarks, performance improves while the improvement in

hit rate offsets the increase in L2 cache latency. However at capacities larger

than 2MB, the performance decreases because the increased hit rate cannot

offset the increase in latency. Based on these results, the 2MB 4-way set

associative cache provides the best overall performance and is used as the L2

cache configuration for the experiments in this chapter as well as Chapter 6.

Perfect branch prediction is used to maximize the number of load and

store instructions executed every cycle and to stress the memory sub-system.

Table 5.2 shows the baseline machine configuration on a per cluster basis.

First we study the impact of bank capacity on the performance of the

design. Next, we consider the impact of the topology on the performance

of the processor. Finally we examine address mapping, and show that while

75

256 512 1024 2048 4096
Cache Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

Direct Mapped
2-way
4-way

(a)

256 512 1024 2048 4096
Cache Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C

Direct Mapped
2-way
4-way

(b)

Figure 5.4: Average IPC for varying L2 configurations for (a) integer and (b)
floating point benchmarks.

76

Instruction Fetch and Map
Perfect or hybrid branch prediction
Fetch, decode and map 16 instructions per cycle

Execution Resources per Cluster
128 entry integer and floating-point register file
4 integer and 4 floating point units

Caches
Varying data cache configurations
1 cycle, 64KB direct mapped instruction cache
2MB 4-way, 2 port unified L2, 43 cycle latency
deeply pipelined to allow one new access per cycle

Table 5.2: Processor Configuration

static mapping can yield performance comparable to a unified cache, using a

dynamic mapping scheme can supply significant performance improvement.

5.4 Statically Interleaved Caches

In a statically interleaved (mapped) cache, each address maps to a

fixed location in a pre-determined bank, depending on the interleaving func-

tion. Cache-line interleaving in which an entire cache line is mapped to the

same bank is convenient since a refill only requires communication between

the level-2 cache and the level-1 cache bank that caused the miss. While this

configuration does not allow multiple simultaneous accesses to the same cache

line, it can improve bank locality. A particular instance of a load instruction

in a tight loop would fetch multiple words from the same bank before pro-

ceeding to the next bank. Word-level interleaving could reduce contention in

77

some circumstances, but would incur additional overhead because an eviction

would require each banks to evict its part of the cache line. We found that the

performance difference between word and cache-line interleaving was negligible

and thus advocate cache-line interleaving for its simpler implementation.

5.5 Topology Variation

Since communication between two clusters, as well as between a cluster

and a cache bank, is important, the physical layout of the clusters relative to

each other as well as relative to the primary cache has an impact on overall

performance. The traditional way to design partitioned processors has been

to use a monolithic cache that is shared by all the clusters in the processor

as shown in Figure 5.5a. This floorplan provides a constant but larger access

latency to the cache from all the clusters. However, for banked caches in which

each cluster has local access to one bank of the primary cache there are several

possible floor plans. Figure 5.5b shows a “cluster centric” arrangement min-

imizing inter-cluster communication, and the latency of transfer instructions.

The trade-off is increased memory latency as the cache banks are further from

some functional units than from others. A “cache centric” organization, as

shown in Figure 5.5c, minimizes the memory latency at the cost of increasing

inter-cluster latency. The cache-centric topology works better for benchmarks

that have a lot a remote memory instructions relative to the amount of inter-

cluster communication. On the other hand, the cluster-centric topology works

better for benchmarks that have more inter-cluster communication relative to

78

Front
End

Cluster 0

Cluster 1

Cluster 2

Cluster 3

D
L1

 C
ac

he

(a) Unified Cache

Front
End

Bank 2 Bank 3

Bank 0 Bank 1

Cluster 0

Cluster 2

Cluster 1

Cluster 3

Front
End Bank 2 Bank 1

B
an

k
3

B
an

k
0

Cluster 0

Cluster 2 Cluster 3

Cluster 1

(b) Cluster centric (c) Cache centric

Figure 5.5: Different physical topologies

79

Topology Source Destination Cluster
Cluster 0 1 2 3

Unified cache 0 0 3 3 4
1 3 0 4 3
2 3 4 0 3
3 4 3 3 0

Cluster centric 0 0 1 1 3
1 1 0 3 1
2 1 3 0 1
3 3 1 1 0

Cache centric 0 0 3 3 4
1 3 0 4 3
2 3 4 0 3
3 4 3 3 0

Table 5.3: Inter-cluster latencies in cycles for various topologies.

the number of remote memory operations.

We use an area model [22] and a wire delay model [2] to determine inter-

cluster and cluster-cache latencies for different floor plans. The area model

provides an estimated cluster area of 1011λ2 (14mm2 in a 50nm technology).

The inter-cluster delay ranges from zero to four cycles, assuming an 8 fanout-of-

four (FO4) clock (13GHz at 50nm). Table 5.3 shows the inter-cluster latencies

for each of the topologies.

Figures 5.6 and 5.7 show the average IPC for the three topologies con-

sidered in this research when using a static address mapping scheme. The

“ideal unified” line represents an unrealistic 512KB 8-port 1 cycle unified DL1.

Since static mapping has cache hit characteristics similar to a monolithic cache

the performance for the two cases is similar. Since some loads and stores to

80

32 64 128 256
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(a)

32 64 128 256
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(b)

Figure 5.6: IPC values for integer benchmarks with statically mapped data
for (a) cluster centric and (b) cache centric topologies.

81

32 64 128 256
Bank Size (KB)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(a)

32 64 128 256
Bank Size (KB)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(b)

Figure 5.7: IPC values for floating point benchmarks with statically mapped
data for (a) cluster centric and (b) cache centric topologies.

82

remote banks can have a higher access latency for the partitioned design as

compared to the monolithic design, the static partitioning has a lower average

IPC. Integer benchmarks are more sensitive to cache capacity than the float-

ing point benchmarks. As the capacity of a cache bank increases, performance

initially improves as the hit rate gets better. However at cache capacities

greater than 128KB the improvement in hit rate is offset by the increase in

access latency. Finally, little differentiates the performance of the cluster cen-

tric topology from the performance of the cache centric topology. The cluster

centric topology performs a little better because of lower transfer instruction

latencies. However, as can be seen from Figure 5.6 there is a significant gap

between the clustered caches and the ideal unified for the integer benchmarks.

The reason for this gap is that with static mapping 75% of all memory in-

structions have to access a remote cache bank. Since both cluster-centric and

cache-centric topologies have similar remote access latencies, the performance

for both topologies is similar. The best way to reduce the number of remote

loads is to map the data to the cache bank closest to the memory operation

requesting the data as discussed in the next section.

5.6 Dynamically Mapped Caches

Dynamically mapped caches allow data to be placed in locations that

vary during program execution. While the physical layout is the same as a

static design, the placement of the data when it is first loaded, the location

to look in when executing a load, whether to migrate data from one bank to

83

another, and how to maintain coherence across the banks are important design

decisions.

5.6.1 Cache Parameters

Placement: When loading data into a primary cache that employs dynamic

mapping, the bank into which the data is loaded is determined by the data

placement strategy. The data may be loaded into the bank of the cluster

that requested the value, or it can be loaded into a statically determined

location. The latter has the advantage that data is always loaded into a well

defined location making predicting the cluster to steer instructions to easier.

However, if the consumer of the data is placed in a different cluster from the

load, additional time to transfer the data across the clusters may be required.

Loading the data into the cluster that requested it has the advantage of placing

data close to where it is initially needed, but makes steering instructions to

the cluster with the data more difficult.

Locating data: With static placement of the data, the bank to access on a

load is obvious. However, with dynamic placement of data, since the location

is not obvious, the local bank is accessed. In case of a miss in the local bank,

the L2 is accessed as opposed to looking in the other DL1 banks for the data.

Data migration and Replication: In addition to the initial data place-

ment policy, data can be migrated or replicated among the banks if needed

84

by more than one cluster. Migrating data means that the line is moved to

the bank making the request and is removed from the bank that previously

contained the data. Because the cache line can only be in one bank at a time,

coherence is simple if the caches are write through. Replication implies that a

cache line can be present in more than one DL1 cache bank at a time. With

replication, on every store to a cache bank, the other cache banks must either

invalidate their copies of the cache line that is being written or they must up-

date their copy with the data being written. This research assumes that the

cache lines must be invalidated and that all dependent memory instructions

must stall till the invalidation is complete.

Coherence: Policies that allow data to be replicated must keep the data

coherent across the cache banks. Because this is a primary data cache, the

protocol to maintain coherence must be faster and cause less overhead than the

protocols used to maintain L2 coherence. A long latency coherence protocol

would cause all dependent memory instructions to stall reducing the effec-

tiveness of dynamically mapping the data by increasing the average memory

access time to levels comparable to that of the statically mapped case.

These four design aspects for a dynamically mapped cache affect one

another. The coherence protocol depends strongly on the data migration and

replication policy. Similarly, deciding where to look for data for a load is

coupled to where data is placed when initially loaded. We consider all four

aspects when designing the cache banks for a dynamically mapped primary

85

data cache.

5.6.2 Design of the Dynamically Mapped Cache

For our experiments, the cache line is loaded into the cache bank cor-

responding to the cluster that executed the load or store instruction that first

accessed the data in order to exploit the spatial locality exhibited by groups

of dependent instructions. Also, when a load or store executes, it always ac-

cess the cache corresponding to the cluster on which it executes to reduce

the cache access latency, because accessing a remote bank would be a longer

latency operation. If the data is not found in the local cache bank, the L2

cache is accessed and so on, up the memory hierarchy. The only mechanism

by which a cache line can move from one bank to another is if it is accessed by

instructions executing on two different clusters. This architecture maintains

coherence by employing a snooping, write through, write allocate policy for

the primary data cache. All stores write through to the L2 cache and invali-

date the corresponding line in the other cache banks. The invalidation latency

is 10 cycles for the cluster-centric topology and 5 cycles for the cache-centric

topology. When an invalidation occurs, all dependent memory instructions are

held back for the appropriate number of cycles. An unmodified cache line can

be present in multiple cache banks, while a modified cache line can only be in

one cache bank. The number of write-through operations that can happen in

a single cycle is limited by the two L2 write ports.

To focus on the interaction between steering and data mapping poli-

86

cies, we assume a centralized Load Store Queue (LSQ) that is off the critical

path. A form of this could be implemented by speculating that no conflict

occurs between a load and prior stores, and rolling back if one was later dis-

covered during lookup in the LSQ. This approach is similar to processors such

as the Pentium 4 that speculatively deliver data back to the processor from

a virtually addressed cache and roll back only if a conflict is detected after

translation. Such an approach is only feasible for the LSQ if load/store con-

flicts are uncommon. However, efforts to reduce the overhead of recovery

would make this approach more efficient [16]. Another possible strategy par-

titions the load/store queue [52, 64], which is most amenable to a statically

mapped and partitioned cache. These schemes could potentially be extended

to dynamically mapped caches by performing two levels of disambiguation.

The first level would be performed at the cache bank and would handle the

common case of instructions accessing the same data. Conflicts detected at

the second level LSQ would require a rollback recovery mechanism. Memory

disambiguation is an active area of research [43, 52], and we expect that inno-

vations in that domain would benefit the clustered architectures described in

this research.

5.7 Performance of Dynamically Mapped Caches

Figures 5.8 and 5.9 show the mean Instructions per Cycle (IPC) of the

benchmarks for dynamic address mapping with migration (no replication) as

a function of the DL1 bank size. A higher IPC implies a cache capacity that is

87

better suited to the data mapping policy. With dynamic mapping, the cache

can store data closer to the cluster using it than with a monolithic centralized

cache. Also, because lines that would conflict in a monolithic cache can map

into different cache banks, the partitioned cache has a higher implicit associa-

tivity than the monolithic cache. The reason that the floating point IPC drops

as a function of cache capacity is that the miss rate stays essentially constant

with increasing capacity while the latency increases significantly. Figure 5.10

shows the mean miss rate for integer and floating point benchmarks as a func-

tion of DL1 bank size. Since the miss rate stay essentially constant for the

floating point benchmarks, the mean IPC drops as the latency of the DL1

cache banks increases from 3 cycles for the 32KB banks to 14 cycles for the

256KB banks. The optimal dynamically mapped cache with a capacity of

128KB per bank outperforms the corresponding statically mapped design by

12%.

Figures 5.11 and 5.12 show the mean IPC for the benchmarks for dy-

namic address mapping with replication. In this scenario, on a cache write,

the cache line must be invalidated in any cache bank that has this line. This

invalidation latency causes all dependent memory instructions to be held back

until the invalidation has been completed, leading to a reduction in the av-

erage IPC. Since the invalidation latency is significantly lower, the impact on

performance is less for cache centric topology as can be seen from Figure 5.11b.

Furthermore, dependence based steering of the instructions outperforms round

robin steering because of lower inter cluster communication in the case of the

88

32 64 128 256
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(a)

32 64 128 256
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(b)

Figure 5.8: IPC values for integer benchmarks with dynamically mapped data
without replication for (a) cluster centric and (b) cache centric topologies.

89

32 64 128 256
Bank Size (KB)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(a)

32 64 128 256
Bank Size (KB)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(b)

Figure 5.9: IPC values for floating point benchmarks with dynamically mapped
data without replication for (a) cluster centric and (b) cache centric topologies.

90

32 64 128 256
Bank Size (KB)

0

5

10

15

20

25

30

35

M
ea

n
M

is
s

R
at

e
(%

)

Integer
Floating point

Figure 5.10: Mean miss rate as a function of DL1 bank size for the cluster
centric topology.

former relative to the later. This difference is independent of the replication

policy. Lastly, just like with the static data mapping as the cache capacity

increases, performance initially improves as the improvement is cache hit rate

outstrips the impact of the increased latency. However at larger capacities,

the higher latency hurts performance more that the benefit gained from the

improved hit rate. Similar to the case without replication, the mean IPC of the

floating point benchmarks drops with an increase in cache capacity because

the mean miss rate stays essentially constant.

5.8 Discussion

In this chapter, we examined different clustering topologies for assigning

cache lines to cache banks. Our results show that with a 4-cluster, 16-wide

processor and a projected 50nm technology, topology has little affect on overall

91

32 64 128 256
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(a)

32 64 128 256
Bank Size (KB)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(b)

Figure 5.11: IPC values for integer benchmarks with dynamically mapped
data with replication for (a) cluster centric and (b) cache centric topologies.

92

32 64 128 256
Bank Size (KB)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(a)

32 64 128 256
Bank Size (KB)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

M
ea

n
IP

C

Ideal Unified
Unified
Dependence
Round-robin

(b)

Figure 5.12: IPC values for floating point benchmarks with dynamically
mapped data with replication for (a) cluster centric and (b) cache centric
topologies.

93

performance, as long as both the processor and cache are clustered. Because

of this little variation in performance between cluster centric and memory

centric topologies, we only discuss the results from cluster centric topologies

in the next chapter. Also, dynamically mapping the data to the cache banks

leads to a 12% performance improvements relative to the statically mapped

case. Allowing a cache line to be present in more than one bank tends to

hurt performance because in the case of an invalidation, dependent load and

store instructions must be restrained till the invalidation completes. Lastly,

dependence based steering outperforms round robin steering by 12% because

the former minimizes expensive inter-cluster communication.

So far we have only examined the performance from the cache organi-

zation point of view. From the results in this chapter we have noticed that

the instruction steering policy does have a significant impact on performance.

However, the ideal unified cache outperforms the best clustered design pre-

sented in this chapter by 16%. The next chapter examines how a more aggres-

sive steering algorithm that maps the memory instruction to the appropriate

cluster coupled with dynamic data mapping can close the gap between the per-

formance of a dynamically mapped clustered cache with dependence steering

and the ideal unified cache.

94

Chapter 6

Steering Policies for Clustered Cache

Architectures

The results from the previous chapter show that there is a 16% gap

between the performance of the clustered cache with dependence steering and

the ideal unified cache. In addition to data placement policies discussed in

the previous chapter, the steering algorithm used in the map stage to assign

instructions to the clusters also affects how many load instructions find their

data in the nearest cache bank. The objectives of a good steering algorithm are

to minimize inter cluster communication, balance the execution load across all

the clusters, and reduce the number of non-local loads executed on any given

cluster.

The basic steering algorithms for mapping instructions on to the clus-

ters that have been typically used are:

• Round robin: Steers groups of three instructions to each cluster in a

round robin manner [6]. The round robin method has the advantage of

balancing the load between the various clusters, but has the problem

of frequently mapping dependent instructions to different clusters, thus

increasing inter-cluster communication.

95

1 LD R2, R1

2 LD R4, R3

3 ADD R5, R1, R4

4 MUL R6, R2, R4

5 SHFTR R6, 5

6 LD R9, R8

7 SUB R7, R5, R4

8 LD R2, R7

9 SHFTL R9, 2

10 ADD R8, R8, 4

11 ST R9, R8

12 ADD R9, R4, R1

Figure 6.1: Code fragment to show how different steering algorithms work.

Steering Cluster 0 Cluster 1 Cluster 2 Cluster 3
Round LD R2, R1 MUL R6, R2, R4 SUB R7, R5, R4 ADD R8, R8, 4

Robin LD R4, R3 SHFTR R6, 5 LD R2, R7 ST R9, R8

ADD R5, R1, R4 LD R9, R8 SHFTL R9, 2 ADD R9, R4, R1

LD R4, R3 LD R2, R1 LD R9, R8 –
ADD R9, R4, R1 ADD R5, R1, R4 SHFTL R9, 2 –

Dependence – MUL R6, R2, R4 ADD R8, R8, 4 –
– SHFTR R6, 5 ST R9, R8 –
– SUB R7, R5, R4 – –
– LD R2, R7 – –

Figure 6.2: Example of instruction mapping for dependence and round robin
steering.

• Dependence: Dependence steering reduces inter-cluster communication

by assigning dependent instructions to the same cluster [42]. This leads

to fewer transfer instructions, but more instructions are mapped to a

single cluster.

For the sequence of instructions in Figure 6.1, the round robin algo-

rithm would map instructions 1-3 to Cluster 0, instruction 4-6 to Cluster 1,

96

instructions 7-9 to Cluster 2 and instructions 10-12 to Cluster 3 as shown in

Figure 6.2. For the same sequence of instructions, dependence based steering

would map instructions 1,3,4,5,7 and 8 to the Cluster producing R1, instruc-

tions 2 and 12 to the Cluster producing R3 and instructions 6,9,10 and 11 to

the Cluster producing R8 as shown in Figure 6.2. Dependence based steering

requires only 1 transfer instruction, while round robin steering requires a total

of 6 transfer instructions. Assuming that all operations require 1 cycle, the

dependence based steering would execute in 5 cycles while the round robin

steering example would take 7 cycles to execute.

