
Copyright

by

Changkyu Kim

2007

The Dissertation Committee for Changkyu Kim

certifies that this is the approved version of the following dissertation:

A Technology-Scalable Composable Architecture

Committee:

Douglas C. Burger, Supervisor

James C. Browne

Stephen W. Keckler

Kathryn S. McKinley

Charles R. Moore

A Technology-Scalable Composable Architecture

by

Changkyu Kim, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

To my loving wife, Eunyoung Park

And my mother, Inja Yum

Acknowledgments

First and foremost, I am forever grateful to my advisor, DougBurger for his constant sup-

port, advice and patience. I thank Doug Burger for being not only a great research advisor,

but an excellent mentor. He has believed in me from day one, and always encouraged me

to aim at higher goals than I could think of. It has been alwaysgreat pleasure working with

him and I am truly fortunate and at the same time proud to have him as my advisor. I hope

I can make him proud, too, throughout my future career.

I am deeply indebted to my co-advisor Steve Keckler for his technical expertise and

guidance. His relentless passion and research vision has greatly influenced me. I cannot

thank him enough for his valuable advice and insights that inspired this dissertation work.

I am very thankful to the other members of my Ph.D. committee,Kathryn McKin-

ley, Chuck Moore and James Browne for their helpful feedbackon my thesis research.

Special thanks go to Kathryn McKinley for her thoughtful advice and technical comments

on this dissertation work.

The work described in this dissertation would not have been possible without the

help of members in the CART research group. I especially thank Karu Sankaralingam

for having numerous technical and non-technical conversation and keeping me healthy by

exercising together. I would like to give special thanks to Jaehyuck Huh who helped me to

v

settle in and has been good company.

Many thanks are extended to Heather Hanson and Sadia Sharif for offering help on

proofreading dissertation drafts; Ramadass Nagarajan foranswering my tedious questions

on simulators and benchmarks patiently; Premkishore Shivakumar and Simha Sethumad-

havan for sharing joys and difficulties together ever since we all started doctoral study at

the same time; Madhu Sibi Govindan for bringing humor every day and being a wonderful

cubicle mate; Paul Gratz for being an great project partner when we worked together on

the TRIPS project weekendless; Nitya Ranganathan, HaimingLiu, and Divya Gulati whom

I collaborated with in the TFlex study; Bert Maher, Katie Coons and Mark Gebhart for

helping with compiler infrastructure and performance evaluation.

I also thank Pradeep Dubey, Yen-Kuang Chen, and Chris Hughesfor giving me a

great internship opportunity at Intel. I would also like to acknowledge that this work is

supported by the Defense Advanced Research Projects Agencyunder contract F33615-01-

C-1892, NSF CAREER grants CCR-9985109 and CCR-9984336, NSFgrant EIA-0303609,

two IBM University Partnership awards, and a grant from the Intel Research Council.

Last, but not the least, I would like to thank my mother, Inja Yum for her uncondi-

tional sacrifice and love throughout my life. My mom has trulybeen a blessing and I thank

her for her many prayers and support throughout my entire life. I would like to deeply

thank my brother, Hyungkyu Kim, who has been my best friend and great supporter now,

for keeping good company with my mom since I came here in US to start doctoral study. I

thank my loving wife and the best friend, Eunyoung Park, for her constant love and emo-

tional support throughout. She brought so much happiness and warmth in my life. I look

forward to our tomorrow and the next day, as we grow old together. Without my mom, my

brother, and my wife, I would not be what I am now. I dedicate this dissertation to them.

vi

CHANGKYU K IM

The University of Texas at Austin

August 2007

vii

A Technology-Scalable Composable Architecture

Publication No.

Changkyu Kim, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Douglas C. Burger

Clock rate scaling can no longer sustain computer system performance scaling due

to power and thermal constraints and diminishing performance returns of deep pipelining.

Future performance improvements must therefore come from mining concurrency from ap-

plications. However, increasing global on-chip wire delays will limit the amount of state

available in a single cycle, thereby hampering the ability to mine concurrency with conven-

tional approaches.

To address these technology challenges, the processor industry has migrated to chip

multiprocessors (CMPs). The disadvantage of conventionalCMP architectures, however,

is their relative inflexibility to meet the wide range of application demands and operating

targets that now exist. The granularity (e.g., issue width), the number of processors in a chip

and memory hierarchies are fixed at design time based on the target workload mix, which

result in suboptimal operation as the workload mix and operating targets change over time.

In this dissertation, we explore the concept ofcomposabilityto address both the

viii

increasing wire delay problem and the inflexibility of conventional CMP architectures. The

basic concept ofcomposabilityis the ability to dynamically adapt to diverse applications

and operating targets, both in terms of granularity and functionality, by aggregating fine-

grained processing units or memory units.

First, we propose a composable on-chip memory substrate, called Non-Uniform

Access Cache Architecture (NUCA) to address increasing on-chip wire delay for future

large caches. The NUCA substrate breaks large on-chip memories into many fine-grained

memory banks that are independently accessible, with a switched network embedded in

the cache. Lines can be mapped into this array of memory bankswith fixed mappings or

dynamic mappings, where cache lines can move around within the cache to further reduce

the average cache hit latency.

Second, we evaluate a range of strategies to build a composable processor. Com-

posable processors provide flexibility of adapting the granularity of processors to various

application demands and operating targets, and thus choosethe hardware configurations

best suited to any given point. A composable processor consists of a large number of low-

power, fine-grained processor cores that can be aggregated dynamically to form more pow-

erful logical processors. We present architectural innovations to support composability in a

power- and area-efficient manner.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xvi

Chapter 1 Introduction 1

1.1 Microarchitecture Configuration for Optimal Points 2

1.2 Other Approaches . 4

1.3 Principles of Composable Architecture 6

1.4 Thesis Statement . 7

1.5 Dissertation Contributions 7

1.5.1 Composable Memory Systems . 7

1.5.2 Composable Processors . 9

1.6 Dissertation Organization 12

Chapter 2 Related Work 13

x

2.1 Composable Processors .13

2.1.1 Composing Processors from Smaller Cores 14

2.1.2 Partitioning large cores .16

2.1.3 Multiple Granularities . 17

2.1.4 Reconfigurability . 18

2.2 Composable On-chip Memory System 19

2.2.1 Uniprocessor Level-2 Caches . 20

2.2.2 Chip Multiprocessor Level-2 Caches 21

Chapter 3 Composable On-Chip Memory Systems 23

3.1 Uniform Access Caches . 26

3.1.1 Experimental Methodology . 27

3.1.2 UCA Evaluation . 29

3.2 Static NUCA Implementations .. 30

3.2.1 Private Channels . 31

3.2.2 Switched Channels . 33

3.3 TRIPS NUCA design . 36

3.3.1 TRIPS Chip Overview . 38

3.3.2 TRIPS Secondary Memory Subsystem 39

3.3.3 Composable Secondary Memory Organization 42

3.3.4 Network Performance Evaluations 45

3.4 Summary . 50

Chapter 4 Dynamically Mapped Composable Memories 52

4.1 Uniprocessor D-NUCA . 53

xi

4.1.1 Policy Exploration . 53

4.1.2 Performance Evaluation . 61

4.2 Chip-Multiprocessor D-NUCA .. 70

4.2.1 CMP L2 Cache Design Space . 72

4.2.2 Effect of Sharing Degree in CMPs 76

4.2.3 Effect of Dynamic Data Migration79

4.3 Summary . 84

Chapter 5 Composable Processors 87

5.1 ISA Support for Composability .. 91

5.1.1 Blocks . 91

5.1.2 Direct Instruction Communications 93

5.1.3 Support for Composability . 93

5.1.4 ISA Compatibility . 95

5.2 Microarchitectural Support for Composability 95

5.2.1 Overview of TFlex Execution . 99

5.2.2 Composable Instruction Fetch .100

5.2.3 Composable Control-flow Prediction 101

5.2.4 Composable Instruction Execution 103

5.2.5 Composable Memory System . 106

5.2.6 Composable Instruction Commit108

5.2.7 Level-2 Cache Organization for Composable Processors 109

5.2.8 Microarchitectural Reconfiguration 112

5.3 Microarchitecture Evaluation 113

5.3.1 Distributed Fetch and Commit Overheads 115

xii

5.3.2 Distributed Block Prediction Overheads 118

5.3.3 Operand Communication Overheads120

5.3.4 Distributed Memory Disambiguation Overheads 124

5.3.5 Level-2 Cache Organizations for TFlex 127

5.4 Comparison Across Configurations 128

5.4.1 Baseline . 129

5.4.2 Performance Comparison . 131

5.4.3 Area Efficiency Comparison . 134

5.4.4 Power Efficiency Comparison . 136

5.4.5 Ideal Operating Points . 139

5.5 Summary . 142

Chapter 6 Conclusions 144

6.1 Summary . 145

6.1.1 NUCA (Non-Uniform Access Cache Architecture) 146

6.1.2 CLP (Composable Lightweight Processor) 148

6.2 Final Thoughts . 151

Appendix A Comparison Between Hand-Optimized And CompiledCode 155

Appendix B Area Comparison with the Alpha 21264 157

Bibliography 160

Vita 180

xiii

List of Tables

3.1 Benchmarks used for performance experiments 28

3.2 Performance of UCA organizations 29

3.3 S-NUCA-1 evaluation . 32

3.4 S-NUCA-2 performance . 35

3.5 Average L2 cache access time in TRIPS (with synthetic traffic) 48

4.1 D-NUCA base performance . 61

4.2 D-NUCA policy space evaluation .. 62

4.3 Performance of D-NUCA with PTP search 65

4.4 Performance of an L2/L3 Hierarchy 65

4.5 Effect of technology models on results 66

4.6 Simulated system configuration 74

4.7 Application parameters for workloads 76

4.8 Average D-NUCA L2 hit latencies with varying sharing degrees 80

5.1 Microarchitectural parameters for a single TFlex core 114

5.2 Simulator and Benchmarks .115

5.3 Microarchitecture parameters and area estimates (mm2) 133

xiv

5.4 Sample Power Breakdown (Watt) for High-ILP and Low-ILP Benchmarks . 137

5.5 Optimal point at different operating targets 142

B.1 Area comparison between the Alpha 21264 and a single TFlex core 158

xv

List of Figures

3.1 Various level-2 cache architectures. 25

3.2 UCA and S-NUCA-1 cache design . 27

3.3 Switched NUCA design . 34

3.4 TRIPS die photo . 36

3.5 TRIPS prototype block diagram .. 38

3.6 Memory tile block diagram highlighting OCN router in detail 40

3.7 Network tile block diagram in detail 41

3.8 Various memory organizations in the TRIPS secondary memory system . . 43

3.9 TRIPS OCN 40-bit address field composition 44

3.10 Throughput with uniform random traffic 46

3.11 Throughput with the neighbor traffic 47

3.12 TRIPS S-NUCA cache hit latency .. 48

3.13 Throughput with the various FIFO depth 49

4.1 Mapping bank sets to banks in D-NUCA 54

4.2 Way distribution of cache hits .. . 60

xvi

4.3 16MB cache performance for various applications including SPEC2000,

NAS suite, and Sphinx . 67

4.4 Performance summary of major cache organizations : art 68

4.5 Performance summary of major cache organizations : mcf 69

4.6 Performance summary of major cache organizations : AVG 69

4.7 Composable cache substrate for flexible sharing degree 72

4.8 Various sharing degrees from the sharing degree one (a),the sharing degree

16 (b), to the sharing degree four (c) .. 73

4.9 On-chip network traffic, bank accesses, and off-chip memory traffic with

varying sharing degrees (normalized to SD=1) 78

4.10 D-NUCA execution times (normalized to S-NUCA with SD=1) 80

4.11 On-chip interconnect traffic (normalized to S-NUCA with SD=1) 82

4.12 Number of banks accesses (normalized to S-NUCA with SD=1) 83

4.13 Total energy consumed by on-chip L2 cache subsystem (normalized to S-

NUCA with SD=1) . 84

5.1 Three dynamically assigned CLP configurations 89

5.2 Block format (from the paper by Sankaralingam et al. [99]) 92

5.3 Instruction formats (from the paper by Sankaralingam etal. [99]) 94

5.4 An example depicting interleaving of different microarchitectural structures

for a two-core processor . 97

5.5 TFlex execution stages: execution of two successive blocks (A0, A1) and

(B0,B1) from two different threads executing simultaneously on a 16-core

TFlex CLP with each thread running on 8 cores 98

5.6 Illustration of different stages of distributed fetch and associated latencies . 100

xvii

5.7 Block mapping for one-core and four-core processors 104

5.8 Inter-core operand communication 106

5.9 Four-stage commit procedure in TFlex 108

5.10 Different L2 organizations 110

5.11 Single core TFlex microarchitecture 113

5.12 Distributed fetch overheads 116

5.13 Distributed commit overheads 117

5.14 Distributed next-block predictor misprediction rates from 1-core to 32-core

configuration . 118

5.15 Average misprediction rate for 16-core and 32-core with various starting bit

positions to determine a block owner .. 119

5.16 Average hop latency for control hand-off for 16-core and 32-core with var-

ious starting bit positions to determine a block owner 120

5.17 Average delivery times of memory operands and all operands : default . . . 121

5.18 Average delivery times of memory operands and all operands : assuming

ideal memory scheduling . 122

5.19 Operand network sensitivity analysis: High-ILP Benchmarks 123

5.20 Operand network sensitivity analysis: Low-ILP Benchmarks 124

5.21 Number of LSQ replays normalized to the configuration of36-entry, one-

block wakeup at commit . 125

5.22 Performance normalized to the configuration of 36-entry, one-block wakeup

at commit . 126

5.23 Performance comparison between the decoupled L2 design and the inte-

grated L2 design . 128

xviii

5.24 Relative performance (1/cycle count) for TRIPS normalized to Intel Core2

Duo. 130

5.25 Performance of different applications running on 2 to 32 cores on a CLP

normalized to a single TFlex core . 132

5.26 Performance per unit area for different applications running on 2 to 32 cores

on TFlex CLP normalized to single-core TFlex 135

5.27 Performance2/Watt for different applications running on 2 to 32 cores on

TFlex CLP normalized to single-core TFlex - without clock gating 138

5.28 Performance2/Watt for different applications running on 2 to 32 cores on

TFlex CLP normalized to single-core TFlex - with clock gating 140

5.29 Optimal point at different operating targets 141

A.1 Performance comparison between compiler-optimized and hand-optimized

applications under the baseline configuration and the perfect configuration . 156

xix

Chapter 1

Introduction

Over the past two decades, the continuing scaling of CMOS devices and aggressive pipelin-

ing achieved a 40% per year increase in clock speeds: from 33MHz in 1990 to over 3GHz in

2004, and contributed the bulk of the performance growth during the same period. However,

recent trends show that doubling of clock frequencies everytwo years has come to an end

as power dissipation and thermal issues become first-order design constraints [46,82,106],

and as pipeline depths have reached their practical limits [45, 51]. This technology trend

heralds the end of the frequency scaling era. Intel canceledits high frequency Pentium 4

successors [125], and major processor companies have announced multicore architectures

for future microprocessor designs, which are further evidence of the shift into the concur-

rency era. Therefore, most performance improvements in future systems must come from

power-efficient exploitation of concurrency.

Another technology trend is that the delay of on-chip globalwires grows rela-

tive to the delay of gates [50, 77]. The increasing wire delayhas already affected tradi-

tional microarchitectures. For example, the Intel Pentium4 assigns two separate pipeline

1

stages (called “drive” stages) among the total 20 stages forrouting information around a

chip [49]. In addition, the single uniform access latency seen in traditional large on-chip

caches has changed into different latencies depending on the physical location of data within

the cache [88,120]. While the recent trend of decelerating frequency growth may lessen the

effect of wire delays, increasing resistive delay through global on-chip wires will allow only

a small fraction of a chip to be reachable within a single cycle [2], and thus limit the ability

to mine concurrency with conventional approaches. Eventually, increasing global on-chip

wire delays will force architectures to become communication driven and inherently dis-

tributed [89]. Future architectures must therefore address wire delays explicitly to achieve

high performance.

1.1 Microarchitecture Configuration for Optimal Points

Good microarchitecture configurations are affected by the following two variables, work-

load characteristics and operating targets (metrics).

• Workload Diversity: Over the last decades, application domains have become in-

creasingly diversified, now including desktop, network, server, scientific, graphics

and digital signal processing. In each domain, applications have different granulari-

ties of concurrency and place different demands on underlying hardware. Moreover,

many future applications such as video databases are expected to have heterogeneous

computational requirements [27]. In addition to diverse granularities of concurrency,

applications have diverse memory requirements. First, applications from different

domains have different memory access patterns [10]. Traditional desktop and enter-

prise applications tend to have more irregular access patterns, while scientific and

2

graphics applications typically have regular and streaming access patterns [72]. Sec-

ond, the required size of working sets vary across differentapplications or different

execution phases within the same application [1,4,26,91,96].

• Operating Targets: A single application can benefit from multiple distinct hardware

configurations depending on operating targets (or metrics)[41]. The operating tar-

gets depend on what we wish to optimize, including the shortest execution time of

a single-threaded application, maximum throughput, power, energy, or the energy-

delay product. For example, to maximize performance of a single-threaded applica-

tion, the whole system needs as many hardware resources as possible to be assigned

for the application, thus leading to a processor design withfew, but large, aggres-

sive cores. To maximize throughput under abundant threads,the system needs to

maximize performance per unit area and should favor many small cores. A simi-

lar argument can be applied to maximizing power efficiency [81]. DVFS (dynamic

voltage-frequency scaling) can be used to address various power-performance needs

without changing hardware configurations [73]. However, powering down or reduc-

ing the voltage/frequency of unused structures cannot reduce the power consumption

as much as designing a smaller core to begin with [6], which motivates determin-

ing the right hardware configurations depending on the target performance-power-

throughput profiles.

Despite diverse workload characteristics and operating targets, conventional pro-

cessors and cache architectures have a rigid granularity, meaning that designers must fix the

granularity of processors and balance the capacity and access time of each cache hierarchy

based on the intended workload mix. This fixed granularity ofprocessors and cache hier-

archy will typically result in either performance or power loss (or both) outside the target

3

application mix and intended operating settings.

To handle these two types of diversity, future microarchitectures should change

configurations to extract different levels of concurrency efficiently and provide optimized

working points at different operating targets. The changing of hardware configurations in-

cludes both allocating different amounts of hardware resources (e.g, issue with, issue win-

dow size and cache capacity, etc.) and providing different types of hardware organizations

(e.g, cache memory or scratchpad memory).

1.2 Other Approaches

The recent reduction in frequency scaling rates implies that most performance improve-

ments in the future will come from exploiting more concurrency. Concurrency can be ex-

ploited by many levels of modern systems: by hardware (ILP/superscalar processors [109]),

by support in the ISA and compiler (VLIW architectures [87]), or by the compiler [71] or

programmer [104] in parallel systems. Since superscalar and VLIW processors’ widths

have not scaled recently due to growing wire delays, increasing design complexity, and

power constraints, industry has migrated toward chip multiprocessors (CMPs) composed

of moderately complex cores and is hoping that software threads will provide the needed

concurrency. However, such a solution has the several limitations.

First, while conventional chip multiprocessors offer a power-efficient way to mine

concurrency from parallel workloads, the serial executionportion of these parallel work-

loads or the single-threaded workloads tend to be limited bythe performance of single core

in CMPs (that can sustain modest ILP). Unless a programmer ora compiler parallelizes

the code (an approach that has produced only limited successfor past decades), Amdahl’s

law ultimately hampers the overall system performance growth. Second, current CMP de-

4

signs have fixed granularity, meaning that the size of a processor core and the number of

processor cores in a chip are fixed at design time. Any such fixed design point will result

in suboptimal operation in terms of either performance or power (or both) across a diverse

workload mix due to the varied granularity of types of concurrency.

One alternative design to alleviate inefficiency caused by these diversities is inte-

grating multiple heterogeneous processor cores that are tuned to specific applications in a

single die. The “Single-ISA Heterogeneous Multi-Core Architecture” work by Kumar et

al. [66, 68] or the “Asymmetric Chip Multiprocessors” work by Balakrishnan et al. [9] is

one approach to address the diversity problem. Their approach is to build a chip multipro-

cessor out of cores of various sizes and performance profiles. While a large processor core

speeds up a sequential region of code or application with fewer threads, many small proces-

sor cores collectively run parallel software. The design complexity also can be reduced by

reusing the off-the-shelf processor cores from previous generations. However, the partic-

ular processor core composition is still fixed at design time, which may cause inefficiency

outside the target workload mix. Another challenge in termsof manufacturability is the

difficulty of silicon integration of heterogeneous cores. When processor cores, with differ-

ent performance profiles, from previous generations are integrated, they require different

manufacturing processes [6,128].

Another approach to integrated heterogeneity is to build a heterogeneous chip that

contains multiple different cores, each designed to run a distinct class of workloads ef-

fectively. The Tarantula processor [29] and the IBM Cell [59] are good examples of this

approach. While such specialization provides application-specific processor efficiency, the

increased design complexity caused by the poor design reuseis one of the main drawbacks.

More importantly, programming on application-specific heterogeneous cores poses a sig-

5

nificant - and in some cases intractable - programming challenge [6].

1.3 Principles of Composable Architecture

To address both current technology challenges and diverse application demands, we evalu-

ate a range of techniques to build a technology-scalable composable architecture. First, we

definecomposabilityasthe ability to adapting underlying hardware resources dynamically

to different applications or operating targets, by aggregating fine-grained processing units

or memory units. The main principles of composable architectures include the following,

which are developed in the remainder of this dissertation.

• Composable architectures are built on a distributed substrate consisting of multiple

fine-grained processing and memory units. The fine-grained units are inherently more

power-efficient and achieve technology scalability with respect to future global wire

delay increases.

• Composable architectures provide the ability (1) to aggregate fine-grained units to

compose into larger logical units and (2) to match each application to the composed

logical unit best suited to meet its performance, power, andthroughput demands.

• The number of fine-grained units combined to execute each application can be dy-

namically changed transparently to the running application.

• Composable architectures need to provide an ISA and microarchitectural support that

combines distributed fine-grained units in a power- and area-efficient manner. The

area and complexity to support composability in a distributed substrate should be

minimized.

6

1.4 Thesis Statement

This dissertation introduces the concept ofcomposability: The aggregation of fine-grained

units to adapt to diverse application demands and differentoperating targets (metrics).

Compared to monolithic, coarse-grained units, the fine-grained units are inherently more

power-efficient and provide further opportunities to optimize power consumptions with

finer-granularity. In addition, the fine-grained units are more tolerant to future wire-delay

dominated technologies. This dissertation presents architectural innovations to support

composability that provides the flexibility to allocate resources dynamically to different

types of concurrency and various working set sizes. Specifically, this dissertation first

proposes a novel level-2 cache design to address the increasing global on-chip wire de-

lay problem for future large on-chip caches. Second, this dissertation describes ISA and

microarchitectural support for run-time configuration of fine-grained CMP processors, al-

lowing flexibility in aggregating cores together to form larger logical processors.

1.5 Dissertation Contributions

This dissertation evaluates composable architectures that have two main components: Com-

posable memory systems and composable processors.

1.5.1 Composable Memory Systems

• Future increases in on-chip global wire delays will make theuniform access time of

traditional large on-chip caches untenable. Data residingin the part of a large cache

close to the processor can be accessed much faster than data that reside farther from

the processor. In this dissertation, we explore cache designs that can exploit the non-

7

uniformity of cache access times among banks of a single cache and evaluate two

different cache substrates depending on types of interconnection network between

multiple cache banks. We call these new cache substrates forfuture wire-delay dom-

inated technologies, Non-Uniform Cache Architecture (NUCA).

• The non-uniform access latency in future large caches can befurther exploited by

dynamically migrating important data so that the working sets are clustered near the

processor. By permitting data to be mapped to one of many banks within the cache,

and to migrate among them, a cache can be automatically managed in such a way

that most requests are serviced by the fastest bank (the closest bank to the processor).

This dynamic migration capability allows caches to adapt toapplications with various

working set sizes, thereby eliminating the trade-off between larger, slower caches for

applications with large working sets, and smaller, faster caches for applications that

are less memory intensive.

• Applications from various domains have different memory access patterns, and thus

require various memory organizations. For example, while applications that have

irregular access patterns will get more benefits from cache memories, streaming ap-

plications from the scientific and graphics domains can exploit scratchpad memories.

The composable memory system that we evaluate in this dissertation provides a flex-

ible substrate that can be reconfigured into various memory organizations because

it consists of multiple fine-grained memory banks connectedby a on-chip switched

network. Each memory bank can be configured differently (either cache memory or

scratchpad memory) and be aggregated to form various memoryorganizations de-

pending on the running applications. As a proof of concept, we built a composable

secondary memory system in the TRIPS prototype [99]. The TRIPS secondary mem-

8

ory system supports a wide range of memory organizations from a 1MB L2 cache,

to a 1MB scratchpad memory, to any combination in between at the granularity of

64KB increments.

• The trend of integrating many processor cores in a chip multiprocessor (CMP) pro-

vides a new challenge in designing the on-chip memory system. Even though L1

caches in CMPs are likely to remain private and be tightly integrated to the processor

cores, the question of how to manage the L2 caches will be key to building a scalable

CMP. The L2 caches may be shared by all processors or may be separated into private

per-processor partitions. While the private L2 design offers faster access time than

the shared L2 design, the shared L2 design can reduce the number of critical off-chip

misses with a larger effective cache size. In this dissertation, we address the slow hit

time in the shared L2 design with the dynamic working set clustering capability that

we explored in the uniprocessor context, and thus achieve both the benefits of the

private L2 design and the shared L2 design.

• Jaehyuk Huh and I jointly worked to extend the NUCA L2 design to CMP L2 caches.

Jaehyuk Huh led the project and developed the CMP simulatorsfocusing on the effect

of various sharing degrees on cache performance. I exploredthe effect of dynamic

data migration in CMP L2 caches in terms of both performance and energy.

1.5.2 Composable Processors

• The processor industry has migrated toward CMPs because of thermal and power

constraints, but the current CMP designs have significant drawbacks. Current CMP

designs have a fixed granularity, meaning that the number andcapabilities of the pro-

cessors are rigid. This fixed granularity will result in suboptimal operation outside

9

the intended target domain, and thus either performance or power efficiency (or both)

will suffer. In this dissertation, we explore a composable CMP called “Composable

Lightweight Processors” (or CLPs) that provides flexibility of adapting the granular-

ity of processors to various application characteristics and operating targets. A CLP

consists of a large number of low-power, fine-grained processor cores that can be

aggregated dynamically to form more powerful, single-threaded logical processors.

• While composability can also be provided using traditionalISAs [15], we examine

CLPs in the context of an Explicit Data Graph Execution (EDGE) ISA [54] that pro-

vides the following salient features for composability. First, when a single-threaded

application runs on multiple distributed cores, traditional architectures will require

careful coordination among cores to maintain the sequential semantics of the instruc-

tion stream, especially in the in-order stages of pipelines, such as fetch and commit.

This coordination overhead can be significantly reduced if the unit of coordination

is done at a granularity larger than individual instructions. EDGE ISAs allow the

hardware to fetch, execute, and commit blocks of instructions, rather than individual

instructions, in an atomic fashion. Second, EDGE ISAs support dataflow execution

within a block, by specifying the inter-instruction data dependence relationship ex-

plicitly. Since the dataflow graph is explicitly encoded in the instruction stream, it

is simple to shrink or expand the graph on a smaller or greaternumber of execution

resources as desired with little additional hardware.

• The microarchitectural structures in a composable processor require capabilities dif-

ferent from those available in some of the microarchitectural structures of traditional

superscalar processors. These capabilities must permit composable microarchitec-

tural structures to be incrementally added or removed as thenumber of participating

10

cores increases or decreases. Ideally, the area and complexity to support composabil-

ity should be kept low so as not to increase the power or area overhead needed to

support composability. In particular, the hardware resources should not be oversized

or undersized to suit either a large processor configurationor a small configuration.

Additionally, centralized structures that will limit the scalability of the microarchi-

tecture must be avoided.

To provide this capability, we identify and repeatedly apply two principles. First,

the microarchitectural structures are partitioned by address wherever possible. Since

addresses of both instructions and data tend to be equally distributed, address parti-

tioning ensures (probabilistically, at least) that the useful capacity increases/decreases

monotonically. Second, we avoid physically centralized microarchitectural structures

completely. Decentralization allows the structure sizes to be grown without the undue

complexity traditionally associated with large centralized structures. In this disser-

tation, we evaluate the overheads to support composabilityin a distributed substrate

and show that the proposed CLP microarchitecture using the EDGE ISA keeps these

overhead sufficiently low.

• This dissertation summarizes some of microarchitectural mechanisms that are the

subject of several dissertations including the distributed branch predictor by Ran-

ganathan [95], the distributed instruction fetch by Liu [74], and the distributed mem-

ory disambiguation by Sethumadhavan [103], and are coveredin detail in their re-

spective dissertations.

• This dissertation demonstrates that the best processor configuration is quite different

depending on application characteristics and operating targets — performance, area

11

efficiency, power efficiency. Our proposed CLP architectureprovides the ability to

shift to different processor configuration when the need arises.

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows.Chapter 2 evaluates two differ-

ent cache substrates for composable memory systems depending on types of interconnec-

tion networks that connect multiple cache banks — one with private per-bank channels, the

other using an on-chip switched network. Then, we describe an implementation of a com-

posable secondary memory system in the TRIPS prototype. TheTRIPS secondary memory

system exploits the configurable nature of switched networks to allow various memory or-

ganizations on the same cache substrate.

Chapter 3 describes the dynamic mapping mechanisms supported in a composable

cache substrate and presents the performance effect in the context of a uniprocessor design.

Then, we extend this concept of dynamic mapping to L2 caches in chip multiprocessors and

investigate the effect of dynamic migration capabilities within the same cache hierarchy on

both the average hit latency and the energy consumed by the L2cache subsystem.

Chapter 4 describes strategies for composing processors that aggregates lightweight

EDGE cores to form larger, more powerful logical single-threaded processors when the

need arises. We show that the composable lightweight processors provide the ability to

expand or shrink the granularity of processor and adapt to different metrics such as perfor-

mance, area efficiency and power efficiency. Chapter 5 presents a summary of the overall

contributions of this dissertation and future work.

12

Chapter 2

Related Work

This chapter discusses and differentiates prior work most closely related to the focus of this

dissertation. We present the prior work as it relates to the two main components of this

dissertation: (1) composable processors (2) composable on-chip memory systems.

2.1 Composable Processors

The ability to adapt multiprocessor hardware to fit needs of the available software is clearly

desirable, both in terms of overall performance and power efficiency [5, 53]. The amount

of prior research that address this problem has been considerable, and we categorize prior

research into four broad categories. In the first, researchers attempt to provide higher single-

thread performance from a collection of distributed units.In the second, researchers design

large cores and provide the capability to resize or share subcomponents of the processor. In

the third, researchers explicitly implement multiple distinct granularities to allow software

to choose the appropriate hardware. In the fourth, researchers build a single programmable

substrate that can be reconfigured to match the different granularity of concurrency.

13

2.1.1 Composing Processors from Smaller Cores

Many research efforts have attempted to synthesize a more powerful core out of smaller or

clustered components.

The recent Core Fusion [54] work is most similar to the CLP approach. Core Fu-

sion consists of multiple, 2-wide, relatively simple out-of-order cores connected by a bus.

Like CLPs, Core Fusion allows multiple dynamically allocated processors to share a sin-

gle contiguous instruction window. The goal is to accommodate software diversity and

support incremental parallelization by dynamically providing the optimal configuration for

sequential and parallel regions of programs. The advantageof Core Fusion is that it ex-

ploits conventional RISC or CISC ISAs and maintains software compatibility. In a Core

Fusion implementation, several structures must be physically shared, limiting the range of

composition up to four cores (8-wide issue).

First, while each core accesses its own I-cache to fetch instructions and facilitates

collective fetch, the centralized fetch management unit (FMU) handles the resolution of

control-flow changes among any participating cores. Every time a core predicts a taken

branch or detects a branch misprediction, it sends the new target PC to the FMU. The

FMU collects the target PC information and broadcasts the redirected control-flow to all

participating cores. Second, the centralized steering management unit (SMU) takes care

of renaming and steering to track dependence information across different cores and keep

the dependent instructions close. After pre-decode, each core sends two instructions to the

SMU, which must support the renaming of up to eight instructions each cycle for a four-

core fused operation. To steer eight instructions every cycle, the SMU requires an eight-

stage rename pipeline and a steering table that has sixteen read and sixteen write ports.

These physically shared, multi-ported, centralized structures limit the maximum supported

14

composition ranges. The TFlex CLP shares no resources physically, so it can scale up to

64-wide issue, but relies on a non-standard EDGE ISA to achieve full composability.

Clustered superscalar processors [16] and the compiler-supported multi-cluster de-

sign [30] both aim to improve the scalability of a large, out-of-order superscalar proces-

sor by using multiple, clustered execution resources. While this approach decreases the

complexity of each cluster, it shares the disadvantage thatadaptive processing has of with

respect to its inability to trade off multiple threads for core granularity.

Most other prior work that attempts to synthesize a large logical processor from

smaller processing elements uses independent sequencers with a non-contiguous instruc-

tion window. An early example is the Multiscalar architecture [112]. Multiscalar processors

used speculation to fill up independent processing elements(calledstages), with each of the

speculative stages starting from a predicted, control-independent point in the program. The

Multiscalar design used a shared resource (the ARB) for memory disambiguation and did

not permit the stages to run distinct software threads independently. The subsequent spec-

ulative threads work [43, 65] adapted the Multiscalar execution model to a CMP substrate

that could execute separate threads on the individual processors when not in speculative

threads mode. The CLP approach that we explore in this chapter differs from such archi-

tectures in that CLPs employ a single logical point of control, i.e., a contiguous instruction

window, across the multiple processing elements, which simplifies dependence tracking.

Other composable approaches have provided statically exposed architectures that

can be partitioned. The best example is the RAW architecture[119], an important and

early tiled architecture. The RAW compiler can target any number of single-issue RAW

tiles, forming a single static schedule across them. Each tile still has its own instruction

sequencer, although they are highly synchronized with one another. Multiple tasks can

15

be run across a set of tiles provided that each task was compiled for the number of tiles

to which it was allocated. While RAW requires recompiling applications for changing

configurations, CLPs achieve this configurability transparent to the software.

2.1.2 Partitioning large cores

The most popular approach for partitioning large cores to date has been Simultaneous Mul-

tithreading [121], in which multiple threads share a singlelarge, out-of-order core. The

operating system achieves adaptive granularity by adjusting the number of threads that are

mapped to one processor. The advantages of SMT are extremelylow overheads for provid-

ing the adaptive granularity. A disadvantage is the limitedrange of granularity since proces-

sors are typically restricted to be four-wide, and threads sharing the same core may cause

significant interference. In addition, resources in an SMT processor may be underutilized

leading to unnecessary power consumption overhead when executing a single-threaded ap-

plication that can achieve competitive performance with a less complex processor core.

What Albonesi has termed “adaptive processing” [3] involves dynamically resizing

large structures in an out-of-order core, powering fractions of them down based on expected

requirements, thus balancing power consumption with performance by efficiently mapping

threads to right-sized hardware structures. Researchers have proposed adjusting cache size

via ways [4], issue window size [34], the issue window coupled with the load/store queue

and register file [90], and issue width, along with the requisite functional units [7]. While

adaptive processing permits improved energy efficiency by adjusting the core’s resources

to the needs of the running application, it does not permit a fine-grained tradeoff between

core granularity and number of threads. While combining adaptive processing with SMT

might achieve that goal, the complexity and overheads on a large-centralized core would be

16

significant.

Finally, conjoined-core chip multiprocessing [67] aims toprovide some shared re-

sources, with other explicitly partitioned resources, effectively creating a hybrid between

SMT and CMP approaches. Conjoined-core CMP is built on a CMP substrate and allows

resource sharing between adjacent cores to reduce die area with minimal performance loss

and thus improves the overall computational efficiency. Theauthors investigate the possible

sharing of floating-point units, crossbar ports, first-level instruction caches, and first-level

data caches. To minimize area overheads and design complexity, conjoined-core CMP only

allows resource sharing between adjacent pairs of processors. Therefore, similar to SMT

approaches, the degree of granularity configuration between single threads versus multiple

threads is more limited than the CLP approach explored in this chapter.

2.1.3 Multiple Granularities

Some proposals aim to match an application’s granularity needs by providing the hardware

that best suits the application. The “Single-ISA Heterogeneous Multi-Core Architecture”

work by Kumar et al. [66, 68] or the “Asymmetric Chip Multiprocessors” work by Balakr-

ishnan et al. [9] is to build a chip multiprocessor out of cores of various sizes with differ-

ent performance profiles. Single-ISA, heterogeneous multi-core architectures [66] reuse a

discrete number of processor cores that were implemented across multiple previous gener-

ations with each having different issue width, cache sizes,and characteristics (e.g, in-order

vs. out-of-order). On the other hand, asymmetric chip multiprocessors consists of processor

cores with the same size, but introduces heterogeneity across different cores by changing

the duty cycle of the processor for thermal management. Their goal is to integrate the vari-

ous granularities of processors to better exploit both variations in thread-level parallelism as

17

well as inter- and intra-thread diversity to increase both performance and energy efficiency.

With this approach, a large (or faster) processor core speeds up a sequential region of code

or application with fewer threads and many small (or slower)processor cores collectively

run parallel software.

Both these approaches increase design complexity and limits the number of gran-

ularity options. Therefore, for example, while a large, complex core can increase perfor-

mance on sequential code, it may do so at the expense of performance of parallel applica-

tions. However, this approach does not suffer from the overhead of making the processors

variable-grain or composable.

2.1.4 Reconfigurability

Researchers have also explored a single programmable substrate that can be reconfigured

to match the different granularities of concurrency.

FPGAs provide the finest granularity for reconfiguration. FPGAs consist of an ar-

ray of gates or programmable lookup tables interconnected through a configurable network.

While using FPGAs can offer high performance with fine-grained data parallelism per ap-

plication, achieving good performance on general-purposeand serial applications has not

been shown to be feasible.

Coarse-grained reconfiguration architectures stress the use of coarse grain reconfig-

urable arrays to address the huge routing area overhead and poor routability of ultra fine-

grained FPGAs [44]. Fisher et al. proposed custom-fit processors to choose the right grain

size for specific applications at design time [32]. Similarly, Tensilica Xtensa customizes

processor cores at design time for a given application [37].Xtensa is built on a synthe-

sizable processor that can customize I-, D- cache sizes, number of registers, data RAM

18

size, and external bus width at design time. In addition, Xtensa provides the capability of

extending instruction sets to allow application-specific functionality. These coarse-grained

reconfiguration approaches clearly increase application-specific efficiency at the expensive

of run-time flexibility.

The following architectures were proposed to exploit the different granularity of

concurrency on a single substrate. Compared to FPGAs and coarse-grained reconfigurable

architectures, these novel architectures can support general-purpose sequential programs.

Browne et al. developed the Texas Reconfigurable Array Computer (TRAC) that supports

both SIMD and MIMD processing by reprogramming interconnections between individual

processing elements and memory elements [57,100]. The Stanford Smart Memories archi-

tecture can reconfigure processors and memories in additionto interconnections and match

various application characteristics [76]. The Stanford Smart Memories support coarse-

grained reconfiguration capabilities that allow diverse computing models, like speculative

multithreading and streaming architectures. Sankaralingam defined the concept ofarchi-

tectural polymorphismand explored a set of mechanisms that configure coarse-grained mi-

croarchitecture blocks to support different granularity of parallelism in the context of the

TRIPS processor [97]. He formally defined architectural polymorphism as: “the ability to

modify the functionality of coarse-grained microarchitecture blocks at runtime, by chang-

ing control logic but leaving datapath and storage elementslargely unmodified, to build a

programmable architecture that can be specialized on an application-by-application basis.”

2.2 Composable On-chip Memory System

There is much prior research in addressing the increasing global on-chip wire delay problem

in future large caches. We first discuss related work in the context of uniprocessor systems

19

and then extend the discussion in the context of chip multiprocessor systems.

2.2.1 Uniprocessor Level-2 Caches

Prior work has evaluated large cache designs, but not for specifically wire-dominated tech-

nologies; Kessler examined designs for multi-megabyte caches built with discrete compo-

nents [60]. Hallnor and Reinhardt [42] studied a fully associative software-managed design,

called “Indirect Index Cache” (or IIC), for large on-chip L2caches. The IIC does not co-

locate a tag with a specific data block; instead, each tag contains a pointer to locate the

corresponding data block. This indirection allows large level-2 caches to be implemented

with a fully-associative cache amenable to software management. However, the IIC did not

consider non-uniform access latencies of a large cache.

Other work has examined using associativity to balance power and performance.

Albonesi examines turning off “ways” of each set to save power when cache demand is

low [4]. He proposes the cache structure that provides the ability to dynamically enable a

subset of data ways on demand, thus reducing the switching activity of the cache. Powell et

al. use way-prediction to predict the matching way number, instead of waiting on the tag ar-

ray to provide the way number by sequential tag access. Sincelow energy consumption can

also be achieved when prediction is correct, they evaluate the balance between incremental

searches of the sets to balance power and performance [91].

Other researchers have examined using multiple banks for high bandwidth, as we do

to reduce contention. Sohi and Franklin [113] proposed interleaving banks to create ports,

and also examined the need for L2 cache ports on less powerfulprocessors than today’s.

Wilson and Olukotun [123] performed an exhaustive study of the trade-offs involved with

port and bank replication and line buffers for level-one caches. This dissertation aims to

20

flatten deepening hierarchies; a goal that should be compared with Przybylski’s dissertation,

in which he exhaustively searched the space of multi-level caches to find a performance-

optimal point [92].

Non-uniform accesses are appearing in high performance cache designs [88]. The

following two studies investigated ways to handle increasing the global on-chip wire delay

problem in large L2 caches. Beckmann and Wood proposed the Transmission Line Cache

(TLC) to replace long wires in large uniprocessor caches with LC transmission lines for

reducing wire delay [11]. Chishti et al. investigate the dynamic data migration to exploit

non-uniform access latencies in a large cache and extend ourstudy on non-uniform access

cache architectures. The main difference is that they proposed decoupling data placement

from tag placement to contain more data from “hot” sets whichhave the same index [19].

They used the coarser grained distance group to reduce the energy consumption caused by

migrating data.

2.2.2 Chip Multiprocessor Level-2 Caches

Shared caches have been studied in the context of chip multiprocessors and multithreaded

processors. Nayfeh et al. investigated shared caches for primary and secondary caches

on a multi-chip module substrate with four CPUs [85]. They examined how the memory

sharing patterns of different applications affect the bestcache hierarchy. Subsequent work

from the same authors examined the trade-offs of shared-cache clustering in multi-chip

multiprocessors [86]. With eight CPUs, they observed that the coherence bus becomes the

performance bottleneck for private L2 caches, suggesting the utility of shared caches to

reduce bus traffic.

Recent studies considered wire latency as a primary design factor in CMP caches.

21

Beckmann and Wood compared three latency reduction techniques including dynamic block

migration, L1/L2 prefetching, and faster on-chip transmission lines with an 8-CPU shared

cache [12]. They conclude that data migration is less effective for CMPs because each

sharer pulls the data towards it, leaving the block in the middle, far away from all sharers.

Chishti et al. study optimizations with NuRAPID cache designs to reduce unnecessary

replication and communication overheads [20]. Zhang et al.[127] proposed the victim

replication cache design which selectively keeps copies ofprimary cache victims in each

local L2 slice. Both NuRAPID and victim replication designsattempt to reduce the latency

further by allowing replication, while our study relies on migration and maintains a single

copy of data within the L2 cache to save on-chip capacity. TheNuRAPID and victim

replication designs have different replication policies;NuRAPID replicates data on access

and victim replication replicates data on eviction. While the above three cache designs are

based on a shared L2 cache, Cooperative Caching [17] uses private caches as the baseline

design and adopts the benefits of a shared cache by using cache-to-cache transfers and

modifying cache replacement policies. Lastly, Speight et al. studied how CMP L2 caches

interact with off-chip L3 caches and how on-chip L2 caches temporarily absorb modified

replacement blocks from other caches [114].

22

Chapter 3

Composable On-Chip Memory

Systems

Historically, the capacity of on-chip level-two (L2) caches has been limited by the available

number of transistors in a chip. The persistent growth in on-chip transistor counts following

Moore’s law increased L2 cache capacity over time. The Alpha21164, introduced in 1994,

had 96KB on-chip L2 cache [28], while today’s high performance processors incorporate

larger L2 caches (or even L3 caches) on the processor die. TheHP PA-8700 contains

2.25MB of unified on-chip cache [48], and the Intel MontecitoItanium contains 6MB of

on-chip L3 cache [79]. The sizes of on-chip L2 and L3 cache memories are expected

to continue increasing as the bandwidth demands on the package grow, and as smaller

technologies permit more bits permm2 [53].

Current multi-level cache hierarchies are organized into afew discrete levels. Typi-

cally, each level obeys inclusion, replicating the contents of the smaller level above it, and

reducing accesses to the lower levels of the cache hierarchy. When choosing the size of each

23

level, designers must balance access time and capacity, while staying within area and cost

budgets. In future technologies, large on-chip caches witha single, discrete hit latency will

be undesirable, due to increasing global wire delays acrossthe chip [2, 77]. Data residing

in the part of a large cache close to the processor could be accessed much faster than data

that reside physically farther from the processor.

In this chapter, we explore the design space for composable on-chip memory sub-

strates in future wire-delay dominated technologies. We first show that traditional cache

designs, in which a centralized decoder drives physically partitioned sub-banks, will be

ineffective in future technologies, as data in those designs can be accessed only as fast

as the slowest sub-bank. We evaluate multiple composable on-chip memory substrates in

which large on-chip memories are broken into many fine-grained memory banks that can

be accessed at different latencies.

Figure 3.1 shows the types of organizations that we explore in this chapter, listing

the number of banks and the average access times, assuming 16MB caches modeled with

a 45nm technology. The numbers superimposed on the cache banks show the latency of

a single contentionless request, derived from a modified version of the Cacti [105] cache

modeling tool. The average loaded access times shown below are derived from performance

simulations that use the unloaded latency as the access timebut which include port and

channel contention.

We call a traditional cache a Uniform Cache Architecture (UCA), shown in Fig-

ure 3.1a. Even with aggressive sub-banking, our models indicate that this cache would

perform poorly due to internal wire delays and restricted numbers of ports.

Figure 3.1b shows a traditional multi-level cache (L2 and L3), called ML-UCA.

Both levels are aggressively banked for supporting multiple parallel accesses, although the

24

41

(a) UCA

 1 bank

 255 cycles

41

(e) D-NUCA

 256 banks

 18 cycles

4 47

Number of banks:

Avg. loaded access time:

(b) ML-UCA

 8/32 banks

 11/41 cycles

6
10

(c) S-NUCA-1

 32 banks

 34 cycles

17

(d) S-NUCA-2

 32 banks

 24 cycles

9 32
L3

L2
41

Figure 3.1: Various level-2 cache architectures.

banks are not shown in the figure. Inclusion is enforced, so a line in the smaller level implies

two copies in the cache, consuming extra space.

Figure 3.1c shows an aggressively banked cache, which supports non-uniform ac-

cess to the different banks without the inclusion overhead of ML-UCA. The mapping of

data into banks is predetermined, based on the block index, and thus can reside in only one

bank of the cache. Each bank uses a private, two-way, pipelined transmission channel to

service requests. We call this statically mapped, non-uniform cache S-NUCA-1.

When the delay to route a signal across a cache is significant,increasing the num-

ber of banks can improve performance. A large bank can be subdivided into smaller banks,

some of which will be closer to the cache controller, and hence faster than those farther

from the cache controller. The original, larger bank was necessarily accessed at the speed

of the farthest, and hence slowest, sub-bank. Increasing the number of banks, however, can

increase wire and decoder area overhead. Private per-bank channels, used in S-NUCA-1,

heavily restrict the number of banks that can be implemented, since the per-bank channel

wires adds significant area overhead to the cache if the number of banks is large. To circum-

vent that limitation, we explore a static NUCA design that uses a two-dimensional switched

network instead of private per-bank channels, permitting alarger number of smaller, faster

25

banks. This organization, called S-NUCA-2, is shown in Figure 3.1d. Figure 3.1e repre-

sents the D-NUCA organization that allows frequently used data to be migrated into closer

banks to further reduce the cache hit latencies. We describedetailed mechanisms to support

dynamic data migration within a cache and evaluate performance in Chapter 4.

At the end of this chapter, we show our implementation of composable secondary

memory systems in the TRIPS prototype [99]. TRIPS is a novel distributed architecture

that is built in 130nm ASIC technologies. The chip contains two processor cores and the

1MB on-chip secondary memory. The TRIPS secondary memory system is based on the

S-NUCA-2 design. The flexibility of a switched network in S-NUCA-2 allows various

memory organizations on the same cache substrate. The TRIPSsecondary memory system

is composable, meaning that it consists of multiple partitioned memory banks and each

memory bank can be configured differently and be aggregated to compose various memory

organizations. The possible memory organizations includea 1MB L2 cache or a 1MB

scratchpad memory or any combinations between them.

3.1 Uniform Access Caches

Large modern caches are subdivided into multiple sub-banksto minimize access time.

Cache modeling tools, such as Cacti [58, 124], enable fast exploration of the cache de-

sign space by automatically choosing the optimal sub-bank count, size, and orientation. To

estimate the cache bank delay, we used Cacti 3.0, which accounts for capacity, sub-bank

organization, area, and process technology [105].

Figure 3.2 contains an example of a Cacti-style bank, shown in the circular ex-

panded section of one bank. The cache is modeled assuming a central pre-decoder, which

drives signals to the local decoders in the sub-banks. Data are accessed at each sub-bank

26

Address bus

 Bank

Sub-bank

Wordline driver
and decoder

Predecoder

Sense amplifier

Tag array

Data bus

Figure 3.2: UCA and S-NUCA-1 cache design

and returned to the output drivers after passing through muxes, where the requested line is

assembled and driven to the cache controller. Cacti uses an exhaustive search to choose the

number and shape of sub-banks to minimize access time. Despite the use of an optimal sub-

banking organization, large caches of this type perform poorly in a wire-delay-dominated

process, since the delay to receive the portion of a line fromthe slowest of the sub-banks is

large.

3.1.1 Experimental Methodology

To evaluate the effects of different cache organizations onsystem performance, we used

Cacti to derive the access times for caches, and extended thesim-alpha simulator [24] to

simulate different cache organizations with parameters derived from Cacti. Thesim-alpha

simulator models an Alpha 21264 core in detail [61]. We assumed that all microarchitec-

tural parameters other than the L2 organization match thoseof the 21264, including issue

width, fetch bandwidth, and clustering. The L1 caches we simulated are similar to those

27

Phase L2 load accesses/ Phase L2 load accesses/
SPECINT2000 FFWD RUN Million instr SPECFP2000 FFWD RUN Million instr
176.gcc 2.367B 300M 25,900 172.mgrid 550M 1.06B 21,000
181.mcf 5.0B 200M 260,620 177.mesa 570M 200M 2,500
197.parser 3.709B 200M 14,400 173.applu 267M 650M 43,300
253.perlbmk 5.0B 200M 26,500 179.art 2.2B 200M 136,500
256.bzip2 744M 1.0B 9,300 178.galgel 4.0B 200M 44,600
300.twolf 511M 200M 22,500 183.equake 4.459B 200M 41,100

Speech NAS
sphinx 6.0B 200M 54,200 cg 600M 200M 113,900

bt 800M 650M 34,500
sp 2.5B 200M 67,200

Table 3.1: Benchmarks used for performance experiments

of the 21264: 3-cycle access to the 64KB, 2-way set associative L1 data cache, and single-

cycle access to the similarly configured L1 I-cache. All linesizes in this study were fixed at

64 bytes. In all cache experiments, we assumed that the off-chip memory controller resides

near the L2 memory controller. Thus, writebacks need to be pulled out of the cache, and

demand misses, when the pertinent line arrives, are injected into the cache by the L2 con-

troller, with all contention modeled as necessary. However, we do not model any routing

latency from the off-chip memory controller to the L2 cache controller.

Table 3.1 shows the benchmarks used in our experiments, chosen for their high L1

miss rates. The 16 applications include six SPEC2000 floating-point benchmarks [115],

six SPEC2000 integer benchmarks, three scientific applications from the NAS suite [8],

and Sphinx, a speech recognition application [70]. For eachbenchmark we simulated the

sequence of instructions which capture the core repetitivephase of the program, deter-

mined empirically by plotting the L2 miss rates over one execution of each benchmark, and

choosing the smallest subsequence that captured the recurrent behavior of the benchmark.

Table 3.1 lists the number of instructions skipped to reach the phase start (FFWD) and the

number of instructions simulated (RUN). Table 3.1 also shows the anticipated L2 load, list-

28

Tech L2 Num. Unloaded Loaded Miss
(nm) Capacity Sub-banks Latency Latency IPC Rate
130 2MB 16 13 67.7 0.41 0.23
90 4MB 16 18 91.1 0.39 0.20
65 8MB 32 26 144.2 0.34 0.17
45 16MB 32 41 255.1 0.26 0.13

Table 3.2: Performance of UCA organizations

ing the number of L2 accesses per 1 million instructions assuming 64KB level-1 instruction

and data caches. (This metric was proposed by Kessleret al. [62].)

3.1.2 UCA Evaluation

Table 3.2 shows the parameters and achieved instructions per cycle (IPC) of the UCA orga-

nization. For the rest of this chapter, we assume a constant L2 cache area and vary the tech-

nology generation to scale cache capacity within that area,using the SIA Roadmap [101]

predictions, from 2MB of on-chip L2 at 130nm devices to 16MB at 45nm devices. In Ta-

ble 3.2, the unloaded latency is the average access time (in cycles) assuming uniform bank

access distribution and no contention. The loaded latency is obtained by averaging the ac-

tual L2 cache access time–including contention–across allof the benchmarks. Contention

can include bothbank contention, when a request must stall because the needed bank is

busy servicing a different request, andchannel contention, when the bank is free but the

routing path to the bank is busy, delaying a request.

The reported IPCs are the harmonic mean of all IPC values across our benchmarks,

and the cache configuration displayed for each capacity is the one that produced the best

IPC; we varied the number and aspect ratio of sub-banks exhaustively, as well as the number

of banks.

29

In the UCA cache, the unloaded access latencies are sufficiently high that contention

could be a serious problem. Multiported cells are a poor solution for overlapping accesses

in large caches, as increases in area will expand loaded access times significantly: for a

2-ported, 16MB cache at 45nm, Cacti reports a significant increase in the unloaded latency,

which makes a 2-ported solution perform worse than a single-ported L2 cache. Instead of

multiple physical ports per cell, we assume perfect pipelining: that all routing and logic

have latches, and that a new request could be initiated at an interval determined by the

maximal sub-bank delay, which is shown in column 4 of Table 3.2. We did not model

the area or delay consumed by the pipeline latches, resulting in optimistic performance

projections for an UCA organization.

Table 3.2 shows that, despite the aggressive cache pipelining, the loaded latency

grows significantly as the cache size increases, from 68 cycles at 2MB to 255 cycles at

16MB. The best overall cache size is 2MB, at which the increases in L2 latency are sub-

sumed by the improvement in miss rates. For larger caches, the latency increases over-

whelm the continued reduction in L2 misses. While the UCA organization is inappropriate

for large, wire-dominated caches, it serves as a baseline for measuring the performance

improvement of more sophisticated cache organizations, described in the following section.

3.2 Static NUCA Implementations

Much performance is lost by requiring worst-case uniform access in a wire-delay dominated

cache. Multiple banks can mitigate those losses, if each bank can be accessed at different

speeds, proportional to the distance of the bank from the cache controller. Each bank is

independently addressable, and is sized and partitioned into a locally optimal physical sub-

bank organization. As before, the number and physical organization of banks and sub-banks

30

were chosen to maximize overall IPC, after an exhaustive exploration of the design space.

Data are statically mapped into banks, with the low-order bits of the index determin-

ing the bank. Each bank we simulate is four-way set associative. These static, non-uniform

cache architectures (S-NUCA) have two advantages over the UCA organization previously

described. First, accesses to banks closer to the cache controller incur lower latency. Sec-

ond, accesses to different banks may proceed in parallel, reducing contention. We call these

caches S-NUCA caches, since the mappings of data to banks arestatic, and the banks have

non-uniform access times.

3.2.1 Private Channels

As shown in Figure 3.2, each addressable bank in the S-NUCA-1organization has two

private, per-bank 128-bit channels, one going in each direction. Cacti 3.0 is not suited for

modeling these long transmission channels, since it uses the Rubenstein RC wire delay

model [55] and assumes bit-line capacitative loading on each wire. We replaced that model

with the more aggressive repeater and scaled wire model of Agarwal et al. for the long

address and data busses to and from the banks [2].

Since banks have private channels, each bank can be accessedindependently at

its maximum speed. While smaller banks would provide more concurrency and a greater

fidelity of non-uniform access, the numerous per-bank channels add area overhead to the

array that constrains the number of banks.

When a bank conflict occurs, we model contention in two ways. Aconservative

policy assumes a simple scheduler that does not place a request on a bank channel until

the previous request to that bank has completed. Bank requests may thus be initiated every

b + 2d + 3 cycles, whereb is the actual bank access time,d is the one-way transmission

31

Technology L2 Num. Unloaded latency Conservative Aggressive
(nm) size banks bank min max avg. Loaded IPC Loaded IPC
130 2MB 16 3 7 13 10 11.3 0.54 10.0 0.55
90 4MB 32 3 9 21 15 17.3 0.56 15.3 0.57
65 8MB 32 5 12 26 19 21.9 0.61 19.3 0.63
45 16MB 32 8 17 41 29 34.2 0.59 30.2 0.62

Table 3.3: S-NUCA-1 evaluation

time on a bank’s channel, and the additional 3 cycles are needed to drain the additional

data packets on the channel in the case of a read request following a writeback. Since each

channel is 16 bytes, and the L2 cache line size is 64 bytes, it takes 4 cycles to remove a

cache line from the channel.

An aggressivepipelining policy assumes that a request to a bank may be initiated

everyb + 3 cycles, whereb is the access latency of the bank itself. This channel model is

optimistic, as we do not model the delay or area overhead of the latches necessary to have

multiple requests in flight on a channel at once, although we do model the delay of the wire

repeaters.

Table 3.3 shows a breakdown of the access delays for the various cache sizes and

technology points: the number of banks to which independentrequests can be sent simul-

taneously, the raw bank access delay, the minimum, average,and maximum access latency

of a single request to various banks, and the average latencyseen at run-time (including

channel contention). We assume that the cache controller resides in the middle of one side

of the bank array, so the farthest distance that must be traversed is half of one dimension

and the entire other dimension. Unlike UCA, the average IPC increases as the cache sizes

increases, until 8 MB. At 16MB, the large area taken by the cache causes the hit latencies

to overwhelm the reduced misses, even though the access latencies grow more slowly than

with an UCA organization.

32

As technology advances, both the access time of individual banks and the routing

delay to the farthest banks increase. The bank access times for S-NUCA-1 increase from 3

cycles at 100nm to 8 cycles at 45nm because the best organization at smaller technologies

uses larger banks. The overhead of the larger, slower banks is less than the delays that

would be caused by the extra wires required for more numerous, smaller banks.

The greater wire delays at small technologies cause increased routing delays to the

farther banks. At 130nm, the worst-case routing delay is 10 cycles. It increases steadily to

reach 33 cycles at 45nm. While raw routing delays in the cacheare significant, contention

is less of a problem. Contention for banks and channels can bemeasured by subtracting

the average loaded latency from the average unloaded latency in Table 3.3. The aggressive

pipelining of the request transmission on the channels eliminates from 1.3 to 4.0 cycles

from the conservative pipelining average loaded bank access latency, resulting in a 5%

improvement in IPC at 16MB.