Neither the dependence nor the round robin steering policy try to match

the memory instructions with the cache bank that has the data needed by the

instruction. An aggressive steering algorithm that matches memory instruc-

tions with the cache bank containing the data can significantly improve the

performance of a dynamically mapped clustered cache.

6.1 Bank Predictive Steering

With dependence and round-robin steering a large number of memory

instructions access addresses that are located in a remote cache bank. Access-

ing data not in the local cache bank is either a long latency operation (static

address mapping) or achieved through accessing the L2 cache (dynamic ad-

dress mapping). One possible approach to reduce the memory access latency

is to map memory instructions to clusters that contain the data required by

the instructions. We propose a steering algorithm that steers load and store

97

4096 entry

Cluster

Table

Prediction

4096 entry

Confidence

Table

Prediction

PC
Map

Dependence

Execute

Cache

Figure 6.3: Microarchitecture structures used for Memory Predicted steering

instructions by predicting the cluster that contains the data required by the

load or store. All other instructions are mapped using a dependence based

steering policy.

Figure 6.3 shows a diagram of the predictor designed to steer load and

store instructions in the proposed bank prediction steering policy. For loads

and stores, the program counter indexes a 4096 entry prediction table that

produces cache bank predictions. The PC also indexes a 4096 entry table

consisting of 2-bit saturating confidence predictors. A confidence predictor

value of 0 or 1, indicates low confidence in the prediction and the instruction is

steered based on its dependence. A confidence value of 2 or 3 is high confidence,

indicating that the bank predictor result should be used.

When the memory instruction executes and encounters a cache miss,

the confidence predictor is decremented. If the load or store was steered using

dependence based steering and it hits in the cache, the predictor updates the

98

Cluster 0 Cluster 1 Cluster 2 Cluster 3
– LD R9, R8 LD R4, R3 LD R2, R1

LD R2, R7 SHFTL R9, 2 ADD R5, R1, R4 MUL R6, R2, R4

ST R9, R8 ADD R8, R8, 4 SUB R7, R5, R4 SHFTR R6, 5

– – ADD R9, R4, R1 –

Figure 6.4: Example of instruction mapping for bank predictive steering.

bank prediction table to point to the cache bank in which the instruction hit

and sets the confidence level for the prediction to 2 (medium-high confidence).

If the load or store had been was steered using the bank prediction and it

hits in the primary data cache, the predictor increments the corresponding

confidence predictor.

As an example, for the code fragment in Figure 6.1, when instruction

1 is mapped, the prediction table is examined and if the confidence is high,

instruction 1 is mapped to the predicted cluster, else it is mapped to the cluster

that produces R1. Similarly, instructions 2,6,8 and 11 are either mapped to

the cluster predicted to have the cache line required by the memory operation

or the cluster that produces R3, R8, R7 or R9 respectively. The remaining

instructions are mapped to the cluster that has the producer instruction of the

operand required by the instruction. Figure 6.4 shows an example mapping

for the case where registers R1, R3, R7 and R8 are produced by clusters 2,

2, 3 and 1 respectively and instructions 1, 2, 6, 8 and 11 are predicted to

be mapped to clusters 3, 2, 1, 0 and 0 with high, high, low, high and high

confidence respectively. The predictive steering example requires 3 transfer

instructions and takes 6 cycles to execute assuming that every operation takes

1 cycle.

99

Legend Description
Dependence Dependence based steering
Predictive Bank prediction for memory instructions
Hybrid Hybrid of the dependence and predictive memory steering
Oracle Memory steering with oracle load/store mapping

Table 6.1: Legend of steering algorithms used in the graphs.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
LD R9, R8 LD R2, R7 LD R4, R3 LD R2, R1

SHFTL R9, 2 ADD R8, R8, 4 ADD R5, R1, R4 MUL R6, R2, R4

ST R9, R8 – SUB R7, R5, R4 SHFTR R6, 5

– – ADD R9, R4, R1 –

Figure 6.5: Example of instruction mapping for oracle steering.

6.2 Experimental Parameters

Table 6.1 summarizes the steering algorithms used in this chapter.

Based on the results of the previous chapter, the physical design of the cache

consists of 128KB 2-way set associative cache banks with non-replicated map-

ping of data. The rest of the processor configuration and simulation environ-

ment is the same as described in Section 5.2.

To maximize the chance of finding the data in the local cache bank,

the oracle steering algorithm maps memory instructions to the cluster that is

known to contain the data. This represents an upper bound on how much per-

formance can be gained by steering load/store instructions to the appropriate

cluster. All other instructions are mapped on a dependence basis.

For the code fragment in Figure 6.1, the oracle load/store steering algo-

rithm would map instructions 1,2,6,8 and 11 to the cluster whose local cache

100

gzip vpr gcc mcf crafty parser eon perlbmk gap bzip2 mean
0

2

4

6

IP
C

Unified
Dependence
Predictive
Oracle

Benchmarks

Figure 6.6: IPC values of integer benchmarks for statically mapped data and
cluster centric topology.

has the cache line required by the memory operation. Of the remaining instruc-

tions, 3, 7 and 12 are mapped to the same cluster as instruction 2, instructions

4 and 5 are mapped to the same cluster as instruction 1, instruction 9 to the

same cluster as instruction 6 and instruction 10 to the cluster that produces

R8. Figure 6.5 shows an example mapping for the case where registers R1,

R3, R7 and R8 are produced by clusters 2, 2, 3 and 1 respectively and instruc-

tions 1, 2, 6, 8 and 11 are known to be mapped to clusters 3, 2, 0, 1 and 0

respectively. The oracle steering example requires 3 transfer instructions and

takes 6 cycles to execute assuming that every operation takes 1 cycle.

6.3 Performance of Bank Predictive Steering

Figures 6.6 and 6.7 shows IPC results for the experiments using stat-

ically mapped caches for a variety of steering algorithms. The dependence

based steering outperforms the unified cache because of fewer overall misses

101

wupwise swim mgrid applu mesa galgel art equake ammp lucas fma3d mean
0

1

2

3

4

IP
C

Unified
Dependence
Predictive
Oracle

Benchmarks

Figure 6.7: IPC values of floating point benchmarks for statically mapped data
and cluster centric topology.

and higher available bandwidth to the primary data cache. The bank pre-

diction steering algorithm that predicts which cluster has the data required

by the load or store does better than dependence based steering because it

is able to reduce the number of remote accesses from 75% to 38% for integer

benchmarks. For floating point benchmarks, the number of remote accesses

improves from 75% to 52%. Also, the bank predictive steering does a better job

of load balancing the instructions across the clusters. For integer benchmarks,

the load balance as measured by the variance in the number of instructions

executed on a cluster improves from 13 million for dependence steering to a

more balanced value of 4 million instructions. Similarly, for floating point

benchmarks, the balance improves from 12 million instructions to 3 million

instructions. The combination of the reduction in the number of remote loads

and better load balance leads to a 19% improvement in mean IPC for integer

benchmarks and an 8% improvement for floating point benchmarks.

102

Confidence
Counter

Global

4096 entry

Confidence

Table

Prediction

4096 entry

Cluster

Table

Prediction
PC

Map

Dependence

Execute

Cache

Figure 6.8: Microarchitecture structures used in Hybrid steering

6.4 Hybrid Steering

Some benchmarks like gzip, do better with dependence based steering

rather than with the bank prediction steering because the predictive steering

does not significantly improve the miss rate. For gzip, predictive steering only

improves the DL1 miss rate from 4.8% to 2%. On the other hand, for gcc

predictive steering improves DL1 miss rate from to 13% from the 21% DL1

miss rate for dependence steering, helping improve performance by 29%. The

hybrid scheme tries to dynamically pick the better of prediction or dependence

steering at every point in time. To achieve this, a global confidence counter is

used to determine if the map stage should instantaneously use prediction or

dependence based steering for a load or store instruction.

Figure 6.8 shows the proposed microarchitecture structures employed

by hybrid steering for the mapping load and store instructions to the clusters.

The difference from the bank prediction scheme is that there is the global

103

gzip vpr gcc mcf crafty parser eon perlbmk gap bzip2 mean
0

2

4

6

IP
C

Unified
Dependence
Predictive
Hybrid
Oracle

Benchmarks

Figure 6.9: IPC of integer benchmarks for hybrid steering algorithm.

wupwise swim mgrid applu mesa galgel art equake ammp lucas fma3d mean
0

1

2

3

4

IP
C

Unified
Dependence
Predictive
Hybrid
Oracle

Benchmarks

Figure 6.10: IPC of floating point benchmarks for hybrid steering algorithm.

confidence counter that maintains a count of the number of primary cache

misses over the past 100,000 cycles. The count is updated every 100 cycles. If

the value of the counter is greater than 1000, it indicates low confidence in the

ability to correctly predict the cluster to which load/store instructions should

be steered. In the case where the counter is over 1000, dependence steering is

used to steer load and store instructions. The values picked represent the best

average performance using hybrid steering.

104

gzip vpr gcc mcf crafty parser eon perlbmk gap bzip2 mean
1

10

100

T
ra

ns
fe

r
In

st
ru

ct
io

ns
 (

M
il.

)

Dependence
Predictive
Hybrid
Oracle

Total non-transfer
instructions

Benchmarks

Figure 6.11: Total transfer instructions for integer benchmarks with dynami-
cally mapped data.

Figures 6.9 and 6.10 compare the IPC for the hybrid steering to the

IPC of the dependence and bank prediction steering. The hybrid algorithm is

able to perform comparably to the better of the two for all of the benchmarks.

Hybrid steering has better average IPC that either of the other two steering

policies because it encapsulates the best features of dependence and bank

prediction steering. Lastly, some of the integer benchmarks such as mcf which

have a relative high cache miss rate (66%), show poor performance irrespective

of the cache configuration. Benchmark like mcf benefit more from a larger

slower cache that encapsulates a larger fraction of the working set.

The effectiveness of the hybrid steering algorithm is evaluated using

the number of transfer instructions, the fraction of data in alternate cache

banks and the inter-cluster balance. An increase in transfer instructions has

the potential to reduce overall performance. In some cases, the increase in

transfer instructions leads to a degradation in performance as is evident in

105

wupwise swim mgrid applu mesa galgel art equake ammp lucas fma3d mean
1

10

100

T
ra

ns
fe

r
In

st
ru

ct
io

ns
 (

M
il.

)

Dependence
Predictive
Hybrid
Oracle

Total non-transfer
instructions

Benchmarks

Figure 6.12: Total transfer instructions for floating point benchmarks with
dynamically mapped data.

the case of parser, where predictive steering performs better than the hybrid

prediction algorithms. On average, the hybrid prediction scheme does not

significantly increase the number of transfer instructions as can be seen in

Figures 6.11 and 6.12.

Figures 6.13 (a) and 6.14 (a) show the fraction of misses that would have

hit in one of the other cache banks. The smaller the bar, the more effective

the algorithm is in steering the load and store instructions to the cache bank

that contains the data required by the instruction. The oracle steering does

the best for most of the benchmarks because instructions are steered based

on knowledge of what is in the cache. The reason for the oracle algorithm

missing occasionally is that data can be evicted from the cache between the

time an instruction is mapped to a cluster and the instruction accesses the local

cache of the cluster. The bank predictive and hybrid steering algorithms do

substantially better than the dependence algorithm because they intentionally

106

gzip vpr gcc mcf crafty parser eon perlbmk gap bzip2 mean
0

1

2

3

4

5

D
at

a
in

 A
lt

er
na

te
 L

oc
al

 B
an

k
(%

)

Dependence
Predictive
Hybrid
Oracle

Benchmarks

(a)

gzip vpr gcc mcf crafty parser eon perlbmk gap bzip2 mean
1

10

100

In
te

r-
C

lu
st

er
 B

al
an

ce
 (

M
il.

 I
ns

t.
)

Dependence
Predictive
Hybrid
Oracle

Benchmarks

(b)

Figure 6.13: For integer benchmarks with dynamically mapped data (a) misses
that could hit in other clusters (b) instruction balance across the clusters.

107

wupwise swim mgrid applu mesa galgel art equake ammp lucas fma3d mean
0

5

10

15

20

25

D
at

a
in

 A
lt

er
na

te
 L

oc
al

 B
an

k
(%

)

Dependence
Predictive
Hybrid
Oracle

Benchmarks

(a)

wupwise swim mgrid applu mesa galgel art equake ammp lucas fma3d mean
1

10

100

In
te

r-
C

lu
st

er
 B

al
an

ce
 (

M
il.

 I
ns

t.
)

Dependence
Predictive
Hybrid
Oracle

Benchmarks

(b)

Figure 6.14: For floating point benchmarks with dynamically mapped data
(a) misses that could hit in other clusters (b) instruction balance across the
clusters.

108

steer instructions to the cluster where the data exists.

Figures 6.13 (b) and 6.14 (b) show the relative balance of the instruc-

tions across the clusters for the entire program execution. The balance is

measured as the variance in the number on instructions mapped on each clus-

ter. The lower the bar, the more balanced the instruction distribution across

the clusters of the processor. The dependence based algorithm has a very high

imbalance between the cluster executing the maximum number of instructions

and the cluster executing the least number of instructions. The predictive,

hybrid and oracle steering algorithms are able to achieve good balance for

the benchmarks in consideration, but this leads to an increase in transfer in-

structions (as can be seen in Figures 6.11 and 6.12). The increase in transfer

instructions does impact performance but with the predictive schemes, this

impact on performance is more than offset by the improved matching of loads

and stores to the caches banks containing the data required by the instructions.

6.5 Discussion

The results from this chapter show that a hybrid predictive steering al-

gorithm can improve the performance of integer benchmarks by an average of

22% for dynamically mapped data relative to dependence based steering. Sim-

ilarly, floating point benchmarks using hybrid improve by an average of 16%

relative to dependence steering. The improvement in performance is achieved

by a combination of reducing the number of misses that could hit in a remote

cache bank and the instruction balance across the clusters. The hybrid steering

109

improve the mean percentage of data in alternate banks from 2.6% to 2.3% for

the integer benchmarks and 7.5% to 4.7% for the floating point benchmarks.

benchmarks. Simultaneously, the instruction balance improves from 13 million

instructions to 6 million instructions for the integer benchmarks and from 10

million instructions to 6 million instructions for the floating point benchmarks.

Hybrid steering improves performance 37% relative to the unified cache

for integer benchmarks and 39% for floating point benchmarks. This improve-

ment in performance comes close to the performance of the oracle steering

algorithm. Since the hybrid steering with dynamic data mapping is able to

achieve performance comparable to the ideal unified cache with dependence

based steering, it proves that the combination of the right steering policy cou-

pled with dynamic data mapping can lead to a significant boost in performance

for clustered microarchitectures.

110

Chapter 7

Conclusions

This research examined the effects of technology scaling on wire delays

and clock speeds, and measured the expected performance of a modern ag-

gressive microprocessor core in CMOS technologies down to 35nm. We found

that communication delays will become significant for global signals. Even

under the best conditions, the latency across the chip in a top-level metal

wire will be 12–32 cycles, depending on clock rate. In advanced technologies,

the delay (in cycles) of memory oriented structures increases substantially due

to increased wire latencies and aggressive clock rates. Consequently, even a

processor core of today’s size does not scale well to future technologies. Fig-

ure 7.1 compares our best measured performance over the next 14 years with

projected scaling at recent historical rates (55% per year). While projected

rates for 2014 show performance exceeding one trillion instructions per second,

our best-performing microarchitecture languishes at 6.5 BIPS. To reach a fac-

tor of thousand in performance improvement at an aggressive clock of 8 FO4

(10GHz in 35nm), a chip must sustain an execution rate of 150 instructions

per cycle.

While our results predict that existing microarchitectures do not scale

111

with technology, we have in fact been quite generous to potential micropro-

cessor scaling. The wire performance models conservatively assume very low-

permittivity dielectrics, resistivity of pure copper, high aspect ratio wires,

and optimally placed repeaters. The models for structure access time further

assume a hierarchical decomposition of the array into sub-banks, word-line

routing in mid-level metal wires, and cell areas that do not depend on word-

line wire width. In the simulation experiments of sample microarchitectures,

the assumption was made that all structures could be perfectly pipelined, that

routing delay between structures is insignificant, and that latch and clock skew

overheads are negligible.

With these assumptions, the best performance we were able to obtain

was a speedup of 7.4 from a 250nm chip to 35nm chip, which corresponds

to an annual gain of 12.5%. Over the same period, the clock improves by

either 12%, 17%, or 19% annually, depending on whether a clock period at

35nm is 16, 8, or 5.9 FO4 delays, respectively. That result means that the

performance of a conventional, out-of-order microprocessor is likely to scale

worse than the clock rate, even when given an effectively unlimited transistor

budget. If any of the optimistic scaling assumptions of our models are not

met, actual microprocessor scaling will be poorer than we report.

The models show that dense storage structures will become consider-

ably slower relative to projected clock rates, and will adversely affect instruc-

tion throughput. While structure access time remains effectively constant with

the clock rate up to 70nm technologies, at 50nm and below, wire delays be-

112

1997 1999 2002 2005 2008 2011 2014
1

10

100

1000

R
el

at
iv

e
P

er
fo

rm
an

ce

Historical rates
Best experimental performance

250nm 180nm 130nm 100nm 70nm 50nm 35nm

55%

12%

1720

7.4

Figure 7.1: Projected performance scaling over a 17-year span for a conven-
tional microarchitecture.

come significant. If clocks are scaled super-linearly relative to decreases in

gate length, access times for these structures increases correspondingly. For

example, when designing a level-one data cache in a 35nm technology, an en-

gineer will be faced with several unattractive choices. First, the engineer may

choose an aggressive target clock rate, and attempt to design a low access

penalty cache. At the aggressive ITRS projection of 13.5 GHz (which is likely

unrealistic), even a single-ported 512 byte cache will require three cycles to

access. Second, the designer may opt for a larger cache with a longer access

time. Given our conservative assumptions about cache designs, a 64KB L1

data cache would require at least seven cycles to access at the ITRS projected

clock rate. Finally, the designer may choose a slower clock but a less con-

strained cache. At 5 GHz (16 FO4 delays), a 32KB cache can be accessed in

two cycles.