The ideal number of banks increases from 16 at 2MB to 32 at 4MB.At 8MB and

16MB, the ideal number of banks does not increase further, due to the area overhead of the

per-bank channels, so each bank grows larger and slower as the cache size increases. That

constraint prevents the S-NUCA-1 organization from exploiting the potential access fidelity

of small, fast banks. In the next subsection, we describe a inter-bank network that mitigates

the per-bank channel area constraint.

3.2.2 Switched Channels

Figure 3.3 shows an organization that removes most of the large number of wires resulting

from per-bank channels. This organization embeds a lightweight, wormhole-routed 2-D

mesh with point-to-point links in the cache, placing simpleswitches at each bank. Each link

33

Switch

 Bank

Sub-bank

Wordline driver
and decoder

Predecoder

Sense amplifier

Tag array

Data bus

Address bus

Figure 3.3: Switched NUCA design

has two separate 128-bit channels for bidirectional routing. We modeled the switch logic

in HSPICE to obtain the delay for each switch and incorporatethat delay into performance

simulations. We again used the Agarwalet al. model for measuring wire delay between

switches. As in the previous configurations, we assume 4-wayset associative banks.

We modeled contention by implementing wormhole-routed flowcontrol, and by

simulating the mesh itself and the individual switch occupancy in detail as a part of perfor-

mance simulations. In our simulations, each switch buffers16-byte packets, and each bank

contains a larger buffer to hold an entire pending request. Thus, exactly one request can

be queued at a specific bank while another is being serviced. Athird arrival would block

the network links, buffering the third request in the network switches and delaying other

requests requiring those switches. Other banks along different network paths could still be

accessed in parallel, of course.

In the highest-performing bank organization presented, each bank was sized so that

the routing delay along one bank was just under one cycle. We simulated switches that had

buffer slots for four flits per channel, since our sensitivity analysis showed that more than

34

Technology L2 Num. Unloaded Latency Loaded Bank
(nm) Size Banks bank min max avg. Latency IPC Requests
130 2MB 16 3 4 11 8 9.7 0.55 17M
90 4MB 32 3 4 15 10 11.9 0.58 16M
65 8MB 32 5 6 29 18 20.6 0.62 15M
45 16MB 32 8 9 32 21 24.2 0.65 15M

Table 3.4: S-NUCA-2 performance

four slots per switch gained little additional IPC. In our 16MB S-NUCA-2 simulations, the

cache incurred an average of 0.8 cycles of bank contention and 0.7 cycles of link contention

in the network.

Table 3.4 shows the IPC of the S-NUCA-2 design. For 4MB and larger caches,

the minimum, average, and maximum bank latencies are significantly smaller than those

for S-NUCA-1. The switched network speeds up cache accessesbecause it consumes less

area than the private, per-bank channels, resulting in a smaller array and faster access to

all banks. At 45nm with 32 banks, our models indicate that theS-NUCA-1 organization’s

wires consume 20.9% of the bank area, whereas the S-NUCA-2 channel overhead is just

5.9% the total area of the banks.

The S-NUCA-2 cache is faster at every technology than S-NUCA-1, and further-

more at 45nm with a 16MB cache, the average loaded latency is 24.2 cycles, as opposed to

34.2 cycles for S-NUCA-1. At 16MB, that reduction in latencyresults in a 10% average

improvement in IPC across the benchmark suite. An additional benefit from the reduced

per-bank wire overhead is that larger numbers of banks are possible and desirable, as we

show in the following section.

35

Figure 3.4: TRIPS die photo

3.3 TRIPS NUCA design

We showed that the switched static NUCA performs better thanthe channeled static NUCA

since the switched network has less area overhead than the private, per-bank channels. In

addition to the performance benefit, the configuration of theswitched networks provides a

variety of on-chip memory organizations on the same substrate. As a proof of concept, we

implemented a 1MB switched static NUCA design in the TRIPS prototype hardware [99].

TRIPS is a novel distributed architecture which is composedof two coarse-grained proces-

sors [84] and a shared NUCA L2 cache. The prototype chip is fabricated in a 130nm IBM

ASIC technology and has more than 170 million transistors [99]. Figure 3.4 shows the die

photo of the TRIPS chip.

36

TRIPS secondary memory system: The TRIPS secondary memory system has the fol-

lowing five characteristics.

1. Non-uniform access latency: The TRIPS NUCA design consists of 16 64KB memory

banks. The highly partitioned NUCA design is more tolerant to increasing on-chip

wire delays in future technologies. Compared to conventional caches that have an

uniform access latency, close cache banks from the processor can be accessed faster

than cache banks that are located far from the processor.

2. High-bandwidth access: Ten pairs of 128-bit data channels allows the NUCA cache

to communicate with the two TRIPS processors. At the architected frequency of

500MHz, the peak injection bandwidth is 74 GB/sec, which provides high-bandwidth

data accesses for streaming applications.

3. Composibility: Each memory bank can be configured as either a L2 cache bank or

an explicitly addressable scratchpad memory. Depending onapplications’ memory

access patterns, the TRIPS NUCA design allows each memory bank to be config-

ured differently and be aggregated to compose various memory organizations. This

composable capability provides a flexibility to organize the secondary memory sys-

tem as a 1MB L2 cache, 1MB on-chip physical memory (no L2 cache) and many

combinations in between at the granularity of 64KB increments.

4. Configurability: The TRIPS NUCA design supports two typesof cache line inter-

leaving modes to access L2 cache - interleaved or split mode.The interleaved mode

(or shared cache mode) allows a single application to betterutilize a 1MB L2 cache

and the on-chip network bandwidth. In split mode (or called private cache mode),

each processor can use a 512KB L2 cache region privately without interfering with

37

I R R R R G

E E EE D I M M N

C2C

NN
SDC

N
DMA

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

EBCSDCDMA
I R R R R G

E E EE D I M M N

NNN

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

Processor 0

Processor 1

S
e

co
n

d
a

ry
 M

e
m

o
ry

 S
y

st
e

m

C2C (x4)

IRQSDRAM 0

SDRAM 1

EBI

N

N

N

N

N

N

N

N

Figure 3.5: TRIPS prototype block diagram

the other assuming the OS page mapping is set up appropriately.

5. High connectivity: The On-chip network (OCN) that are embedded in the TRIPS

NUCA serves as the SoC (“System on a Chip”) interconnect. TheTRIPS OCN pro-

vides higher connectivity than the current standardized bus design for SoC intercon-

nects such as the AMBA bus from ARM [33]. The TRIPS OCN connects two pro-

cessors, two SDRAM controllers, two DMA controllers, the External Bus Interface

controller, the Chip to Chip controller, and a 1MB NUCA array.

3.3.1 TRIPS Chip Overview

Figure 3.5 shows the block diagram of the TRIPS prototype chip [99]. The TRIPS chip con-

tains two processor cores and a 1MB NUCA array as the major components. Each of the

38

two processor cores is composed of five different types of tiles: one global control tile (GT),

sixteen execution tiles (ET), five instruction cache tiles (IT), four data cache tiles (DT), and

four register tiles (RT). A scalar operand network and multiple control networks connect

all of the tiles and construct a processor core with 16-wide out-of-order issue, 64KB L1

instruction cache and 32KB of L1 data cache. In single-thread mode, a processor executes

up to 1024 instructions in flight. A multi-threaded mode partitions execution resources and

supports up to four different threads running concurrentlyon a single core. The TRIPS

processor implements an Explicit Data Graph Execution (EDGE) instruction set architec-

ture [15] that allows power-efficient exploitation of concurrency over distributed tiles.

3.3.2 TRIPS Secondary Memory Subsystem

The TRIPS secondary memory subsystem consists of forty tiles - 16 Memory Tiles (MT)

and 24 Network Tiles (NT). Each tile is connected to the On-Chip Network (OCN).

Memory Tiles (MT)

As shown in Figure 3.6, a Memory Tile includes an OCN router subcomponent and a 64KB

SRAM bank. The OCN router supports four different virtual channels to prevent deadlocks.

Incoming packets are buffered at the input FIFO in one of five directions, North, South,

East, West, or Local for a SRAM bank itself. A 4x4 crossbar switch connects each input to

all possible output channels except that the input from one direction cannot be routed to the

output from the same direction.

The 64KB SRAM bank can be configured as part of a L2 cache or as part of a

scratchpad memory. In L2 cache mode, the SRAM bank acts as a single bank in a larger

L2 cache. To track a L2 miss in flight, each Memory Tile contains a single-entry Miss

39

½Ôë��
0G^u

���£ºÑ

èÿ�Gº

-ÿD[r

½ÿ�[r

 G·[

ÎÑ·[

åDÿ··üGD
�*�

Ôÿ�[£^A
èÿA£�

ëDü£[ÑD -ÿD[r

½ÿ�[r

 G·[

ÎÑ·[

èÿ�Gº

Xå-�Ôÿ�[ÑD

-

½

Î

è

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

Figure 3.6: Memory tile block diagram highlighting OCN router in detail

Status Holding Register (MSHR). When configured as part of the scratchpad memory, the

tag checks are turned off to allow direct data array accesses. In both L2 cache mode and

scratchpad memory mode, the MT requires three cycles from receiving a request to produc-

ing the first reply packet.

Network Tiles (NT)

Figure 3.7 contains a detailed block diagram of the Network Tile. The Network Tile consists

of a network router subcomponent and an address translationunit.

A network router subcomponent is similar to the one used in a Memory Tile. While

the local channels in a Memory Tile are connected to the memory bank, the local channels

in a Network Tile are connected to the OCN clients, such as processors, and I/O units.

Another difference is that a 5x5 crossbar switch is used instead of a 4x4 crossbar to add a

configuration path to modify the contents of the address translation unit.

The TRIPS OCN introduces the mapping between a physical address and a location

40

ë´´DÑ··�
�DG^·ºG[£ÿ^�

�GüºÑ

èÿ�Gº

åÿ^Ë£A
åÿ^Ë£A
â^[ÑDËG�Ñ

-ÿD[r

½ÿ�[r

 G·[

ÎÑ·[

åDÿ··üGD
ù*ù

Ôÿ�[£^A
èÿA£�

ëDü£[ÑD -ÿD[r

½ÿ�[r

 G·[

ÎÑ·[

èÿ�Gº

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

oå�ëDü£[ÑD

Figure 3.7: Network tile block diagram in detail

of tiles (X, Y coordinates) in the OCN to allow various memoryorganizations. This map-

ping occurs in two steps. First, addresses are mapped onto sixteen logical L2 cache bank.

Second, each logical L2 cache bank is mapped to a specific MT orSDRAM controller by

the address translation unit. Each entry in the address translation unit contains the X-Y

coordinates of the M-tile or the SDRAM controller to which the logical L2 cache banks are

mapped. The table itself is memory mapped and can be modified on-the-fly by the runtime

system.

On-Chip Network (OCN)

The TRIPS OCN connects 40 tiles in a 4x10, 2D mesh. Each tile isconnected with each

other using a pair of 128-bit data links. The OCN is a Y-X dimension-order, wormhole-

routed network with credit-based flow control, meaning thata sender maintains a count of

the number of empty buffers in a receiver and a credit is sent back to the sender whenever

the receiver’s buffer gets emptied. Packets travel on the following four virtual channels to

41

prevent potential deadlock scenarios.

• Primary Reply (P1) - Replies to network clients (first priority)

• Secondary Reply (P2) - L2 cache fill and spill replies (secondpriority)

• Secondary Request (Q2) - L2 cache fill and spill requests (third priority)

• Primary Request (Q1) - Requests from network clients (fourth priority)

The OCN supports read, write, and swap transactions. Each transaction consists of

a request and a reply. The packets for requests and replies range in size from 16 byte to

80 bytes long broken up into one to five 16 byte flits. The first flit is called the “header

flit”, which contains the transaction type, size, locationsfor source and destination tiles,

and address information. The remaining flits are the payload, which carry from one to 64

bytes of data. More detailed information on the TRIPS OCN canbe found elsewhere [39].

3.3.3 Composable Secondary Memory Organization

The TRIPS secondary memory system iscomposablein the sense that it consists of multiple

partitioned memory banks, which can be configured differently and aggregated to compose

various memory organizations. Figure 3.8 shows various possible secondary memory orga-

nizations: A 1MB L2 cache (Figure 3.8a), a 1MB scratchpad memory (Figure 3.8b), and

a 512KB cache and a 512KB scratchpad memory (Figure 3.8c). Any combinations in be-

tween a 1MB L2 cache and 1MB scrachpad memory are possible at the granularity of 64KB

increments.

42

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N N N
SDC C2C

N N N
SDC EBC

N
DMA

N
DMA

O
n-

C
hi

p
N

et
w

or
k

(O
C

N
) L2

L2

L2

L2

L2

L2

L2

L2

S

S

S

S

S

S

S

S

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N N N
SDC C2C

N N N
SDC EBC

N
DMA

N
DMA

O
n-

C
hi

p
N

et
w

or
k

(O
C

N
)S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N N N
SDC C2C

N N N
SDC EBC

N
DMA

N
DMA

O
n-

C
hi

p
N

et
w

or
k

(O
C

N
)

L2 : M-Tile configured as a level-2 Cache

S

(a) All level-2 caches (b) All scratchpad memories

: M-Tile configured as a scratchpad memory

(c) Half level-2 caches,
half scratchpad memories

Figure 3.8: Various memory organizations in the TRIPS secondary memory system

Flexible Memory Organization

Composable flexibility comes from remapping from a logical tile location, which is fixed

by a physical address into any tile location of 16 Memory Tiles or the two SDRAM con-

trollers. When a Memory Tile is configured as scratchpad memory, the L2 requests to the

corresponding Memory Tile are redirected to other Memory Tiles in L2 mode or directly

to the SDRAM controller. Therefore, when all Memory Tiles are configured as scrachpad

memory, all L2 traffic should be routed directly to the SDRAM controllers. These con-

figurable mappings are effected by modifying the address translation table in the Network

Tiles. Before any reconfiguration occurs, all in-flight OCN traffic must be drained and the

participating Memory Tiles must be flushed. System softwaremay then modify the address

43

1920

56

56

Offset

611

L2 Mode System Address Map

High Split Bit Mode (Half Select Bit = 1)

Offset

6

Index

039

High Tag

039

Unused

Offset

6

IndexHigh Tag

1

05639

Sp

3

Low MT#

89

Low MT#

3

89

Low Split Bit Mode (Half Select Bit = 0)

Hi MT#

2

SRF mode System Address Map

Line #

index logichardwired

7
8

17
18

Low MT#

2

mode

6

Board ID

Board ID

6

Sp

1

Board ID

6

mode

mode

8

16171831

142

323738

2

3837 32 31 30

14

17 16

8

10

31323738

2

Figure 3.9: TRIPS OCN 40-bit address field composition

translation tables in all Network Tiles and resume execution.

Flexible Cache Interleaving

The TRIPS NUCA design supports two types of cache line interleaving modes to access the

L2 cache - interleaved or split mode. Figure 3.9 shows how the40-bit physical address is

interpreted in the different modes. The “Split bit” (calledSP) represents whether the address

is mapped to one of top eight Memory Tiles or one of bottom eight Memory Tiles. In split

mode, the “SP” bit is located at the 31st bit in an address, meaning that the entire 4GB

address region in the chip is split into two contiguous 2GB regions. In this mode, the top

eight Memory Tiles are mapped to the first 2GB region and the bottom eight Memory Tiles

are mapped to the next 2GB region. Assuming the operating system allocates pages into one

of two contiguous 2GB regions, each processor can use a 512KBL2 cache region privately

without interfering with the other. Therefore, the split mode can be considered a ”private

44

cache mode”. In interleaved mode, the “SP” bit is located at the 17th bit in a address, which

allows L2 requests from both processors to be more evenly distributed among all sixteen

Memory Tiles. Since the interleaved mode lets applicationsof each processor fully utilize

a 1MB L2 cache and on-chip network bandwidth, the interleaved mode is also called a

“shared cache mode”.

3.3.4 Network Performance Evaluations

As a preliminary evaluation of the TRIPS NUCA design, we wrote a simulator called

tsim ocn that simulates the behavior of the L2 cache and the on-chip network at a per-

cycle level. We use two different types of synthetic statistical loads to measure the maxi-

mum throughput and the average latency of the switched network that are embedded in the

TRIPS NUCA design. In addition, this network evaluation provided information in deter-

mining design parameters including the number of SDRAM controller and the FIFO depth

in each router.

There are five parameters that we varied to measuring OCN performance:

• Request rate: The request rate represented in the x-axis in both the throughput and

latency graph can be used to estimate the ideal throughput.

• Traffic pattern: The “uniform random traffic” pattern is one of the most commonly

used traffic in network evaluation [22]. Requesters distribute requests evenly to all

possible and randomly chosen destinations. We use this pattern for evaluating the

TRIPS processor that is configured to maximize ILP. Another traffic pattern is the

“neighbor traffic” pattern. The “neighbor traffic” pattern is used for evaluating the

TRIPS processor where the Memory Tiles that are attached to processors are con-

figured as scratchpad memory. In the “neighbor traffic” pattern, a requester chooses

45

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

(a) 1 Memory Controller

100%
 90%
 70%
 50%

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

(b) 2 Memory Controllers

100%
 90%
 70%
 50%

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

(c) 4 Memory Controllers

100%
 90%
 70%
 50%

Figure 3.10: Throughput with uniform random traffic

the destination between two Memory Tiles that are located inthe same row as the

requester.

• Hit ratio in a Memory Tile: A cache hit ratio in each Memory Tile is varied from

100%, 90%, 70% to 50%.

• Number of SDRAM controllers: The number of SDRAM controllers is varied from

one, two to four.

Throughput

Each Figure 3.10a, b and c shows how the OCN throughput variesby changing the number

of memory controllers among one, two and four. Figure 3.10a,b and c plot the accepted

throughput as a function of offered traffic by varying a cachehit ratio among 100%, 90%,

70%, and 50%. In Figure 3.10a, the accepted traffic is increased up to 36 byte/cycle, then

saturates at the 100%, 90%, 70% hit ratio. However, at the 50%hit ratio, the accepted traffic

is more quickly saturated into 25 byte/cycle than other hit ratios. In both the Figure 3.10b

and c, the accepted traffic at the the 50% hit ratio shows the same peak throughput as

46

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

(a) 1 Memory Controller

100%
 90%
 70%
 50%

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

(b) 2 Memory Controllers

100%
 90%
 70%
 50%

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

(c) 2 Memory Controllers

100%
 90%
 70%
 50%

Figure 3.11: Throughput with the neighbor traffic

the rest of the hit ratios. Also, Figure 3.10b and c are identical. Considering extra off-chip

requests and logic complexity (pin count), two memory controllers seems to be a reasonable

compromise. To summarize, the TRIPS OCN can provide the peakthroughput up to 36

byte/cycle.

Figure 3.11 shows the OCN throughput with the “neighbor traffic,” which is when

the nearest Memory Tile services load requests from each requester that is located in the

same row. This distribution assumes the case (1) when MemoryTiles are configured as

software managed memories (100% hit rate) or (2) when all cache accesses are serviced by

the nearest Memory Tile. The latter case corresponds to the ideal case when dynamic data

migration (described in the next chapter) works.

Figure 3.11 shows that the OCN can sustain its obtainable peak throughput (102.4

byte per cycle) with this request pattern. Interestingly, the accepted traffic is saturated very

quickly at the 90%, 70%, and 50% hit ratios, and the peak throughput at the 50% hit ratio is

less than that in the uniform random traffic. This phenomenonarises because each Memory

Tile has only single-entry MSHR and most requests are stalled from the previous miss

47

0 10 20 30
offered rate (byte/cycle)

0

20

40

60

80

100
la

te
nc

y
(c

yc
le

)

(a) Random Traffic

100%
 90%
 70%
 50%

0 10 20 30 40
offered rate (byte/cycle)

0

20

40

60

80

100

la
te

nc
y

(c
yc

le
)

(b) Neighbor Traffic

100%
 90%
 70%
 50%

Figure 3.12: TRIPS S-NUCA cache hit latency

Cache Hit Ration in Memory Tiles Random Traffic Neighbor Traffic
100% 15.9 (cycles) 7.4 (cycles)
90% 22.4 (cycles) 14.4 (cycles)
70% 37.5 (cycles) 30.0 (cycles)

Table 3.5: Average L2 cache access time in TRIPS (with synthetic traffic)

request. Since the random traffic is spread more uniformly across all Memory Tiles, the

buffer in each router can hold more requests than the neighbor traffic.

Latency

Figures 3.12a and b show the OCN latency with each of the random and neighbor traffic

patterns. In this experiment, we define the OCN latency as thetime elapsed from when

the request header flit is injected into the OCN until the reply header flit is received by the

requester when a request makes a cache hit on a Memory Tile. The OCN latency can thus

be considered to be the average L2 hit latency in the TRIPS processor. Initially, the OCN

latency gradually increases as the offered traffic grows. Ifthe offered traffic exceedes the

48

0 20 40 60 80 100
offered rate (byte/cycle)

0

20

40

60

80

100

ac
ce

pt
ed

 r
at

e
(b

yt
e/

cy
cl

e)

1 router entry
2 router entry
3 router entry
4 router entry
5 router entry
6 router entry
7 router entry
8 router entry
9 router entry
10 router entry
20 router entry
30 router entry

Figure 3.13: Throughput with the various FIFO depth

peak throughput, the OCN is saturated with packets and the latency goes up exponentially.

The L2 cache access time in the TRIPS design varies dependingon the number of

requests, traffic patterns, and hit ratios (since stalls caused by the limited number of MSHRs

per Memory Tiles increase when a L2 miss ratio increases). Table 3.5 shows the TRIPS L2

cache access time measured under the various configurations.

Determining the FIFO depth

To find the optimal FIFO depth in each router, we varied the number of FIFO entries and

measured achieved throughput. Figure 3.13 shows the changes in throughput when the

number of FIFO entries per virtual channel increases from one to 30. There are two signif-

icant changes when the number of entries increase from one totwo and four to five. After

49

five, no additional gains can be found until 20 entries, whichresults from the fact that one

OCN packet consists of five flits.

3.4 Summary

To handle the problem of growing wire delays in future largerlevel-2 caches, we evaluated

several new designs that treat a L2 cache as a network of banksand facilitates non-uniform

cache accesses to different physical regions. In this chapter, we evaluated cache designs

that consist of multiple independent banks connected by either private per-bank channels or

a wormhole-routed 2-D switched mesh network. We compared both cache designs with a

traditional cache (called Uniform Cache Architecture or UCA) and showed that the UCA

design would perform poorly due to internal wire delays and arestricted number of ports.

We also showed that an embedded mesh network performs betterthan per-bank pri-

vate channels since the switched network takes less area than the per-bank private channels.

On top of the performance benefits, the configurable nature ofswitched networks allows

various memory organizations on the same cache substrate.

As a proof of concept, we implemented a composable secondarymemory system

in the TRIPS prototype with S-NUCA-2 organization. The TRIPS secondary memory sys-

tem iscomposable, meaning that it consists of multiple partitioned memory bank and each

memory bank can be configured differently and aggregated to form various memory organi-

zations. The possible memory organizations include a 1MB L2cache or a 1MB scratchpad

memory or any combinations between them.

Finally, for future composable on-chip memory designs, an interesting question is

determining the size of composition units (memory banks) across various cache capacities

and technologies. In this dissertation, we showed that growing cache capacity at future

50

technologies increases the size of a composition unit to keep the overall average hop count

modest between the processor and the memory banks. However,even at the same technol-

ogy, a designer must consider the following factors to find the right size of the composition

unit. While a smaller-sized composition unit supports moreflexibility to provide various

memory organizations and decreases the wire delay between hops, the area overhead of

composability increases. This dissertation showed a composable secondary memory system

in the TRIPS prototype using a 64KB memory bank as a composition unit at 130 nm ASIC

technology. Even though a switched network consumes less area than private channels,

the TRIPS implementation shows that 13% of the area of the secondary memory system

is devoted to routers. These routers would not be required for traditional non-composable

memory systems. In future technologies, the size of a composition unit should be deter-

mined by considering the overall hop counts, the area overhead, and the wire delay between

hops.

51

Chapter 4

Dynamically Mapped Composable

Memories

In Chapter 3, we proposed a composable cache substrate that consists of multiple cache

banks and each bank is connected by a switched fabric. Cache lines are statically mapped

into banks, meaning that the low-order bits of each address determine the bank, and the

mapping between an address and the bank does not change dynamically. In this chapter, we

show how to exploit future cache access non-uniformity by automatically placing frequently

accessed data in closer (faster) banks and less important–yet still cached–data in farther

banks.

By providing dynamic mapping and migration of data to banks,we show policies

that service most requests by the fastest bank. Using the switched network, data is gradually

promoted to faster banks based on access frequency. This promotion is enabled by spread-

ing sets across multiple banks, where each bank forms one wayof a set. Thus, cache lines

in closer ways can be accessed faster than lines in farther ways. This dynamic non-uniform

52

scheme is called D-NUCA.

In the first half of this chapter, we investigate the performance effects of dynamic

data migration within a L2 cache in the context of uniprocessors. We then extend the

concept of non-uniform cache access architectures to emerging chip-multiprocessors.

4.1 Uniprocessor D-NUCA

The D-NUCA organization uses the same cache substrate as S-NUCA-2; multiple cache

banks are connected by a switched network. On top of the S-NUCA-2 substrate, the D-

NUCA organization implements a number of hardware policiesregarding where to place

data after data returns from memory, how to migrate data, andhow to search for data. With

proper placement and migration policies, D-NUCA enables the cache to place frequently

accessed blocks in the banks close to the CPU and less frequently accessed blocks in the

banks that are far away from the CPU. We first explore different policies to find the best

performing policy for placing and migrating data. Then, we compare the D-NUCA or-

ganization to the S-NUCA organizations and the conventional multi-level hierarchy cache

organization (or ML-UCA). We show that a D-NUCA cache achieves the highest IPC across

diverse applications, because it adapts to the working set of each application and moves the

working set into the banks closest to the processor.

4.1.1 Policy Exploration

We evaluate a number of hardware policies that migrate data among the banks to reduce av-

erage L2 cache access time and improve overall performance.For these policies, we answer

three important questions about the management of data in the cache: (1)mapping: how the

data are mapped to the banks, and in which banks a datum can reside, (2)search: how the

53

(a) Simple Mapping (b) Fair Mapping (c) Shared Mapping

1 2 3 4 5 6 7 8

Figure 4.1: Mapping bank sets to banks in D-NUCA

set of possible locations are searched to find a line, (3)movement: under what conditions

the data should be migrated from one bank to another. We explore these questions in each

of the following subsections.

Logical to Physical Cache Mapping

A large number of banks provides substantial flexibility formapping lines to banks. At one

extreme are the S-NUCA strategies, in which a line of data canonly be mapped to a single

statically determined bank. At the other extreme, a line could be mapped into any cache

bank. While the latter approach maximizes placement flexibility, the overhead of locating

the line is larger because each bank must be searched, eitherthrough a centralized tag store

or by broadcasting the tags to all of the banks.

We explore an intermediate solution calledspread setswhich treats the multibanked

cache as a set-associative structure, each set is spread across multiple banks, and each bank

holds a subset of the “ways” of the set. The collection of banks used to implement this

associativity is called abank setand the number of banks in the set, multiplied by the

associativity of each bank, corresponds to the associativity.

54

A cache can be comprised of multiple bank sets. For example, as shown in Fig-

ure 4.1a, a cache array with 32 banks could be organized as a four-way set-associative

cache, with eight bank sets, each consisting of four cache banks. To check for a hit in a

spread-set cache, the pertinent tag in each of the four banksof the bank set must be checked.

Note that the primary distinction between this organization and a traditional set-associative

cache is that the different associative ways have differentaccess latencies.

We evaluate the following three methods of allocating bank sets to banks:simple

mapping, fair mapping, andshared mapping. With the simple mapping, shown in Fig-

ure 4.1a, each column of banks in the cache becomes a bank set,and all banks within a

column comprise the set-associative ways. Thus, the cache may be searched for a line by

first selecting the bank column, selecting the set within thecolumn, and finally performing

a tag match on banks within that column of the cache. The two drawbacks of this scheme

are that the number of rows may not correspond to the number ofdesired ways in each bank

set, and that latencies to access all bank sets are not the same; some bank sets will be faster

than others, since some rows are closer to the cache controller than others.

Figure 4.1b shows thefair mappingpolicy, which addresses both problems of the

simple mapping policy at the cost of additional complexity.The mapping of sets to the

physical banks is indicated with the arrows and shading in the diagram. With this model,

banks are allocated to bank sets so that the average access time across all bank sets is

equalized. We do not present results for this policy, but describe it for completeness. The

advantage of the fair mapping policy is an approximately equal average access time for each

bank set. The disadvantage is a more complex routing path from bank to bank within a set,

causing potentially longer routing latencies and more contention in the network.

Theshared mappingpolicy, shown in Figure 4.1c, attempts to provide fastest-bank

55

access to all bank sets by sharing the closest banks among multiple bank sets. This policy

requires that ifn bank sets share a single bank, then all banks in the cache aren-way set

associative. Otherwise, a swap from a solely owned bank intoa shared bank could result

in a line that cannot be placed into the solely owned bank, since the shared bank has fewer

sets than the non-shared bank. We allow a maximum of two bank sets to share a bank. Each

of then/2 farthest bank sets shares half of the closest bank for one of the closestn/2 bank

sets. This policy results in some bank sets having a slightlyhigher bank associativity than

the others, which can offset the slightly increased averageaccess latency to that bank set.

That strategy is illustrated in Figure 4.1c, in which the bottom bank of column 3 caches

lines from columns 1 and 3, the bottom bank of column 4 caches lines from columns 2 and

4, and so on. In this example the farthest four (1, 2, 7, and 8) of the eight bank sets share

the closest banks of the closest four (3, 4, 5, and 6).

Locating Cached Lines

Searching for a line among a bank set can be done with two distinct policies. The first is

incremental search, in which the banks are searched in order starting from the closest bank

until the requested line is found or a miss occurs in the last bank. This policy minimizes the

number of messages in the cache network and keeps energy consumption low, since fewer

banks are accessed while checking for a hit, at the cost of reduced performance.

The second policy is calledmulticast search, in which the requested address is

multicast to some or all of the banks in the requested bank set. Lookups proceed roughly

in parallel, but at different actual times due to routing delays through the network. This

scheme offers higher performance at the cost of increased energy consumption and network

contention, since hits to banks far from the processor will be serviced faster than in the

56

incremental search policy. One potential performance drawback to multicast search is that

the extra address bandwidth consumed as the address is routed to each bank may slow other

accesses.

Hybrid intermediate policies are possible, such aslimited multicast, in which the

first M of theN banks in a bank set are searched in parallel, followed by an incremental

search of the rest. Most of the hits will thus be serviced by a fast lookup, but the energy and

network bandwidth consumed by accessing all of the ways at once will be avoided. Another

hybrid policy ispartitioned multicast, in which the bank set is broken down into subsets of

banks. Each subset is searched iteratively, but the membersof each subset are searched in

parallel, similar to a multi-level, set-associative cache.

Partial-Tag Predictive (PTP) Search

A distributed cache array, in which the tags are distributedwith the banks, creates two

new challenges. First, many banks may need to be searched to find a line on a cache hit.

Second, if the line is not in the cache, the slowest bank determines the time necessary to

resolve that the request is a miss. The miss resolution time thus grows as the number of

banks in the bank set increases. While the incremental search policy can reduce the number

of bank lookups, the serialized tag lookup time increases both the hit latency and the miss

resolution time.

We applied the idea of thepartial tag comparisonproposed by Kessler et al. [63] to

reduce both the number of bank lookups and the miss resolution time. The D-NUCA policy

using partial tag comparisons, which we callpartial-tag predictive (PTP) search, stores the

partial tag bits into a PTP search array located in the cache controller.

We evaluated two PTP search policies:ss-performanceandss-energy. In the ss-

57

performancepolicy, the cache array is searched as in previous policies.However, in paral-

lel, the stored partial tag bits are compared with the corresponding bits of the requested tag,

and if no matches occur, the miss processing is commenced early. In this policy, the PTP

search array must contain enough of the tag bits per line to make the possibility offalse hits

low, so that upon a miss, accidental partial matches of cached tags to the requested tag are

infrequent. We typically cached 6 bits from each tag, balancing the probability of incurring

a false hit with the access latency to the PTP search array.

In the ss-energypolicy, the partial tag comparison is used to reduce the number

of banks that are searched upon a miss. Since the PTP search array takes multiple cycles

(typically four to six) to access, serializing the PTP search array access before any cache

access would significantly reduce performance. As an optimization, we allowed the access

of the closest bank to proceed in parallel with the PTP searcharray access. After that

access, if a hit in the closest bank does not occur, all other banks for which the partial tag

comparison was successful are searched in parallel.

Dynamic Movement of Lines

Since the goal of the dynamic NUCA approach is to maximize thenumber of hits in the

closest banks, a desirable policy would be to use LRU ordering to order the lines in the

bank sets, with the closest bank holding the MRU line, secondclosest holding second most-

recently used. The problem with strictly maintaining the LRU ordering is that most accesses

would result in heavy movement of lines among banks. In a traditional cache, the LRU state

bits are adjusted to reflect the access history of the lines, but the tags and data of the lines

are not moved. In ann-way spread set, however, an access to the LRU line could result

in n copy operations. Practical policies must balance the increased contention and power

58

consumption of copying with the benefits expected from bank set ordering.

We usegenerational promotionto reduce the amount of copying required by a pure

LRU mapping, while still approximating an LRU list mapped onto the physical topology of

a bank set. Generational replacement was proposed by Hallnor et al. for making replace-

ment decisions in a software-managed UCA called the Indirect Index Cache [42]. We found

that the best migration policy is that, when a hit occurs to a cache line, it is swapped with

the line in the bank that is the next closest to the cache controller. Heavily used lines will

thus migrate toward close, fast banks, whereas infrequently used lines will be demoted into

farther, slower banks.

A D-NUCA policy must determine the placement of an incoming block resulting

from a cache miss. A replacement may be loaded close to the processor, displacing an im-

portant block. The replacement may be loaded in a distant bank, in which case an important

block would require several accesses before it is eventually migrated to the fastest banks.

Another policy decision involves what to do with a victim upon a replacement; the two

polices we evaluated were one in which the victim is evicted from the cache (azero-copy

policy), and one in which the victim is moved to a lower-priority bank, replacing a less

important line farther from the controller (one-copypolicy).

D-NUCA Policies

The policies we explore for D-NUCA consist of four major components: (1)Mapping:

simple or shared. (2)Search: multicast, incremental, or combination. We restrict the

combined policies such that a block set is partitioned into just two groups, which may then

each vary in size (number of blocks) and the method of access (incremental or multicast).

(3) Promotion: described bypromotion distance, measured in cache banks, andpromotion

59

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
Sector Number

0.0

0.2

0.4

0.6

0.8

1.0

h
it

 r
a
ti

o perfect LRU

D-NUCA

Associative Way Number

F
ra

ct
io

n
 o

f
h
it

s

Figure 4.2: Way distribution of cache hits

trigger, measured in number of hits to a bank before a promotion occurs. (4) Insertion:

identifies the location to place an incoming block and what todo with the block it replaces

(zero copyor one copypolicies).

Our simple, baseline configuration uses simple mapping, multicast search, one-bank

promotion on each hit, and a replacement policy that choosesthe block in the slowest bank

as the victim upon a miss. To examine how effectively this replacement policy compares to

pure LRU, we measured the distribution of accesses across the sets for a traditional 16-way

set associative cache and a corresponding 16MB, D-NUCA cache with an 16-way bank

set. Figure 4.2 shows the distribution of hits to the varioussets for each cache, averaged

across the benchmark suite. For both caches, most hits are concentrated in the first two

ways of each set. These results are consistent with the results originally shown by So and

Rechtschaffen [111], which showed that more than 90% of cache hits were to the most

recently used ways in a four-way set associative cache. So and Rechtschaffen noted that a

60

Technology Bank org. Unloaded Latency Loaded Miss Bank
(nm) L2 Size (rows x sets) Bank min max avg. avg. IPC Rate Accesses/Set
130 2MB 4x4 3 4 11 8 8.4 0.57 0.23 73M
90 4MB 8x4 3 4 15 10 10.0 0.63 0.19 72M
65 8MB 16x8 3 4 31 18 15.2 0.67 0.15 138M
45 16MB 16x16 3 3 47 25 18.3 0.71 0.11 266M

Table 4.1: D-NUCA base performance

transient increase in non-MRU accesses could be used to markphase transitions, in which

a new working set was being loaded.

The D-NUCA accesses are still concentrated in the banks corresponding to the most

recently used bank. However, the experiments demonstrate alarger number of accesses to

the non-MRU ways, since each line must gradually traverse the spread set to reach the

fastest bank, instead of being instantly loaded into the MRUposition, as in a conventional

cache.

4.1.2 Performance Evaluation

Table 4.1 shows the performance of the baseline D-NUCA configuration, which uses the

simple mapping, multicast search, tail insertion, and single-bank promotion upon each hit.

As with all other experiments, for each capacity, we chose the bank and network organiza-

tion that maximized overall performance. Since the shared mapping policy requires 2-way

associative banks, all banks in each experiment were 2-way set associative.

As the capacities increase with the smaller technologies, from 2MB to 16MB, the

average D-NUCA access latency increases by 10 cycles, from 8.4 to 18.3. The ML-UCA

and S-NUCA designs incur higher average latencies at 16MB, which are 22.3 and 30.4 cy-

cles, respectively. Data migration enables the low averagelatency at 16MB, which, despite

the cache’s larger capacity and smaller device sizes, islessthan the average hit latency for

61

Av. Miss Bank Av. Miss Bank
Policy Lat. IPC Rate Access Policy lat. IPC Rate Access

Search Promotion
Incremental 24.9 0.65 0.114 89M 1-bank/2-hit 18.5 0.71 0.115 259M
2 mcast + 14 inc 23.8 0.65 0.113 96M 2-bank/1-hit 17.7 0.71 0.114 266M
2 inc + 14 mcast 20.1 0.70 0.114 127M 2-bank/2-hit 18.3 0.71 0.115 259M
2 mcast + 14 mcast 19.1 0.71 0.113 134M Eviction (random eviction, 1 copy)

Mapping insert head 15.5 0.70 0.117 267M
Fast shared 16.6 0.73 0.119 266M insert middle 16.6 0.70 0.114 267M

Baseline: simple map, multicast, 1-bank/1-hit, insert at tail 18.3 0.71 0.114 266M

Table 4.2: D-NUCA policy space evaluation

the 130nm, 2MB UCA organization.

At smaller capacities such as 2MB, the base D-NUCA policy shows small (∼4%)

IPC gains over the best of the S-NUCA and UCA organizations. The disparity grows as the

cache size increases, with the base 16MB D-NUCA organization showing an average 9%

IPC boost over the best-performing S-NUCA organization.

Table 4.1 also lists miss rates and the total number of accesses to individual cache

banks. The number of bank accesses decreases as the cache size grows because the miss

rate decreases and fewer cache fills and evictions are required. However, at 8MB and 16MB

the number of bank accesses increase significantly because the multicast policy generates

substantially more cache bank accesses when the number of banks in each bank set doubles

from four to eight at 8MB, and again from eight to 16 at 16MB. Incremental search policies

reduce the number of bank accesses at the cost of occasional added hit latency and slightly

reduced IPC.

62

Policy Evaluation

Table 4.2 shows the IPC effects of using the baseline configuration and adjusting each

policy independently. Changing the mapping function from simple to fair reduces IPC due

to contention in the switched network, even though unloadedlatencies are lower. Shifting

from the baseline multicast to a purely incremental search policy substantially reduces the

number of bank accesses by 67%. However, even though most data are found in one of the

first two banks, the incremental policy increases the average access latency from 18.3 cycles

to 24.9 cycles and reduces IPC by 10%. The hybrid policies (such as multicast-2/multicast-

14) gain back most of the loss in access latency (19.1 cycles)and nearly all of the IPC,

while still eliminating a great many of the extra bank accesses.

The data promotion policy, in which blocks may be promoted only after multiple

hits, or blocks may be promoted multiple banks on a hit, has little effect on overall IPC, as

seen by the three experiments in Table 4.2. The best evictionpolicy is as shown in the base

case, replacing the block at the tail. By replacing the head,and copying it into a random,

lower-priority set, the average hit time is reduced, but theincrease in misses (11.4% to

11.7%) offsets the gains from the lower access latencies.

While the baseline policy is among the best-performing, using the 2 multicast/14-

multicast hybrid look-up reduces the number of bank accesses to 134 million (a 50% reduc-

tion) with a mere 1% drop in IPC. However, the number of bank accesses is still significantly

higher than any of the static cache organizations. Table 4.3, shows the efficacy of the PTP

search policy at improving IPCand reducing bank accesses. We computed the size and

access width of the different possible PTP search configurations, and model their access

latencies accurately using Cacti.

By initiating misses early, the SS-performance policy results in a 8% IPC gain, at

63

the cost of an additional 1-2% area (a 224KB PTP search tag array). In the SS-energy

policy, a reduction of 85% of the bank lookups can be achievedby caching seven bits of

tag per line, with a 6% IPC gain over the base D-NUCA configuration. Coupling the SS-

energy policy with the shared mapping policy results in a slightly larger tag array due to

the increased associativity, so we reduced the PTP search tag width to six bits to keep the

array access time at five cycles. However, that policy results in what we believe our best

policy to be: 47M bank accesses on average, and a mean IPC of 0.75. The last two rows

of Table 4.3 shows two upper bounds on IPC. The first upper bound row shows the mean

IPC that would result if all accesses hit in the closest bank with no contention, costing three

cycles. The second row shows the same metric, but with early initiation of misses provided

by the PTP search array. The highest IPC achievable was 0.89,which is 16% better than

the highest-performing D-NUCA configuration. We call the policy of SS-energy with the

shared mapping the “best” D-NUCA policy DN-best, since it balances high performance

with a relatively small number of bank accesses. The upper bound is 19% than the DN-best

policy.

Comparison to ML-UCA

Multi-level hierarchies permit a subset of frequently useddata to migrate to a smaller, closer

structure, just as does a D-NUCA design, but at a coarser grain than individual banks. We

compared the NUCA schemes with a two-level hierarchy (L2 andL3), called ML-UCA.

We modeled the L2/L3 hierarchy as follows: we assumed that both levels were aggressively

pipelined and banked UCA structures. We also assumed that the L3 had the same size as

the comparable NUCA cache, and chose the L2 size and L3 organization that maximized

the overall IPC. The ML-UCA organization thus consumes morearea than the single-level

64

Configuration Loaded Average Miss Bank Tag Search
Latency IPC Rate Accesses Bits Array

Base D-NUCA 18.3 0.71 0.113 266M - —
SS-performance 18.3 0.76 0.113 253M 7 224KB

SS-energy 20.8 0.74 0.113 40M 7 224KB
SS-performance + shared bank 16.6 0.77 0.119 266M 6 216KB

SS-energy + shared bank 19.2 0.75 0.119 47M 6 216KB
Upper bound 3.0 0.83 0.114 — - —

Upper bound + SS-performance 3.0 0.89 0.114 — 7 224KB

Table 4.3: Performance of D-NUCA with PTP search

Technology L2/L3 Num. Unloaded Loaded ML-UCA DN-best
(nm) Size Banks Latency Latency IPC IPC
130 512KB/2MB 4/16 6/13 7.1/13.2 0.55 0.58
90 512KB/4MB 4/32 7/21 8.0/21.1 0.57 0.63
65 1MB/8MB 8/32 9/26 9.9/26.1 0.64 0.70
45 1MB/16MB 8/32 10/41 10.9/41.3 0.64 0.75

Table 4.4: Performance of an L2/L3 Hierarchy

L2 caches, and has a greater total capacity of bits. In addition, we assumed no additional

routing penalty to get from the L2 to the L3 upon an L2 miss, essentially assuming that the

L2 and the L3 reside in the same space, making the multi-levelmodel optimistic.

Table 4.4 compares the IPC of the ideal two-level ML-UCA witha D-NUCA. In

addition to the optimistic ML-UCA assumptions listed above, we assumed that the two

levels were searched in parallel upon every access1. The IPC of the two schemes is roughly

comparable at 2MB, but diverges as the caches grow larger. At16MB, the overall IPC

is 17% higher with DN-best than with the ML-UCA, since many ofthe applications have

working sets greater than 2MB, incurring unnecessary misses, and some have working sets

smaller than 2MB, rendering the ML-UCA L2 too slow.

1The IPC of an ML-UCA design was 4% to 5% worse when the L2 and L3 were searched serially instead
of in parallel.

65

Tech. Num. Configuration Loaded Average Miss Bank
model banks latency IPC rate accesses

SIA 1999 32 S-NUCA1 21.9 0.68 0.13 15M
64 Shared bank D-NUCA 12.5 0.78 0.12 144M

SS-energy + shared bank 15.6 0.78 0.12 36M

SIA 2001 32 S-NUCA1 30.2 0.62 0.13 15M
256 Shared bank D-NUCA 16.6 0.73 0.12 266M

SS-energy + shared bank 19.2 0.75 0.12 47M

Table 4.5: Effect of technology models on results

The two designs compared in this subsection are not the only points in the design

space. For example, one could view a simply-mapped D-NUCA asann-level cache (where

n is the bank associativity) that does not force inclusion, and in which a line is migrated

to the next highest level upon a hit, rather than the highest.A D-NUCA design could

be designed to permit limited inclusion, supporting multiple copies within a spread set.

Alternatively, a ML-UCA in which the two (or more) levels were each organized as S-

NUCA-2 designs, and in which inclusion was not enforced, would start to resemble a D-

NUCA organization in which lines could only be mapped to two places.

Cache Design Comparison

Figure 4.3 compares the 16MB/45nm IPC obtained by the best ofeach major scheme that

we evaluated: (1) UCA, (2) aggressively pipelined S-NUCA-1, (3) S-NUCA-2, (4) aggres-

sively pipelined, optimally sized, parallel lookup ML-UCA, (5) DN-best, and (6) an ideal

D-NUCA upper bound. This ideal bound is a cache in which references always hit in the

closest bank, never incurring any contention, resulting ina constant 3-cycle hit latency, and

which includes the PTP search capability for faster miss resolution.

The results show that DN-best is the best cache for all but three of the benchmarks

66

0.0

0.2

0.4

0.6

IP
C

172.mgrid

0.0

0.5

1.0

173.applu

0.0

0.5

1.0

176.gcc

0.0

0.5

1.0

177.mesa

0.0

1.0

2.0

178.galgel

0.0

0.5

1.0

179.art

0.0

0.2

0.4

0.6

181.mcf

0.0

0.2

0.4

183.equake

0.0

0.2

0.4

0.6

0.8

253.perlbmk

0.0

0.5

1.0

256.bzip2

0.0

0.5

1.0

300.twolf

0.0

0.2

0.4

0.6

0.8

sphinx

0.0

0.2

0.4

0.6

0.8

cg

0.0

0.2

0.4

0.6

sp
0.0

0.2

0.4

0.6

bt

UCA
S-NUCA1
ML-UCA
S-NUCA2
D-NUCA
UPPER

Figure 4.3: 16MB cache performance for various applications including SPEC2000, NAS
suite, and Sphinx

67

2 MB 4 MB 8 MB 16 MB
0.0

0.5

1.0

1.5

IP
C

UPPER
D-NUCA
S-NUCA2
ML-UCA
S-NUCA1

130nm 90nm 65nm 45nm
(a) 179.art

Figure 4.4: Performance summary of major cache organizations : art

(mgrid, gcc, and andbt). In those three, DN-best IPC was only slightly worse than the best

organization. The second-best policy varies widely acrossthe benchmarks; it is ML-UCA

for some, S-NUCA-1 for others, and S-NUCA-2 for yet others. The DN-best organization

thus offers not only the best but the most stable performance. The ideal bound (labeled

Upperon the graphs) shows the per-benchmark IPC assuming a loadedL2 access latency

of 3 cycles, and produces an average ideal IPC across all benchmarks of 0.89. We found

that the DN-best IPC is only 16% worse thanUpperon average, with most of that difference

concentrated in four benchmarks (applu, art, mcf, andsphinx).

Figure 4.4, 4.5 and 4.6 shows how the various schemes performacross technology

generations and thus cache sizes. The IPC ofart, with its small working set size, is shown

in Figure 4.4. Figure 4.5 shows the same information for a benchmark (mcf) that has a

larger-than-average working set size. Figure 4.6c shows the harmonic mean IPC across all

benchmarks.

First, the IPC improvements of D-NUCA over the other organizations grows as the

68

2 MB 4 MB 8 MB 16 MB
0.0

0.2

0.4

0.6

0.8

UPPER
D-NUCA
S-NUCA2
ML-UCA
S-NUCA1

130nm 90nm 65nm 45nm
(b) 181.mcf

Figure 4.5: Performance summary of major cache organizations : mcf

2 MB 4 MB 8 MB 16 MB
0.0

0.5

1.0

UPPER
D-NUCA
S-NUCA2
ML-UCA
S-NUCA1

130nm 90nm 65nm 45nm
(c) All Benchmarks

Figure 4.6: Performance summary of major cache organizations : AVG

69

cache grows larger. The adaptive nature of the D-NUCA architecture permits consistently

increased IPC with increased capacity, even in the face of longer wire and on-chip commu-

nication delays. Second, the D-NUCA organization is stable, in that it makes the largest

cache size the best performer for twelve applications, within 1% of the best for two applica-

tions, within 5% for one application, and within 10% for one application. Figure 4.4 shows

this disparity most clearly in that D-NUCA is the only organization for whichart showed

improved IPC for caches larger than 4MB.

4.2 Chip-Multiprocessor D-NUCA

Chip-Multiprocessors (CMPs) are now commonplace. The major processor companies

have adopted CMP designs across various domains; server, desktop and embedded do-

mains. As more transistors are integrated at smaller technologies, more processor cores are

expected to be integrated in the chip. While much work existson building multi-processor

systems, the best design for building a scalable CMP is stillopen research question. In

particular, the trend of integrating many cores in a single chip provides a new challenge

in designing on-chip memory hierarchy. Even though L1 caches are likely remain private

and tightly integrated to processor cores, how to manage L2 caches will be a key design

decision to building a scalable CMP.

The L2 caches may be shared by all processors or may be separated into private per-

processor partitions. The completely private L2 cache design provides faster access time

than the shared design since the private per-processor partition is smaller than the shared

cache. In addition, the private L2 design allows a replicated copy of data in individual

private partitions, which further reduces the cache accesstime if a cache hit occurs in a

private partition. On the other hand, the completely sharedL2 cache design maintains a

70

single copy of data in the entire shared pool that results in alarger effective cache size and

the corresponding lower miss rate.

The tension between a private cache design and a shared cachedesign is driven

by application characteristics. Each application will benefit differently with the reduced

hit latencies of a private cache design versus the reduced misses of a shared cache design.

The applications with larger working sets and less data sharing benefit more from a shared

cache design while the applications with smaller working set and high data sharing get more

benefits from a private cache design.

To address the design trade-off between private and shared caches, we first propose

a composable cache substrate based on the non-uniform cachearchitecture (NUCA) design

that can be configured as a private cache design or as a shared cache design per-application

basis. In addition to the two ends of the spectrum of cache designs (private, shared), the un-

derlying cache substrate permits dynamic selection of any degree of cache sharing, adjusted

by the operating system. Here, we define thesharing degreeas the number of processors

that share a given pool of cache. In this terminology, a sharing degree of one means that

each processor has its own private L2 partition, whereas a sharing degree of sixteen means

that all processor are sharing a single large cache array in a16-processor CMP system.

Since the detailed discussion on the performance effect of the sharing degree was discussed

by Huh’s dissertation [52], this dissertation focuses on the energy implication of various

sharing degree.

Secondly, we evaluate the effect of dynamic data migration in D-NUCA to reduce

average L2 hit latencies and thus support larger sharing degrees. While cache designs with

a large sharing degree reduce the overall cache miss ratio, the cache hit latencies increase

significantly with larger effective cache capacity. In the previous chapter, we showed how

71

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

P0P0

I D

P0P0

I D

P1P1

I D

P1P1

I D

P2P2

I D

P2P2

I D

P3P3

I D

P3P3

I D

P4P4

I D

P4P4

I D

P5P5

I D

P5P5

I D

P6P6

I D

P6P6

I D

P7P7

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P15P15

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P8P8

L2 Cache Banks

Directory for L2
Coherence

Switched
Network

Processor Core

L1 I-, D- Cache

Figure 4.7: Composable cache substrate for flexible sharingdegree

dynamic data migration in D-NUCA reduces the average cache hit latencies of a large

uniprocessor L2 cache. In the following subsections, we show that dynamic mapping ca-

pabilities can potentially reduce long latencies in a largesharing degree CMP cache. We

also show that dynamic mapping can reduce the total energy consumed by an on-chip cache

subsystem, by reducing the on-chip network traffic in highersharing degrees.

4.2.1 CMP L2 Cache Design Space

As shown in Figure 4.7, a cache substrate we evaluate to support flexible sharing degree

is based on a composable cache substrate that is explored in Chapter 3. The composable

cache substrate breaks large on-chip L2 caches into many fine-grained SRAM banks that are

independently accessible, with a switched 2-D mesh network[39] embedded in the cache.

The configurable nature of switched network allows caches tobe composed to sup-

port various sharing degrees. By adjusting the bits used to route memory addresses to a

72

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

P0P0

I D

P0P0

I D

P1P1

I D

P1P1

I D

P2P2

I D

P2P2

I D

P3P3

I D

P3P3

I D

P4P4

I D

P4P4

I D

P5P5

I D

P5P5

I D

P6P6

I D

P6P6

I D

P7P7

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P15P15

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P8P8

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2L2 L2 L2 L2 L2 L2 L2 L2

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

P0P0

I D

P0P0

I D

P1P1

I D

P1P1

I D

P2P2

I D

P2P2

I D

P3P3

I D

P3P3

I D

P4P4

I D

P4P4

I D

P5P5

I D

P5P5

I D

P6P6

I D

P6P6

I D

P7P7

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P15P15

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P8P8

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2L2 L2 L2 L2 L2 L2 L2 L2

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Completely Shared L2
(SD = 16)

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

P0P0

I D

P1P1

I D

P2P2

I D

P3P3

I D

P4P4

I D

P5P5

I D

P6P6

I D

P7P7

I D

P0P0

I D

P0P0

I D

P1P1

I D

P1P1

I D

P2P2

I D

P2P2

I D

P3P3

I D

P3P3

I D

P4P4

I D

P4P4

I D

P5P5

I D

P5P5

I D

P6P6

I D

P6P6

I D

P7P7

I D

P7P7

I D

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P15P15

II DD

P0P15P15

II DD

P0P14P14

II DD

P0P14P14

II DD

P0P13P13

II DD

P0P13P13

II DD

P0P12P12

II DD

P0P12P12

II DD

P0P11P11

II DD

P0P11P11

II DD

P0P10P10

II DD

P0P10P10

II DD

P0P9P9

II DD

P0P9P9

II DD

P0P8P8

II DD

P0P8P8

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2L2 L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 L2 L2 L2 L2L2 L2 L2 L2 L2 L2 L2 L2

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Partially Shared L2
(SD=4)

Completely Shared L2
(SD = 16)

(a) (b) (c)

Figure 4.8: Various sharing degrees from the sharing degreeone (a), the sharing degree 16
(b), to the sharing degree four (c)

cache bank, the cache array is configurable by the system to use any degree of sharing. If

each processor maps the same address bit string to a different bank, the sharing degree is

one. If all processors map the same address bits to a single bank, the sharing degree is

sixteen.

Lines can be mapped into this array of cache banks with fixed mappings or dynamic

mappings, where cache lines can move around within the cacheto further reduce the average

cache hit latency. With a static mapping policy, a fixed hash function uses the lower bits

of a block address to select the correct bank. The L2 access latency is thus proportional to

the distance from the issuing L1 cache to the L2 cache bank. Byallowing non-uniform hit

latencies, static mapping can reduce hit latencies of traditional monolithic cache designs,

which fix the latency to the longest path [64]. Because a blockcan be placed into only one

bank, the L2 access latency is essentially determined by a block address.

73

Parameter Value

Processor frequency 5 GHz
Issue width 4
Window size 64-entry RUU
Number of CPUs 16
L1 I/D cache 32KB, 2-way, 64B block, 8 MSHRs
L2 cache 8x8 banks
L2 cache bank 256KB, 16-way, 5 cycle latency
Network 1 cycle latency between two adjacent banks
On-chip directory 10 cycle access latency
Main Memory 260 cycle latency, 360 GB/s bandwidth

Table 4.6: Simulated system configuration

Figure 4.8 shows three possible partitioning schemes in a 16-processor CMP that

have sharing degrees of one, 16, and four, respectively. With a sharing degree of one (Fig-

ure 4.8a), the CMP has sixteen 1 MByte caches, each of which isprivate to one processor.

With a sharing degree of sixteen (Figure 4.8b), the CMP has only one 16 MByte cache,

which is shared by all sixteen processors. Figure 4.8c showsthe configuration of the shar-

ing degree four,in which four processor cores share 4MB poolof cache banks. In addition to

the shown three configurations, the evaluated cache substrate supports the sharing degrees

of two and eight as well. To change sharing degrees, the on-chip coherence mechanism

must have the flexibility to adapt to different organizations.

Methodology

We evaluated our CMP cache designs using MP-sauce, an execution-driven, full-system

simulator [52]. The simulator was derived from IBM’s SimOS-PPC, which uses AIX

4.3.1 as the simulated OS. The processor model extends the SimpleScalar processor timing

model, adding multiprocessor support. Table 4.6 shows a summary of the main architectural

74

parameters to measure performance and energy.

The L2 cache bank array is connected with a 2D-mesh point-to-point interconnec-

tion network comprised of links and switches. While we modelall messages for coher-

ence and data migration to assess network bandwidth, we assume infinite buffering at each

switching node. To evaluate the effect of input buffer size on performance, we used a sepa-

rate cycle-accurate on-chip network simulator with expected network traffic [39]. With the

trace-driven network simulation, we confirmed that the increase of input buffer size beyond

five entries has little effect on performance compared to theinfinite input buffers.

We estimate the dynamic energy consumption of the L2 cache subsystem to inves-

tigate the energy consumption effects of varying the sharing degree and using dynamic data

migration. We include all L2 cache bank accesses, on-chip directory accesses for coher-

ence management and the partial tag accesses for the D-NUCA design. On a 45nm design

at 5GHz, we estimate that the energy consumption ratio of L2 cache bank access: cache

line movement per hop: on-chip directory access: partial tag access is about 7:5:2:1. To

model the router energy consumption, we use the structural RTL-based energy estimation

technique with the Synopsys Primepower tool. The router RTLis obtained from the TRIPS

prototype that implemented the S-NUCA L2 cache [99]. We usedCACTI [117] to estimate

the energy consumption for accessing various SRAM array structures in the L2 subsystem,

including cache banks, the on-chip directory and the partial tag structure.

We used three commercial applications: SPECWeb99, TPC-W, and SPECjbb, and

four scientific shared-memory benchmarks from the SPLASH-2suite [126]: Ocean, Barnes,

LU, and Radix. Table 4.7 shows the dataset size and other notable features of each applica-

tion.