None of these choices are ideal. The first two alternatives reduce IPC

113

substantially, while the third incurs a 2.7-fold penalty in clock rate. Opti-

mizing for any one of clock rate, pipeline depth, or structure size will force

significant compromises in the other design points for future ultra-small gate-

length technologies. While other work has proposed to vary the clock rate and

effective structure capacity dynamically [3], those trade-offs are still within the

context of a conventional microarchitecture, which is not scalable no matter

which balance between clock rate and instruction throughput is chosen.

The results of this study paint a bleak picture for conventional microar-

chitectures. Clock scaling will soon slow precipitously to linear scaling, which

will force architects to use the large transistor budgets to compensate. While

it is likely that research innovations will allow conventional microarchitectures

to scale better than our results show, we believe that the twin challenges—of

recent diminishing returns in ILP and poor scaling of monolithic cores with

technology—will force designers to consider more radical alternatives.

One key challenge is to design cores within each partition that can

sustain high ILP at fast clock rates. While a monolithic cache forces the

design to trade off bandwidth for latency, a partitioned design allows for high

bandwidth and higher capacity with low access latency.

This research examined different clustered cache topologies, static and

dynamic algorithms for assigning cache lines to cache banks, and several in-

struction steering algorithms designed to place load and store instructions near

the cache banks holding their data. The results show that with 4-cluster, 16-

wide processor and a projected 50nm technology, topology has little affect on

114

INT FP
0.0

0.5

1.0

1.5

2.0

2.5

IP
C

Unified
Dependence
Hybrid

Figure 7.2: Mean IPC for various steering algorithms for integer and floating
point benchmarks.

overall performance, as long as both the processor and cache are clustered. The

results also show that even with advanced steering policies, statically mapping

the cache lines to cache banks in an interleaved fashion produced little ben-

efit over a slower monolithic cache. We proposed a predictive steering policy

that predicts where where load/store instruction should be mapped and found

that in some circumstances it produced better results over a more traditional

dependence-based steering algorithm. As a result, we proposed and evaluated

a hybrid policy that chooses between the predictive and dependence-based

steering algorithms on the fly depending on the effectiveness of the predic-

tor. Figure 7.2 shows the mean IPC for integer (INT) and floating point (FP)

benchmarks for the unified cache, and the clustered cache with dependence

and hybrid steering. Using the hybrid steering algorithm improved perfor-

mance relative to the dependence-based algorithm by an average of 19% and

37% relative to the unified cache for the integer benchmarks. The correspond-

115

ing improvements in performance were 8% and 39% for the floating point

benchmarks.

As feature sizes get smaller and pipeline stages get shorter, the disparity

in access latency between the monolithic cache and a single bank will increase.

Simultaneously, the inter-cluster communication latency will increase. The

net result of both of these will be the need for even more complementary data

mapping scheme and instruction steering algorithms that minimize both re-

mote cache and register accesses. A further increase in communication latency

may motivate hierarchical clustering in which each group of clusters shared

a cache-centric design, but the global organization more closely resembles a

cluster-centric architecture.

116

Appendices

117

Appendix A

Structure Access Times

A.1 Cache Access Times

Cache access times for various cache configurations in ns are listed in

this appendix. The capacity, associativity, block size and number of ports is

varied along with the technology.

118

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 1.12 1.17 1.31 1.58 1.37 1.51 1.81 2.38
2 1.19 1.26 1.45 1.85 1.45 1.63 2.03 2.88

8 1 1.23 1.27 1.36 1.65 1.43 1.55 1.84 2.50
2 1.33 1.39 1.55 1.98 1.55 1.70 2.15 3.09

16 1 1.36 1.41 1.52 1.75 1.53 1.63 1.89 2.61
2 1.50 1.58 1.76 2.19 1.71 1.85 2.25 3.34

32 1 1.53 1.59 1.69 1.94 1.67 1.76 2.04 2.80
2 1.75 1.86 2.03 2.53 1.92 2.09 2.54 3.74

64 1 1.74 1.77 1.90 2.19 1.85 1.96 2.20 3.07
2 2.08 2.14 2.38 2.96 2.18 2.39 2.97 4.50

128 1 2.07 2.13 2.26 2.57 2.14 2.28 2.58 3.43
2 2.68 2.76 3.06 3.63 2.77 3.08 3.64 5.47

256 1 2.47 2.54 2.70 3.10 2.55 2.71 3.11 4.08
2 3.36 3.46 3.79 4.62 3.47 3.80 4.63 6.77

512 1 3.22 3.29 3.45 4.09 3.30 3.47 4.10 5.08
2 4.94 5.04 5.28 6.66 5.07 5.30 6.68 8.71

1024 1 4.51 4.60 4.80 5.53 4.62 4.81 5.55 6.93
2 7.18 7.33 7.63 9.25 7.35 7.65 9.27 12.29

2048 1 6.55 6.64 6.87 7.35 6.66 6.89 7.37 9.86
2 11.95 12.11 12.49 13.28 12.15 12.53 13.32 18.37

4096 1 10.11 10.24 10.53 11.15 10.26 10.56 11.17 14.49
2 18.71 18.96 19.47 20.52 19.00 19.51 20.56 27.68

8192 1 15.24 15.49 16.09 17.31 15.53 16.13 17.35 19.51
2 31.42 31.88 32.90 34.99 31.95 32.97 35.06 40.05

Table A.1: Cache access time in ns for various cache configurations in a 250nm
technology.

119

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 1.53 1.80 2.31 NA 1.87 2.34 NA NA
2 1.66 2.03 2.82 NA 2.12 2.87 NA NA

8 1 1.57 1.82 2.42 3.74 1.90 2.46 3.74 NA
2 1.73 2.14 3.03 5.79 2.24 3.08 5.79 NA

16 1 1.65 1.88 2.54 4.01 1.95 2.57 4.01 8.63
2 1.89 2.25 3.31 6.30 2.34 3.33 6.30 15.59

32 1 1.78 2.02 2.72 4.34 2.10 2.76 4.34 9.26
2 2.09 2.54 3.74 6.97 2.59 3.74 6.97 16.83

64 1 2.00 2.20 3.07 4.82 2.27 3.07 4.82 10.10
2 2.42 2.97 4.50 7.99 2.97 4.50 7.99 18.56

128 1 2.29 2.58 3.43 5.62 2.63 3.43 5.62 11.32
2 3.08 3.64 5.47 9.64 3.64 5.47 9.64 21.14

256 1 2.71 3.11 4.08 6.76 3.11 4.08 6.76 13.21
2 3.80 4.63 6.77 12.13 4.63 6.77 12.13 25.10

512 1 3.47 4.10 5.08 8.51 4.10 5.08 8.51 15.92
2 5.30 6.68 8.71 16.10 6.68 8.71 16.10 31.06

1024 1 4.81 5.55 6.93 10.80 5.55 6.93 10.80 20.06
2 7.65 9.27 12.29 20.82 9.27 12.29 20.82 40.42

2048 1 6.89 7.37 9.86 13.84 7.37 9.86 13.84 26.60
2 12.53 13.32 18.37 27.18 13.32 18.37 27.18 55.28

4096 1 10.56 11.17 14.49 19.54 11.17 14.49 19.54 33.90
2 19.51 20.56 27.68 39.19 20.56 27.68 39.19 71.61

8192 1 16.13 17.35 19.51 28.61 17.35 19.51 28.61 44.22
2 32.97 35.06 40.05 59.29 35.06 40.05 59.29 94.31

Table A.2: Cache access time in ns for various cache configurations in a 250nm
technology.

120

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.91 0.94 1.04 1.25 1.17 1.28 1.51 1.93
2 0.96 1.00 1.13 1.42 1.22 1.36 1.64 2.22

8 1 1.01 1.03 1.09 1.29 1.22 1.32 1.54 2.00
2 1.08 1.11 1.21 1.50 1.30 1.42 1.70 2.34

16 1 1.11 1.14 1.21 1.36 1.30 1.38 1.59 2.06
2 1.21 1.25 1.38 1.62 1.41 1.52 1.79 2.47

32 1 1.24 1.27 1.36 1.52 1.40 1.47 1.70 2.17
2 1.37 1.43 1.57 1.87 1.56 1.65 1.97 2.68

64 1 1.40 1.43 1.50 1.72 1.54 1.61 1.80 2.36
2 1.63 1.67 1.80 2.22 1.75 1.85 2.23 3.05

128 1 1.66 1.70 1.80 1.99 1.72 1.81 2.02 2.63
2 2.02 2.07 2.26 2.64 2.08 2.27 2.66 3.67

256 1 1.95 1.99 2.13 2.34 2.00 2.14 2.35 3.06
2 2.52 2.57 2.82 3.24 2.58 2.83 3.25 4.76

512 1 2.53 2.57 2.66 3.04 2.58 2.67 3.06 3.76
2 3.63 3.68 3.81 4.52 3.70 3.83 4.54 5.97

1024 1 3.39 3.44 3.55 4.06 3.45 3.56 4.07 4.91
2 5.00 5.07 5.23 6.25 5.09 5.25 6.27 8.01

2048 1 4.94 4.98 5.11 5.37 5.00 5.12 5.39 6.67
2 8.25 8.34 8.54 8.95 8.37 8.56 8.98 11.51

4096 1 7.18 7.24 7.39 7.72 7.25 7.41 7.74 9.52
2 12.16 12.29 12.55 13.10 12.32 12.58 13.12 16.86

8192 1 10.66 10.78 11.09 11.75 10.80 11.12 11.78 13.42
2 20.12 20.34 20.86 21.95 20.38 20.90 21.99 25.31

Table A.3: Cache access time in ns for various cache configurations in a 180nm
technology.

121

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 1.31 1.50 1.86 NA 1.59 1.92 NA NA
2 1.39 1.64 2.16 NA 1.74 2.23 NA NA

8 1 1.34 1.53 1.93 2.87 1.62 1.99 2.87 NA
2 1.45 1.69 2.27 4.22 1.80 2.34 4.22 NA

16 1 1.41 1.58 1.99 3.02 1.67 2.04 3.02 6.49
2 1.56 1.80 2.41 4.50 1.90 2.47 4.50 10.27

32 1 1.50 1.69 2.09 3.20 1.78 2.15 3.20 6.83
2 1.69 1.97 2.62 4.85 2.08 2.68 4.85 11.67

64 1 1.65 1.80 2.30 3.46 1.89 2.35 3.46 7.26
2 1.90 2.23 3.04 5.38 2.31 3.06 5.38 12.55

128 1 1.81 2.02 2.57 3.91 2.07 2.64 3.91 7.90
2 2.27 2.66 3.67 6.26 2.66 3.67 6.26 13.87

256 1 2.14 2.35 3.06 4.54 2.43 3.06 4.54 8.90
2 2.83 3.25 4.76 7.57 3.25 4.76 7.57 15.91

512 1 2.67 3.06 3.76 5.54 3.06 3.76 5.54 10.33
2 3.83 4.54 5.97 9.71 4.54 5.97 9.71 18.96

1024 1 3.56 4.07 4.91 7.45 4.07 4.91 7.45 12.51
2 5.25 6.27 8.01 13.69 6.27 8.01 13.69 23.73

2048 1 5.12 5.39 6.67 9.61 5.39 6.67 9.61 16.16
2 8.56 8.98 11.51 17.48 8.98 11.51 17.48 31.78

4096 1 7.41 7.74 9.52 12.94 7.74 9.52 12.94 22.50
2 12.58 13.12 16.86 24.01 13.12 16.86 24.01 46.03

8192 1 11.12 11.78 13.42 18.02 11.78 13.42 18.02 29.14
2 20.90 21.99 25.31 34.87 21.99 25.31 34.87 58.34

Table A.4: Cache access time in ns for various cache configurations in a 180nm
technology.

122

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.66 0.68 0.77 0.94 0.83 0.92 1.09 1.43
2 0.69 0.73 0.84 1.09 0.87 0.98 1.20 1.68

8 1 0.73 0.75 0.80 0.97 0.87 0.94 1.12 1.49
2 0.78 0.82 0.90 1.15 0.92 1.01 1.25 1.78

16 1 0.80 0.83 0.89 1.03 0.92 0.99 1.15 1.55
2 0.88 0.91 1.02 1.25 1.00 1.09 1.33 1.91

32 1 0.89 0.92 1.00 1.15 1.00 1.05 1.23 1.64
2 1.00 1.05 1.17 1.45 1.11 1.19 1.50 2.12

64 1 1.02 1.05 1.11 1.30 1.11 1.16 1.31 1.81
2 1.20 1.23 1.34 1.69 1.26 1.35 1.70 2.49

128 1 1.22 1.25 1.33 1.51 1.25 1.34 1.52 2.05
2 1.49 1.53 1.69 2.06 1.54 1.70 2.06 3.02

256 1 1.44 1.48 1.59 1.79 1.49 1.60 1.80 2.46
2 1.89 1.94 2.14 2.52 1.95 2.15 2.53 3.85

512 1 1.91 1.94 2.03 2.40 1.95 2.04 2.41 3.00
2 2.78 2.83 2.96 3.63 2.84 2.97 3.64 4.86

1024 1 2.55 2.60 2.70 3.19 2.61 2.71 3.20 3.91
2 3.82 3.89 4.05 5.01 3.90 4.06 5.02 6.48

2048 1 3.80 3.85 3.97 4.22 3.86 3.98 4.23 5.49
2 6.44 6.51 6.71 7.12 6.53 6.72 7.14 9.60

4096 1 5.53 5.59 5.75 6.07 5.61 5.76 6.08 7.82
2 9.45 9.57 9.83 10.38 9.58 9.84 10.39 13.97

8192 1 8.38 8.50 8.81 9.46 8.52 8.83 9.48 10.89
2 15.84 16.07 16.60 17.69 16.09 16.62 17.71 20.57

Table A.5: Cache access time in ns for various cache configurations in a 130nm
technology.

123

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.95 1.10 1.39 NA 1.16 1.44 NA NA
2 1.01 1.21 1.66 NA 1.29 1.70 NA NA

8 1 0.96 1.12 1.45 2.31 1.19 1.49 2.31 NA
2 1.04 1.26 1.78 3.48 1.34 1.80 3.48 NA

16 1 1.01 1.15 1.51 2.45 1.22 1.55 2.45 5.43
2 1.12 1.34 1.91 3.73 1.41 1.91 3.73 9.14

32 1 1.07 1.22 1.59 2.62 1.30 1.64 2.62 5.76
2 1.22 1.50 2.12 4.07 1.53 2.12 4.07 9.97

64 1 1.19 1.31 1.77 2.86 1.38 1.81 2.86 6.19
2 1.38 1.70 2.49 4.57 1.70 2.49 4.57 10.84

128 1 1.34 1.52 2.01 3.27 1.55 2.06 3.27 6.81
2 1.70 2.06 3.02 5.37 2.06 3.02 5.37 12.12

256 1 1.60 1.80 2.46 3.84 1.81 2.46 3.84 7.77
2 2.15 2.53 3.85 6.54 2.53 3.85 6.54 14.07

512 1 2.04 2.41 3.00 4.73 2.41 3.00 4.73 9.13
2 2.97 3.64 4.86 8.43 3.64 4.86 8.43 16.93

1024 1 2.71 3.20 3.91 6.37 3.20 3.91 6.37 11.18
2 4.06 5.02 6.48 11.59 5.02 6.48 11.59 21.34

2048 1 3.98 4.23 5.49 8.03 4.23 5.49 8.03 14.52
2 6.72 7.14 9.60 14.74 7.14 9.60 14.74 28.54

4096 1 5.76 6.08 7.82 10.78 6.08 7.82 10.78 20.04
2 9.84 10.39 13.97 20.10 10.39 13.97 20.10 39.46

8192 1 8.83 9.48 10.89 15.47 9.48 10.89 15.47 25.26
2 16.62 17.71 20.57 29.94 17.71 20.57 29.94 50.43

Table A.6: Cache access time in ns for various cache configurations in a 130nm
technology.

124

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.52 0.54 0.61 0.76 0.63 0.70 0.84 1.11
2 0.55 0.57 0.67 0.88 0.66 0.75 0.92 1.38

8 1 0.57 0.59 0.64 0.78 0.66 0.72 0.86 1.16
2 0.61 0.65 0.71 0.93 0.70 0.77 0.97 1.48

16 1 0.64 0.65 0.70 0.83 0.70 0.76 0.89 1.21
2 0.69 0.72 0.81 1.01 0.75 0.83 1.03 1.59

32 1 0.70 0.72 0.79 0.92 0.77 0.80 0.96 1.28
2 0.78 0.82 0.92 1.16 0.84 0.92 1.17 1.77

64 1 0.81 0.83 0.88 1.04 0.85 0.89 1.05 1.43
2 0.96 0.98 1.07 1.37 0.99 1.07 1.37 2.06

128 1 0.96 0.99 1.05 1.23 0.99 1.06 1.24 1.65
2 1.19 1.21 1.33 1.67 1.21 1.34 1.68 2.48

256 1 1.16 1.19 1.29 1.45 1.20 1.29 1.45 2.02
2 1.52 1.56 1.73 2.04 1.57 1.74 2.05 3.19

512 1 1.56 1.59 1.66 1.97 1.60 1.67 1.98 2.50
2 2.26 2.31 2.43 2.96 2.32 2.44 2.96 4.05

1024 1 2.08 2.12 2.21 2.62 2.13 2.21 2.63 3.24
2 3.10 3.17 3.30 4.10 3.17 3.31 4.11 5.34

2048 1 3.17 3.20 3.30 3.52 3.21 3.31 3.53 4.61
2 5.28 5.34 5.51 5.88 5.35 5.52 5.89 7.99

4096 1 4.59 4.64 4.78 5.06 4.65 4.78 5.06 6.56
2 7.71 7.81 8.04 8.53 7.81 8.05 8.54 11.55

8192 1 7.04 7.15 7.42 7.98 7.16 7.42 7.98 9.27
2 12.91 13.11 13.58 14.56 13.12 13.59 14.57 17.05

Table A.7: Cache access time in ns for various cache configurations in a 100nm
technology.