75

Application Dataset/Parameters

SPECWeb99 Apache web server, file set: 230MB, 480 transactions
TPC-W 185MB databases using Apache & MySQL, 48 transactions
SPECjbb IBM JVM version 1.1.8, 16 warehouses, 3000 transactions
Ocean 258 × 258 grid
Barnes 16K particles
LU 512 × 512, 16 × 16 blocks
Radix 1M integers

Table 4.7: Application parameters for workloads

4.2.2 Effect of Sharing Degree in CMPs

In this section, we briefly summarize the trade-offs of higher and lower sharing degrees.

Then, we discuss the effect of various sharing degrees on theenergy consumed in the L2

subsystem.

Hit latency versus hit rate

The main advantage of higher sharing degrees is higher L2 cache hit rates. If the working

sets across CPUs are not well balanced, private L2 caches canmake one CPU suffer from

capacity misses while other CPUs have unused cache space. Shared caches, on the other

hand, allow otherwise unused cache space to be used by the space-hungry CPU. Further-

more, shared caches keep at most one copy of a block, not wasting space by storing multiple

copies of the same block, unlike private L2 caches sharing copies of the same line. As a

result, shared caches can effectively store more data, indirectly increasing hit rates.

However, the drawback of a higher sharing degree is the potential for higher average

hit latency due to the larger size, longer wire delays, and increased bandwidth requirements.

In future wire-dominated implementations, the effect of increased hit latency may outweigh

76

the benefit of increased hit rates for shared caches.

On a set of benchmarks (described in Table 4.7), we observed that for shared S-

NUCA organizations, low-to-medium sharing, from one to four, provide the best perfor-

mance for all applications except one. The best sharing degree across all benchmarks is

four. We confirmed that significant latency reductions are possible for private L2 caches,

and significant miss reductions are possible for shared L2 caches. More detailed evaluations

are presented by Huh in his dissertation [52].

Coherence overheads

Inter-processor communication through a shared L2 cache isfaster than through private

L2 caches connected by a coherent bus. With shared L2 caches,processors communicate

through L2 cache blocks directly. As sharing degrees increase, more processor-to-processor

communication can be transferred within local shared caches, avoiding slower coherence

networks across shared caches. Furthermore, since the sizeof L1 caches is smaller than

the size of L2 caches, modified data in the L1 are frequently flushed to shared L2 caches,

making the modified data readily available to other processors in the same shared cache.

By absorbing many local communications into shared caches,higher sharing degree caches

can reduce slower three-hop cache-to-cache transfers.

Energy efficiency

The sharing degree can affect energy consumed by on-chip network traffic. If the majority

of cache accesses hit in small local caches, a lower sharing degree cache can reduce the

network traffic. In this situation, most data traffic is localized between processors and close

cache banks, reducing traversal distances. However, if data accesses to on-chip remote

77

SD=1 SD=2 SD=4 SD=8 SD=16
SPECWeb99: Sharing Degrees (SD)

0

1

2

3

N
um

be
r

of
 a

cc
es

se
s

(N
or

m
al

iz
ed

 to
 S

D
=

1) On-chip network traffic
Bank accesses
Off-chip network traffic

Figure 4.9: On-chip network traffic, bank accesses, and off-chip memory traffic with vary-
ing sharing degrees (normalized to SD=1)

caches are frequent, a lower sharing degree may increase network traffic, bank accesses

and L2 directory accesses. Furthermore, a higher sharing degree can be more efficient for

off-chip memory accesses, since the hit rate can be higher than with a lower sharing degree.

If driving off-chip signals and external DRAMs consume a large portion of system power,

decreasing off-chip accesses will become critical.

Figure 4.9 presents three energy related statistics: on-chip network traffic, bank

accesses and off-chip memory traffic across various sharingdegrees. Each statistic is nor-

malized to the sharing degree (SD) of one. Across different applications, these metrics do

not change significantly, so we present the result from SPECWeb99.

The most significant change in the energy efficiency is the network traffic increase.

The network traffic increases as sharing degrees become higher, since command and data

packets must traverse more hops in higher-sharing-degree caches. Between SD=4 and

SD=8, the traffic increases sharply, since processors need to access banks on the opposite

78

of the chip. On-chip network traffic increases by 170% from SD=1 to SD=16. However,

up to SD=4, the increase is modest a 35%. A 2-D mesh network consumes less area than a

higher degree networks, such as a torus. However, higher degree networks, which can re-

duce network hop distance at the cost of added area, may be able to reduce hit latencies for

higher sharing degrees. Sharing degree changes do not affect bank accesses significantly,

but off-chip memory accesses can be affected considerably,depending on the applications.

As higher sharing degrees can improve hit rates, off-chip memory traffic decreases.

We draw three conclusions from these results. First, high-degree shared caches for

CMPs do not have any advantages in wire-delay dominated future technologies even when

high degrees of application sharing exist. The increase in L2 hit latency in shared caches

degrades performance more than the reduced misses improve it. Second, the sharing degree

can change overall performance significantly. Third, no single sharing degree provides

the best performance for all benchmarks. Nevertheless, theSD=4 design point has the best

average performance for the applications used in this evaluation, and is the best compromise

fixed design point for this mix of workloads on S-NUCA.

4.2.3 Effect of Dynamic Data Migration

Dynamic mapping capabilities can potentially reduce long latencies with large sharing de-

grees. Performance improvements are achieved when the migration policy is successful and

the reduction in latency dominates the increased latency ofthe more complex lookup mech-

anism. To isolate the effectiveness of dynamic migration from the overheads of the search

mechanism, we evaluated an ideal D-NUCA with a perfect search mechanism (D-NUCA

Perfect). The perfect D-NUCA configuration assumes an oracle searching mechanism that

allows L1 misses to be sent directly to the L2 bank storing therequested block on a hit. L2

79

Sharing Degree SD=1 SD=2 SD=4 SD=8 SD=16
S-NUCA 11.7 12.6 14.3 20.5 24.7
D-NUCA Perfect 8.7 9.2 10.7 15.1 19.1
D-NUCA Real 9.5 10.0 11.4 18.1 21.9

Table 4.8: Average D-NUCA L2 hit latencies with varying sharing degrees

0.0

0.5

1.0

E
xe

cu
tio

n
T

im
e S-NUCA

D-NUCA perfect
D-NUCA

2 4 1
4

1
4 16 4 4 4 4

1

2 16

4 4 1 4 1

2
16

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix

Figure 4.10: D-NUCA execution times (normalized to S-NUCA with SD=1)

misses are also detected without any search overhead in the perfect configuration. However,

the perfect D-NUCA configuration still models other overheads such as network and bank

bandwidth consumption for accesses and block migration.

Table 4.8 shows the average L2 hit times across all applications for five sharing

degrees. With the perfect lookup mechanism, D-NUCA migration policies show signifi-

cant reductions in L2 hit latencies. The latency reductionsincrease as the sharing degree

increases. At SD=16, the perfect D-NUCA policy reduces the average L2 hit latency by

23% compared to the S-NUCA design. However, with a realisticsearch mechanism with

distributed partial tags, the hit latencies of D-NUCA are significantly increased from the

perfect lookup mechanism, confirming that the search mechanism is a key design issue

with D-NUCA.

Figure 4.10 shows the relative execution times of the best performing sharing degree

80

for the S-NUCA and D-NUCA design points across all applications. Each bar shows the

SD with the best performance noted at the top. This figure illustrates the following: (1) the

performance potential of the perfect search and migration mechanism and how closely the

realistic implementations can match them, and (2) performance of the realistic D-NUCA

design compared to S-NUCA with the best sharing degree.

The perfect search mechanisms with dynamic migration can reduce execution time

by 3-28%, except for Ocean. For Ocean, although D-NUCA reduces average hit laten-

cies, L2 miss rates are increased since blocks are not promoted quickly, and are victimized

prematurely by new blocks. For SPECjbb, the performance improvement is small, since

SPECjbb does not take advantage of the increased sharing degree, and the effect of dy-

namic migration is not high at low sharing degrees. With realistic search mechanisms, the

performance improvement of D-NUCA can be lost (SPECWeb99 and TPC-W). For LU

and Radix, dynamic migration shows large improvements of 21%-25%. LU has a relatively

large L1 data miss rate of 12%, but the entire working set nearly fits in the L2 caches.

The reduction in L2 hit latencies directly improves performance. In Radix however, ex-

ternal memory accesses dominate performance due to both capacity and conflict misses.

Therefore, the best performance for Radix is achieved with asharing degree of sixteen for

both S-NUCA and D-NUCA. Furthermore, the increased bank associativity in D-NUCA

reduces conflict misses significantly. D-NUCA enables increased effective associativity

since a cache address can be mapped to any cache bank in the same bank set. Since shared

caches, especially with high sharing degrees, are prone to conflict misses, the increased

associativity in D-NUCA helps avoid certain pathological conflicts.

81

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Sharing Degree

0

1

2

3

4

5

In
te

rc
on

ne
ct

 T
ra

ffi
c

SD = 1
SD = 2
SD = 4
SD = 8
SD = 16

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
Solid: S-NUCA
Striped: D-NUCA

Figure 4.11: On-chip interconnect traffic (normalized to S-NUCA with SD=1)

Results: Energy Trade-Offs

To compare the relative energy consumption of S-NUCA and D-NUCA, we tabulated the

power consuming events in the memory system (as in Table 4.6). D-NUCA has the potential

to reduce on-chip interconnect traffic by placing frequently accessed blocks close to their

requesting cores. However, block migration in D-NUCA generates extra traffic since a

migration victim needs to be transferred back to the bank where a hit occurs. D-NUCA also

increases the number of bank accesses because three extra bank lookups are necessary for

every migration.

Figures 4.11 and 4.12 compare D-NUCA and S-NUCA using two metrics; on-chip

interconnect traffic and number of bank accesses. Figure 4.13 presents the total energy

consumed by the on-chip L2 cache subsystem. We account for the energy consumed by

accessing partial tag arrays in D-NUCA. All numbers are normalized to S-NUCA with

the sharing degree of one. S-NUCA numbers are represented bysolid bars and D-NUCA

numbers are represented by striped bars.

Figure 4.11 shows that placing frequently accessed blocks closer to the processor

provides the benefits in reducing the on-chip interconnect traffic. The decreased network

82

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Sharing Degree

0

1

2

N
um

be
r

of
 B

an
k

A
cc

es
se

s

SD = 1
SD = 2
SD = 4
SD = 8
SD = 16

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix Solid: S-NUCA
Striped: D-NUCA

Figure 4.12: Number of banks accesses (normalized to S-NUCAwith SD=1)

hops to access blocks are higher than the traffic increase dueto migration. D-NUCA with

the sharing degree of one effectively reduces the on-chip interconnect traffic by 18% on av-

erage compared to S-NUCA. As sharing degree increases, the reduction grows and reaches

45% on average with the sharing degree of sixteen. In terms ofnetwork traffic, D-NUCA

can be more effective and the gains become higher as sharing degree increases.

As expected, Figure 4.12 shows that block migration in D-NUCA increases the

total bank accesses significantly. The number of bank accesses increases by 31-40% for

the tested applications with a sharing degree of sixteen, due totally to block migration.

Note that the number of bank accesses for D-NUCA increases with sharing degrees of

eight and sixteen while the number for S-NUCA remains unchanged across various sharing

degrees. This is because of our assumption in floorplanning of processor cores and L2 cache

banks. In eight and sixteen sharing degrees, each column bank set is expanded vertically

and contains eight cache banks as shown in Figure 4.7. When a block is shared by two

processors located in the top and bottom, the block may migrate between eight banks in the

column bank set and generate extra bank accesses.

In Figure 4.13, we observe that the total energy consumed by the on-chip L2 cache

83

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Sharing Degree

0

1

2

3

L2
 C

ac
he

 E
ne

rg
y

SD = 1
SD = 2
SD = 4
SD = 8
SD = 16

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
Solid: S-NUCA
Striped: D-NUCA

Figure 4.13: Total energy consumed by on-chip L2 cache subsystem (normalized to S-
NUCA with SD=1)

subsystem follows the on-chip interconnect traffic trend since the energy consumed by bank

accesses and partial tag accesses are relatively small compared to the energy consumed by

the on-chip network. Therefore, dynamic migration can contribute to energy reduction as

well as performance improvement.

4.3 Summary

Non-uniform accesses are appearing in high performance cache designs [88]. In the first

half of this chapter, we evaluate a range of policies to support migrating data dynamically

on a composable cache substrate, thereby clustering the working sets within a cache near

the processor.

This study shows that uniprocessor D-NUCA cache designs achieve the following

four goals:

• Low latency access: the best 16MB D-NUCA configuration, simulated with pro-

jected 45nm technology parameters, demonstrated an average access time of 17 cy-

cles, which is a lower absolute latency than conventional L2caches.

84

• Technology scalability: Increasing wire delays will increase access times for tradi-

tional, uniform access caches. The D-NUCA design scales much better with tech-

nology than conventional caches, since most accesses are serviced by close banks,

which can be kept numerous and small with a switched network.

• Performance stability: The ability of a D-NUCA to migrate data eliminates the trade-

off between larger, slower caches for applications with large working sets and smaller,

faster caches for applications that are less memory intensive.

• Flattening the memory hierarchy: The D-NUCA design outperforms multi-level caches

built in an equivalent area, since the multi-level cache hasfixed partitions that are

slower than an individual bank. This D-NUCA result augurs a reversal of the trend

of deepening memory hierarchies. We foresee future memory hierarchies having two

or at most three levels: a fast L1 tightly coupled to the processor, a large on-chip

NUCA L2, and perhaps an off-chip L3 that uses a memory device technology other

than SRAM.

In the second half of the chapter, we extend the concept of non-uniform cache ac-

cess architecture to emerging chip-multiprocessors (CMPs) and explore the well-known

design trade-off between the lower average hit latency withthe private L2 cache design and

the larger effective cache capacity with the shared L2 cachedesign. The CMP L2 cache

substrate we evaluate is designed to support both low-latency, private logical caches as well

as highly shared caches, simply by adjusting the mapping of the same address on different

processors to the L2 cache.

The results show that—compared to private, non-shared L2 partitions—the L2 la-

tency more than doubles for a fully shared cache. The resultsalso show that the fully shared

85

cache could eliminate a third of off-chip misses. However, the fully shared cache can in-

cur a 170% network traffic increase. Clearly, a large opportunity exists if this gap can be

bridged. The S-NUCA organization (static mapping) is best for a low-to-medium sharing

degrees for all applications; the extra hit latency is simply too detrimental for larger sharing

degrees.

For a subset of applications, we observe that the dynamic data migration capabilities

of D-NUCA can reduce the average hit latency, driving the ideal sharing degree higher. In

addition, D-NUCA showed the potential benefit of reducing the energy consumption as

well by decreasing the on-chip network traffic in higher sharing degrees. However, both

performance gains and energy reductions over the S-NUCA design with the best sharing

degree are shown to be modest. We conclude that the performance gains of the D-NUCA

design are unlikely to justify the added design complexity.

86

Chapter 5

Composable Processors

Due to limitations on clock frequency scaling, most future computer system performance

gains will come from power-efficient exploitation of concurrency. Consequently, the com-

puter industry has migrated toward chip multiprocessors (CMPs), in which the capability of

the cores depends on the target market. Some CMPs use a greater number of narrow-issue,

in-order cores (Niagara), while others use a smaller numberof out-of-order superscalar

cores with SMT support (IBM Power5). In the non-server domains, the application soft-

ware threads must be able to provide sufficient concurrency to utilize all the processors.

Another disadvantage of conventional CMPs is their relative inflexibility. In a conventional

design, the granularity (i.e., issue width) and number of processors on each chip are fixed

at design time, based on the designers’ best analyses about the desired workload mix and

operating points. Any fixed design point will result in suboptimal operation as the number

and type of available threads change over time.

In this chapter, we describe and evaluate a potential alternative, composable pro-

cessors that build on composable on-chip memories. A composable processor consists of

87

multiple simple, narrow-issue processor cores that can be aggregated dynamically to form

more powerful logical single-threaded processors. Thus, the number and size of the pro-

cessors can be adjusted on the fly to provide the target that best suits the software needs

at any given time. The same software thread can run transparently—without modifications

to the binary—on one core, two cores, up to as many as 32 cores in the design that we

simulate. Low-level run-time software can decide how to best balance thread throughput

(TLP), single-threaded performance (ILP), and energy efficiency. Run-time software may

also grow or shrink processors to match the available ILP in athread to improve perfor-

mance and power efficiency. Henceforce, we call a composableprocessor that we evaluate

shortly “CLP” (Composable Lightweight Processor).

Figure 5.1 shows a high-level floorplan with three of many possible configurations

of a CLP. The small squares on the left of each floorplan represent a single core while

the squares labeled L2 on the right represent some form of distributed level 2 cache. The

system could obviously decide to run 32 threads on one core each (Figure 5.1a) if the

number of available threads were high. If single-threaded performance was paramount,

and the thread contained high internal concurrency, the CLPcould be configured to run

that thread across the number of cores that maximized performance (up to 32, as shown

in Figure 5.1c). If energy efficiency was paramount, for example in a data center or in

battery-operated mode, the system could configure the CLP torun each thread at its best

energy-efficient point, which in our experiments ranges from two to 16 cores per thread,

depending on the application. Figure 5.1b shows an energy-optimized CLP configuration

running eight threads across a range of processor granularities.

A fully composable processor is signified by three characteristics: (1) serial pro-

gram execution is distributed over multiple processors, (2) no hardware structures are phys-

88

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P P

P P

P P

P

P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P

(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

Figure 5.1: Three dynamically assigned CLP configurations

ically shared by these processors, and (3) the number of processors combined to execute a

serial program can be dynamically changed transparent to the running application. Creat-

ing larger logical microarchitectural structures from smaller ones is the principal challenge

for the design of a composable processor. Composing some structures, such as register

files and level-one data caches, is straightforward as thesestructures in each core can be

treated as address-interleaved banks of a larger aggregatestructure. Changing the mapping

to conform to change in the number of composed processors merely requires adjusting the

interleaving factor or function.

However, banking or distributing other structures required by a conventional in-

struction set architecture is difficult. For example, operand bypass (even when distributed)

typically requires some form of broadcast, as tracking the ALUs in which producers and

consumers are executing is difficult. Similarly, instruction fetch and commit require a sin-

gle point of synchronization to preserve sequential execution semantics, including features

such as a centralized register rename table and load/store queues. While some of these chal-

lenges can be solved by brute force, supporting compositionof a large number of processing

elements can benefit from instruction-set support.

89

A better-fitting class of ISAs may be explicit data graph execution (EDGE) archi-

tectures, which employ block-based program execution and explicit intra-block dataflow

semantics, and have been shown to map well to distributed microarchitectures [15]. The

particular CLP we evaluate, called TFlex, achieves the composable capability by mapping

the large, structured instruction blocks across participating cores differently depending on

the number of cores that are running a single thread.

When multiple cores collaborate to run a single thread, all of the distributed re-

sources in each core are used by the thread. Each instructionblock is split among the cores,

with operands being routed across a scalar operand network [40, 118] to wake up instruc-

tions on participating cores. The other resources, such as the L1 instruction and data caches,

register files, branch predictors, and load/store queues, each form a physically distributed

but logically single resource, using support in the microarchitecture that we describe in

Section 5.2.

In this chapter, we describe the TFlex CLP microarchitecture, and compare the

performance, area, and power consumed by various configurations against the TRIPS pro-

cessor, which use the same ISA, as a reference processor. TheTFlex CLP microarchitecture

allows the dynamic aggregation of any number of cores–up to 32 for each individual thread–

to find the best configuration under different operating targets: performance, area efficiency,

or energy efficiency. The performance, area, and power models are derived from and vali-

dated using the TRIPS hardware. On a set of 26 benchmarks, including both high- and low-

ILP codes, results show that the best configurations range from one to 32 dual-issue cores

depending on operating targets and applications. The TFlexdesign achieves a 1.4x per-

formance improvement, 3.4x performance/area improvement, and 2.0x performance2 /Watt

improvement over the TRIPS processor. The capabilities offered by CLPs thus permit flexi-

90

ble execution depending on workload and environmental mixes, making them a good match

for future, general-purpose parallel substrates.

5.1 ISA Support for Composability

The TFlex execution model employs an EDGE (Explicit Data Graph Execution) instruc-

tion set architecture [15] proposed to better exploit concurrency from applications while

handling the growing wire-delay and the power-scaling challenges of modern superscalar

processors.

EDGE instruction sets have two distinguishing features. First, they employblock-

atomic execution, in which groups of instructions execute as a logical atomicunit, either

committing all of their output state changes or none (in somesense like transactions). Sec-

ond, they supportdirect-instruction communicationwithin each block, allowing instruc-

tions to specify their dependent instructions in the instruction itself, rather than communi-

cating through a shared namespace like a register file.

In this section, we first describe these two distinguishing features of EDGE ISA in

detail. Then, we discuss how these features of EDGE ISA support efficient and flexible

composability.

5.1.1 Blocks

An EDGE compiler [107] constructs blocks [75,108] and assigns each instruction to a loca-

tion within the block. Each block is divided into between twoand five 128-byte chunks by

the microarchitecture. As shown in Figure 5.2, every block includes a header chunk which

encodes up to 32read and up to 32write instructions that access the 128 architectural

registers. The read instructions pull values out of the registers and send them to compute

91

PC

128 Bytes

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Header

Chunk

Instruction

Chunk 0

(32 Instructions)

Instruction

Chunk 3

(32 Instructions)

Instruction

Chunk 2

(32 Instructions)

Instruction

Chunk 1

(32 Instructions)

Bit Offsets

H0

31 6 5 0

0

4

8

12

112

116

120

124

16

20

104

108

Byte

Offsets

H1

H2

H3

H4

H5

H26

H27

H28

H29

H30

H31

24

28

H6

H7

H24

H25

Read 0

Read 1

Read 2

Read 3

Read 4

Read 5

Read 6

Read 7

Read 24

Read 25

Read 26

Read 27

Read 28

Read 29

Read 30

Read 31

27

Write 0

Write 1

Write 2

Write 3

Write 4

Write 5

Write 6

Write 7

Write 24

Write 25

Write 26

Write 27

Write 28

Write 29

Write 30

Write 31

96

100

Header includes:

 - Up to 32 reads

 - Up to 32 writes

 - 128 bits in upper nibbles for

 - header marker (8 bits)

 - block size (8 bits)

 - block flags (8 bits)

 - store mask (32 bits)

Figure 5.2: Block format (from the paper by Sankaralingam etal. [99])

instructions in the block, whereas the write instructions return outputs from the block to the

specified architectural registers.

The header chunk also holds three types of control state for the block: a 32-bit

“store mask” that indicates which of the possible 32 memory instructions are stores, block

execution flags that indicate the execution mode of the block, and the number of instruction

“body” chunks in the block.

A block may contain up to four body chunks–each consisting of32 instructions–for

a maximum of 128 instructions, at most 32 of which can be loadsand stores. In addition,

all possible executions of a given block must always emit thesame number outputs (stores,

register writes, and one branch) regardless of the predicated path taken through the block.

This constraint is necessary to detect block completion on the distributed substrate. The

compiler is responsible for generating blocks that conformto these constraints [107].

92

5.1.2 Direct Instruction Communications

Direct instruction communication–in which instructions in a block send their operands di-

rectly to consumer instructions within the same block in a dataflow fashion–permits dis-

tributed execution by eliminating the need for any intervening shared, centralized structures

such as an issue window or a register file between the producerand consumer.

As shown in Figure 5.3, the ISA supports direct instruction communication by en-

coding the consumers of an instruction as targets within theproducing instruction, allowing

the microarchitecture to determine where the consumer resides and forward a produced

operand directly to its target instruction(s). The nine-bit target fields (T0 and T1) shown

in the encoding each specify the operand type (left, right, predicate) with two bits and the

target instruction with the remaining seven. A microarchitecture supporting this ISA will

determine where each of a block’s 128 instructions is mapped, thereby determining the

distributed flow of operands along the dataflow graph within each block.

More details on the instruction set architecture and execution model are available in

the TRIPS ISA Manual [78].

5.1.3 Support for Composability

These features of EDGE ISAs offer power and performance efficiency by removing the

overhead of rediscovering dataflow dependences by the hardware since the compiler ex-

plicitly encodes the dependences in the ISA. This encoding eliminates the need for most

of the unscalable power-hungry structures in the conventional superscalar processors, in-

cluding associative issue window, complex dynamic scheduler, multi-ported register files,

per-instruction register renaming, and complex broadcasting bypass network.

While composability can also be provided using traditionalISAs [54], EDGE ar-

93

OPCODE PR T1 T0XOP

OPCODE PR IMM T0XOP

General Instruction Formats

08917182223242531

OPCODE PR IMM 0LSID

OPCODE PR IMM T0LSID

Load and Store Instruction Formats

08917182223242531

OPCODE PR OFFSETEXIT

Branch Instruction Format

019202223242531

OPCODE CONST T0

Constant Instruction Format

089242531

V GR RT1 RT0

Read Instruction Format

0815162021 7

V GR

Write Instruction Format

045

G

I

L

S

B

C

R

W

INSTRUCTION FIELDS

OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate

T0 = Target 0 Specifier

T1 = Target 1 Specifier

LSID = Load/Store ID

EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant

V = Valid Bit

GR = General Register Index

RT0 = Read Target 0 Specifier

RT1 = Read Target 1 Specifier

Figure 5.3: Instruction formats (from the paper by Sankaralingam et al. [99])

chitectures provide the salient feature of composability.First, since the dataflow graph

is statically and explicitly encoded in the instruction stream, it is simple to shrink or ex-

pand the graph on fewer or larger number of execution resources as desired with virtually

no additional hardware. Second, when a single thread application runs on multiple cores,

traditional architectures will require careful coordination among cores to maintain the se-

quential semantics of the instruction stream, especially at in-order stages of pipelines such

as fetch and commit [54]. This coordination overhead can be significantly reduced if the

unit of coordination is done at much larger granularity thanindividual instructions.

TRIPS is the first architecture to employ an EDGE ISA. It aims to support dif-

ferent granularities of parallelism and takes a partitioning approach, which implements a

coarse-grained CMP and logically partitions the large processors to exploit thread-level

parallelism when it exists [98]. While this approach is goodfor improving performance of

applications with a moderate number of threads, it provideslimited opportunity to adapt to

94

different performance, power, or throughput needs. In particular, an ultra-large core with

SMT support would not be an ideal match for applications thathave limited parallelism or

applications that have abundant threads. The TFlex architecture takes, conversely, a syn-

thesis approach that uses a fine-grained CMP to exploit thread-level parallelism and tackles

irregular, coarser grained parallelism by composing multiple cores into larger logical pro-

cessors.

5.1.4 ISA Compatibility

Despite the advantages that EDGE ISAs offer, major ISA changes are a daunting challenge

for industry, considering the complexity that systems haveaccumulated. However, several

technologies have been developed to transit into a new ISA gracefully under the hood. For

example, Transmetra’s code morphing software dynamicallytranslates x86 instructions into

VLIW code for its processors [23]. We are working on similar techniques and have built a

simple PowerPC-to-TRIPS static binary translator. We believe that such static and dynamic

translators will enable the easier adoption of new ISAs.

5.2 Microarchitectural Support for Composability

The microarchitectural structures in a composable processor must allow the capacity of the

structures to be incrementally added or removed as the number of participating cores in-

creases or decreases. For instance, ideally, doubling the number of cores should double

the number ofusefulLSQ entries, double theusefulstorage in branch predictors, etc. To

provide efficient operation at a range of composed points, the hardware overheads to sup-

port the composability should be kept low. In particular, the hardware resources should

not be oversized or undersized to suit either a large processor configuration or a small con-

95

figuration. At the same time, centralized structures that will limit the scalability of the

microarchitecture should be avoided.

To provide this capability, we identify and repeatedly apply two principles. First,

the microarchitectural structures are partitioned by address wherever possible. Since ad-

dresses of both instructions and data tend to be equally distributed, address partitioning

ensures (probabilistically, at least) that the useful capacity increases/decreases monoton-

ically. Second, we avoid physically centralized microarchitectural structures completely.

Decentralization allows the size of structures to be grown without the undue complexity

traditionally associated with large centralized structures.

This complete partitioning addresses some of the limitations of the original TRIPS

microarchitecture. Specifically, the next-block predictor state and the number of data cache

banks were limited by the centralization of the predictor and the load-store queue, respec-

tively. Full composability necessitates distributing those structures as well, which provides

higher overall performance than the TRIPS microarchitecture irrespective of the compos-

able capabilities. However, those performance gains are a side benefit to the significantly

increased flexibility that composition provides.

Figure 5.4 shows how TFlex partitions the microarchitectural structures and inter-

leaves them across participating cores. The microarchitecture uses three distinct hash func-

tions for interleaving across three classes of structures:

• Block starting address: The next-block predictor resources (e.g., BTBs and local his-

tory tables) and the block tag structures are partitioned based on the starting virtual

address of a particular block, which corresponds to the program counter in a conven-

tional architecture. Predicting control flow and fetching instructions in TFlex occurs

at the granularity of a block, rather than individual instructions.

96

Hash1 (# Inst ID) =
 (# Inst ID) % (# of participating cores)

Hash2 (# Block address) =
 ((# Block address) >> 12) % (# of participating cores)

Hash3 (# data address) =
 ((High-order bits from # data address)
 XOR
 (Low-order bits from # data address)
) % (# of participating cores)

* Hashing Function For Interleaving Resources :Inst0
Inst1

Inst126
Inst127

L1
 I-cache

L1
 D-cache

Next-Block
Predictor

LSQ

Inst Window

Block
Tag

Block0

Inst0
Inst1

Inst126
Inst127

Block1

L1
 I-cache

L1
 D-cache

Next-Block
Predictor

LSQ

Inst Window

Block
Tag

Core0 Core1
Program

H1 (# Inst ID)

H2 (# Block address)

H3 (# Data address) H1 (# Inst ID)

H2 (# Block address)

H3 (# Data address)

Blk0

Blk1

Blk0

Blk1

Figure 5.4: An example depicting interleaving of differentmicroarchitectural structures for
a two-core processor

• Instruction ID within a block: A block contains up to 128 instructions, which are

numbered in order, 0 through 127 as shown in Figure 5.4. Instructions are inter-

leaved across the partitioned instruction windows and instruction caches based on the

instruction ID, theoretically permitting up to 128 cores each holding one instruction

from each block.

• Data address: The load-store queue (LSQ) and data caches arepartitioned by data

address from load/store instructions, and registers are interleaved based on the low-

order bits of the register number.

In addition, register names are interleaved across the register files. However, be-

cause a single core must have 128 registers to support single-block execution, register file

capacity goes unused when multiple cores are aggregated. Because interleaving is con-

trolled by bit-level hash functions, the number of cores that can be aggregated to form a

logical processor must be a power of 2.

In this section, we first give a brief overview of how the TFlexmicroarchitecture

implements the block-oriented execution model of the EDGE ISA. We describe each of the

97

(g) Execution1 (h) Commit1(e) Fetch1 (f) Next-Block Prediction1

thread0 thread1 thread0 thread1 thread0 thread1

thread0 thread1 thread0 thread1thread0 thread1thread0 thread1

thread0 thread1

Lifetime of block A0
in thread0 and
block B0 in thread1

Lifetime of block A1
in thread0 and
block B1 in thread1

The owner of block A0, B0

The owner of block A1, B1

(c) Execution0 (d) Commit0(a) Fetch0 (b) Next-Block Prediction0

Inst0
Inst1

Inst126
Inst127

Block A0

Inst0
Inst1

Inst126
Inst127

Block A1

Thread0

Inst0
Inst1

Inst126
Inst127

Block B0

Inst0
Inst1

Inst126
Inst127

Block B1

Thread1

Figure 5.5: TFlex execution stages: execution of two successive blocks (A0, A1) and
(B0,B1) from two different threads executing simultaneously on a 16-core TFlex CLP with
each thread running on 8 cores

major pipeline stages: block fetch, next-block prediction, block execution, and block com-

mit. Then, we describe the required microarchitectural mechanisms at each stage to support

the composable capabilities. we also discuss the challenges in supporting composability in

the context of traditional architectures and how the TFlex microarchitecture addresses these

challenges.

98

5.2.1 Overview of TFlex Execution

The basic unit of resource management in the TFlex microarchitecture is a block – a sin-

gle entry, multiple exit group of instructions – which is fetched and committed atomically.

Managing the microarchitectural resources for blocks of instructions rather than individ-

ual instructions reduces both the number of resource management operations and the state

required for the management. Each in-flight block is assigned an owner core, based on

a hash of the block address, which initiates block fetch, predicts the next block, sends the

next-block prediction to the core that owns the next predicted block and eventually commits

the block. The block core also takes the responsibility of flushing a block when a branch

misprediction or load mispeculation is reported.

Figure 5.5 provides an overview of TFlex execution for the lifetime of one block. It

shows two threads running on eight cores each. In the block fetch stage, the block owner

accesses the I-cache tag for the current block and broadcasts fetch commands to all the par-

ticipating cores (Figure 5.5a). In parallel, the owner corepredicts the next block address and

transfers control to the next block owner so that the next block owner can initiate the fetch

of the next block (Figure 5.5b). Up to eight blocks may be in flight for eight participating

cores. As soon as a fetch command is delivered at each individual core, each core accesses

its own I-cache (the instructions in a block are distributedin all participating cores) with

address information available from the fetch command, and dispatches fetched instructions

into the issue window (Figure 5.5c). When a block completes,the owner detects comple-

tion, and when it is notified that it holds the oldest block, itlaunches the block commit

protocol, shown in Figure 5.5d. Figures 5.5e-h show the samefour stages of execution for

the next block controlled by a different owner; fetch, execution, and commit of the blocks

are pipelined and overlapped. Finally, the diagrams show that two distinct programs can be

99

1. Block Prediction

2. Control Hand-off 4. Sending Fetch Commands

3. Block Tag Access

3 cycles Variable

5. I-cache Access

3 cycles Variable

6. Dispatch

2 cycles Variable

1. Block Prediction
2. Control Hand-off : Variable depending on the number of participating cores (0 - 10 cycles)
3. Block Tag Access
4. Sending Fetch Commands : Variable depending on the number of participating cores (0 - 10 cycles)
5. I-cache Access
6. Dispatch : Variable depending on the number of cores and the block size (from 1 cycle to 32 cycles)

Block Prediction : The start of next block fetch can be pipelined

Block 0

Block 1

Figure 5.6: Illustration of different stages of distributed fetch and associated latencies

run on non-overlapping subsets of the cores.

5.2.2 Composable Instruction Fetch

Each core has its own I-cache for storing instructions. Withmore cores being composed

into a larger processor, the overall fetch bandwidth and I-cache capacity scales up. The key

challenge in composable instruction fetch is how to maintain the sequential order of the

instruction stream among different cores, each capable of fetching independently. Conven-

tional processors will need a centralized unit to coordinate fetches among different cores,

especially when the control flow changes in any of cores. Thiscoordination creates the

sequential order among fetched instructions.

However, the TFlex execution model eliminates the need to maintain the sequential

order through a centralized unit since there is no control flow change within a block (exe-

cution is done in dataflow fashion). The sequencing of different blocks is implemented by

the following distributed fetch protocol.

Figure 5.6 shows how the TFlex microarchitecture sequencesdistributed fetch op-

100

erations, in six stages. After next-block prediction is done, control is transferred to the next

block owner using a control hand-off message. The arrival ofthe hand-off message triggers

an I-cache tag access in the new block owner as well as the next-block prediction in parallel.

We assume that the I-cache tag for an entire block is maintained by the owner core, while

instructions in a block are distributed in each core’s I-cache. If there is a hit on the I-cache

tag, the owner broadcasts fetch commands that contains the I-cache index and the size of

I-cache fetch to all the participating cores. As soon as a fetch command arrives, each core

accesses its I-cache and dispatches the fetched instructions into the issue window. Each

core can dispatch four instructions per cycle.

The configurable capability of each instruction cache is that the number of instruc-

tions from each block that must be mapped to each slave I-cache bank changes depending

on the configuration. In 32-core mode, only four instructions from a block are mapped

to each node. This fine-grain distribution requires more expensive L1 I-cache misses, as

blocks must be fetched from the L2 and distributed to all the participating cores. However,

the tag overhead does not increase, since the tags are associated with the blocks, not each

individual instruction.

5.2.3 Composable Control-flow Prediction

Control-flow prediction structures are one of the most challenging of all structures to par-

tition for composability. The key challenge is how to distribute state that has been tradi-

tionally handled in a logically centralized manner. For instance, when a branch resolves

in a core that is different from an owner core for a block, how,when, and where should

the predictor be trained and repaired? Further, rate of prediction needs to match or exceed

the fetch rate leading to using very minimal communication between different predictors

101

during time-critical operations.

Similar to the TRIPS prototype microarchitecture, the TFlex control flow predictor

issues one next-block prediction for each 128-instructionhyperblock—a predicated single

entry, multiple exit region—instead of one per basic block.Predication of hard-to-predict

branches within a single block can potentially increase theprediction accuracy. The main

difference from the TRIPS predictor is that the TFlex composable predictor treats the dis-

tributed predictors in each composed core as a single logical predictor, exploiting the block-

atomic nature of the TRIPS ISA to make this distributed approach tenable. The owner core

for a block is responsible for generating the prediction forthe successive block, and sending

that prediction to the next owner core.

The TFlex next-block predictor uses an Alpha 21264-like local-global tournament

exit predictor and a target predictor comprising a branch target buffer, a call target buffer, a

return address stack and a branch type predictor. To performdistributed block exit and target

prediction, several extensions are necessary. All communication to maintain the predictor

resources is carefully designed to be done with point-to-point messages.

The local history table naturally supports address partitioning since the next block

prediction is performed by the block owner core and the blockowner is determined by

hashing on the block address. The block prediction that mapsto a given core will always

map to that core, preserving local histories. To support global prediction, the global history

register is transmitted from core to core as each predictionis made. Since the prediction

tables in each core are small, each predictor uses history folding (splitting and XORing parts

of longer histories) to support longer histories and reducedestructive aliasing. On a flush,

the core owning the block signals misprediction, initiatesthe correct fetch and re-sends the

rolled-back global history vector to the new block owner.

102

For target prediction, the type predictor and the branch andcall target buffers are

address partitioned. The return address stack is sequentially partitioned across all the cores.

The stacks from all the participating cores form a logical global stack. Calls and returns

send messages to update the stack top in the appropriate core. In addition, they also send

the updated top of the stack value to the next block owner core(just as the global histories

are sent). This communication avoids additional penalty offetching the top of the stack

from a different core in case the next block fetched has a return branch. We present the

detailed analysis of the predictor in Section 5.3.2.

5.2.4 Composable Instruction Execution

The twin goals of CLP microarchitectural mechanisms for instruction execution are (1)

tracking the data dependence information across differentcores, and (2) trying to keep

dependent instructions as close to each other as possible.

To support execution across a variable number of cores in theconventional super-

scalar processors, the data dependence information must beidentified and stored together

when an instruction is steered and slotted into the individual core. While the dependences

between pairs of instructions within a core can be tracked bya distributed local register

alias table at each core, a centralized global register rename table is required to resolve

dependences across different cores. With more cores participating, the number of ports re-

quired to sustain the total rename bandwidth becomes prohibitive. The instructions in an

EDGE ISA contain the dependence information, eliminating the power-hungry, centralized

register rename table.

The TFlex architecture couples compiler-driven assignment of instructions num-

bers with hardware-determined issue order to minimize communication delays statically

103

Opcode Target 0Target 1XOPPR

7 9952
General (arithmetic)
TRIPS instruction format

2 7Target type

00 = no target

01 = predicate

10 = left operand

11 = right operand

Target ID

0 <= X <= 127

(a) One-core example (b) Four-core example

Example: Instruction #5 (ADD) has a
target 0 field of 0x17F, targeting the
left operand of instruction #127.

1
2

8
 in

st
. w

in
d

o
w

Le
ft

o
p

e
ra

n
d

R
ig

h
t

o
p

e
ra

n
d

P
re

d
ic

a
teCore 0

1
2

8
 in

st
. w

in
d

o
w

B0

B1

B2

B3

Core 0

1
2

8
 in

st
. w

in
d

o
w

B0

B1

B2

B3

Core 1

1
2

8
 in

st
. w

in
d

o
w

B0

B1

B2

B3

Core 2

1
2

8
 in

st
. w

in
d

o
w

B0

B1

B2

B3

Core 3

10 1111111

High-order two bits of target selects left operand,

low-order seven bits index into entry 127 of

the instruction window.

5

127

Inst. 5, target 0 field:

10

High-order two bits of target (10) selects left operand,

low-order two bits (11) select X, Y location of target core,

block ID (01) forms high-order two bits of operand index

Inst. 5 in block 1, target 0 field:

11111 1101

Figure 5.7: Block mapping for one-core and four-core processors

and tolerate uncertain latencies dynamically. The static mapping of instructions to exe-

cution resources, in particular, makes the TFlex architecture amenable to distributed and

composable substrates. Each core only needs to reinterpretthe static mapping between an

instruction and its physical location depending on how eachcore is composed.

Figure 5.7 shows the mechanism that TFlex uses to permit issue across a variable

number of composed cores. Each instruction in a TRIPS block contains at least one nine-bit

targetfield, which specifies the location of the dependent instruction that will consume the

produced operand. Two of the nine bits specify which operandof the destination instruc-

tion is targeted, and the other seven bits specify which of the 128 instructions is targeted.

104

Figure 5.7a shows how the target bits are interpreted in one-core mode, if instruction five is

targeting the left operand of instruction 127. All seven bits are used to index into the single

instruction block held in the 128 instruction buffers.

Figure 5.7b shows how the microarchitecture interprets thetarget bits when running

in a four-core configuration. The four cores can hold a total of four instruction blocks, but

each block is striped across the four participating cores (thus, each core hold 32 instructions

from each of the four blocks in-flight). In this configuration, the microarchitecture uses the

low-order two bits from the target to determine which core isholding the target instruction,

and the remaining five bits to select one of the 32 instructions on that core. When instruction

five issues, the microarchitecture uses the low-order two bits to route the operand to the

correct core, using the dynamic block identifier and the five remaining target bits to index

into the instruction window and wake up the destination instruction.

A key question is how much latency is incurred communicatingfrom core to core,

and how much performance is lost as a result. In the TFlex design, the cores are connected

by a two-dimensional mesh network. Figure 5.8 shows the datapath from the output of an

ALU in one core to the input of an ALU in an adjacent core and illustrates cycle-by-cycle

activities when the execution result at core 0 is bypassed into core 1. While dependent

instructions can issue back-to-back within one core, thereis a one-cycle bubble between

two dependent instructions for each network hop an operand must travel. Only a one-

cycle pipeline bubble is required for adjacent cores because the operand network sends a

control packet a cycle in advance of the data, permitting wakeup to happen in advance of

the operand arrival. Area estimates for 65nm indicate a core-center to core-center distance

of 1.5mm, corresponding to an optimally repeated wire delayof 170ps. With a fast router

that matches the wire delay, the total path delay would be less than 350ps and a one-cycle

105

Operand Network Router at Core 1Operand Network Router at Core 0

Cycle 0 : Ctrl Packet
Cycle 2 :
Ctrl Packet

A
LU

S
election

O
ut Q

ueue

Issue
W

indow

O
ut Q

ueue

Issue
W

indow

S
election

North

West

East

������
Distance between

adjacent cores:
1.52mm at 65nm

������

A
LU

South

Cycle 1: Ctrl Packet
Cycle 2: Data Packet

Cycle 3: Data Packet

Cycle 0:
- An instruction is woken up and
selected at Core 0.
- The control packet is created and
stored into the local out FIFO.

Cycle 1:
- Core 0 executes the instruction and
stores the data packet into the local
output FIFO.
- The control packet sets up the routing
path for the data packet and is
delivered into the east input FIFO.

Cycle 2:
- The control packet wakes up and
selects an instruction at Core 1.
- The data packet is delivered into the
east input FIFO.

Cycle 3:
- The data packet is directly bypassed
into the ALU input at Core1

Figure 5.8: Inter-core operand communication

inter-core hop latency could be supported at well over 2.5GHz. Section 5.3.3 contains the

detailed operand network analysis with various hop latencyand bandwidth assumptions.

5.2.5 Composable Memory System

As with clustered architectures [69,94], L1 data caches in aCLP can be address partitioned

and distributed into each core. When running in single-coremode, each thread can access

only its own bank. When multiple cores are composed, the L1 cache becomes a cache-

line interleaved aggregate of all the participating L1 caches. With each additional core,

each running thread obtains proportionally greater L1 D-cache capacity and an additional

memory port. The cache bank accessed by a memory instructionis determined by XORing

the high and low portions of the virtual address modulo the number of participating cores.

All addresses within a cache line will always map to the same bank in a given configuration.

However, unlike conventional architectures, when a core computes the effective address of

106

a load, the address and the target(s) of the load are routed tothe appropriate cache bank, the

look-up is performed, and the result is directly forwarded to the core containing the target

instruction.

One of the microarchitectural challenges to support a composable memory system

is the efficient handling memory disambiguation on a substrate with a variable number of

cores. Each TFlex core relies on an unordered, late-bindingload store queue (LSQ) struc-

ture [103] to disambiguate memory accesses dynamically. Asmore cores are aggregated to

construct a larger window, more entries in the LSQ are required to track all in-flight mem-

ory instructions. Partitioning LSQ banks by address and interleaving them with the same

hashing function as the data caches is a natural way to build alarge distributed LSQ. How-

ever, unless each LSQ bank is maximally sized for the worst case (the instruction window

size), the system should be able to handle the situation whena particular LSQ bank is full,

and thus cannot slot an incoming memory request. (called ”LSQ overflow”). Prior work has

shown that both throttling fetch to prevent LSQ overflow and flushing on overflows cause

significant performance losses [102]

The TFlex microarchitecture uses a low-overhead mechanismthat exploits the func-

tionality of the underlying scalar operand network to make flushes extremely rare [103].

The microarchitecture reserves a fraction of each LSQ (4 entries) for the non-speculative

block in flight. If an LSQ bank is full, and a load or store from the non-speculative block

arrives, the pipeline is flushed and the non-speculative block is run in single-block mode

to guarantee forward progress. If a load or store from one of the speculative blocks arrives

at a core where its LSQ bank is full, the request is sent back tothe issue window with a

negative-acknowledgement (NACK) message and waits until the LSQ bank has an available

slot. The question of when to re-issue a NACKed memory instruction imposes an important

107

(a) Completion Report (b) Commit (c) Commit
Acknowledgement

(d) Deallocate
Resources

* A black box represent the current block owner

Figure 5.9: Four-stage commit procedure in TFlex

trade-off between the amount of ILP and operand network congestion. We examine a range

of policies to determine the optimal configuration in Section 5.3.4.

5.2.6 Composable Instruction Commit

To sequence the committed instruction stream among different cores, traditional architec-

tures must be able to coordinate multiple cores to retire instructions in lockstep. With

more cores participating, the overhead of exchanging signals to support lockstep commit

increases.

The TFlex architecture reduces the overheads of coordination across different cores

by committing a group of instructions en masse. To commit a block, the following four-

stage protocol is used, adding one extra stage compared to the three-stage protocol in

TRIPS. First, the block owner detects that a block is complete because the block has emit-

ted all of its outputs, consisting of stores, register writes, and one branch (Figure 5.9a).

The second stage occurs when the block in question is the oldest block, at which point the

block owner sends out acommitcommand (Figure 5.9b). All distributed cores write their

outputs to architectural state, and when finished respond with commit acknowledgement

108

signals (Figure 5.9c). Finally, the block owner broadcaststhe resource deallocation signals,

at which point, the youngest block owner can initiate its ownfetch and overwrite the com-

mitted block with a new block (Figure 5.9 d). This final stage,which is not present in the

three-stage commit protocol in the TRIPS architecture, is required in the TFlex architec-

ture. While TRIPS has a single centralized block owner, eachparticipating core in TFlex

can be a block owner based on the block address. If the youngest block owner and the

oldest block owner differ in TFlex, the youngest owner must be informed from the oldest

block owner that it is safe to initiate a new block fetch and overwrite the oldest block with

a new block. Note that the commit steps from Figure 5.9a to Figure 5.9d can be pipelined

across different blocks, thereby reducing the effect of handshaking overhead on overall per-

formance. In Section 5.3.1, we measure the overhead of commit coordination and its effect

on performance.

An alternative way to initiate the fetch of a new block is to rely on point-to-point

communication from the oldest owner to the youngest owner informing it of resource deal-

location. In order to enable this, the oldest owner must knowthe location of the youngest

owner, which is discovered earlier when the new youngest owner is identified and a control

message is sent to the oldest owner. Point-to-point messages reduce the total message traf-

fic and consume less power with a more complex communication protocol than a simple

broadcast protocol. The design trade-off between the amount of message traffic and the

complextity of the communication protocol is an interesting open question.

5.2.7 Level-2 Cache Organization for Composable Processors

We explore two design choices to organize L2 caches in CLPs. The first choice is the

decoupled L2 organization (Figure 5.10 a) that separates the processor core regions from

109

� � � � �� �� �� ��

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

SDC0

����

����

����

�����

�����

(a) Decoupled L2 Organization (b) Integrated L2 Organization

Figure 5.10: Different L2 organizations

the L2 bank regions. With the decoupled L2 design, distance between cores in a composed

processor becomes shorter than the integrated L2 design, which provides significant benefits

to applications that are more sensitive to operand deliverylatency.

The integrated L2 organization (Figure 5.10 b) combines processor cores and L2

cache banks into homogeneous building blocks. The integrated L2 organization can localize

communication between cores and L2 banks within a building block, thus removing data

transport delay to and from the corresponding L2 bank. Applications that require high

bandwidth channels between cores and L2 banks will favor this design.

In addition to latency and bandwidth differences, the decoupled L2 organization

makes it easy to expand/shrink L2 cache capacity with relatively small design changes.

Many processor vendors offer products with various L2 capacities depending on target mar-

ket segments and fabrication process maturity. Changing the L2 capacity in the integrated

L2 design has more design constraints, since the increased size of a building block can

affect the latency between hops to deliver operands in a composed processor.

110

Finally, while more tightly packed processor cores provides latency benefits in the

decoupled design, the integrated L2 design has a better physical design for avoiding hot

spots by spreading the cores across in the entire chip. In theintegrated design, the processor

cores are spread over the entire chip and each “hot” core is surrounded by “cool” L2 cache

banks.

Private L2 design Versus. shared L2 design:Another important design trade-off

in L2 caches is whether to manage L2 as private caches or as shared caches. In Section 4.2,

we described the detailed trade-off between the private L2 design and the shared L2 design.

To summarize briefly, private L2 caches provide shorter latency at the expense of lower

effective on-chip cache capacity.

While both the decoupled and the integrated L2 organizations do not restrict them-

selves to either the private or shared design, we choose the shared design for the decoupled

L2 organization and the private design for the integrated L2organization based on our sim-

ulation results. Especially, with the integrated organization, the private cache design allows

L2 caches to be interleaved with the same hashing function asthe L1 caches, which elimi-

nates the need to route a L1 fill request to a L2 cache bank in a different building block.

We evaluated directory protocols to maintain coherence forboth private and shared

L2 designs: coherence among multiple L1 caches in the sharedL2 design and coherence

among multiple L2 caches in the private L2 design.

For the coherence of L1 caches in the shared L2 design, the tagof an L2 cache line

contains the sharing status vectors to indicate which L1 caches have copies of the line. In

the private L2 design, we use a centralized L2 tag directory (but physically partitioned into

two, each one is located next to the SDRAM controllers as shown in Figure 5.10). When

an L2 miss is detected, the request is sent to the centralizedL2 tag directory, which decides

111

whether to obtain data from another L2 cache on the chip or whether to issue an off-chip

memory request.

Managing both L1 and L2 coherence is designed to be obliviousto how each pro-

cessor is composed. For example, in the shared L2 design, thesharing status vector in the

tag keeps track of L1 coherence by handling each L1 cache as anindependent coherence

unit, which requires enough bits in the status vector for representing all L1 caches. This

configuration-independent coherence management allows usto avoid L1 cache flushing on

reconfiguration (described in Section 5.2.8). When the new mapping results in L1 misses,

the underlying coherence engine can correctly forward the request to L1 caches in the old

mapping (if necessary).

5.2.8 Microarchitectural Reconfiguration

There are many factors affecting the ideal number of cores allocated to a single com-

posed processor. One set of factors is the desired metric: performance, throughput (per-

formance/area), or energy efficiency. Many factors besidesissue width affect performance.

When cores are added to a logical processor, they provide a linear scaling of resources,

such as memory ports, issue window capacity and register filebandwidth. When running

a thread in the largest, 32-core, 64-wide issue configuration, that processor has a 4K issue

window, a 1.2K entry LSQ, a 256-Kbit next-block predictor, and 256KB L1 instruction and

data caches with 32 independent banks.

To adjust the configuration, the running processes on the hardware to be adjusted

need to be interrupted. The instruction caches must be invalidated, since the instruction

mapping across cache banks will change. The registers must be saved and copied into the

new configuration according to the new interleaving degree.Finally, two control registers

112

128-entry

instruction

window

Int.

ALU

FP

ALU

Memory

network

in/out
S

e
le

ct
 lo

g
ic

Register

forwarding

logic & queues

40-entry

load/store

queue

8KB 2-way

L1 D-cache

4KB

direct-mapped

L1 I-cache

Operand

buffer

128x64b

Operand

buffer

128x64b

128-entry

architectural

register file

2R, 1W port

Operand

network

out queue

Operand

network

in queue

8-Kbit

next-block

predictor

Block

control

Control

networks

4KB block

header cache

Figure 5.11: Single core TFlex microarchitecture

need to be written in each participating core, specifying the size of the logical configuration

and the ID of each core within that configuration. To support composing cores across non-

contiguous processor cores, each core needs a mapping tablebetween the ID of each core

and its physical location (coordinates) on a processor substrate. At that point, the logical

processor(s) can be restarted. The data caches do not need tobe flushed, since the new

mapping will result in misses, which will be handled correctly by the cache coherence

logic.

5.3 Microarchitecture Evaluation

In this section we evaluate the TFlex microarchitecture, with particular emphasis on mea-

suring the overheads of distributed execution with respectto fetch, commit, control-flow

prediction, operand delivery and memory disambiguation. Figure 5.11 shows the microar-

chitecture of a single TFlex core and Table 5.1 summarizes the microarchitectural param-

113

Parameter Configuration

Instruction Sup-
ply

Partitioned 8KB I-cache (1-cycle hit), Local/Gshare Tournament predic-
tor (8K bits, 3-cycle latency) with speculative updates; Local: 512(L1) +
1024(L2), Global: 4096, Choice: 4096, RAS: 128, BTB: 2048.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-
issue (up to two INT and one FP). 128 architectural registers

Data Supply Partitioned 44-entry LSQ bank, Partitioned 8KB D-cache (2-cycle hit, 2-
way assoc, 1-read port and 1-write port). 4MB S-NUCA L2 cache[64]
(8-way assoc, LRU, the L2 hit latencies vary from 5 cycles to 27 cycles de-
pending on memory addresses) Average (unloaded) main memory. latency
is 150 cycles

Interconnection
Network

Each router uses round-robin arbitration. There are four buffers in each
direction per router. The hop latency is 1 cycle.

Table 5.1: Microarchitectural parameters for a single TFlex core

eters. The size of the structures ensure that one block can atomically execute and commit.

For instance, the instruction window can hold all 128 instructions in a block and the LSQ

must be large enough to hold at least 32 load/store instructions, etc.

Table 5.2 summarizes the simulator and the benchmarks we usefor the study. To

model the TFlex microarchitecture, we wrote an execution-driven simulator. When config-

ured to have the same number of resources as the TRIPS prototype processor [99], this sim-

ulator reports performance within 7% of real system measurement on a set of microbench-

marks. We use two different benchmark suites: a hand-optimized suite and a compiler-

generated suite. The hand-optimized suite consists of seven EEMBC 2.0 benchmarks, two

from Versabench [93], and three signal processing kernels from MIT Lincoln Labs. The

compiler-generated suite consists of eight integer and sixfloating point SPEC benchmarks

that are currently supported in the infrastructure.

For the TFlex configurations, these programs are scheduled by using the TFlex in-

struction scheduler, which differs from the TRIPS scheduler [21] in the following ways.

114

Simulator Execution-driven simulator validated to be within 7% of real sys-
tem measurement.

Benchmarks

EEMBC a2time01, autocor00, basefp01, bezier02, dither01, rspeed01,
tblook01

LL Kernel corner turn (ct), convolution (conv), genetic algorithm (genalg)
Versabench 802.11b, 8b10b
SPEC INT 164.gzip, 176.gcc, 186.crafty, 197.parser, 253.perlbmk,255.vor-

tex, 256.bzip2, 300.twolf
SPEC FP 168.wupwise, 171.swim, 172.mgrid, 173.applu, 200.sixtrack,

301.apsi

Table 5.2: Simulator and Benchmarks

First, the scheduler assumes the 32-core configuration for scheduling instructions. We

found that performing instruction scheduling for a larger number of cores and running it

on fewer cores results in little performance degradation. Second, the TFlex scheduler con-

siders the differences between TFlex and TRIPS in terms of their distribution of registers

and L1 data cache banks. TFlex distributed 128 registers among all participating cores

while TRIPS maintains registers only in the top four register tiles. Likewise, TFlex dis-

tributes L1 data cache banks into all participating cores, while TRIPS has all of the L1 data

cache banks in the left column of tiles. The TFlex scheduler thus reasons about register

placement but eliminates the memory placement heuristics in the TRIPS scheduler.

5.3.1 Distributed Fetch and Commit Overheads

Distributed Fetch: Figure 5.12 shows the breakdown of average latencies for thecompo-

nents of the distributed fetch protocol shown in Figure 5.6.Three components of the six

components of the fetch mechanism, block tag access, block prediction and I-cache access

incur a constant total latency of seven cycles for a block (except for the 1-core configura-

tion, in which there is no next-block speculation and hence the prediction latency is zero).

115

(a) Latency breakdown in distributed fetch

0

5

10

15

20

25

30

1-core 2-core 4-core 8-core 16-core 32-core

C
yc

le
s

Dispatch
Fetch Distribution
Control Hand-off
Block Prediction
I-cache Access
Block Tag Access

Figure 5.12: Distributed fetch overheads

Of the remaining three components, control hand-off and thefetch command distribution

are communication latencies due to distributed execution.The last component, the dispatch

latency, which is the latency to fetch from I-cache into the instruction window, incurs a

variable latency depending on the number of instructions dispatched at each core.

Figure 5.12 shows that the overall fetch latency depends on the number of cores

and is a balance between the variable overheads of control hand-off, fetch distribution,

and dispatch. The largest increase comes from broadcastingthe fetch command over the

multi-hop network to all participating cores, which dominates when 16 or more cores are

aggregated. Conversely, the effective dispatch bandwidthincreases linearly with the number

of cores, and the time to dispatch becomes a very small fraction of the overall latency at 16

or more cores.

Distributed Commit: As described in Section 5.2.6, the distributed commit pro-

tocol in TFlex consists of four stages: (1) send commit signals to all cores, (2) update

architectural state including store and register file commit, and (3) send “commit complete”

116

(b) Latency breakdown in distributed commit

0

2

4

6

8

10

12

14

16

18

20

1-core 2-core 4-core 8-core 16-core 32-core

C
yc

le
s

commiting values
commit hand-shaking

Figure 5.13: Distributed commit overheads

signals back to the block owner (4) send signals to all participating cores for deallocating

the hardware resources. Figure 5.13 shows the latency of thetwo principal components

of commit: updating architectural state and handshaking across multiple cores (including

sending commit signals, sending “commit complete” signals, and sending “resource deal-

location” signals). As expected, the handshaking overheadincreases with the number of

cores while the architectural state update latency decreases because the register file and

data cache bandwidth increase linearly with the number of cores.