125

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.73 0.85 1.08 NA 0.91 1.13 NA NA
2 0.77 0.93 1.38 NA 1.00 1.38 NA NA

8 1 0.74 0.86 1.13 1.95 0.93 1.18 1.95 NA
2 0.79 0.97 1.48 2.98 1.04 1.48 2.98 NA

16 1 0.78 0.89 1.18 2.07 0.95 1.22 2.07 4.79
2 0.86 1.04 1.59 3.20 1.11 1.59 3.20 7.83

32 1 0.82 0.96 1.27 2.22 1.01 1.30 2.22 5.08
2 0.93 1.17 1.77 3.49 1.22 1.77 3.49 8.84

64 1 0.91 1.05 1.43 2.43 1.08 1.44 2.43 5.46
2 1.07 1.37 2.06 3.92 1.37 2.06 3.92 9.61

128 1 1.06 1.24 1.65 2.77 1.24 1.65 2.77 6.02
2 1.34 1.68 2.48 4.58 1.68 2.48 4.58 10.72

256 1 1.29 1.45 2.02 3.25 1.45 2.02 3.25 6.86
2 1.74 2.05 3.19 5.55 2.05 3.19 5.55 12.40

512 1 1.67 1.98 2.50 4.00 1.98 2.50 4.00 8.04
2 2.44 2.96 4.05 7.07 2.96 4.05 7.07 14.83

1024 1 2.21 2.63 3.24 5.35 2.63 3.24 5.35 9.81
2 3.31 4.11 5.34 9.73 4.11 5.34 9.73 18.48

2048 1 3.31 3.53 4.61 6.95 3.53 4.61 6.95 12.63
2 5.52 5.89 7.99 12.60 5.89 7.99 12.60 24.31

4096 1 4.78 5.06 6.56 9.23 5.06 6.56 9.23 17.33
2 8.05 8.54 11.55 16.87 8.54 11.55 16.87 34.10

8192 1 7.42 7.98 9.27 13.30 7.98 9.27 13.30 22.48
2 13.59 14.57 17.05 25.15 14.57 17.05 25.15 43.76

Table A.8: Cache access time in ns for various cache configurations in a 100nm
technology.

126

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.37 0.39 0.45 0.56 0.41 0.46 0.57 0.79
2 0.39 0.41 0.49 0.66 0.43 0.50 0.66 1.04

8 1 0.40 0.42 0.46 0.58 0.43 0.47 0.59 0.84
2 0.43 0.46 0.52 0.70 0.46 0.53 0.70 1.13

16 1 0.44 0.46 0.51 0.62 0.47 0.51 0.62 0.89
2 0.48 0.51 0.58 0.76 0.51 0.58 0.77 1.23

32 1 0.49 0.51 0.56 0.68 0.51 0.56 0.68 0.97
2 0.54 0.57 0.65 0.88 0.58 0.65 0.88 1.38

64 1 0.56 0.58 0.63 0.75 0.58 0.63 0.75 1.11
2 0.66 0.68 0.76 0.99 0.68 0.76 0.99 1.63

128 1 0.65 0.68 0.74 0.87 0.68 0.74 0.88 1.28
2 0.80 0.83 0.94 1.20 0.83 0.94 1.20 1.99

256 1 0.78 0.81 0.89 1.04 0.81 0.89 1.04 1.47
2 1.03 1.07 1.20 1.49 1.07 1.21 1.49 2.34

512 1 1.05 1.08 1.15 1.41 1.08 1.15 1.41 1.86
2 1.50 1.55 1.68 2.12 1.56 1.69 2.12 3.06

1024 1 1.38 1.42 1.50 1.83 1.42 1.50 1.84 2.38
2 2.06 2.12 2.26 2.92 2.13 2.26 2.93 4.00

2048 1 2.10 2.14 2.24 2.45 2.14 2.24 2.45 3.50
2 3.48 3.57 3.74 4.14 3.57 3.75 4.14 6.05

4096 1 2.99 3.04 3.17 3.45 3.05 3.18 3.45 4.89
2 5.08 5.19 5.42 5.90 5.19 5.42 5.90 8.78

8192 1 4.57 4.68 4.95 5.49 4.69 4.95 5.49 6.58
2 8.49 8.70 9.16 10.12 8.70 9.17 10.12 12.31

Table A.9: Cache access time in ns for various cache configurations in a 70nm
technology.

127

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.48 0.58 0.79 NA 0.62 0.80 NA NA
2 0.51 0.66 1.04 NA 0.71 1.04 NA NA

8 1 0.49 0.60 0.84 1.48 0.63 0.84 1.48 NA
2 0.53 0.70 1.13 2.27 0.74 1.13 2.27 NA

16 1 0.51 0.62 0.89 1.59 0.64 0.89 1.59 3.64
2 0.58 0.77 1.23 2.47 0.80 1.23 2.47 6.33

32 1 0.56 0.68 0.97 1.72 0.68 0.97 1.72 3.91
2 0.65 0.88 1.38 2.74 0.88 1.38 2.74 6.85

64 1 0.63 0.75 1.11 1.92 0.75 1.11 1.92 4.28
2 0.76 0.99 1.63 3.13 0.99 1.63 3.13 7.59

128 1 0.74 0.88 1.28 2.22 0.88 1.28 2.22 4.80
2 0.94 1.20 1.99 3.73 1.20 1.99 3.73 8.65

256 1 0.89 1.04 1.47 2.65 1.04 1.47 2.65 5.58
2 1.21 1.49 2.34 4.60 1.49 2.34 4.60 10.21

512 1 1.15 1.41 1.86 3.30 1.41 1.86 3.30 6.68
2 1.69 2.12 3.06 5.93 2.12 3.06 5.93 12.47

1024 1 1.50 1.84 2.38 4.09 1.84 2.38 4.09 8.30
2 2.26 2.93 4.00 7.42 2.93 4.00 7.42 15.81

2048 1 2.24 2.45 3.50 5.30 2.45 3.50 5.30 10.80
2 3.75 4.14 6.05 9.78 4.14 6.05 9.78 20.98

4096 1 3.18 3.45 4.89 6.98 3.45 4.89 6.98 13.47
2 5.42 5.90 8.78 13.01 5.90 8.78 13.01 26.25

8192 1 4.95 5.49 6.58 10.50 5.49 6.58 10.50 17.65
2 9.17 10.12 12.31 20.11 10.12 12.31 20.11 34.70

Table A.10: Cache access time in ns for various cache configurations in a 70nm
technology.

128

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.27 0.29 0.34 0.44 0.31 0.35 0.45 0.68
2 0.29 0.32 0.39 0.55 0.32 0.39 0.56 0.96

8 1 0.30 0.32 0.36 0.47 0.32 0.36 0.47 0.72
2 0.32 0.35 0.42 0.60 0.35 0.42 0.60 1.05

16 1 0.33 0.35 0.39 0.50 0.35 0.39 0.50 0.78
2 0.37 0.40 0.47 0.67 0.40 0.47 0.67 1.16

32 1 0.37 0.39 0.43 0.57 0.39 0.44 0.57 0.86
2 0.42 0.45 0.53 0.78 0.46 0.53 0.78 1.32

64 1 0.44 0.45 0.50 0.63 0.46 0.50 0.63 1.00
2 0.53 0.56 0.64 0.89 0.56 0.65 0.89 1.58

128 1 0.52 0.54 0.60 0.74 0.54 0.60 0.74 1.19
2 0.66 0.68 0.80 1.08 0.68 0.80 1.09 1.97

256 1 0.65 0.67 0.75 0.91 0.68 0.75 0.91 1.39
2 0.89 0.93 1.09 1.39 0.94 1.09 1.40 2.36

512 1 0.90 0.94 1.02 1.24 0.94 1.02 1.24 1.77
2 1.29 1.34 1.50 1.95 1.34 1.51 1.95 3.06

1024 1 1.21 1.25 1.33 1.70 1.25 1.33 1.70 2.28
2 1.90 1.96 2.10 2.86 1.96 2.10 2.86 4.04

2048 1 1.93 1.98 2.09 2.35 1.98 2.09 2.35 3.31
2 3.07 3.16 3.34 4.18 3.16 3.35 4.18 5.91

4096 1 2.78 2.84 2.97 3.25 2.84 2.98 3.25 4.81
2 4.87 4.99 5.23 5.74 4.99 5.24 5.74 8.90

8192 1 4.54 4.66 4.92 5.48 4.66 4.93 5.48 6.69
2 8.68 8.91 9.41 10.17 8.91 9.41 10.18 12.92

Table A.11: Cache access time in ns for various cache configurations in a 50nm
technology.

129

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.36 0.45 0.68 NA 0.49 0.68 NA NA
2 0.41 0.56 0.96 NA 0.57 0.96 NA NA

8 1 0.37 0.47 0.72 1.39 0.51 0.72 1.39 NA
2 0.43 0.60 1.05 2.30 0.61 1.05 2.30 NA

16 1 0.39 0.50 0.78 1.50 0.53 0.78 1.50 3.71
2 0.47 0.67 1.16 2.52 0.67 1.16 2.52 6.83

32 1 0.44 0.57 0.86 1.65 0.57 0.86 1.65 4.00
2 0.53 0.78 1.32 2.81 0.78 1.32 2.81 7.41

64 1 0.50 0.63 1.00 1.86 0.63 1.00 1.86 4.40
2 0.65 0.89 1.58 3.24 0.89 1.58 3.24 8.22

128 1 0.60 0.74 1.19 2.19 0.74 1.19 2.19 4.98
2 0.80 1.09 1.97 3.90 1.09 1.97 3.90 9.39

256 1 0.75 0.91 1.39 2.65 0.91 1.39 2.65 5.83
2 1.09 1.40 2.36 4.85 1.40 2.36 4.85 11.11

512 1 1.02 1.24 1.77 3.34 1.24 1.77 3.34 7.04
2 1.51 1.95 3.06 6.29 1.95 3.06 6.29 13.60

1024 1 1.33 1.70 2.28 4.19 1.70 2.28 4.19 8.81
2 2.10 2.86 4.04 7.94 2.86 4.04 7.94 17.29

2048 1 2.09 2.35 3.31 5.43 2.35 3.31 5.43 11.50
2 3.35 4.18 5.91 10.31 4.18 5.91 10.31 22.94

4096 1 2.98 3.25 4.81 7.13 3.25 4.81 7.13 14.48
2 5.24 5.74 8.90 13.71 5.74 8.90 13.71 28.98

8192 1 4.93 5.48 6.69 10.84 5.48 6.69 10.84 19.01
2 9.41 10.18 12.92 20.69 10.18 12.92 20.69 37.89

Table A.12: Cache access time in ns for various cache configurations in a 50nm
technology.

130

Direct mapped 2-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.19 0.20 0.24 0.31 0.21 0.24 0.31 0.48
2 0.20 0.22 0.28 0.40 0.23 0.28 0.40 0.70

8 1 0.21 0.22 0.25 0.33 0.23 0.25 0.33 0.52
2 0.23 0.25 0.30 0.44 0.25 0.30 0.44 0.77

16 1 0.23 0.25 0.28 0.36 0.25 0.28 0.36 0.57
2 0.26 0.29 0.34 0.49 0.29 0.34 0.49 0.87

32 1 0.26 0.28 0.31 0.41 0.28 0.31 0.41 0.64
2 0.30 0.33 0.39 0.58 0.33 0.39 0.58 1.01

64 1 0.32 0.32 0.36 0.46 0.33 0.36 0.46 0.75
2 0.39 0.41 0.48 0.66 0.41 0.48 0.66 1.23

128 1 0.38 0.39 0.44 0.54 0.39 0.44 0.54 0.89
2 0.49 0.51 0.60 0.82 0.51 0.60 0.82 1.52

256 1 0.48 0.49 0.55 0.68 0.50 0.55 0.68 1.03
2 0.67 0.70 0.81 1.07 0.70 0.81 1.07 1.79

512 1 0.67 0.70 0.76 0.94 0.70 0.76 0.94 1.34
2 0.98 1.03 1.15 1.52 1.03 1.15 1.53 2.36

1024 1 0.91 0.94 1.00 1.27 0.94 1.00 1.28 1.75
2 1.46 1.51 1.62 2.18 1.51 1.62 2.18 3.17

2048 1 1.47 1.51 1.60 1.79 1.51 1.60 1.79 2.58
2 2.41 2.48 2.63 3.23 2.48 2.63 3.24 4.72

4096 1 2.12 2.17 2.28 2.51 2.17 2.28 2.51 3.73
2 3.80 3.89 4.09 4.51 3.89 4.10 4.51 6.98

8192 1 3.50 3.59 3.81 4.26 3.59 3.81 4.26 5.15
2 6.81 6.99 7.40 8.14 7.00 7.40 8.14 10.07

Table A.13: Cache access time in ns for various cache configurations in a 35nm
technology.

131

4-way set associative 8-way set associative
Size Block size (bytes) Block size (bytes)
(KB) Ports 32 64 128 256 32 64 128 256

4 1 0.25 0.32 0.48 NA 0.35 0.48 NA NA
2 0.29 0.40 0.70 NA 0.41 0.70 NA NA

8 1 0.26 0.33 0.52 1.01 0.36 0.52 1.01 NA
2 0.30 0.44 0.77 1.71 0.44 0.77 1.71 NA

16 1 0.28 0.36 0.57 1.10 0.37 0.57 1.10 2.72
2 0.34 0.49 0.87 1.89 0.49 0.87 1.89 5.07

32 1 0.31 0.41 0.64 1.23 0.41 0.64 1.23 2.97
2 0.39 0.58 1.01 2.14 0.58 1.01 2.14 5.56

64 1 0.36 0.46 0.75 1.41 0.46 0.75 1.41 3.31
2 0.48 0.66 1.23 2.51 0.66 1.23 2.51 6.25

128 1 0.44 0.54 0.89 1.68 0.54 0.89 1.68 3.80
2 0.60 0.82 1.52 3.06 0.82 1.52 3.06 7.24

256 1 0.55 0.68 1.03 2.07 0.68 1.03 2.07 4.52
2 0.81 1.07 1.79 3.86 1.07 1.79 3.86 8.70

512 1 0.76 0.94 1.34 2.65 0.94 1.34 2.65 5.54
2 1.15 1.53 2.36 5.04 1.53 2.36 5.04 10.80

1024 1 1.00 1.28 1.75 3.17 1.28 1.75 3.17 7.03
2 1.62 2.18 3.17 6.06 2.18 3.17 6.06 13.92

2048 1 1.60 1.79 2.58 4.18 1.79 2.58 4.18 9.21
2 2.63 3.24 4.72 8.03 3.24 4.72 8.03 18.48

4096 1 2.28 2.51 3.73 5.58 2.51 3.73 5.58 11.00
2 4.10 4.51 6.98 10.86 4.51 6.98 10.86 22.15

8192 1 3.81 4.26 5.15 8.60 4.26 5.15 8.60 14.70
2 7.40 8.14 10.07 16.64 8.14 10.07 16.64 29.56

Table A.14: Cache access time in ns for various cache configurations in a 35nm
technology.

132

A.2 Register File Access Time

Register File access times for various register files are listed in this

appendix. The capacity, entry size and number of ports is varied along with

the technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.80 0.86 0.94 1.02 0.87 0.93 1.03 1.13 0.89 0.96 1.06 1.15
64 0.83 0.91 1.01 1.13 0.92 1.00 1.11 1.22 0.94 1.04 1.15 1.27
128 0.91 1.00 1.14 1.28 1.00 1.11 1.27 1.44 1.03 1.15 1.31 1.48
256 1.00 1.12 1.30 1.49 1.09 1.22 1.43 1.66 1.12 1.27 1.49 1.73

Table A.15: Register file access time in ns for various configurations in a 250nm
technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.68 0.71 0.77 0.82 0.71 0.77 0.82 0.87 0.74 0.78 0.83 0.90
64 0.70 0.75 0.81 0.87 0.75 0.80 0.87 0.95 0.76 0.82 0.91 0.98
128 0.75 0.81 0.90 0.99 0.81 0.87 0.97 1.07 0.83 0.90 1.01 1.13
256 0.82 0.90 1.02 1.13 0.88 0.98 1.11 1.25 0.90 1.00 1.15 1.30

Table A.16: Register file access time in ns for various configurations in a 180nm
technology.

133

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.48 0.50 0.53 0.57 0.51 0.54 0.57 0.61 0.52 0.55 0.59 0.64
64 0.49 0.52 0.56 0.60 0.53 0.56 0.61 0.67 0.54 0.58 0.64 0.70
128 0.53 0.57 0.62 0.68 0.57 0.62 0.69 0.76 0.59 0.65 0.72 0.80
256 0.58 0.63 0.71 0.78 0.63 0.69 0.78 0.88 0.65 0.72 0.82 0.93

Table A.17: Register file access time in ns for various configurations in a 130nm
technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.36 0.37 0.39 0.41 0.39 0.41 0.43 0.46 0.40 0.42 0.45 0.48
64 0.37 0.39 0.42 0.45 0.41 0.43 0.46 0.50 0.42 0.45 0.49 0.53
128 0.41 0.43 0.47 0.50 0.45 0.48 0.52 0.57 0.46 0.50 0.55 0.60
256 0.45 0.48 0.53 0.58 0.49 0.54 0.60 0.66 0.51 0.56 0.63 0.70

Table A.18: Register file access time in ns for various configurations in a 100nm
technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.24 0.25 0.26 0.27 0.27 0.28 0.30 0.32 0.28 0.29 0.31 0.33
64 0.25 0.27 0.28 0.30 0.28 0.30 0.32 0.35 0.29 0.31 0.34 0.37
128 0.28 0.30 0.32 0.34 0.31 0.33 0.37 0.40 0.32 0.35 0.38 0.42
256 0.31 0.33 0.36 0.39 0.35 0.37 0.41 0.46 0.36 0.39 0.44 0.49

Table A.19: Register file access time in ns for various configurations in a 70nm
technology.

134

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.17 0.18 0.20 0.21 0.20 0.21 0.23 0.24 0.21 0.22 0.24 0.25
64 0.18 0.20 0.21 0.22 0.21 0.22 0.24 0.26 0.21 0.23 0.25 0.28
128 0.21 0.22 0.24 0.25 0.23 0.25 0.28 0.31 0.24 0.26 0.29 0.33
256 0.23 0.25 0.27 0.30 0.26 0.28 0.32 0.36 0.27 0.30 0.34 0.39

Table A.20: Register file access time in ns for various configurations in a 50nm
technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.12 0.13 0.14 0.15 0.14 0.15 0.16 0.17 0.14 0.15 0.17 0.18
64 0.13 0.14 0.15 0.16 0.14 0.16 0.17 0.19 0.15 0.16 0.18 0.20
128 0.14 0.15 0.17 0.18 0.16 0.18 0.20 0.22 0.17 0.19 0.21 0.24
256 0.16 0.17 0.19 0.21 0.18 0.20 0.23 0.26 0.19 0.21 0.25 0.29

Table A.21: Register file access time in ns for various configurations in a 35nm
technology.

135

A.3 Content Addressable Memory Access Time

Content Addressable Memory (CAM) access times for various CAMs

are listed in this appendix. The capacity, entry size and number of ports is

varied along with the technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 1.39 1.41 1.44 1.46 1.46 1.49 1.53 1.58 1.48 1.52 1.57 1.62
64 1.43 1.42 1.45 1.48 1.47 1.50 1.55 1.59 1.50 1.53 1.58 1.64
128 1.44 1.48 1.52 1.51 1.52 1.56 1.62 1.62 1.54 1.59 1.66 1.67
256 1.47 1.50 1.55 1.59 1.55 1.59 1.65 1.72 1.57 1.62 1.69 1.77
512 1.55 1.61 1.69 1.65 1.63 1.70 1.80 1.77 1.65 1.73 1.85 1.83
1024 1.60 1.66 1.74 1.83 1.68 1.75 1.86 1.97 1.71 1.79 1.90 2.03
2048 1.77 1.90 1.84 1.93 1.85 2.00 1.96 2.08 1.88 2.04 2.01 2.14
4096 1.86 1.99 2.18 2.37 1.95 2.10 2.31 2.54 1.98 2.14 2.37 2.62
8192 2.29 2.63 3.10 3.59 2.39 2.75 3.26 3.80 2.42 2.80 3.33 3.89

Table A.22: CAM time in ns for various configurations in a 250nm technology.

136

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 1.13 1.15 1.17 1.19 1.19 1.21 1.24 1.27 1.22 1.24 1.27 1.31
64 1.14 1.16 1.18 1.20 1.21 1.23 1.25 1.28 1.23 1.25 1.29 1.32
128 1.18 1.20 1.23 1.22 1.24 1.27 1.31 1.31 1.26 1.29 1.34 1.34
256 1.20 1.22 1.25 1.28 1.26 1.29 1.33 1.37 1.28 1.32 1.36 1.41
512 1.26 1.30 1.35 1.31 1.33 1.37 1.44 1.41 1.35 1.40 1.47 1.45
1024 1.29 1.33 1.39 1.44 1.36 1.41 1.47 1.54 1.39 1.44 1.51 1.58
2048 1.43 1.51 1.45 1.50 1.50 1.59 1.54 1.61 1.52 1.62 1.58 1.66
4096 1.49 1.57 1.68 1.80 1.56 1.66 1.78 1.92 1.59 1.69 1.83 1.97
8192 1.81 2.02 2.31 2.60 1.89 2.11 2.42 2.74 1.92 2.15 2.47 2.80

Table A.23: CAM time in ns for various configurations in a 180nm technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.81 0.82 0.84 0.85 0.86 0.87 0.89 0.91 0.87 0.89 0.91 0.94
64 0.82 0.83 0.84 0.86 0.87 0.88 0.90 0.92 0.88 0.90 0.92 0.95
128 0.85 0.86 0.88 0.88 0.89 0.91 0.94 0.94 0.91 0.93 0.96 0.97
256 0.86 0.88 0.90 0.92 0.91 0.93 0.96 0.99 0.93 0.95 0.98 1.02
512 0.91 0.94 0.98 0.95 0.96 0.99 1.04 1.02 0.97 1.01 1.06 1.05
1024 0.94 0.97 1.00 1.04 0.99 1.02 1.07 1.12 1.00 1.04 1.10 1.15
2048 1.04 1.10 1.06 1.10 1.09 1.16 1.13 1.18 1.11 1.18 1.16 1.22
4096 1.09 1.15 1.24 1.33 1.14 1.22 1.32 1.43 1.16 1.24 1.35 1.47
8192 1.34 1.51 1.75 1.99 1.40 1.58 1.83 2.09 1.42 1.61 1.87 2.14

Table A.24: CAM time in ns for various configurations in a 130nm technology.

137

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.63 0.63 0.64 0.65 0.66 0.67 0.69 0.70 0.68 0.69 0.70 0.72
64 0.64 0.64 0.65 0.66 0.67 0.68 0.69 0.71 0.69 0.70 0.71 0.73
128 0.65 0.66 0.68 0.67 0.69 0.71 0.72 0.72 0.70 0.72 0.74 0.74
256 0.67 0.68 0.69 0.71 0.70 0.72 0.74 0.76 0.72 0.73 0.76 0.78
512 0.70 0.73 0.76 0.73 0.74 0.77 0.80 0.79 0.76 0.78 0.82 0.81
1024 0.73 0.75 0.78 0.81 0.77 0.79 0.83 0.87 0.78 0.81 0.85 0.89
2048 0.81 0.86 0.82 0.85 0.85 0.91 0.88 0.92 0.87 0.93 0.90 0.95
4096 0.85 0.90 0.98 1.05 0.89 0.96 1.04 1.12 0.91 0.97 1.06 1.15
8192 1.07 1.22 1.43 1.63 1.12 1.28 1.49 1.71 1.13 1.30 1.52 1.75

Table A.25: CAM time in ns for various configurations in a 100nm technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.43 0.43 0.44 0.44 0.45 0.46 0.47 0.48 0.46 0.47 0.48 0.49
64 0.44 0.44 0.44 0.45 0.46 0.47 0.47 0.48 0.47 0.48 0.49 0.50
128 0.44 0.45 0.46 0.47 0.47 0.48 0.49 0.51 0.48 0.49 0.51 0.52
256 0.47 0.46 0.47 0.48 0.49 0.49 0.50 0.52 0.50 0.50 0.52 0.54
512 0.47 0.49 0.51 0.50 0.50 0.52 0.55 0.54 0.51 0.53 0.56 0.56
1024 0.49 0.51 0.53 0.55 0.52 0.54 0.57 0.59 0.53 0.55 0.58 0.61
2048 0.54 0.58 0.57 0.59 0.57 0.61 0.61 0.64 0.59 0.63 0.62 0.66
4096 0.58 0.62 0.67 0.72 0.61 0.65 0.71 0.78 0.62 0.67 0.73 0.80
8192 0.72 0.82 0.96 1.10 0.75 0.86 1.01 1.16 0.76 0.87 1.03 1.18

Table A.26: CAM time in ns for various configurations in a 70nm technology.

138

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.31 0.31 0.32 0.32 0.33 0.34 0.34 0.35 0.34 0.35 0.36 0.37
64 0.32 0.32 0.32 0.33 0.34 0.34 0.35 0.36 0.35 0.35 0.36 0.37
128 0.32 0.33 0.34 0.34 0.34 0.35 0.36 0.38 0.35 0.36 0.38 0.39
256 0.33 0.34 0.34 0.35 0.35 0.36 0.37 0.39 0.36 0.37 0.38 0.40
512 0.35 0.36 0.38 0.37 0.37 0.38 0.40 0.40 0.38 0.39 0.42 0.42
1024 0.36 0.37 0.39 0.41 0.38 0.40 0.42 0.45 0.39 0.41 0.44 0.46
2048 0.40 0.43 0.42 0.44 0.43 0.46 0.46 0.49 0.43 0.47 0.47 0.50
4096 0.43 0.46 0.50 0.55 0.45 0.49 0.54 0.60 0.46 0.50 0.56 0.62
8192 0.54 0.62 0.73 0.84 0.57 0.65 0.77 0.90 0.58 0.67 0.79 0.92

Table A.27: CAM time in ns for various configurations in a 50nm technology.

Number 32 bit entries 64 bit entries 80 bit entries
of No. of Ports No. of Ports No of. Ports

Entries 3 6 10 14 3 6 10 14 3 6 10 14
32 0.22 0.22 0.23 0.23 0.23 0.24 0.24 0.25 0.24 0.24 0.25 0.26
64 0.22 0.22 0.23 0.23 0.24 0.24 0.25 0.25 0.24 0.25 0.25 0.26
128 0.23 0.23 0.24 0.24 0.24 0.25 0.26 0.26 0.25 0.26 0.27 0.27
256 0.23 0.24 0.25 0.25 0.25 0.26 0.27 0.28 0.25 0.26 0.27 0.29
512 0.25 0.26 0.26 0.26 0.26 0.27 0.28 0.29 0.27 0.28 0.30 0.30
1024 0.26 0.27 0.28 0.30 0.27 0.29 0.31 0.33 0.28 0.29 0.32 0.34
2048 0.29 0.31 0.30 0.32 0.31 0.33 0.33 0.36 0.31 0.34 0.34 0.37
4096 0.31 0.33 0.37 0.41 0.33 0.36 0.40 0.45 0.33 0.37 0.41 0.46
8192 0.40 0.46 0.56 0.65 0.42 0.49 0.59 0.69 0.42 0.50 0.61 0.71

Table A.28: CAM time in ns for various configurations in a 35nm technology.

139

Appendix B

SPEC CPU2000 Benchmark Description

Benchmark Description
164.gzip Compression
175.vpr FPGA Circuit Placement and Routing
176.gcc C Programming Language Compiler
181.mcf Combinatorial Optimization
186.crafty Game Playing: Chess
197.parser Word Processing
252.eon Computer Visualization
253.perlbmk PERL Programming Language
254.gap Group Theory, Interpreter
255.vortex Object-oriented Database
256.bzip2 Compression
300.twolf Place and Route Simulator

Table B.1: List of Integer Benchmarks used in this research.

140

Benchmark Description
168.wupwise Physics / Quantum Chromodynamics
171.swim Shallow Water Modeling
172.mgrid Multi-grid Solver: 3D Potential Field
173.applu Parabolic / Elliptic Partial Differential Equations
177.mesa 3-D Graphics Library
178.galgel Computational Fluid Dynamics
179.art Image Recognition / Neural Networks
183.equake Seismic Wave Propagation Simulation
187.facerec Image Processing: Face Recognition
188.ammp Computational Chemistry
189.lucas Number Theory / Primality Testing
191.fma3d Finite-element Crash Simulation
200.sixtrack High Energy Nuclear Physics Accelerator Design
301.apsi Meteorology: Pollutant Distribution

Table B.2: List of Floating Point Benchmarks used in this research.

141

Appendix C

Scaling IPC

Scaling Clock Tech 164.gzip 175.vpr 176.gcc 181.mcf 197.parser
Pipeline f8 35 0.89 0.94 0.83 0.89 0.78
Pipeline f8 50 0.89 0.94 0.83 0.89 0.78
Pipeline f8 70 0.99 1.07 0.92 1.02 0.88
Pipeline f8 100 0.99 1.07 0.92 1.02 0.88
Pipeline f8 130 0.99 1.07 0.92 1.02 0.88
Pipeline f8 180 0.99 1.07 0.92 1.02 0.88
Pipeline f8 250 1.07 1.28 1.03 1.32 1.00
Pipeline f16 35 1.56 1.74 1.42 1.76 1.41
Pipeline f16 50 1.56 1.74 1.41 1.76 1.41
Pipeline f16 70 1.64 1.80 1.48 1.78 1.50
Pipeline f16 100 1.64 1.80 1.48 1.78 1.50
Pipeline f16 130 1.64 1.80 1.48 1.78 1.50
Pipeline f16 180 1.64 1.80 1.48 1.78 1.50
Pipeline f16 250 1.82 2.21 1.63 2.55 1.66
Pipeline fITRS 35 0.64 0.69 0.63 0.66 0.58
Pipeline fITRS 50 0.64 0.69 0.63 0.66 0.58
Pipeline fITRS 70 0.77 0.87 0.76 0.86 0.71
Pipeline fITRS 100 0.99 1.07 0.92 1.02 0.88
Pipeline fITRS 130 1.12 1.30 1.07 1.36 1.04
Pipeline fITRS 180 1.21 1.47 1.15 1.61 1.14
Pipeline fITRS 250 1.64 1.80 1.48 1.78 1.50

142

Scaling Clock Tech 253.perlbmk 256.bzip2 300.twolf Mean IPC BIPS
Pipeline f8 35 0.91 0.89 0.86 0.87 8.65
Pipeline f8 50 0.91 0.89 0.86 0.87 6.05
Pipeline f8 70 1.05 0.99 0.93 0.98 4.86
Pipeline f8 100 1.05 0.99 0.93 0.98 3.40
Pipeline f8 130 1.05 0.99 0.93 0.98 2.61
Pipeline f8 180 1.05 0.99 0.93 0.98 1.89
Pipeline f8 250 1.34 1.11 0.99 1.13 1.53
Pipeline f16 35 1.80 1.57 1.28 1.56 7.72
Pipeline f16 50 1.80 1.57 1.28 1.56 5.40
Pipeline f16 70 1.86 1.67 1.30 1.62 4.01
Pipeline f16 100 1.86 1.67 1.30 1.62 2.82
Pipeline f16 130 1.86 1.67 1.30 1.62 2.17
Pipeline f16 180 1.86 1.67 1.30 1.62 1.57
Pipeline f16 250 2.37 1.92 1.36 1.90 1.31
Pipeline fITRS 35 0.71 0.65 0.69 0.65 8.83
Pipeline fITRS 50 0.71 0.65 0.69 0.65 6.54
Pipeline fITRS 70 0.88 0.80 0.78 0.80 4.81
Pipeline fITRS 100 1.05 0.99 0.93 0.98 3.43
Pipeline fITRS 130 1.36 1.16 0.99 1.17 2.45
Pipeline fITRS 180 1.62 1.27 1.02 1.30 1.62
Pipeline fITRS 250 1.86 1.67 1.30 1.62 1.21

Table C.1: IPC for integer benchmarks for Pipeline scaling.

143

Scaling Clock Tech 164.gzip 175.vpr 176.gcc 181.mcf 197.parser
Capacity f8 35 1.09 1.27 0.99 1.30 1.00
Capacity f8 50 1.09 1.27 0.99 1.30 1.00
Capacity f8 70 1.09 1.27 0.99 1.33 0.99
Capacity f8 100 1.07 1.19 1.03 1.31 0.96
Capacity f8 130 1.11 1.30 1.03 1.35 1.02
Capacity f8 180 1.11 1.30 1.03 1.35 1.02
Capacity f8 250 1.11 1.30 1.04 1.35 1.02
Capacity f16 35 1.78 2.10 1.48 2.40 1.57
Capacity f16 50 1.78 2.10 1.48 2.40 1.57
Capacity f16 70 1.76 2.14 1.50 2.44 1.56
Capacity f16 100 1.76 2.13 1.51 2.44 1.56
Capacity f16 130 1.76 2.14 1.50 2.44 1.56
Capacity f16 180 1.79 2.18 1.57 2.48 1.63
Capacity f16 250 1.78 2.18 1.58 2.48 1.62
Capacity fITRS 35 0.73 0.79 0.64 0.80 0.63
Capacity fITRS 50 0.69 0.71 0.59 0.73 0.58
Capacity fITRS 70 0.88 1.03 0.82 1.11 0.83
Capacity fITRS 100 1.09 1.27 0.99 1.33 1.00
Capacity fITRS 130 1.07 1.01 0.85 1.25 0.86
Capacity fITRS 180 1.17 1.39 0.99 1.66 1.04
Capacity fITRS 250 1.81 2.21 1.58 2.51 1.65

144

Scaling Clock Tech 253.perlbmk 256.bzip2 300.twolf Mean IPC BIPS
Capacity f8 35 1.29 1.14 1.01 1.13 11.20
Capacity f8 50 1.29 1.14 1.01 1.13 7.83
Capacity f8 70 1.33 1.14 1.01 1.14 5.63
Capacity f8 100 1.33 1.21 1.08 1.14 3.96
Capacity f8 130 1.35 1.15 0.99 1.16 3.08
Capacity f8 180 1.35 1.15 0.99 1.16 2.23
Capacity f8 250 1.36 1.15 0.99 1.16 1.56
Capacity f16 35 2.20 1.89 1.39 1.82 9.03
Capacity f16 50 2.20 1.89 1.39 1.82 6.31
Capacity f16 70 2.26 1.87 1.38 1.83 4.54
Capacity f16 100 2.29 1.87 1.38 1.83 3.19
Capacity f16 130 2.27 1.87 1.38 1.83 2.45
Capacity f16 180 2.29 1.89 1.39 1.87 1.81
Capacity f16 250 2.31 1.89 1.39 1.87 1.29
Capacity fITRS 35 0.84 0.81 0.80 0.75 10.14
Capacity fITRS 50 0.76 0.75 0.79 0.70 6.97
Capacity fITRS 70 1.10 0.97 0.92 0.95 5.71
Capacity fITRS 100 1.33 1.14 1.01 1.14 3.98
Capacity fITRS 130 1.25 1.26 1.03 1.06 2.23
Capacity fITRS 180 1.57 1.31 1.07 1.26 1.57
Capacity fITRS 250 2.30 1.92 1.39 1.89 1.41

Table C.2: IPC for integer benchmarks for Capacity scaling.

145

Scaling Clock Tech 168.wupwise 177.mesa 179.art 183.equake
Pipeline f8 35 1.42 1.20 1.07 0.94
Pipeline f8 50 1.42 1.20 1.07 0.94
Pipeline f8 70 1.52 1.36 1.26 1.08
Pipeline f8 100 1.52 1.36 1.26 1.08
Pipeline f8 130 1.52 1.36 1.26 1.08
Pipeline f8 180 1.52 1.36 1.26 1.08
Pipeline f8 250 1.48 1.62 1.53 1.38
Pipeline f16 35 2.37 2.11 2.02 1.84
Pipeline f16 50 2.37 2.11 2.02 1.84
Pipeline f16 70 2.56 2.16 2.05 1.89
Pipeline f16 100 2.56 2.16 2.05 1.89
Pipeline f16 130 2.56 2.16 2.05 1.89
Pipeline f16 180 2.56 2.16 2.05 1.89
Pipeline f16 250 2.56 2.58 2.61 2.56
Pipeline fITRS 35 1.01 0.90 0.81 0.70
Pipeline fITRS 50 1.01 0.90 0.81 0.70
Pipeline fITRS 70 1.10 1.12 1.06 0.90
Pipeline fITRS 100 1.52 1.36 1.26 1.08
Pipeline fITRS 130 1.59 1.63 1.55 1.42
Pipeline fITRS 180 1.60 1.89 1.93 1.72
Pipeline fITRS 250 2.56 2.16 2.05 1.89

146

Scaling Clock Tech 188.ammp Mean IPC BIPS
Pipeline f8 35 0.83 1.07 10.66
Pipeline f8 50 0.83 1.07 7.45
Pipeline f8 70 0.97 1.22 6.07
Pipeline f8 100 0.97 1.22 4.24
Pipeline f8 130 0.97 1.22 3.27
Pipeline f8 180 0.97 1.22 2.36
Pipeline f8 250 1.27 1.45 1.96
Pipeline f16 35 1.77 2.01 9.98
Pipeline f16 50 1.77 2.01 6.98
Pipeline f16 70 1.79 2.07 5.14
Pipeline f16 100 1.79 2.07 3.61
Pipeline f16 130 1.79 2.07 2.78
Pipeline f16 180 1.79 2.07 2.01
Pipeline f16 250 2.45 2.55 1.76
Pipeline fITRS 35 0.64 0.80 10.78
Pipeline fITRS 50 0.64 0.80 7.98
Pipeline fITRS 70 0.80 0.99 5.94
Pipeline fITRS 100 0.97 1.22 4.28
Pipeline fITRS 130 1.30 1.50 3.14
Pipeline fITRS 180 1.53 1.73 2.16
Pipeline fITRS 250 1.79 2.07 1.55

Table C.3: IPC for floating point benchmarks for Pipeline scaling.