Summary: While these latencies can be significant, they will not affect perfor-

mance if they are not on the critical path. To quantify the performance impact of the coor-

dination overheads of fetch and commit, we simulated an architecture in which all of the

distributed handshaking occurs instantaneously. We observed that the performance degra-

dation was less than 2% for the largest composition (32 cores), indicating that the overheads

of distributed fetch and commit can be amortized by a block-structured ISA.

117

0

5

10

15

20

25

30

35

40

45

bzip2 crafty gzip perlbmk twolf MEAN

B
lo

ck
 m

is
-p

re
di

ct
io

n
ra

te

1-core
2-core
4-core
8-core
16-core
32-core

Figure 5.14: Distributed next-block predictor misprediction rates from 1-core to 32-core
configuration

5.3.2 Distributed Block Prediction Overheads

Figure 5.14 (a) shows the misprediction rate for five of the SPEC Integer benchmarks across

various numbers of cores. As described in Section 5.2.3, theTFlex block predictor address-

partitions the local predictor resources among participating cores while transmitting the

global information with point-to-point communication. InFigure 5.14, the overall mispre-

diction rate decreases from 19.94% to 7.28% as more cores areaggregated. Though small

core configurations show high miss rate, the associated misprediction penalty is low since

the block speculation depth is proportional to the number ofparticipating cores. The aver-

age miss rate of 7.28% in the 32-core configuration seems high, but we observed that the

MPKI (Mispredictions Per Kilo Instructions) number is 2.9 for the 32-core configuration

and the number is comparable to some of the best conventionalbranch predictor like the

PAs/Gshare hybrid predictor.

118

0

5

10

15

20

25

b07 b08 b09 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20

Starting bit position to determine a block owner

B
lo

ck
 m

is
-p

re
di

ct
io

n
ra

te
16-core
32-core

Figure 5.15: Average misprediction rate for 16-core and 32-core with various starting bit
positions to determine a block owner

The low MPKI combined with the fact that a block can contain multiple control

flows and potentially hide the hard-to-predict branches canbe used to explain the higher

performance of the TFlex microarchitecture compared to theTRIPS which also uses blocks

but does not have the ability to aggregate branch predictionstate. Although the small core

configurations have an undesirable high MPKI, the performance penalty is not high because

they intrinsically run at lower performance levels.

Unlike conventional monolithic branch predictors, a distributed branch predictor

makes an interesting trade-off between the prediction accuracy (Figure 5.15) and the com-

munication overheads (Figure 5.16) to reach the distributed predictor resources.

In the TFlex block predictor, a block owner takes charge of predicting the next block

address and transferring control to the next owner. The block ownership is determined

statically by applying a hashing function on a block address. If higher-order bits are chosen

for hashing, the block prediction accuracy goes down due to under-utilization of predictor

119

0

0.5

1

1.5

2

2.5

3

3.5

4

b07 b08 b09 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20

Starting bit position to determin a block owner

A
ve

ra
ge

 h
op

 la
te

nc
y

to
 tr

an
sf

er
 c

on
tr

ol
s

16-core
32-core

Figure 5.16: Average hop latency for control hand-off for 16-core and 32-core with various
starting bit positions to determine a block owner

tables because too many blocks are mapped to few cores. On theother hand, using lower-

order bits increases the control hand-off latency due to a frequent change of block owners.

As shown in Figure 5.16 and Figure 5.15, using bits 12 through15 achieves both a low

misprediction rate and low handshaking overhead. The 32-core configuration shows similar

trend but with greater variance in the hop latency. Because this selection of bits depends on

the core configuration and potentially the program’s characteristics, opportunities exist to

adjust the hash function dynamically.

5.3.3 Operand Communication Overheads

Figures 5.17 and 5.18 show the two components that contribute to operand delivery la-

tency: the network hop latency and the latency due to networkcontention. Both figures

show the average delivery time for memory operands (mem) and the average delivery time

for all operands (all). The memory operands include either operands transferredfrom a

memory instruction to a destination cache bank or from a destination cache bank to a tar-

120

Realistic configuration

0.00

1.00

2.00

3.00

4.00

5.00

6.00

m
em al

l

m
em al

l

m
em al

l

m
em al

l

m
em al

l

2-core 4-core 8-core 16-core 32-core

O
pe

ra
nd

 D
el

iv
er

y
La

te
nc

y
(C

yc
le

s)

Contention
Hop

Figure 5.17: Average delivery times of memory operands and all operands : default

get instruction. The hop latency increases more sharply formemory operands than for

all, which includes all operands. Because the compiler influences instruction placement, it

can optimize for communication locality by placing dependent instructions on the same or

nearby cores [21]. As shown in Figure 5.17, the compiler effectively reduces the operand

delivery latency, producing an average hop latency rangingfrom 0.4 at two cores to 2.3 cy-

cles at 32 cores. (As opposed to 3.9 cycles at 32 cores with no static instruction placement

optimization)

Because memory addresses are not known until runtime, the compiler cannot opti-

mize memory instruction placement. Thus the hop counts for memory operands depend on

to which core’s cache their addresses map. Figure 5.18 represents the average operand de-

livery time if memory scheduling could be made perfect, meaning that all memory operands

are serviced at the local core’s cache bank. Perfect memory scheduling reduces the operand

delivery time between a memory instruction and a destination cache bank to zero, thereby

121

Perfect memory scheduling

0.00

1.00

2.00

3.00

4.00

5.00

6.00

m
em al

l

m
em al

l

m
em al

l

m
em al

l

m
em al

l

2-core 4-core 8-core 16-core 32-core

O
pe

ra
nd

 D
el

iv
er

y
La

te
nc

y
(C

yc
le

s)

Contention
Hop

Figure 5.18: Average delivery times of memory operands and all operands : assuming ideal
memory scheduling

reducing the overall hop latency to 1.7 cycles at 32 cores andproduces a 7% performance

improvement. This result demonstrates the potential benefits of compile-time memory

disambiguation techniques which would allow better memoryinstruction alignment and

scheduling.

High latency and/or low bandwidth channels between producer and consumer in-

structions spread across different cores can negatively impact performance on spatial archi-

tectures like TFlex, TRIPS or CMPs. To examine the criticality of operand delivery, we

measure TFlex performance using different operand networkconfigurations with 1-cycle

and 2-cycle latency per hop across cores and with channels wide enough to communicate

one (1x) and two data operands (2x) simultaneously. We also measure the performance

with infinite bandwidth, which eliminates all network contention.

Figures 5.19 and 5.20 shows that the speedup for each of the above configurations

over 1-core for varying number of cores and the best performing number of cores for both

122

High-ILP Benchmarks

0

1

2

3

4

5

6

7

8

2-core 4-core 8-core 16-core 32-core Best

S
pe

ed
up

 o
ve

r
1-

co
re

1x OPN, 2 cycles 1x OPN, 1 cycle 2x OPN, 2 cycles

2x OPN, 1 cycle Ideal BW, 2 cycles Ideal BW, 1 cycle

Figure 5.19: Operand network sensitivity analysis: High-ILP Benchmarks

high-and low-ILP benchmarks. The bar groupBestrepresents the performance when each

application is run with its own best-performing number of cores.

We observe that in the low-ILP benchmarks, the low operand delivery latency is

crucial and the OPN with 2x bandwidth and 2-cycle latency perhop performs 18% worse

than the OPN with 1x bandwidth and 1-cycle hop latency. For the high-ILP benchmarks,

however, bandwidth is also crucial and the OPN with 2x bandwidth and 2-cycle latency per

hop performs equivalent to the OPN with 1x bandwidth and 1-cycle hop latency. Intuitively,

this is behavior is to be expected as benchmarks with more parallelism are likely to have

more operands in-flight and benchmarks with low parallelismare likely to have dependence

chains on the critical path.

When configured to the best-performing number of cores per application, doubling

bandwidth for high-ILP benchmarks provides 17% performance improvement, while dou-

bling bandwidth for low-ILP benchmarks shows only 4% improvement. On the other hand,

123

Low-ILP Benchmarks

0

1

2

3

2-core 4-core 8-core 16-core 32-core Best

S
pe

ed
up

 o
ve

r
1-

co
re

1x OPN, 2 cycles 1x OPN, 1 cycle 2x OPN, 2 cycles

2x OPN, 1 cycle Ideal BW, 2 cycles Ideal BW, 1 cycle

Figure 5.20: Operand network sensitivity analysis: Low-ILP Benchmarks

reducing the end-to-end operand hop latency is equally important both for high-ILP bench-

marks and for low-ILP benchmarks, resulting in 22% difference for high-ILP benchmarks

and 27% difference for low-ILP benchmarks between 1-cycle hop latency and 2-cycle hop

latency.

Unsurprisingly, our sensitivity analysis illustrates theinteresting interplay between

available parallelism, latency and bandwidth. TFlex can adjust the number of cores to meet

the concurrency needs of the application, even if it means using fewer processor to limit

operand communication overheads.

5.3.4 Distributed Memory Disambiguation Overheads

As described in Section 5.2.5, the TFlex microarchitecturecombines flush and NACK/retry

features of the operand network to reduce the overhead of LSQoverflow. We evaluate

a range of policies to determine when to re-issue a NACKed memory instruction in the

124

Normalized to the Configuration of 36 Entries, 1-Block Wakeup at Commit

0

0.5

1

1.5

2

2.5

3

36 40 44 48 52

Number of Entries in One LSQ Bank

N
um

be
r

of
 R

ep
la

ys 1-block
4-block
8-block
12-block
16-block
20-block
24-block

Figure 5.21: Number of LSQ replays normalized to the configuration of 36-entry, one-block
wakeup at commit

issue window. Re-issuing instructions too soon (i.e. immediately upon NACK) can degrade

performance by clogging the network, possibly re-generating multiple NACKs for the same

instruction. Instead, our policy triggers re-issue when a non-speculative block commits,

which is likely the right time since the overflowed LSQ bank may obtain available slots

after block commit.

However, waking up all NACKed instructions simultaneouslyupon block commit

can still bring the same negative effect as re-issuing instructions too soon. Conversely,

constraining the timing for re-issue too much can limit the amount of instruction-level par-

allelism. To find the optimal policy, we vary the number of speculative blocks that contain

NACKed instructions to wake up when a block commit signal is broadcasted.

For six of a total 26 benchmarks, the memory accesses are unevenly distributed and

cause significant LSQ overflows on a 32-core TFlex architecture. Figure 5.21 shows the

125

Normalized to the Configuration of 36 Entries, 1-Block Wakeup at Commit

0

0.5

1

1.5

2

2.5

3

36 40 44 48 52

Number of Entries in One LSQ Bank

P
er

fo
rm

an
ce

1-block
4-block
8-block
12-block
16-block
20-block
24-block

Figure 5.22: Performance normalized to the configuration of36-entry, one-block wakeup
at commit

number of re-issues in those six benchmarks normalized to the 36-entry LSQ bank with the

policy of waking up NACKed instructions from one speculative block ahead.

The number of re-issues due to LSQ overflow can affect the power consumed by

operand network and execution units and also affect the performance by causing network

congestion (as shown in Figure 5.21). In general, as more NACKed instructions are wo-

ken up upon block commit, the possibility of re-generating overflow increases, resulting in

more re-issues. Interestingly, we notice that the number ofre-issues decreases when wak-

ing up instructions from one speculative block to four speculative blocks. This is because

waking up more instructions can hasten the rate of committing blocks, which deallocates

the occupied LSQ entries faster.

Figure 5.22 shows that as we wake up NACKed instructions frombeyond a certain

number of speculative blocks (i.e., 12 blocks at 44-entry LSQ bank), increasing the number

126

of re-issued instructions does not contribute to speeding up the rate of committing blocks

any more and only congests the network, decreasing performance and increasing power

consumption.

5.3.5 Level-2 Cache Organizations for TFlex

To understand how Level-2 cache designs affect performance, we compare the decoupled

L2 and integrated L2 organization. As shown in Figure 5.10, abuilding block in the inte-

grated L2 organization consists of two TFlex cores and a 256KB L2 cache. For comparison,

we add the 4x OPN configuration in the integrated design sincethe total number of operand

network routers is the half of those in the decoupled design.We use a two-cycle latency

between hops in the integrated design due to the increased dimension of a building block.

In Figure 5.23, we split the benchmarks into two categories along the amount of ILP, and

normalize the performance of two integrated L2 configurations to the performance of the

decoupled L2 design at various numbers of cores.

We first observe that the integrated L2 design outperforms the decoupled design at

smaller processor configurations by offering the high bandwidth and low latency access to

L2 caches. The smaller processor configurations are also more sensitive to L2 access la-

tency due to the small issue window size. However, as more cores are aggregated, cores

that belong to different building blocks are spaced fartherapart, which affects the perfor-

mance negatively. At both 16-core and 32-core configurations, the low-ILP benchmarks

with the integrated L2 show 14% less performance than the decoupled design while the

high-ILP benchmarks show almost no difference. However, TFlex can be configured with

the best-performing number of cores per application, and the integrated L2 design can min-

imize the impact of increased hop latency by choosing a smaller processor configurations

127

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2
co

re
s

4
co

re
s

8
co

re
s

16
 c

or
es

32
 c

or
es

B
es

t

2
co

re
s

4
co

re
s

8
co

re
s

16
 c

or
es

32
 c

or
es

B
es

t

High-ILP Benchmarks Low-ILP Benchmarks

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 d

ec
ou

pl
ed

 L
2

Decoupled
Integrated, 2x OPN
Integrated, 4x OPN

Figure 5.23: Performance comparison between the decoupledL2 design and the integrated
L2 design

for low-ILP benchmarks, thus showing 5% improvement for thehigh-ILP benchmarks and

1% improvement for low-ILP benchmarks.

5.4 Comparison Across Configurations

In this section, we evaluate the TFlex processor with various number of cores and compare

against a fixed-granularity TRIPS processor in terms of three different operating targets:

performance, area efficiency, and energy efficiency.

128

5.4.1 Baseline

We choose the TRIPS processor as the baseline to compare against TFlex for three reasons.

First, because TRIPS and TFlex share the same ISA and software infrastructure we can

compare their microarchitectures without needing to compensate for ISA and system level

artifacts. Second, TRIPS is a natural baseline because, unlike TFlex, TRIPS has limited

options for supporting different processing granularities. For instance, TRIPS can only be

configured either as an ILP engine supporting 1K in-flight instructions, or in an SMT mode

with four threads each with maximum of 256 instructions per thread. We only compare

against the single-threaded mode of TRIPS. TFlex can instead be configured for a range

of granularities to adapt to various operating targets whenthe need arises. Finally, having

access to the TRIPS hardware design and implementation provides a solid methodology for

modeling TFlex, giving us higher confidence in the performance, area, and power estimates.

Baseline Validation: For TRIPS to be a satisfactory baseline, it must achieve at least a

reasonable level of performance. To establish this baseline, we compare the performance of

the TRIPS hardware to that of an Intel Core2 Duo system on the suite of EEMBC, SPEC,

and hand-optimized benchmarks shown in Table 5.2. The IntelCore2 Duo measurements

were taken on a Dell E520 system that has a 2.1GHz Intel Core2 Duo processor with 2GB

533 MHz DDR2 SDRAM memory. The TRIPS system has two TRIPS processors running

at 366Mhz and 2GB DDR1 SDRAM memory running at 200 MHz. The C and Fortran

codes for Intel Core2 Duo were compiled using gcc 4.1.2 -O3, and the PAPI 3.5.0 library

was used to collect performance counter results [14]. For the TRIPS system also perfor-

mance counters are used to read cycle counts. All experiments use only a single core in the

Core2 and TRIPS systems, and we use cycle count only as the metric for comparing per-

129

0

1

2

3

4

5

m
at

rix

80
2.

11
a

8b
10

b ct

co
nv

 a
2t

im
e

 a
ut

oc
or

 b
ez

ie
r

 r
sp

ee
d

A
V

G

gz
ip vp

r

gc
c

m
cf

cr
af

ty

pa
rs

er

bz
ip

2

tw
ol

f

A
V

G

w
up

w
is

e

sw
im

ap
pl

u

m
gr

id

m
es

a

ar
t

eq
ua

ke

ap
si

A
V

G

versa-
bench

ll-
kernels

EEMBC SPEC INT SPEC FP

S
pe

ed
up

 r
el

at
iv

e
to

 In
te

l C
or

e2
 D

uo
Hand-Optimized

Compiled-Only

Figure 5.24: Relative performance (1/cycle count) for TRIPS normalized to Intel Core2
Duo.

formance to account for differences in process technology,design methodology, and size of

the design team.

Figure 5.24 shows that on the hand-optimized benchmarks TRIPS uniformly out-

performs the Core2 and achieves an average 2.7x speedup1. For the compiled benchmarks,

TRIPS is approximately 50% faster on average than the Core2 on versabench, ll-kernels

and EEMBC benchmarks, 3% worse on SPEC FP and 57% worse on SPECINT. Ongo-

ing work on the TRIPS compiler promises to close the gap from hand-optimized code as

the hand-optimizations were performed with compiler automation in mind and include tun-

ing loop unroll counts and eliminating false load/store dependence with enhanced register

allocation.

Simulator Validation: The simulator used in this study can model both the TRIPS hard-

ware prototype and the TFlex microarchitecture since they both use the same ISA, and also

have similar functional components such as on-chip interconnection networks, caches, ex-

1For matrix multiplication, we use the optimized binary fromGotoBLAS [38] for Intel Core2 Duo and we
compare the FPC (FLOPS/cycle) instead of cycle counts.

130

ecution units, and register files. The simulator was validated by simulating a configuration

similar to the TRIPS prototype hardware and comparing the cycle counts against the actual

hardware on a set of EEMBC benchmarks and microbenchmarks extracted from the SPEC

2000 suite. We observe that the cycle count estimates from the simulator are within 7% of

the hardware cycle counts. The results, presented in the subsequent sections, indicate that

TFlex performance improvements are much greater than the modeling error.

The simulated baseline TRIPS microarchitecture matches that described by Sankar-

alingam et al. [99] with the exception that the L2 capacity ofthe simulated TRIPS processor

is 4MB to enable a fair comparison with TFlex.

The TFlex architecture also includes two microarchitecture optimizations that could

be applied to improve the baseline performance and area efficiency of the TRIPS processor.

First, the bandwidth of the operand network is doubled to reduce contention and improve

performance. Second, TFlex cores are dual-issue, as opposed to the single-issue execution

tiles in TRIPS. For a comparable issue width processor, dualissue improves area efficiency

by reducing the number of FPUs without changing the peak integer issue bandwidth.

Our results show that TFlex can be configured to have optimal processor ganulari-

ties depending on different application characteristics and operating targets.

5.4.2 Performance Comparison

Figure 5.25a and b show the performance of the TRIPS prototype architecture and that of

TFlex configurations ranging from 2 to 32 cores, normalized to the performance of a single

TFlex core. The 26 benchmarks on the x-axis are arranged intocategories of low and high

IPC. On average, the 16-core TFlex configuration performs best and shows 3.5x speedup

over a single TFlex core. When the processor is configured to the best performing number

131

0 1 2 3 4 5 6 7 8 9 10
 conv

 ct

 a2time01

 autocor00

 basefp01

 bezier02

rspeed01

 802.11a

 8b10b

 swim

 mgrid

 applu

 apsi

BEST

TRIPS

H
and-O

ptim
ized

C
om

piled O
nly

Relative Performance

2-core
4-core

8-core
16-core

32-core

0 1 2 3 4

genalg

dither01

tblook01

 gzip

 gcc

 crafty

 parser

perlbmk

 vortex

 bzip2

 twolf

wupwise

 sixtrack

BEST

TRIPS

Total
AVG

Best

TRIPS
H

and-O
ptim

ized
C

om
piled O

nly

Relative Performance

2-core
4-core

8-core
16-core

32-core

(a) H
igh-ILP

 B
enchm

arks

(b) Low
-ILP

 B
enchm

arks

F
igure

5.25:
P

erform
ance

of
different

applications
runnin

g
on

2
to

32
cores

on
a

C
L

P
norm

alized
to

a
single

T
F

lex
core

132

Structures Single TFlex core 8 TFlex cores Single TRIPS core
Subcomponent Size Area Size Area Size Area

Fetch. Block Predictor 8Kbit 64Kbit 64Kbit
I-Cache 8KB 1.36 64KB 10.88 80KB 7.66

Register Files 128 entries 0.81 1K entries 6.47 512 entries 3.04
Exec. Issue Window 128 entries 1K entries 1K entries

ALU INT(2) FP(1) 2.95 INT(16) FP(8) 23.6 INT(16) FP(16) 39.36
Primary D-Cache D-Cache 8KB 3.48 64KB 32KB

Subsystem LSQ 44 entries 352 entries 27.84 1K entries 33.44
Routers 0.88 7.04 11

Sum 9.48 75.83 94.5

Table 5.3: Microarchitecture parameters and area estimates (mm2)

of cores for each application (represented by the bar “BEST”), the performance of TFlex

increases an additional 13% and the overall speedup over a single TFlex core reaches 4x.

These results indicate that, using the proposed execution model, sequential applications can

be effectively run across multiple cores to achieve substantial speedups.

On average, an 8-core TFlex, which has the same area and issuewidth as the TRIPS

processor, outperforms TRIPS by 17%, reflecting the benefitsof additional operand network

bandwidth as well as twice the L1 cache bandwidth stemming from fine-grained distribution

of the cache. The best TFlex configuration outperforms TRIPSby 42% demonstrating

that adapting the processor granularity to the applicationgranularity provides significant

improvements in performance.

Considering the increased resources within each core, we also ran simulations with

two cycles per hop in the operand network. When configured to the best performing number

of cores per application, TFlex with the two-cycle hop latency lost performance by 22%,

reducing the speedup over TRIPS to 19%.

133

5.4.3 Area Efficiency Comparison

We examine the area required for a TFlex processor and the performance/area as a func-

tion of the number of cores. The area of each microarchitectural component in a single

TFlex core was estimated from the post-synthesis netlist (before final place-and-route) of

the 130nm ASIC implementation of the TRIPS prototype. Table5.3 presents the area of

different microarchitectural components in a single TFlexcore and a single TRIPS core. In

the table, we also present the 8-core TFlex configuration that is the largest configuration

that can fit in a single TRIPS core area. We excluded the L2 cache, memory controller,

and peripheral devices to compare the area of the two processors. Table 5.3 shows that a

single TFlex core is approximately ten times smaller than a single TRIPS core. Since the

TRIPS chip contains dual TRIPS cores in the 130nm ASIC technology, the same die area

has enough room to allow 16 TFlex cores. A 130nm, 18mm x 18mm die can accommodate

8 TFlex cores with 1.5MB of L2 cache. Assuming linear scaling, a 32-core TFlex array

with 4MB of L2 cache would fit comfortably on a 12mm x 12mm die at45nm.

Figure 5.26a and b plot the performance per area (1/(cycles×mm2)) for the TRIPS

processor and various TFlex configurations, all normalizedto a single TFlex core. If ample

threads are available, the performance/area metric is equivalent to a throughput metric. For

most benchmarks, area efficiency peaks either at one or two cores; beyond two cores (four-

wide issue), performance improvements scale at a slower rate than area growth. On average,

TFlex can produce up to 3.4 times better performance/area than TRIPS. The fixed, aggres-

sive processor configuration in TRIPS (16-wide issue, 1K issue window) pays a higher

penalty in terms of performance/area, especially for low-ILP benchmarks and results in

around 5x degradation in performance/area.

Unlike a fixed-granularity architecture, a composable architecture can balance area

134

(a) H
igh-ILP

 B
enchm

arks

(b) Low
-ILP

 B
enchm

arks

0

0.2

0.4

0.6

0.8 1

genalg

dither01

tblook01

 gzip

 gcc

 crafty

 parser

perlbmk

 vortex

 bzip2

 twolf

wupwise

 sixtrack

BEST

TRIPS

Total
AVG

Best

TRIPS
H

and-O
ptim

ized
C

om
piled O

nly

Relative Area Efficiency

2-core
4-core

8-core
16-core

32-core

0

0.2

0.4

0.6

0.8 1
 conv

 ct

 a2time01

 autocor00

 basefp01

 bezier02

rspeed01

 802.11a

 8b10b

 swim

 mgrid

 applu

 apsi

BEST

TRIPS

H
and-O

ptim
ized

C
om

piled O
nly

Relative Area Efficiency

2-core
4-core

8-core
16-core

32-core

F
igure

5.26:
P

erform
ance

per
unit

area
for

different
applic

ations
running

on
2

to
32

cores
on

T
F

lex
C

L
P

norm
alized

to
single-core

T
F

lex

135

efficiency versus peak performance demand depending on various runtime factors including

the number of active threads.

5.4.4 Power Efficiency Comparison

In this section, we compare the power dissipation of the baseline TRIPS processor with that

of various TFlex configurations. First, we present the powermodeling methodology and

next, we present the results.

Power Modeling Methodology

I collaborated with Madhu Saravana Sibi Govindan to derive apower model for both the

TRIPS and the TFlex processors. To estimate the power consumed by the TFlex proces-

sor, we estimated the power of three constituent components: the clock power, the DIMM

power, and the core power which includes everything on chip excluding clock and the

DIMM power. We estimated the core power and the clock power from the TRIPS hardware

netlist. Since TFlex and TRIPS use similar microarchitectural building blocks, we were

able to obtain capacitance estimates for scaled microarchitectural structures from TRIPS.

The activity factors for each of these structures were obtained from the cycle-accurate sim-

ulator. The clock tree power for TFlex was estimated by measuring the clock power for the

TRIPS implementation and scaling it down to one TFlex core. The clock power was then

scaled linearly according to number of TFlex cores. The DIMMpower was estimated using

analytical power models from Micron [56] and by counting thenumber of off-chip accesses

in the simulator. Since the baseline TRIPS processor does not have clock-gating, our TFlex

power models do not support clock-gating to enable a fairer comparison. However, we

did implement a simple clock-gating power model to examine how the optimal number of

136

Structures 8 TFlex cores Single TRIPS core
High-ILP Low-ILP High-ILP Low-ILP

Fetch. 1.07 (4.2%) 1.24 (5.3%) 0.91 (3.1%) 1.06 (3.9%)
(Block Predictor, I-cache)

Exec. 3.04 (12.0%) 1.44 (6.1%) 2.94 (10.0%) 1.25 (4.5%)
(Reg, issue window, ALUs)

L1 D-cache subsystem 0.57 (2.2%) 0.33 (1.4%) 0.59 (2.0%) 0.29 (1.0%)
(D-cache, LSQ, MSHR)

Operand Network Routers 0.22 (0.9%) 0.36 (1.2%) 0.30 (1.1%)
L2, DIMM, I/O 3.33 (24.2%) 3.34 (14.2%) 3.46 (11.7%) 3.33 (12.2%)

Clock tree 14.89 (58.5%) 14.89 (63.2%) 18.39 (62.4%) 18.39 (67.1%)
Leakage 2.06 (8.1%) 2.06 (8.7%) 2.81 (9.5%) 2.81 (10.2%)

Sum 25.45 (100%) 23.54 (100%) 29.45 (100%) 27.42 (100%)

Table 5.4: Sample Power Breakdown (Watt) for High-ILP and Low-ILP Benchmarks

TFlex cores for a given benchmark changes. We validated the power measurements by con-

figuring the TFlex simulator in the TRIPS mode and comparing the reported power against

the power measured from the hardware system. The power difference between two models

for the benchmark suite was less than 10%.

Power Estimation Results

Table 5.4 breaks down the average of total power dissipationof all benchmarks into various

categories like Fetch, Execution, L1 D-Cache, Routers, L2 cache/DIMM/IO, the clock tree

and leakage power. The benchmarks are categorized into two groups; high-ILP benchmarks

and low-ILP benchmarks. The power dissipated in the individual categories are relatively

small because the clock tree power in all these categories has been reported as a separate

category in the table. We show this breakdown for 8 TFlex cores and a single TRIPS core.

We use the performance2/Watt metric to assess the overall energy efficiency - this

metric accounts for the power efficiency of the architecturescaled by the time taken to exe-

cute the benchmark [36]. Figure 5.27a and b show performance2 /Watt metric for the various

TFlex configurations and the TRIPS configuration over all thebenchmarks. On average,

137

0 5 10 15 20 25
 conv

 ct

 a2time01

 autocor00

 basefp01

 bezier02

rspeed01

 802.11a

 8b10b

 swim

 mgrid

 applu

 apsi

BEST

TRIPS

H
and-O

ptim
ized

C
om

piled O
nly

Relative Power Efficiency

2-core
4-core

8-core
16-core

32-core

0 1 2 3 4 5 6 7 8

genalg

dither01

tblook01

 gzip

 gcc

 crafty

 parser

perlbmk

 vortex

 bzip2

 twolf

wupwise

 sixtrack

BEST

TRIPS

Total
AVG

Best

TRIPS
H

and-O
ptim

ized
C

om
pile

d O
nly

Relative Power Efficiency

2-core
4-core

8-core
16-co

re
32-core

(a) H
igh-ILP

 B
enchm

arks

(b) Low
-ILP

 B
enchm

arks

44.3
70.1

F
igure

5.27:
P

erform
ance 2/W

attfordifferentapplications
running

on
2

to
32

cores
on

T
F

lex
C

L
P

norm
alized

to
single-core

T
F

lex
-

w
ithoutclock

gating

138

the results show that TFlex with 8 cores performs the best in terms of performance2 /Watt

metric. The most power-efficient TFlex configuration rangesfrom 4 to 32, with 8 cores

being the best overall fixed configuration. The flexibility tochoose the best one on a per-

application basis produces an overall average improvementof about 22% over any fixed

TFlex system. The power efficiency of a fixed 8-core TFlex system is about 64% better

than a fixed TRIPS system. Although both have the same execution bandwidth, TRIPS

has twice the power-hungry floating-point units, but which are not used every cycle. Fine-

grained clock gating of these FPUs could improve the relative power efficiency of TRIPS.