147

Scaling Clock Tech 168.wupwise 177.mesa 179.art 183.equake
Capacity f8 35 1.70 1.60 1.53 1.35
Capacity f8 50 1.70 1.60 1.53 1.35
Capacity f8 70 2.05 1.68 1.53 1.42
Capacity f8 100 2.05 1.61 1.45 1.35
Capacity f8 130 2.05 1.68 1.54 1.43
Capacity f8 180 2.06 1.68 1.54 1.43
Capacity f8 250 2.47 1.68 1.54 1.45
Capacity f16 35 2.61 2.46 2.53 2.38
Capacity f16 50 2.61 2.46 2.53 2.38
Capacity f16 70 2.81 2.52 2.54 2.39
Capacity f16 100 2.81 2.52 2.54 2.38
Capacity f16 130 2.81 2.52 2.54 2.39
Capacity f16 180 2.90 2.56 2.55 2.45
Capacity f16 250 2.94 2.56 2.54 2.43
Capacity fITRS 35 1.46 1.08 1.05 0.84
Capacity fITRS 50 1.46 0.98 1.03 0.75
Capacity fITRS 70 0.99 1.31 1.45 1.14
Capacity fITRS 100 2.05 1.68 1.53 1.42
Capacity fITRS 130 2.58 1.47 1.80 1.14
Capacity fITRS 180 2.59 1.90 1.87 1.70
Capacity fITRS 250 2.81 2.57 2.53 2.49

148

Scaling Clock Tech 188.ammp Mean IPC BIPS
Capacity f8 35 1.26 1.48 14.67
Capacity f8 50 1.26 1.48 10.26
Capacity f8 70 1.30 1.57 7.81
Capacity f8 100 1.29 1.53 5.30
Capacity f8 130 1.31 1.58 4.22
Capacity f8 180 1.31 1.58 3.06
Capacity f8 250 1.31 1.65 2.22
Capacity f16 35 2.36 2.47 12.23
Capacity f16 50 2.36 2.47 8.56
Capacity f16 70 2.40 2.53 6.27
Capacity f16 100 2.40 2.52 4.39
Capacity f16 130 2.40 2.53 3.39
Capacity f16 180 2.43 2.57 2.49
Capacity f16 250 2.42 2.57 1.78
Capacity fITRS 35 0.79 1.02 13.79
Capacity fITRS 50 0.76 0.97 9.66
Capacity fITRS 70 1.12 1.19 7.14
Capacity fITRS 100 1.30 1.57 5.51
Capacity fITRS 130 1.29 1.59 3.33
Capacity fITRS 180 1.58 1.90 2.37
Capacity fITRS 250 2.45 2.57 1.93

Table C.4: IPC for floating point benchmarks for Capacity scaling.

149

Appendix D

Clustered Cache Performance

D.1 Baseline Choices

Width gzip vpr gcc mcf crafty 197.parser
4 1.01 1.08 1.19 0.10 1.19 0.84
8 1.28 1.18 1.83 0.10 2.19 1.00
16 1.42 1.22 2.19 0.10 3.04 1.04
32 1.44 1.22 2.29 0.10 3.19 1.06

Width eon perlbmk gap bzip2 Mean
4 1.68 0.96 0.24 1.70 1.00
8 2.72 1.53 0.24 2.30 1.44
16 3.11 1.92 0.24 2.42 1.67
32 3.19 1.87 0.24 2.44 1.70

Table D.1: IPC for integer benchmarks for varying issue widths.

Width wupwise swim mgrid applu mesa galgel
4 1.69 0.52 1.18 0.52 1.46 1.67
8 2.19 0.52 1.50 0.53 2.47 2.09
16 2.40 0.52 1.49 0.53 2.96 2.24
32 2.42 0.52 1.48 0.53 3.06 2.26

150

Width art equake ammp lucas fma3d Mean
4 0.75 0.59 1.06 0.44 1.02 0.99
8 0.79 0.59 1.39 0.44 1.22 1.25
16 0.80 0.60 1.51 0.44 1.27 1.34
32 0.80 0.58 1.51 0.44 1.28 1.35

Table D.2: IPC for floating point benchmarks for varying issue widths.

Capacity gzip vpr gcc mcf crafty parser
32K 0.98 1.22 1.96 0.10 2.53 0.96
64K 1.29 1.24 2.01 0.10 2.89 1.01
128K 1.52 1.23 1.98 0.10 2.83 1.05
256K 1.27 1.16 2.05 0.10 2.50 1.04
512K 1.13 1.10 1.89 0.10 2.18 0.99

Capacity eon perlbmk gap bzip2 Mean
32K 2.54 2.10 0.25 2.65 1.53
64K 2.67 2.07 0.25 2.64 1.61
128K 2.63 1.94 0.25 2.54 1.61
256K 2.42 1.67 0.24 2.26 1.47
512K 2.21 1.44 0.24 2.04 1.33

Table D.3: IPC for integer benchmarks as a function of unified DL1 capacity.

Capacity wupwise swim mgrid applu mesa galgel
32K 2.19 0.51 1.50 0.52 2.81 1.89
64K 2.19 0.51 1.49 0.53 2.78 1.90
128K 2.18 0.51 1.49 0.52 2.69 1.89
256K 2.14 0.51 1.48 0.52 2.51 1.86
512K 2.11 0.52 1.33 0.52 2.33 1.83

151

Capacity art equake ammp lucas fma3d Mean
32K 0.64 0.60 1.35 0.44 1.21 1.03
64K 0.64 0.59 1.31 0.44 1.22 1.02
128K 0.63 0.59 1.36 0.44 1.21 1.02
256K 0.61 0.60 1.38 0.44 1.19 1.00
512K 0.64 0.60 1.35 0.41 1.15 0.98

Table D.4: IPC for floating point benchmarks as a function of unified DL1
capacity.

Capacity Assoc. gzip vpr gcc mcf crafty parser
256K 1 1.45 0.62 1.23 0.09 3.10 0.84
512K 1 1.35 0.76 1.37 0.09 3.17 1.02
1024K 1 1.16 0.92 1.53 0.09 2.99 1.04
2048K 1 0.95 1.05 2.06 0.11 2.65 0.94
4096K 1 0.64 0.92 1.61 0.12 1.94 0.66
256K 2 1.44 0.68 1.27 0.09 3.25 0.92
512K 2 1.37 0.85 1.43 0.09 3.26 1.04
1024K 2 1.16 1.04 1.61 0.09 3.03 1.06
2048K 2 0.95 1.16 2.10 0.11 2.66 0.96
4096K 2 0.64 0.98 1.63 0.13 1.94 0.66
256K 4 1.44 0.71 1.25 0.09 3.28 0.94
512K 4 1.37 0.90 1.41 0.09 3.28 1.08
1024K 4 1.16 1.11 2.23 0.09 3.04 1.07
2048K 4 0.95 1.22 2.13 0.10 2.66 0.96
4096K 4 0.64 1.00 1.63 0.12 1.94 0.66

152

Capacity Assoc. eon perlbmk gap bzip2 Mean
256K 1 3.16 1.97 0.29 1.51 1.43
512K 1 3.17 2.16 0.28 1.81 1.52
1024K 1 3.06 2.12 0.27 2.14 1.53
2048K 1 2.79 2.03 0.25 2.52 1.54
4096K 1 2.13 1.74 0.20 2.24 1.22
256K 2 3.21 2.00 0.29 1.59 1.47
512K 2 3.18 2.18 0.28 1.91 1.56
1024K 2 3.06 2.14 0.27 2.23 1.57
2048K 2 2.79 2.04 0.25 2.60 1.56
4096K 2 2.13 1.75 0.20 2.28 1.24
256K 4 3.22 2.19 0.29 1.63 1.50
512K 4 3.18 2.21 0.28 1.95 1.57
1024K 4 3.06 2.14 0.27 2.25 1.64
2048K 4 2.79 2.04 0.25 2.62 1.57
4096K 4 2.13 1.75 0.20 2.29 1.24

Table D.5: IPC for integer benchmarks as a function of L2 organization.

Capacity Assoc. wupwise swim mgrid applu mesa galgel
256K 1 2.26 0.49 0.96 0.45 2.89 0.85
512K 1 2.40 0.49 1.28 0.46 2.92 0.96
1024K 1 2.42 0.51 1.29 0.46 2.94 1.00
2048K 1 2.39 0.52 1.24 0.53 2.96 1.63
4096K 1 2.26 0.52 1.10 0.53 2.94 2.46
256K 2 2.30 0.44 1.02 0.47 2.70 0.88
512K 2 2.45 0.51 1.20 0.52 2.94 0.96
1024K 2 2.47 0.51 1.50 0.52 2.95 1.26
2048K 2 2.41 0.52 1.41 0.52 2.96 1.38
4096K 2 2.27 0.52 1.20 0.53 2.94 2.47
256K 4 2.31 0.51 1.05 0.46 2.70 0.82
512K 4 2.48 0.51 1.11 0.54 2.94 0.97
1024K 4 2.48 0.52 1.50 0.53 2.95 1.40
2048K 4 2.40 0.52 1.49 0.53 2.96 2.24
4096K 4 2.29 0.52 1.27 0.53 2.94 2.48

153

Capacity Assoc. art equake ammp lucas fma3d Mean
256K 1 0.10 0.56 0.75 0.34 1.10 0.98
512K 1 0.13 0.57 0.89 0.35 1.13 1.05
1024K 1 0.24 0.58 1.09 0.35 1.16 1.09
2048K 1 0.43 0.59 1.21 0.35 1.15 1.18
4096K 1 1.24 0.60 1.14 0.38 1.14 1.30
256K 2 0.10 0.57 0.75 0.35 1.09 0.97
512K 2 0.13 0.59 0.92 0.36 1.22 1.07
1024K 2 0.23 0.59 1.20 0.37 1.24 1.17
2048K 2 0.82 0.60 1.41 0.37 1.25 1.24
4096K 2 1.24 0.60 1.19 0.40 1.23 1.33
256K 4 0.10 0.58 0.75 0.42 1.15 0.99
512K 4 0.11 0.59 0.93 0.43 1.26 1.08
1024K 4 0.19 0.59 1.27 0.43 1.28 1.19
2048K 4 0.80 0.60 1.51 0.44 1.27 1.34
4096K 4 1.24 0.60 1.23 0.46 1.25 1.35

Table D.6: IPC for floating point benchmarks as a function of L2 organization.

154

D.2 Round Robin Steering

Topology Mapping Capacity gzip vpr gcc mcf crafty parser
32K 0.77 0.95 2.12 0.10 2.85 0.89

Cluster Static 64K 0.92 0.96 2.16 0.10 3.09 0.92
Centric 128K 1.05 0.94 2.15 0.10 3.02 0.95

256K 0.94 0.88 2.12 0.10 2.72 0.94
32K 0.79 0.93 1.57 0.10 3.20 0.91

Cluster Dynamic 64K 0.99 0.96 1.62 0.10 3.51 0.97
Centric without 128K 1.22 0.97 1.70 0.10 3.49 1.01

replication 256K 1.11 0.92 2.05 0.10 3.18 1.00
32K 0.69 0.69 1.25 0.10 2.51 0.73

Cluster Dynamic 64K 0.84 0.69 1.28 0.10 2.65 0.77
Centric with 128K 1.00 0.67 1.30 0.10 2.58 0.79

replication 256K 0.91 0.61 1.35 0.10 2.32 0.76
32K 0.72 0.91 2.00 0.10 2.61 0.85

Cache Static 64K 0.85 0.92 2.04 0.10 2.79 0.88
Centric 128K 0.95 0.90 2.02 0.10 2.73 0.91

256K 0.86 0.85 1.96 0.10 2.49 0.90
32K 0.70 0.86 1.47 0.10 2.75 0.85

Cache Dynamic 64K 0.85 0.89 1.52 0.10 2.95 0.90
Centric without 128K 1.02 0.89 1.58 0.10 2.93 0.94

replication 256K 0.94 0.85 1.84 0.10 2.70 0.93
32K 0.62 0.67 1.21 0.10 2.30 0.70

Cache Dynamic 64K 0.74 0.67 1.24 0.10 2.41 0.73
Centric with 128K 0.87 0.66 1.26 0.10 2.36 0.76

replication 256K 0.80 0.61 1.30 0.10 2.15 0.73

155

Topology Mapping Capacity eon perlbmk gap bzip2 Mean
32K 2.27 1.91 0.24 2.22 1.43

Cluster Static 64K 2.42 1.87 0.24 2.17 1.49
Centric 128K 2.35 1.74 0.24 2.05 1.46

256K 2.13 1.50 0.23 1.83 1.34
32K 2.67 2.43 0.22 2.75 1.56

Cluster Dynamic 64K 2.94 2.39 0.22 2.71 1.64
Centric without 128K 2.87 2.20 0.22 2.57 1.64

replication 256K 2.59 1.84 0.21 2.26 1.53
32K 1.54 1.43 0.22 1.35 1.05

Cluster Dynamic 64K 1.62 1.39 0.21 1.32 1.09
Centric with 128K 1.58 1.28 0.21 1.24 1.07

replication 256K 1.41 1.07 0.21 1.09 0.98
32K 2.14 1.83 0.24 2.19 1.36

Cache Static 64K 2.28 1.80 0.24 2.14 1.40
Centric 128K 2.22 1.68 0.23 2.03 1.38

256K 2.03 1.45 0.23 1.82 1.27
32K 2.36 2.10 0.22 2.44 1.39

Cache Dynamic 64K 2.54 2.07 0.22 2.40 1.44
Centric without 128K 2.49 1.92 0.21 2.28 1.44

replication 256K 2.26 1.63 0.21 2.04 1.35
32K 1.51 1.39 0.21 1.37 1.01

Cache Dynamic 64K 1.60 1.36 0.21 1.34 1.04
Centric with 128K 1.57 1.24 0.21 1.26 1.03

replication 256K 1.40 1.04 0.20 1.11 0.95

Table D.7: IPC for integer benchmarks as a function of DL1 bank size for
round robin steering.

156

Toplogy Mapping Capacity wupwise swim mgrid applu mesa galgel
32K 2.06 0.52 1.63 0.54 2.72 1.78

Cluster Static 64K 2.05 0.52 1.63 0.54 2.68 1.82
Centric 128K 2.03 0.52 1.63 0.54 2.58 1.81

256K 1.98 0.52 1.63 0.53 2.38 1.79
32K 2.00 0.52 1.62 0.53 3.03 1.70

Cluster Dynamic 64K 2.00 0.52 1.62 0.53 3.02 1.74
Centric without 128K 1.97 0.52 1.62 0.53 2.96 1.74

replication 256K 1.94 0.52 1.60 0.53 2.72 1.74
32K 1.91 0.52 1.58 0.53 2.06 1.65

Cluster Dynamic 64K 1.90 0.52 1.57 0.53 2.05 1.69
Centric with 128K 1.88 0.52 1.57 0.53 1.98 1.69

replication 256K 1.84 0.52 1.55 0.53 1.80 1.68
32K 1.95 0.52 1.62 0.53 2.51 1.61

Cache Static 64K 1.95 0.52 1.62 0.53 2.47 1.63
Centric 128K 1.92 0.52 1.61 0.53 2.39 1.63

256K 1.88 0.52 1.61 0.53 2.23 1.61
32K 1.87 0.52 1.58 0.53 2.65 1.55

Cache Dynamic 64K 1.87 0.52 1.58 0.53 2.64 1.58
Centric without 128K 1.85 0.52 1.57 0.53 2.58 1.58

replication 256K 1.81 0.52 1.54 0.53 2.40 1.58
32K 1.80 0.52 1.54 0.53 2.04 1.52

Cache Dynamic 64K 1.80 0.52 1.54 0.53 2.02 1.55
Centric with 128K 1.78 0.52 1.53 0.53 1.95 1.55

replication 256K 1.74 0.52 1.50 0.53 1.78 1.54

157

Topology Mapping Capacity art equake ammp lucas fma3d Mean
32K 0.76 0.56 1.36 0.44 1.19 1.23

Cluster Static 64K 0.76 0.57 1.39 0.44 1.19 1.23
Centric 128K 0.76 0.56 1.45 0.44 1.19 1.23

256K 0.76 0.56 1.44 0.44 1.16 1.20
32K 0.68 0.57 1.29 0.44 1.21 1.24

Cluster Dynamic 64K 0.68 0.57 1.35 0.42 1.22 1.24
Centric without 128K 0.69 0.57 1.44 0.40 1.22 1.24

replication 256K 0.72 0.56 1.45 0.38 1.19 1.21
32K 0.65 0.56 1.18 0.44 1.02 1.10

Cluster Dynamic 64K 0.65 0.55 1.23 0.42 1.03 1.10
Centric with 128K 0.66 0.55 1.30 0.40 1.02 1.10

replication 256K 0.69 0.54 1.32 0.37 0.97 1.07
32K 0.74 0.56 1.28 0.44 1.15 1.17

Cache Static 64K 0.74 0.56 1.30 0.44 1.16 1.18
Centric 128K 0.74 0.56 1.36 0.44 1.15 1.17

256K 0.74 0.56 1.35 0.44 1.12 1.14
32K 0.67 0.56 1.20 0.44 1.16 1.16

Cache Dynamic 64K 0.68 0.56 1.25 0.42 1.17 1.16
Centric without 128K 0.69 0.56 1.32 0.40 1.16 1.16

replication 256K 0.72 0.56 1.34 0.38 1.13 1.14
32K 0.65 0.55 1.12 0.44 0.98 1.06

Cache Dynamic 64K 0.65 0.55 1.16 0.42 0.99 1.07
Centric with 128K 0.66 0.54 1.23 0.40 0.98 1.06

replication 256K 0.69 0.54 1.24 0.37 0.95 1.03

Table D.8: IPC for floating point benchmarks as a function of DL1 bank size
for round robin steering.

158

D.3 Dependence Steering

Topology Mapping Capacity gzip vpr gcc mcf crafty parser
32K 0.95 1.22 2.13 0.10 2.66 0.96

Cluster Static 64K 1.20 1.23 2.17 0.10 3.05 1.00
Centric 128K 1.42 1.22 2.17 0.10 2.99 1.04

256K 1.22 1.15 2.14 0.10 2.61 1.02
32K 1.06 1.21 2.10 0.10 3.00 1.02

Cluster Dynamic 64K 1.42 1.25 2.15 0.10 3.44 1.07
Centric without 128K 1.85 1.26 2.15 0.10 3.37 1.13

replication 256K 1.54 1.21 2.25 0.10 3.00 1.12
32K 0.93 0.76 1.80 0.10 2.74 0.86

Cluster Dynamic 64K 1.21 0.75 1.83 0.10 3.05 0.89
Centric with 128K 1.51 0.72 1.78 0.10 2.91 0.91

replication 256K 1.26 0.65 1.75 0.10 2.51 0.89
32K 0.99 1.27 2.20 0.10 2.73 0.99

Cache Static 64K 1.27 1.28 2.27 0.10 3.18 1.03
Centric 128K 1.53 1.27 2.27 0.10 3.15 1.07

256K 1.30 1.20 2.26 0.10 2.77 1.06
32K 1.04 1.21 2.09 0.10 2.94 1.02

Cache Dynamic 64K 1.39 1.24 2.15 0.10 3.37 1.06
Centric without 128K 1.81 1.25 2.14 0.10 3.30 1.12

replication 256K 1.51 1.21 2.24 0.10 2.94 1.11
32K 0.94 0.79 1.88 0.10 2.78 0.87

Cache Dynamic 64K 1.21 0.79 1.91 0.10 3.14 0.90
Centric with 128K 1.53 0.76 1.86 0.10 3.03 0.94

replication 256K 1.28 0.68 1.83 0.10 2.62 0.91

159

Topology Mapping Capacity eon perlbmk gap bzip2 Mean
32K 2.79 2.04 0.25 2.62 1.57

Cluster Static 64K 2.98 2.02 0.24 2.57 1.66
Centric 128K 2.91 1.89 0.24 2.42 1.64

256K 2.65 1.63 0.24 2.13 1.49
32K 2.89 2.31 0.24 3.31 1.72

Cluster Dynamic 64K 3.03 2.31 0.24 3.29 1.83
Centric without 128K 2.99 2.21 0.24 3.09 1.84

replication 256K 2.78 1.85 0.23 2.69 1.68
32K 1.89 1.84 0.24 1.74 1.29

Cluster Dynamic 64K 1.94 1.79 0.24 1.68 1.35
Centric with 128K 1.85 1.60 0.23 1.55 1.32

replication 256K 1.63 1.29 0.22 1.31 1.16
32K 2.95 2.20 0.25 2.98 1.67

Cache Static 64K 3.14 2.18 0.25 2.92 1.76
Centric 128K 3.10 2.05 0.24 2.75 1.75

256K 2.83 1.76 0.24 2.38 1.59
32K 2.88 2.30 0.24 3.26 1.71

Cache Dynamic 64K 3.02 2.30 0.24 3.25 1.81
Centric without 128K 2.97 2.20 0.24 3.08 1.82

replication 256K 2.77 1.84 0.23 2.67 1.66
32K 2.11 1.92 0.24 1.89 1.35

Cache Dynamic 64K 2.18 1.93 0.24 1.83 1.42
Centric with 128K 2.08 1.72 0.23 1.68 1.39

replication 256K 1.79 1.38 0.22 1.43 1.22

Table D.9: IPC for integer benchmarks as a function of DL1 bank size for
dependence steering.

160

Topology Mapping Capacity wupwise swim mgrid applu mesa galgel
32K 2.44 0.52 1.50 0.54 3.14 2.19

Cluster Static 64K 2.44 0.52 1.50 0.53 3.10 2.24
Centric 128K 2.40 0.52 1.49 0.53 2.96 2.24

256K 2.32 0.52 1.50 0.53 2.70 2.21
32K 2.42 0.51 1.42 0.53 3.33 2.01

Cluster Dynamic 64K 2.38 0.51 1.41 0.53 3.30 2.02
Centric without 128K 2.34 0.51 1.39 0.52 3.18 2.02

replication 256K 2.29 0.49 1.35 0.50 2.87 1.97
32K 2.29 0.51 1.45 0.53 2.39 1.98

Cluster Dynamic 64K 2.26 0.51 1.42 0.53 2.32 2.00
Centric with 128K 2.23 0.51 1.38 0.52 2.19 1.98

replication 256K 2.14 0.50 1.32 0.49 1.97 1.93
32K 2.47 0.52 1.51 0.53 3.31 2.17

Cache Static 64K 2.46 0.52 1.50 0.53 3.27 2.20
Centric 128K 2.43 0.52 1.50 0.53 3.14 2.22

256K 2.35 0.52 1.51 0.53 2.85 2.20
32K 2.39 0.51 1.41 0.53 3.27 1.97

Cache Dynamic 64K 2.37 0.51 1.40 0.52 3.25 1.99
Centric without 128K 2.32 0.51 1.39 0.52 3.14 1.99

replication 256K 2.27 0.50 1.35 0.50 2.85 1.94
32K 2.28 0.51 1.42 0.53 2.59 1.95

Cache Dynamic 64K 2.25 0.51 1.41 0.53 2.53 1.97
Centric with 128K 2.23 0.51 1.39 0.52 2.39 1.96

replication 256K 2.15 0.50 1.34 0.49 2.13 1.91

161

Topology Mapping Capacity art equake ammp lucas fma3d Mean
32K 0.80 0.60 1.40 0.45 1.28 1.35

Cluster Static 64K 0.80 0.60 1.44 0.44 1.28 1.35
Centric 128K 0.80 0.60 1.51 0.44 1.27 1.34

256K 0.81 0.59 1.48 0.44 1.24 1.30
32K 0.71 0.60 1.43 0.43 1.30 1.33

Cluster Dynamic 64K 0.71 0.60 1.47 0.36 1.30 1.33
Centric without 128K 0.72 0.59 1.54 0.34 1.29 1.31

replication 256K 0.70 0.57 1.52 0.32 1.25 1.26
32K 0.71 0.58 1.33 0.43 1.15 1.21

Cluster Dynamic 64K 0.71 0.58 1.36 0.36 1.13 1.20
Centric with 128K 0.72 0.57 1.40 0.34 1.12 1.18

replication 256K 0.71 0.55 1.37 0.32 1.07 1.12
32K 0.80 0.60 1.43 0.45 1.29 1.37

Cache Static 64K 0.80 0.60 1.47 0.44 1.30 1.37
Centric 128K 0.80 0.60 1.55 0.44 1.29 1.36

256K 0.81 0.60 1.53 0.44 1.25 1.32
32K 0.71 0.60 1.44 0.43 1.29 1.32

Cache Dynamic 64K 0.72 0.60 1.48 0.36 1.29 1.32
Centric without 128K 0.72 0.59 1.53 0.34 1.28 1.30

replication 256K 0.71 0.57 1.51 0.32 1.25 1.25
32K 0.71 0.59 1.37 0.43 1.17 1.23

Cache Dynamic 64K 0.71 0.59 1.40 0.36 1.17 1.22
Centric with 128K 0.72 0.57 1.44 0.34 1.14 1.20

replication 256K 0.70 0.55 1.40 0.32 1.08 1.14

Table D.10: IPC for floating point benchmarks as a function of DL1 bank size
for dependence steering.

162

D.4 Predictive Steering

Topology Mapping Steering gzip vpr gcc mcf crafty parser
Cluster Static Predictive 1.34 1.11 2.59 0.10 4.47 1.13
Centric Hybrid 1.34 1.11 2.58 0.10 4.47 1.13

Oracle 1.64 1.22 2.76 0.10 4.86 1.17
Cluster Dynamic Predictive 1.77 1.30 2.79 0.10 5.35 1.21
Centric without Hybrid 1.75 1.30 2.83 0.10 5.31 1.21

replication Oracle 1.77 1.40 3.08 0.11 5.23 1.36
Cluster Dynamic Predictive 1.31 0.84 1.95 0.10 3.48 0.92
Centric with Hybrid 1.29 0.90 2.07 0.10 3.84 0.96

replication Oracle 1.45 1.02 2.36 0.11 4.12 1.12
Cache Static Predictive 1.26 1.10 2.57 0.10 4.16 1.12
Centric Hybrid 1.27 1.10 2.56 0.10 4.16 1.12

Oracle 1.44 1.18 2.69 0.10 4.40 1.15
Cache Dynamic Predictive 1.53 1.27 2.75 0.10 4.82 1.19
Centric without Hybrid 1.53 1.27 2.75 0.10 4.82 1.19

replication Oracle 1.53 1.33 3.01 0.11 4.79 1.32
Cache Dynamic Predictive 1.24 0.86 1.97 0.10 3.52 0.93
Centric with Hybrid 1.24 0.87 1.96 0.10 3.53 0.93

replication Oracle 1.32 0.97 2.33 0.11 3.86 1.08

163

Topology Mapping Steering eon perlbmk gap bzip2 Mean
Cluster Static Predictive 3.31 2.35 0.24 2.93 1.96
Centric Hybrid 3.32 2.33 0.24 2.93 1.95

Oracle 3.65 2.67 0.24 3.19 2.15
Cluster Dynamic Predictive 3.78 2.48 0.24 3.03 2.20
Centric without Hybrid 3.79 2.47 0.24 3.01 2.20

replication Oracle 3.19 2.66 0.25 3.26 2.23
Cluster Dynamic Predictive 1.89 1.50 0.23 1.44 1.37
Centric with Hybrid 2.16 1.64 0.23 1.67 1.49

replication Oracle 2.06 1.75 0.24 1.93 1.62
Cache Static Predictive 3.21 2.36 0.24 2.92 1.90
Centric Hybrid 3.22 2.34 0.24 2.92 1.90

Oracle 3.44 2.49 0.25 3.09 2.02
Cache Dynamic Predictive 3.60 2.41 0.24 2.90 2.08
Centric without Hybrid 3.60 2.41 0.24 2.90 2.08

replication Oracle 3.15 2.59 0.25 3.16 2.12
Cache Dynamic Predictive 2.06 1.53 0.23 1.59 1.40
Centric with Hybrid 2.04 1.52 0.23 1.57 1.40

replication Oracle 2.13 1.72 0.24 1.88 1.56

Table D.11: IPC for integer benchmarks for various predictive steering policies.

164

Topology Mapping Steering wupwise swim mgrid applu mesa galgel
Cluster Static Predictive 2.40 0.52 1.67 0.54 3.67 2.23
Centric Hybrid 2.40 0.52 1.67 0.54 3.67 2.23

Oracle 2.48 0.52 1.68 0.55 3.81 2.25
Cluster Dynamic Predictive 2.52 0.51 1.31 0.53 3.87 2.05
Centric without Hybrid 2.52 0.51 1.31 0.53 3.87 2.05

replication Oracle 2.41 0.51 1.48 0.52 3.54 2.20
Cluster Dynamic Predictive 2.35 0.51 1.32 0.52 2.34 1.98
Centric with Hybrid 2.36 0.51 1.29 0.52 2.63 2.02

replication Oracle 2.28 0.51 1.48 0.52 2.62 2.18
Cache Static Predictive 2.38 0.52 1.67 0.54 3.47 2.15
Centric Hybrid 2.38 0.52 1.67 0.54 3.47 2.15

Oracle 2.44 0.52 1.67 0.54 3.58 2.15
Cache Dynamic Predictive 2.48 0.51 1.34 0.53 3.75 2.00
Centric without Hybrid 2.48 0.51 1.34 0.53 3.75 2.00

replication Oracle 2.40 0.51 1.51 0.52 3.38 2.14
Cache Dynamic Predictive 2.33 0.51 1.32 0.52 2.52 1.96
Centric with Hybrid 2.33 0.51 1.32 0.52 2.52 1.96

replication Oracle 2.26 0.51 1.50 0.52 2.68 2.12

165

Topology Mapping Steering art equake ammp lucas fma3d Mean
Cluster Static Predictive 0.81 0.61 1.77 0.44 1.33 1.45
Centric Hybrid 0.81 0.61 1.77 0.44 1.33 1.45

Oracle 0.81 0.61 1.82 0.44 1.33 1.48
Cluster Dynamic Predictive 0.69 0.57 1.88 0.36 1.34 1.42
Centric without Hybrid 0.69 0.57 1.88 0.36 1.34 1.42

replication Oracle 0.78 0.59 1.94 0.33 1.34 1.42
Cluster Dynamic Predictive 0.70 0.55 1.70 0.37 1.16 1.23
Centric with Hybrid 0.71 0.55 1.74 0.37 1.19 1.26

replication Oracle 0.77 0.58 1.78 0.33 1.23 1.30
Cache Static Predictive 0.81 0.61 1.74 0.44 1.31 1.42
Centric Hybrid 0.81 0.61 1.74 0.44 1.31 1.42

Oracle 0.81 0.61 1.79 0.44 1.32 1.44
Cache Dynamic Predictive 0.70 0.57 1.83 0.36 1.32 1.40
Centric without Hybrid 0.70 0.57 1.83 0.36 1.32 1.40

replication Oracle 0.80 0.59 1.90 0.33 1.33 1.40
Cache Dynamic Predictive 0.69 0.55 1.69 0.37 1.17 1.24
Centric with Hybrid 0.69 0.55 1.69 0.37 1.17 1.24

replication Oracle 0.77 0.57 1.77 0.33 1.22 1.29

Table D.12: IPC for floating point benchmarks for various predictive steering
policies.

166

Topology Mapping Steering gzip vpr gcc mcf crafty parser
Dependence 15.6 9.5 6.3 3.1 7.1 10.0

Cluster Static Predictive 41.3 54.2 33.0 20.2 44.0 36.3
Centric Hybrid 41.2 54.2 33.0 20.2 44.0 36.4

Oracle 39.2 52.4 31.7 12.6 43.8 34.7
Dependence 15.5 9.5 6.4 3.0 7.1 10.0

Cluster Dynamic Predictive 36.1 33.9 28.5 8.8 40.0 23.1
Centric without Hybrid 36.0 33.6 28.4 8.7 40.0 24.0

replication Oracle 37.5 39.9 27.5 9.4 33.4 21.3
Dependence 15.6 9.7 6.4 3.0 7.1 10.0

Cluster Dynamic Predictive 37.4 37.4 28.7 8.3 39.9 25.3
Centric with Hybrid 37.4 37.3 28.8 8.8 39.8 24.7

replication Oracle 36.3 41.6 26.8 9.4 31.8 25.2
Dependence 15.6 9.5 6.4 3.0 7.1 10.0

Cache Static Predictive 41.1 54.2 33.0 20.2 44.0 36.4
Centric Hybrid 41.1 54.2 33.0 20.2 44.0 36.4

Oracle 38.7 52.4 31.7 12.6 43.8 34.7
Dependence 15.5 9.5 6.4 3.0 7.1 10.1

Cache Dynamic Predictive 36.1 33.0 28.7 9.5 39.6 23.2
Centric without Hybrid 36.1 33.0 28.7 9.5 39.6 23.2

replication Oracle 36.4 40.0 27.6 9.5 33.3 21.3
Dependence 15.7 9.7 6.4 3.0 7.1 10.0

Cache Dynamic Predictive 36.9 37.9 28.3 8.5 40.2 25.4
Centric with Hybrid 36.7 37.5 29.1 8.5 40.3 25.3

replication Oracle 35.0 40.7 26.8 9.4 32.1 24.8

167

Topology Mapping Steering eon perlbmk gap bzip2 Mean
Dependence 4.8 2.7 12.5 10.4 8.2

Cluster Static Predictive 54.6 48.3 25.1 36.1 39.3
Centric Hybrid 54.6 48.4 29.5 36.1 39.8

Oracle 55.4 47.0 20.1 33.1 37.0
Dependence 4.7 2.7 12.5 10.3 8.2

Cluster Dynamic Predictive 39.6 28.0 15.3 31.0 28.4
Centric without Hybrid 39.7 27.3 17.4 30.9 28.6

replication Oracle 15.0 29.1 15.0 25.4 25.3
Dependence 4.9 2.7 12.5 10.2 8.2

Cluster Dynamic Predictive 41.7 32.2 15.3 31.8 29.8
Centric with Hybrid 41.1 31.9 15.2 31.9 29.7

replication Oracle 15.4 25.8 14.2 26.2 25.3
Dependence 4.8 2.7 12.5 10.4 8.2

Cache Static Predictive 54.6 48.2 27.4 36.3 39.5
Centric Hybrid 54.6 48.3 25.2 36.1 39.3

Oracle 55.4 47.0 20.1 32.9 36.9
Dependence 4.7 2.7 12.5 10.5 8.2

Cache Dynamic Predictive 39.9 29.5 15.4 31.2 28.6
Centric without Hybrid 39.9 29.5 15.4 31.2 28.6

replication Oracle 15.0 28.6 14.9 24.9 25.2
Dependence 4.9 2.7 12.5 10.4 8.2

Cache Dynamic Predictive 41.7 30.0 15.3 30.7 29.5
Centric with Hybrid 41.1 31.0 18.1 32.2 30.0

replication Oracle 15.4 26.1 14.4 26.9 25.2

Table D.13: Transfer instructions (millions) for integer benchmarks for various
predictive steering policies.

168

Topology Mapping Steering wupwise swim mgrid applu mesa galgel
Dependence 17.5 14.7 21.6 28.5 12.9 19.2

Cluster Static Predictive 46.3 46.8 64.8 59.6 49.4 53.0
Centric Hybrid 46.3 46.8 64.8 59.6 49.4 53.0

Oracle 43.9 44.3 63.2 55.9 49.0 48.8
Dependence 17.4 14.6 21.9 30.2 12.6 19.0

Cluster Dynamic Predictive 39.6 25.2 33.9 45.7 37.5 34.3
Centric without Hybrid 39.6 25.2 33.9 45.7 37.5 34.3

replication Oracle 25.2 30.3 35.0 38.8 26.9 38.8
Dependence 17.6 13.6 21.9 29.6 13.0 19.6

Cluster Dynamic Predictive 39.6 24.9 31.8 46.0 38.0 33.2
Centric with Hybrid 39.5 24.8 32.5 46.1 38.1 34.0

replication Oracle 25.3 28.7 33.9 39.0 26.3 38.8
Dependence 17.9 15.1 21.5 26.9 12.8 19.1

Cache Static Predictive 46.3 46.7 64.8 60.0 49.4 53.3
Centric Hybrid 46.3 46.7 64.8 60.0 49.4 53.3

Oracle 43.9 44.2 63.0 56.1 49.0 49.0
Dependence 17.4 14.3 21.3 28.9 12.5 19.0

Cache Dynamic Predictive 39.5 25.2 36.6 45.6 37.8 33.7
Centric without Hybrid 39.5 25.2 36.6 45.6 37.8 33.7

replication Oracle 25.4 30.5 35.1 36.7 25.7 38.9
Dependence 17.7 13.5 21.5 28.1 12.9 19.5

Cache Dynamic Predictive 40.1 24.9 33.1 46.5 38.0 33.5
Centric with Hybrid 40.1 24.9 33.1 46.5 38.0 33.5

replication Oracle 25.6 28.5 34.3 38.1 26.1 38.8

169

Topology Mapping Steering art equake ammp lucas fma3d Mean
Dependence 24.0 22.6 7.7 30.4 11.5 19.1

Cluster Static Predictive 44.0 51.2 57.4 48.4 57.4 52.6
Centric Hybrid 44.0 51.2 57.4 48.4 57.4 52.6

Oracle 34.0 40.3 54.1 32.9 55.0 47.4
Dependence 24.1 24.8 7.6 28.2 12.1 19.3

Cluster Dynamic Predictive 29.0 23.8 43.3 29.1 50.4 35.6
Centric without Hybrid 29.0 23.8 43.3 29.1 50.4 35.6

replication Oracle 28.9 25.8 35.2 31.2 41.3 32.5
Dependence 24.0 22.8 7.6 29.5 11.8 19.2

Cluster Dynamic Predictive 29.4 21.7 44.7 28.8 49.6 35.2
Centric with Hybrid 28.2 22.0 44.9 28.8 49.8 35.3

replication Oracle 28.7 25.6 35.4 30.6 36.6 31.7
Dependence 23.9 22.7 7.7 29.3 11.5 18.9

Cache Static Predictive 43.3 52.1 57.1 48.6 57.5 52.6
Centric Hybrid 43.3 52.1 57.1 48.6 57.5 52.6

Oracle 34.1 40.8 54.0 33.6 55.0 47.5
Dependence 23.9 24.1 7.6 27.7 11.8 19.0

Cache Dynamic Predictive 28.1 25.0 44.6 30.0 50.6 36.1
Centric without Hybrid 28.1 25.0 44.6 30.0 50.6 36.1

replication Oracle 30.7 24.5 35.6 30.9 41.5 32.3
Dependence 24.0 22.7 7.5 28.2 11.4 18.8

Cache Dynamic Predictive 27.8 24.2 44.7 28.7 50.9 35.7
Centric with Hybrid 27.8 24.2 44.7 28.7 50.9 35.7

replication Oracle 27.9 23.5 35.2 31.0 37.0 31.4

Table D.14: Transfer instructions (millions) for floating point benchmarks for
various predictive steering policies.

170

Bibliography

[1] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock rate

versus IPC: The end of the road for conventional microarchitectures. In Proceedings

of the 27th Annual International Symposium on Computer Architecture, June 2000.

[2] Vikas Agarwal, Stephen W. Keckler, and Doug Burger. Scaling of microarchitectural

structures in future process technologies. Technical Report TR2000-02, Department

of Computer Sciences, The University of Texas at Austin, April 2000.

[3] David H. Albonesi. Dynamic ipc/clock rate optimization. In Proceedings of the 25th

Annual International Symposium on Computer Architecture, pages 282–292, June 1998.

[4] B.S. Amrutur and M.A. Horowitz. Speed and power scaling of SRAMs. IEEE Journal

of Solid State Circuits, 35(2):175–185, February 2000.

[5] C. J. Anderson, J. Petrovick, J. M. Keaty, J. Warnock, G. Nussbaum, J. M. Tendier,

C. Carter, S. Chu, J. Clabes, J. DiLullo, P. Dudley, P. Harvey, B. Krauter, J. LeBlanc,

Lu Pong-Fei, B. McCredie ang G. Plum, P. J. Restle, S. Runyon, M. Scheuermann,

S. Schmidt, J. Wagoner, R. Weiss, S. Weitzel, and B. Zoric. Physical design of a fourth-

generation POWER GHz microprocessor. In Proceedings of the IEEE International

Solid-State Circuits Conference, pages 232–233, February 2001.

[6] Amirali Baniasadi and Andreas Moshovos. Instruction distribution heuristics for quad-

cluster dynamically-scheduled, superscalar processors. In Proceedings of the 33rd In-

ternational Symposium on Microarchitecture, pages 337–347, December 2000.

171

[7] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Maps: A

compiler-managed memory system for raw machines. In Proceedings of the 26th Annual

International Symposium on Computer Architecture, pages 4–15, May 1999.

[8] Mark T. Bohr. Interconnect scaling – the real limiter to high performance ULSI. Solid

State Technology, 39(9):105–111, September 1996.

[9] Geordie Braceras, Alan Roberts, John Connor, Reid Wistort, Terry Frederick, Marcel

Robillard, Stu Hall, Steve Burns, and Matt Graf. A 940MHz data rate 8Mb CMOS

SRAM. In Proceedings of the IEEE International Solid-State Circuits Conference,

pages 198–199, February 1999.

[10] Doug Burger and Todd M. Austin. The simplescalar tool set version 2.0. Technical

Report 1342, Computer Sciences Department, University of Wisconsin, June 1997.

[11] Doug Burger, Alain Kägi, and M.S. Hrishikesh. Memory hierarchy extensions to

simplescalar 3.0. Technical Report TR99-25, Department of Computer Sciences, The

University of Texas at Austin, April 2000.

[12] Ramon Canal, Joan Manuel Parcerisa, and Antonio Gonzalez. A cost-effective clus-

tered architecture. In International Conference on Parallel Architectures and Compi-

lation Techniques, pages 160–168, October 1999.

[13] Ramon Canal, Joan Manuel Parcerisa, and Antonio Gonzalez. Dynamic cluster as-

signment mechanisms. In Proceedings of the Sixth International Symposium on High-

Performance Computer Architecture, pages 133–142, Toulouse, France, January 2000.

IEEE Computer Society TCCA.

172

[14] Sangyeun Cho, Pen-Chung Yew, and Gyungho Lee. Decoupling local variable accesses

in a wide-issue superscalar processor. In proceedings of the 26th annual international

symposium on computer architecture, pages 100–110, May 1999.

[15] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Measuring experimental

error in microprocessor simulation. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 266–277, July 2001.

[16] Rajagopalan Desikan, Lakshminarasimhan Sethumadhavan, Ramadass Nagarajan, Doug

Burger, and Stephen W. Keckler. Lightweight distributed selective re-execution and

its implications for value speculation. In 1st Value Prediction Workshop, June 2003.

[17] Keith Diefendorff. Power4 focuses on memory bandwidth. Microprocessor Report,

13(13), October 1999.

[18] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stamm, and

Dean M. Tullsen. Simultaneous multithreading: A platform for next-generation pro-

cessors. IEEE Micro, 17(5):12–19, 1997.

[19] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multicluster architecture:

Reducing cycle time through partitioning. In Proceedings of the 30th International

Symposium on Microarchitecture, December 1997.

[20] M. M. Fernandes, J. Llosa, and N. Topham. Distributed modulo scheduling. In

Proceedings of the Sixth International Symposium on High-Performance Computer Ar-

chitecture, January 1999.

[21] E. Gibert, J. Sanchez, and A. Gonzalez. Effective instruction scheduling techniques

for an interleaved cache clustered VLIW processor. In Proceedings of the 35th Annual

173

International Symposium on Microarchitecture, pages 123– 133, 2002.

[22] Shashank Gupta, Stephen W. Keckler, and Doug Burger. Technology independent area

and delay estimates for microprocessors building blocks. Technical Report TR2000-01,

Department of Computer Sciences, The University of Texas at Austin, Austin, TX,

February 2000.

[23] Lance Hammond, Basem Nayfeh, and Kunle Olukotun. A single-chip multiprocessor.

IEEE Computer, 30(9):79–85, September 1997.

[24] A. Hartstein and T.R. Puzak. The optimum pipeline depth for a microprocessor. In

Proceedings of the 29th Annual International Symposium on Computer Architecture,

pages 7–13, June 2002.

[25] John L. Henning. Spec cpu2000: Measuring cpu performance in the new millennium.

Computer, 33(7):28–35, 2000.

[26] Dana S. Henry, Bradley C. Kuszmaul, and Vinod Viswanath. The ultrascalar processor

- an asymptotically scalable superscalar microarchitecture. In The 20th Anniversary

Conference on Advanced Research in VLSI, May 1999.

[27] Mark Horowitz, Ron Ho, and Ken Mai. The future of wires. In Seminconductor

Research Corporation Workshop on Interconnects for Systems on a Chip, May 1999.

[28] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and P. Shiv-

akumar. The optimal logic depth per pipeline stage is 6 to 8 fo4 inverter delays. In

Proceedings of the 29th Annual International Symposium on Computer Architecture,

pages 14–24, June 2002.

174

[29] M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Impact of technology scaling

on instruction execution throughput. Technical Report TR2000-06, Department of

Computer Sciences, The University of Texas at Austin, November 2000.

[30] Ron Kalla, Balaram Sinharoy, and Joel Tendler. POWER5: IBM’s next generation

POWER microprocessor. In Proceedings of Hot Chips 15, August 2003.

[31] R.E. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, March/April

1999.

[32] Richard E. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, 1999.

[33] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform

cache structure for wire-dominated on-chip caches. In Proceedings of the 10th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, 2002.

[34] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceed-

ings of the Eighth International Symposium on Computer Architecture, pages 81–87,

May 1981.

[35] S. R. Kunkel and J. E. Smith. Optimal pipelining in supercomputers. In Proceedings

of the 13th Annual International Symposium on Computer Architecture, pages 404–411,

June 1986.

[36] Bradley C. Kuszmaul, Dana S. Henry, and Gebriel H. Loh. A comparison of scalable

superscalar processors. In Proceedings of the Eleventh Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 126–137, June 1999.

175

[37] Walter Lee, Rajeev Barua, Devabhaktuni Srikrishna, Jonathan Babb, Vivek Sarkar,

, and Saman Amarasinghe. Space-time scheduling of instruction-level parallelism on

a Raw machine. In Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems(ASPLOS), pages 46–57, October 1998.

[38] D. Limaye, R. Rakvic, and J. P. Shen. Parallel cachelets. In Proceedings. 2001

International Conference on Computer Design, September 2001.

[39] Doug Matzke. Will physical scalability sabotage performance gains? IEEE Computer,

30(9):37–39, September 1997.

[40] S. Naffziger. A subnanosecond 0.5µm 64b adder design. In Digest of Technical Papers,

International Solid-State Circuits Conference, pages 362–363, February 1996.

[41] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang. The case for a single-chip multiprocessor. In Proceedings of the 7th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, pages 2–11, October 1996.

[42] Subbarao Palacharla, Norman P. Jouppi, and J.E. Smith. Complexity-effective su-

perscalar processors. In Proceedings of the 24th Annual International Symposium on

Computer Archtecture, pages 206–218, June 1997.

[43] Il Park, Chong Liang Ooi, and T.N. Vijaykumar. Reducing design complexity of the

load/store queue. In Proceedings of the 36th Annual International Symposium on

Microarchitecture, December 2003.

[44] Paul Racunas and Yale N. Patt. Partitioned first-level cache design for clustered

microarchitectures. In Proceedings of the 17th annual international conference on

176

Supercomputing, pages 22 – 31, June 2003.

[45] Glenn Reinman, Todd Austin, and Brad Calder. A scalable front-end architecture for

fast instruction delivery. In Proceedings of the 26th Annual International Symposium

on Computer Architecture, pages 234–245, May 1999.

[46] Glenn Reinman and Norm Jouppi. Extensions to cacti, 1999. Unpublished document.

[47] R. Riedlinger and T. Grutkowski. The high-bandwidth 256kb 2nd-level cache on an

itanium microprocessor. In Proceedings of the IEEE International Solid-State Circuits

Conference, pages 340–537, February 2002.

[48] Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, and Todd M. Austin. On high-

bandwidth data cache design for multi-issue processors. In International Symposium

on Microarchitecture, pages 46–56, 1997.

[49] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Ujval J. Kapasi, and

John D. Owens. Register organization for media processing. In Proceedings of the

Sixth International Symposium on High-Performance Computer Architecture, January

2000.

[50] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith. Trace proces-

sors. In Proceedings of 30th Annual International Symposium on Microarchitecture,

pages 138–148, December 1997.

[51] The international technology roadmap for semiconductors. Semiconductor Industry

Association, 2001.

[52] Lakshminarasimhan Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.

Moore, and Stephen W. Keckler. Scalable hardware memory disambiguation for high

177

ILP processors. In Proceedings of the 36th Annual International Symposium on Mi-

croarchitecture, December 2003.

[53] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically

characterizing large scale program behavior. In International Conference on Architec-

tural Support for Programming Languages and Operating Systems, October 2002.

[54] Hiroshi Shimizu, Kenji Ijitsu, Hideo Akiyoshi, Keizo Aoyama, Hirotaka Takatsuka,

Kou Watanabe, Ryota Nanjo, and Yoshihiro Takao. A 1.4ns access 700MHz 288Kb

SRAM macro with expandable architecture. In Proceedings of the IEEE International

Solid-State Circuits Conference, pages 190–191, 459, February 1999.

[55] Premkishore Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated cache tim-

ing, power and area model. Technical Report 2001/2, Compaq Computer Corporation,

August 2001.

[56] Gurindar S. Sohi. Instruction issue logic for high-performance, interruptible, multiple

functional unit, pipelined computers. IEEE Transactions on Computers, 39(3):349–

359, March 1990.

[57] E. Sprangle and D. Carmean. Increasing processor performance by implementing

deeper pipelines. In Proceedings of the 29th Annual International Symposium on

Computer Architecture, pages 25–34, June 2002.

[58] Dennis Sylvester and Kurt Keutzer. Rethinking deep-submicron circuit design. IEEE

Computer, 32(11):25–33, November 1999.

[59] B. S. Thakar and Gyungho Lee. Access region cache: a multi-porting solution for future

wide-issue processors. In Proceedings. 2001 International Conference on Computer

178

Design, September 2001.

[60] A. J. van Genderen and N. P. van der Meijs. Xspace user’s manual. Technical Report

ET-CAS 96-02, Delft University of Technology, Department of Electrical Engineering,

August 1996.

[61] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,

Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb,

Saman Amarasinghe, and Anant Agarwal. Baring it all to software: Raw machines.

IEEE Computer, 30(9):86–93, September 1997.

[62] Steven J.E. Wilton and Norman P. Jouppi. An enhanced access and cycle time model

for on-chip caches. Technical Report 95/3, Digital Equipment Corporation, Western

Research Laboratory, 1995.

[63] A. Wolfe and R. Boleyn. Two-ported cache alternatives for superscalar processors. In

Proceedings of the 26th Annual International Symposium on Microarchitecture, pages

41–48, December 1993.

[64] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation techniques for improving

load related instruction scheduling. In Proceedings of the 26th Annual International

Symposium on Computer Architecture, pages 42–53, May 1999.

[65] Cangsang Zhao, Uddalak Bhattacharya, Martin Denham, Jim Kolousek, Yi Lu, Yong-

Gee Ng, Novat Nintunze, Kamal Sarkez, and Hemmige Varadarajan. An 18Mb,

12.3GB/s cmos pipeline-burst cache SRAM with 1.54Gb/s/pin. In Proceedings of

the IEEE International Solid-State Circuits Conference, pages 200–201,461, February

1999.

179

Index

Abstract, vi

Acknowledgments, v

Analytical wire model, 19

Appendices, 117

Appendix

Benchmark Description, 140

Clustered Cache Performance, 150

Scaling IPC, 142

Structure Access Times, 118

Bank predictive steering, 97

Baseline clustered processor, 73

Bibliography, 179

Clock scaling, 25

Clustered Caches, 67

Clustered microarchitecture, 68

Clustered primary memory systems, 4

Clustered topologies, 78

Conclusions, 111

Dedication, iv

ECACTI analytical models, 32

Increasing local cache bank hits, 7

Introduction, 1

Methodology

Clustered caches, 71

Processor scaling, 50

Steering Policies, 100

Microarchitectural structures

Caches, 39

Content Addressable Memories, 43

Register Files, 41

Validation, 45

Pipeline versus capacity scaling, 55

Processor scaling methodology

Modeling deeper pipelines, 54

Simulation parameters, 52

Target Microprocessor, 51

Related Work

Design of clustered caches, 13

Instruction steering, 16

Scaling of conventional processors, 9

Related Work, 9

Scaled processor performance, 59

Scaling of conventional architectures, 1

Scaling of Conventional Architectures, 49

Statically interleaved caches, 77

Steering Policies for Clustered Cache Ar-

chitectures, 95

Summary of processor performance scal-

ing, 63

Summary of technology trends, 46

Technology Trends, 18

Wire delay impact on microarchitecture,

29

Wire Scaling, 24

180

Vita

Vikas Agarwal was born in New Delhi, India on 27 December 1974, the son of Dr.

Yogeshwar K. Agarwal and Usha Agarwal. He received the Bachelor of Technology degree in

Electrical Engineering from the Indian Institute of Technology, Bombay in 1996. He entered

the graduate program in Solid State Electronics at the University of Texas at Austin in

September 1996 and graduated with a Master of Science degree in 1998. Subsequently he

joined the Ph.D. program in Computer Engineering at the University of Texas at Austin.

Permanent address: 11900 Hobby Horse Court Apt. 212
Austin, Texas 78758

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

181