Clock-Gating Results

As previously mentioned, the above results assume that bothTFlex and TRIPS do not sup-

port clock-gating - all latches are switching every cycle - to make a fair comparison with

TRIPS. We also did an experiment with a simple clock-gating model for the TFlex cores -

the model assumes that when all the units of a TFlex core are idle, all of them are clock-

gated except the operand network routers (to enable routingthe operands to other TFlex

cores), the L2 subsystem and the on-chip network routers. Asshown in Figure 5.28, the

clock-gating results indicate that the overall power efficiency increases with clock gating,

but the optimal number of cores did not change from the experiments without clock-gating

- TFlex with 8 cores were the optimal configurations in terms of performance2 /Watt both

with and without clock-gating.

5.4.5 Ideal Operating Points

The most important capability of the CLP approach is not the absolute benefit over the

alternatives at any operating targets, but the ability to shift to different operating points

139

0 5 10 15 20 25 30
 conv

 ct

 a2time01

 autocor00

 basefp01

 bezier02

rspeed01

 802.11a

 8b10b

 swim

 mgrid

 applu

 apsi

BEST

TRIPS

H
and-O

ptim
ized

C
om

piled O
nly

Relative Power Efficiency

2-core
4-core

8-core
16-core

32-core

(a) H
igh-ILP

 B
enchm

arks

(b) Low
-ILP

 B
enchm

arks

52.1
89.9

0 1 2 3 4 5 6 7 8 9

genalg

dither01

tblook01

 gzip

 gcc

 crafty

 parser

perlbmk

 vortex

 bzip2

 twolf

wupwise

 sixtrack

BEST

TRIPS

Total
AVG

Best

TRIPS
H

and-O
ptim

ized
C

om
piled O

nly

Relative Power Efficiency

2-core
4-core

8-core
16-core

32-core

F
igure

5.28:
P

erform
ance 2/W

attfordifferentapplications
running

on
2

to
32

cores
on

T
F

lex
C

L
P

norm
alized

to
single-core

T
F

lex
-

w
ith

clock
gating

140

0

0.2

0.4

0.6

0.8

1

1.2

1 core 2 cores 4 cores 8 cores 16 cores 32 cores

R
el

at
iv

e
A

re
a

E
ff

ic
ie

nc
y

Perf/mm^2 - HILP Perf/mm^2 - LILP

0

2

4

6

8

10

12

14

1 core 2 cores 4 cores 8 cores 16 cores 32 cores

R
el

at
iv

e
P

ow
er

 E
ff

ic
ie

nc
y

Perf̂ 2/Watt - HILP Perf̂ 2/Watt - LILP

(a) Optimal Point for Performance (b) Optimal Point for Area Efficiency

(c) Optimal Point for Power Efficiency

0

1

2

3

4

5

6

1 core 2 cores 4 cores 8 cores 16 cores 32 cores

R
el

at
iv

e
P

er
fo

rm
an

ce

Perf - HILP Perf - LILP

Figure 5.29: Optimal point at different operating targets

when the need arises. Figure 5.29 and Table 5.5 shows the optimal points depending on

application characteristics and operating targets. We plot the performance, performance

per area, and the performance2per watt, categorized by the high- and low-ILP benchmark

groups. The graph shows how each metric varies across different composed processor sizes,

while the table shows the number of cores at which each metricis maximal.

Depending on which metric is most important—raw performance, area efficiency,

or energy efficiency—the best configuration is quite different, ranging from one core per

thread for maximum area efficiency, eight cores per thread for maximum energy efficiency,

141

Metrics High-ILP Low-ILP All apps. Fixed Best
of cores # of cores # of cores Ratio to the TRIPS Ratio to the TRIPS

Perf 16 8 16 1.2 1.4
Perf/mm

2 1 1 1 3.4 3.4
Perf2/Watt 8 8 8 1.6 2.0
Perf3/Watt/mm

2 8 4 4 2.8 4.1

Table 5.5: Optimal point at different operating targets

to 16 for maximum performance. Moreover, if the system can identify the best operat-

ing point at an application-specific granularity, additional improvements are possible. An

interesting open question is whether further improvementscan be obtained by exploiting

coarse-grain program phases using dynamic reconfigurationwhile the applications are run-

ning.

5.5 Summary

In this chapter we have described a CLP (Composable Lightweight Processor) that pro-

vides microarchitectural support for run-time configuration of fine-grained CMP proces-

sors, allowing flexibility in aggregating cores together toform larger logical processors. A

disadvantage of this approach is that it relies on non-traditional ISA support, using EDGE

architectures rather than RISC or CISC. An advantage is thatunlike prior work, the larger

logical processor groups together distributed resources to form unified logical resources,

including instruction sequencing, memory disambiguation, data caches, instruction caches,

register files, and branch predictors. That grouping permits higher performance than pre-

vious distributed approaches (such as thread-level speculation) as well as a finer degree of

configurability.

142

Since most future performance gains will come from concurrency, future systems

will need to mine concurrency from all levels. Depending on the workload mix and number

of available threads, the right place to find the concurrencywill likely change frequently for

general-purpose systems, rendering the design-time freezing of processor granularity in tra-

ditional CMPs a highly undesirable option. A CLP permits therun-time system to make in-

formed decisions about how to go about exploiting concurrency, whether it be from a single

thread running on many distributed cores, or many threads running on partitioned resources.

Other factors that may affect the resource configuration include power/performance trade-

offs and the amount of concurrency within each thread.

143

Chapter 6

Conclusions

Clock rate scaling can no longer sustain computer system scaling due to power and thermal

constraints, diminishing performance returns of pipelinescaling [45,51], and process vari-

ation [13]. Future performance improvement must thereforecome primarily from mining

concurrency from applications. Unfortunately, conventional approaches will be problem-

atic, as increasing global on-chip wire delays will limit amount of state available in a single

cycle, thereby hampering the ability to mine concurrency.

To address these technology challenges, industry has migrated to chip multipro-

cessors in the hope that software threads will provide the concurrency needed for future

performance gains. However, relying on compilers or programmers to parallelize applica-

tions has had only limited success over the past years and mayresult in disrupting software

development productivity in the future. Moreover, Amdahl’s law dictates that the sequential

portions of execution will eventually hamper the overall performance growth.

Another disadvantage of conventional CMP architectures istheir relative inflexi-

bility, making any fixed CMP designs ill-suited to meet various application demands and

144

operating targets. Application domains have become increasingly diverse, now spanning

desktop, network, server, scientific, graphics, and digital signal processing. In each do-

main, applications have different granularity of concurrency and memory requirements.

Even within the same application, the amount of computational requirement and the size of

working set differ across various execution phases.

In current designs, the granularity (e.g., issue width), the number of processors on

each chip, and the memory hierarchies (e.g., cache capacityof each level) are fixed at design

time based on the target workload mix. Once deployed, however, the ideal balance between

the granularity, the number of cores per chip, and capacity of each level may change as

the workload mix changes. While parallel (TLP-centric) workloads favor a processor de-

sign with many small cores, the “inherently sequential” (ILP-centric) workloads take good

advantage of a few, but large, aggressive cores. There is also trade-off between larger,

slower caches for applications with large working sets and smaller, faster caches for appli-

cations that are less memory intensive. These diverse characteristics of workloads render

the design-time freezing of granularity in traditional processor and cache architectures an

undesirable option.

In this dissertation, we explored the concept of thecomposability, for both pro-

cessors and on-chip memories, to address both the increasing wire delay problem and the

inflexibility of conventional CMP architectures for meeting various application demands.

The basic concept of composability is the ability to adapt todiverse applications and oper-

ating targets by aggregating fine-grained processing unitsor memory units.

6.1 Summary

This dissertation identifies four main principles for a composable architecture.

145

• Composable architectures employ a distributed substrate consisting of multiple fine-

grained processing and memory units. The fine-grained unitsare inherently more

power-efficient and achieve technology scalability with respect to future global wire

delay increases.

• Composable architectures provide the ability (1) to aggregate fine-grained units to

compose into a larger logical unit and (2) to match each application to the composed

logical unit best suited to meet its performance, power, andthroughput demands.

• The number of fine-grained units combined to execute each application can be dy-

namically changed transparently to the running application.

• Composable architectures provide an ISA and microarchitectural support to combine

distributed fine-grained units in a power- and area- efficient manner. The overheads

to support composability in a distributed substrate shouldbe minimized.

This dissertation evaluates composable architectures that have two main compo-

nents: (1) NUCA (Non-Uniform Access Cache Architectures) and (2) CLP (Composable

Lightweight Processors)

6.1.1 NUCA (Non-Uniform Access Cache Architecture)

The current designs of large level-2 caches will not work effectively in future wire-delay

dominated technologies. This dissertation describes a fundamentally new class of cache

design, called Non-Uniform Access Level-2 Cache Architecture (NUCA). NUCA caches

break large caches into many banks that are independently accessible with a switched net-

work embedded in the cache. Lines can be mapped into this array of memory banks with

146

fixed mappings, as in the static NUCA organization (S-NUCA),or dynamic mappings (D-

NUCA), where cache lines can move around within the cache.

Adaptivity for various working set sizes: This dissertation shows that by gradually mi-

grating cache lines within the cache nearer to the processoras they are used, the bulk of

accesses go to banks close to the processor. The working set thus clusters in the banks

closest to the processor, so long as the working set is smaller than the cache, resulting in

hit latencies considerably lower than the average access latency to a bank. Because of its

adaptability, the D-NUCA eliminates the trade-off betweenlarger, slower caches for ap-

plications with large working sets and smaller, faster caches for applications that are less

memory intensive.

Composability for various memory organizations: Applications from different domains

have different memory access patterns. While applicationsthat have irregular access pat-

terns will favor the cache design, streaming applications from scientific and graphics do-

main will take good advantage of a scrachpad memory. As a proof of concept, we built

a composable secondary memory system in the TRIPS prototype. The TRIPS secondary

memory system is composable, as it consists of multiple, aggregable memory banks, which

can be configured differently. The possible memory organizations include a 1MB L2 cache

or a 1MB scratchpad memory or any mix between them totalling 1MB.

Extension of NUCA to CMP Level-2 Caches: In this dissertation, we extended the con-

cept of NUCA to CMP Level-2 caches and explored the well-known design trade-offs be-

tween a private L2 design with lower hit latency and a shared L2 design with larger ef-

fective cache capacity. The proposed L2 cache substrate cansupport a flexible sharing

147

degree from low-latency, private logical caches, to highlyshared caches, or any intermedi-

ate design point between the two. We show that the L2 hit latency more than doubles for

a fully shared cache compared to private caches and makes a larger sharing degree less ef-

fective; despite the benefits of eliminating many of the off-chip misses. Then, we explored

a dynamic mapping policy to address slow access time in a highly shared cache. On the

16-processor CMP design that we evaluated, we observed onlymodest performance gains

over the S-NUCA design with the best sharing degree. The overhead of searching data in

the D-NUCA design degrades performance significantly. Therefore, we conclude that the

performance gains of the D-NUCA design are unlikely to justify the added design com-

plexity. However, for a subset of applications we observed that the dynamic data migration

capabilities of D-NUCA can reduce the average hit latency, driving the ideal sharing degree

to higher sharing degrees. In addition, D-NUCA showed the potential benefit of reducing

energy consumption by decreasing the on-chip network traffic in higher sharing degrees.

Based on our observation of when dynamic mapping works, dynamic mapping could be a

more attractive alternative to static mapping as the numberof processor cores and L2 cache

capacities increase. However, inventing a less complex search mechanism in D-NUCA will

be the key enabler for adopting D-NUCA designs in future CMP caches.

6.1.2 CLP (Composable Lightweight Processor)

A CLP consists of a large number of low-power, lightweight processor cores that can be ag-

gregated dynamically to form more powerful logical single-threaded processors. Compared

to conventional CMP architectures that have a “rigid” granularity, CLPs provide flexibility

to dynamically allocate resources to different types of concurrency, ranging from running a

single thread on a logical processor composed of many distributed cores, to running many

148

threads on separate physical cores. The system can also use energy and/or area efficiency

as metrics to choose the configurations best suited for any given point.

ISA support for Composability: While composability can also be provided using tradi-

tional ISAs [54], we examined CLPs in the context of a block-based Explicit Data Graph

Execution (EDGE) architectures [15], that provide many benefits over traditional ISAs.

The EDGE ISA has the following two key features: (1) explicitspecification of

producer-consumer relationship between dependent instructions (2) block-atomic execution

of hyperblocks. These two features alleviate the need for power hungry hardware structures

like associative register renaming and issue windows.

This dissertation shows that the above mentioned features of the EDGE ISA make it

attractive for providing efficient composability as well. Since the dataflow graph is statically

and explicitly encoded in the instruction stream, it is simple to shrink or expand the graph

on fewer or larger number of execution resources as desired with virtually no additional

hardware. Further, the coordination overheads required torun a single thread application

on multiple cores can be significantly reduced if the unit of coordination is a block of

instructions rather than individual instructions. Using the EDGE ISA, we developed an

implementation of CLP, named “TFlex”.

Microarchitecture for Composability: The microarchitectural structures in a compos-

able processor must allow their capacity to be incrementally increased or decreased as the

number of participating cores increase or decrease.

To provide this capability we identify and repeatedly applytwo principles. First, the

hardware resources should not be oversized or undersized tosuit either a large processor

configuration or a small configuration. Second, we avoid physically centralized microar-

149

chitectural structures completely. Decentralization allows the size of structures to be grown

without the undue complexity traditionally associated with large centralized structures. We

evaluate the overheads to support composibility in a distributed substrate and show that the

TFlex microarchitecture keeps these overheads sufficiently low.

Configuration for an Ideal Operating Point: This dissertation demonstrates that the

best processor configuration is quite different depending on application characteristics and

operating targets (metric) — raw performance, area efficiency, or power efficiency. The

TFlex microarchitecture provides the ability to shift to different processor configurations

when the need arises.

Scaling Degree of Composition: In this dissertation we explored a range of compositions

(i.e. degree of composition) — from two to 32 cores — to synthesize a logical processor

to run a single-threaded application. We found that aggregating cores beyond 16 does not

yield enough benefits to justify the additional resources. Even in terms of raw performance,

we observed that only a few benchmarks (from the high-ILP group) showed reasonable

benefits beyond 16 cores. Moreover, the ideal configurationsfor both area- and power-

efficiency were achieved at a much smaller number of cores. The main reason is that the

performance penalty due to the increased number of hops outweighs the benefits from ex-

ploiting higher concurrency. Prior research has also shownthat operand communication

latency is the primary bottleneck for scaling single-threaded performance in a distributed

architecture [83]. While we present a composable architecture for efficiently mining par-

allelism from a contiguous program region, we believe that solutions composing greater

than 16 cores for achieving even higher performance from single-threaded application must

extract concurrency from non-contiguous regions of the program.

150

6.2 Final Thoughts

A composable architecture aggregates fine-grained processing units or memory units into

larger logical units and provides the ability to adapt to different application demands and

various operating targets. This dissertation opens up two broad challenges for future work.

Finding an optimal point: While this dissertation presents composable architectures that

can adapt to different application demands and various operating targets, the detailed mech-

anisms on how to find an optimal point are not explored. We envision multiple methods of

controlling the allocation of cores to threads. Compilers can provide hints on the amount of

ILP by analyzing the whole program statically and performing off-line profiling. Depend-

ing on the granularity of configuration and the number of threads involved, the following

two approaches can be considered: hardware-based decisions and software-based decisions.

Hardware-based decisions can respond more quickly to catastrophic thermal events or adapt

to fine-grained intra-thread phase diversity. On the other hand, the software-based approach

(possibly by the operating system) can involve multiple threads and introduce more com-

plex scheduling algorithms considering time, space, job priority, and other operating targets

(e.g., energy).

There is much related work on optimal job scheduling. Several papers [31, 110]

focused on SMT/CMP job scheduling that aims at attaining optimal throughput. Recent

scheduling work on heterogeneous CMP demonstrates the benefits of mapping each job to

the core that most closely matches the resource demands of the application [9,68]. Besides

pure performance, energy-aware job scheduling [25] takes power or energy into consider-

ation to make scheduling decisions. Techniques such as DVFSor thread migration can be

used to enable energy-aware scheduling [35,80,122].

151

The configurability of a composable architecture offers another degree of freedom

when balancing power and performance. However, too much freedom does not necessar-

ily produce the best policy because of possible state-spaceexplosion. The right schedule

should be both workload- and operating target-dependent and be able to dynamically adjust

itself to discover the optimal point.

Finding the best balance between ILP and TLP: There are many advantages to build-

ing a future CMP out of fine-grained small processor cores. First, small processor cores

are inherently more power efficient because of lower capacitance in the active state asso-

ciated with physically small layout and wires. The finer-granularity control by DVFS pro-

vides further opportunities to optimize power consumption. Second, small cores produce

higher performance per unit area for parallel software. Finally, the low design complexity

compared to designing a large core is a significant advantage. However, the criticality of

single-thread application performance and Amdahl’s law will hamper adoption of smaller

processor cores in current CMP architectures. We envision that composability proposed in

this dissertation could open the door to adopting smaller processor cores in future CMPs.

The best way to exploit many small cores is to extract thread-level parallelism (TLP)

from applications. Generally, exploiting TLP (throughput) is a more power-efficient way

of obtaining performance than exploiting ILP (scalar) [41]. More applications in the future

therefore are anticipated to be written in multi-threaded fashion [116], with support from

programming languages [18] or hardware/software mechanisms to ease concurrent pro-

gramming [47]. However, balancing between ILP and TLP in multi-threaded applications

will pose a great challenge due to the following reasons. First, applications have different

characteristics in terms of granularity of parallelism: Some applications from scientific,

media, and server domain are more amenable to extracting TLPwhile other applications

152

are inherently sequential. Second, many parallel applications are incrementally parallelized

to amortize the programming effort over time, and thus present different amounts of TLP

depending on stages of development [54]. Finally, the optimized parallel software for one

CPU generation may not produce the optimized performance for each successive genera-

tion of CPUs as the number of integrated cores in a chip is expected to keep increasing. We

envision that future CMPs should be flexible and reconfigure themselves to perform best

amidst various amount of ILP and TLP existing in applications by considering the amount

of ILP per thread, thread synchronization overheads, and reconfiguration cost. Looking

forward, a composable architecture will further blur the distinction between conventional

uniprocessors and multiprocessors, which we view as a promising direction.

153

Appendices

154

Appendix A

Comparison Between

Hand-Optimized And Compiled

Code

In Section 5.4.2, we reported the performance of TFlex with the two different benchmark

suites: a hand-optimized suite and a compiler-generated suite.

Figure A.1 shows the performance of kernel benchmarks (seven EEMBC bench-

marks, three LL kernels, two Versa benchmarks) before and after hand optimizations. For

reference, the figure also shows the performance with the perfect configuration in which

performance is only constrained by issue width, using perfect block prediction, perfect

memory disambiguation and zero-cycle operand delivery with unlimited bandwidth.

Unsurprisingly, the difference between the real and the perfect configuration is less

for the hand-optimized benchmarks (compared to the compiler-optimized benchmarks) and

for the low-ILP benchmarks (compared to the high-ILP benchmarks). The right side of Fig-

155

0

5

10

15

20

25

HILP
compiler

HILP hand LILP
compiler

LILP hand SPEC FP
compiler

SPEC INT
compiler

S
pe

ed
up

 o
ve

r
A

lp
ha

21
26

4

real
perfect

SPEC BenchmarksKernel Benchmarks

Figure A.1: Performance comparison between compiler-optimized and hand-optimized ap-
plications under the baseline configuration and the perfectconfiguration

ure A.1 shows the performance of SPEC benchmarks with only compiler optimizations (we

did not hand-optimize the SPEC benchmarks). We found that the SPEC floating-point and

integer benchmarks follow trends similar to the high-ILP and low-ILP kernel benchmarks,

respectively.

Our hand-optimizations for the benchmarks did not involve acomplete rewrite, but

instead focused on optimizations that we expect the compiler to perform well:

• Instruction merging when the same instructions are predicated on both true and false

predicates.

• Tuning the loop unroll counts.

• False load/store dependence elimination with enhanced register allocation.

The performance gap between the compiled code and the hand-optimized code is

about 3x in both the high- and the low- ILP benchmarks. This gap indicates the potential

optimization opportunities for the compiler.

156

Appendix B

Area Comparison with the Alpha

21264

In Section 5.4.3, we evaluated the area efficiency with various number of cores in TFlex

and compared against the TRIPS processor. We reported that at 130nm, a 18mm x 18mm

die can integrate 8-TFlex cores with 1.5MB of L2 cache. Assuming linear scaling, at 45nm

on a 12mm x 12mm die a 32-core TFlex with 4MB cache seems feasible. Compared to

conventional out-of-order issue CMP architectures, TFlexcan integrate more cores in a

chip.

To analyze the area benefits against a conventional out-of-order superscalar proces-

sor core, we estimate the area of each microarchitectural component in the Alpha 21264

processor core by using the published die sizes and the die photograph [61]. The die size

of the Alpha 21264 is reported to be 310mm2 at 350nm. To compare the Alpha 21264

core and the single TFlex core at the same technology, we scale the area of each component

to a 65nm technology. In the Alpha, we apply a 10% reduction toaccount for die photo

157

Structures Alpha scaled TFlex scaled Alpha uarch TFlex uarch
(mm

2 at 65nm) (mm
2 at 65nm)

Fetch (I-cache + 2.65 (29%) 0.35 (15%) 64KB I-cache 8KB I-cache
ITLB + BP)
Register File 1.02 (11%) 0.17 (7%) 10-port 232 entries 2-port 128 entries
Renaming and 1.30 (14%) 0.21 (9%) 35-entry CAM 128-entry RAM
Issue Window (no renaming)
Functional Units 1.28 (14%) 0.60 (26%) 4-INT ALU, 2 FP 2-INT ALU, 1FP
D-cache 1.94 (21%) 0.45 (19%) 64KB D-cache 8KB D-cache
LSQ + DTLB + 0.86 (10%) 0.36 (16%) 2 32-entry CAMs 1 40-entry CAM
Miss Handling
Routers N/A 0.19 (8%)
Sum 9.04 (100%) 2.32 (100%)

Table B.1: Area comparison between the Alpha 21264 and a single TFlex core

measurement errors. Since a custom implementation of TRIPSwould be smaller than an

ASIC implementation, we apply a 40% area reduction to randomlogic in TFlex and leave

the SRAM/register arrays untouched. Finally, we add a 10% area increase to both the Alpha

and TFlex to reflect estimation errors in our linear process technology scaling model.

Table B.1 shows that a single TFlex core is approximately four times smaller than

the Alpha 21264 in 65nm. To first order, this ratio is reasonable, since a TFlex core has

1/8th the instruction and data cache capacity and half the number of ALUs. The major

area advantages in TFlex (aside from smaller caches) come from eliminating complex out-

of-order structures such as a per-instruction register renamer, an associative issue window,

and multi-ported register files, each of which is obviated bythe TRIPS ISA and execution

model. For example, the 10-ported register files in the Alphaare about six times larger

than the dual-ported TFlex register file, even though the total number of entries is only

twice that of TFlex. In addition, the RAM-structured issue window in TFlex is six times

smaller than the CAM-based window in the Alpha, even with four times the number of

158

issue window entries. Based on the results in Table B.1, in a 65nm process, a 32-core TFlex

microarchitecture with 4MB L2 cache could be implemented inonly 144mm2.

159

Bibliography

[1] Kartik K. Agaram, Stephen W. Keckler, Calvin Lin, and Kathryn S. McKinley. De-

composing memory performance: data structures and phases.In Proceedings of the

5th International Symposium on Memory Management, pages 95–103, 2006.

[2] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, andDoug Burger. Clock rate

versus IPC: The end of the road for conventional microarchitectures. InProceedings

of the 27th Annual International Symposium on Computer Architecture, pages 248–

259, June 2000.

[3] David H. Albonesi, Rajeev Balasubramonian, Steve Dropsho, Sandhya Dwarkadas,

Eby G. Friedman, Michael C. Huang, Volkan Kursun, GrigoriosMagklis, Michael L.

Scott, Greg Semeraro, Pradip Bose, Alper Buyuktosunoglu, Peter W. Cook, and

Stanley Schuster. Dynamically tuning processor resourceswith adaptive process-

ing. IEEE Computer, 36(12):49–58, 2003.

[4] D.H. Albonesi. Selective cache ways: On-demand cache resource allocation. In

Proceedings of the 32nd International Symposium on Microarchitecture, pages 248–

259, December 1999.

[5] Murali Annavaram, Ed Grochowski, and John Paul Shen. Mitigating Amdahl’s law

160

through EPI throttling. InProceedings of the 32nd International Symposium on

Computer Architecture, pages 298–309, 2005.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John

Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel

computing research: A view from berkeley. Technical ReportUCB/EECS-2006-183,

EECS Department, University of California, Berkeley, December 18 2006.

[7] R. Iris Bahar and Srilatha Manne. Power and energy reduction via pipeline balanc-

ing. In Proceedings of the 28th International Symposium on Computer Architecture,

pages 218–229, 2001.

[8] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks. Tech-

nical Report RNR-91-002 Revision 2, NASA Ames Research Laboratory, Mountain

View, CA, August 1991.

[9] Saisanthosh Balakrishnan, Ravi Rajwar, Michael Upton,and Konrad K. Lai. The

impact of performance asymmetry in emerging multicore architectures. InProceed-

ings of the 32th Annual International Symposium on ComputerArchitecture, pages

506–517, 2005.

[10] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Mar-

wedel. Scratchpad memory: design alternative for cache on-chip memory in embed-

ded systems. InCODES, pages 73–78, 2002.

[11] Bradford M. Beckmann and David A. Wood. TLC: Transmission line caches. InPro-

161

ceedings of the 36th Annual International Symposium on Microarchitecture, pages

43–54, 2003.

[12] Bradford M. Beckmann and David A. Wood. Managing wire delay in large chip-

multiprocessor caches. InProceedings of the 37th Annual International Symposium

on Microarchitecture, pages 319–330, 2004.

[13] Shekhar Y. Borkar. Designing reliable systems from unreliable components: The

challenges of transistor variability and degradation.IEEE Micro, 25(6):10–16, 2005.

[14] Shirley Browne, Jack Dongarra, N. Garner, Kevin S. London, and Philip Mucci. A

scalable cross-platform infrastructure for application performance tuning using hard-

ware counters. InProceedings of the 2000 ACM/IEEE conference on Supercomput-

ing, page 42, 2000.

[15] D. Burger, S.W. Keckler, K.S. McKinley, M. Dahlin, L.K.John, Calvin Lin, C.R.

Moore, J. Burrill, R.G. McDonald, and W. Yoder. Scaling to the end of silicon with

EDGE architectures.IEEE Computer, 37(7):44–55, July 2004.

[16] Ramon Canal, Joan-Manuel Parcerisa, and Antonio Gonz´alez. A cost-effective clus-

tered architecture. InProceedings of the 8th International Symposium on Parallel

Architectures and Compilation Techniques, pages 160–168, 1999.

[17] Jichuan Chang and Gurindar S. Sohi. Cooperative caching for chip multiprocessors.

In Proceedings of the 33rd Annual International Symposium on Computer Architec-

ture, pages 264–276, June 2006.

[18] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-

162

oriented approach to non-uniform cluster computing. InOOPSLA, pages 519–538,

2005.

[19] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Distance associativity

for high-performance energy-efficient non-uniform cache architectures. InProceed-

ings of the 36th Annual International Symposium on Microarchitecture, pages 55–66,

2003.

[20] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing replication,

communication, and capacity allocation in CMPs. InProceedings of the 32th Annual

International Symposium on Computer Architecture, pages 357–368, 2005.

[21] Katherine E. Coons, Xia Chen, Doug Burger, Kathryn S. McKinley, and Sundeep K.

Kushwaha. A spatial path scheduling algorithm for edge architectures. InProceed-

ings of the 12th International Conference on ArchitecturalSupport for Programming

Languages and Operating Systems, pages 129–140, October 2006.

[22] Willian James Dally and Brian Towles.Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers, Inc, 2004.

[23] James C. Dehnert, Brian Grant, John P. Banning, RichardJohnson, Thomas Kistler,

Alexander Klaiber, and Jim Mattson. The Transmeta code morphing - Software: Us-

ing speculation, recovery, and adaptive retranslation to address real-life challenges.

In Proceedings of the 1st Annual International Symposium on Code Generation and

Optimization, pages 15–24, 2003.

[24] Rajagopalan Desikan, Doug Burger, Stephen W. Keckler,and Todd M. Austin. Sim-

163

alpha: A validated execution-driven Alpha 21264 simulator. Technical Report TR-

01-23, Department of Computer Sciences, University of Texas at Austin, 2001.

[25] Matt Devuyst, Rakesh Kumar, and Dean Tullsen. Exploiting unbalanced thread

scheduling for energy and performance on a CMP of SMT processors. In Inter-

national Parallel and Distributed Processing Symposium, 2006.

[26] Ashutosh S. Dhodapkar and James E. Smith. Managing multi-configuration hard-

ware via dynamic working set analysis. InProceedings of the 29th Annual Interna-

tional Symposium on Computer Architecture, pages 233–, 2002.

[27] Pradeep Dubey. A platform 2015 workload model: Recognition, mining and synthe-

sis moves computers to the era of tera. Technical report, Intel, February 2005.

[28] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon, Bradley J. Benschnei-

der, Debra Bernstein, Ruben W. Castelino, Elizabeth M. Cooper, Daniel E. Dever,

Dale R. Donchin, Timothy C. Fischer, Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer,

Ronald P. Preston, Vidya Rajagopalan, Chandrasekhara Somanathan, Scott A. Tay-

lor, and Gilbert M. Wolrich. Internal organization of the alpha 21164, a 300-mhz

64-bit quad-issue cmos risc microprocessor.Digital Technical Journal, 7(1), 1995.

[29] Roger Espasa, Federico Ardanaz, Joel Emer, Stephen Felix, Julio Gago, Roger Gra-

munt, Isacc Hernandez, Toni Juan, Geoff Lowney, Mathew Mattina, and Andre

Seznec. Tarantula: A Vector Extension to the Alpha Architecture. InProceedings of

The 29th International Symposium on Computer Architecture, pages 281–292, May

2002.

[30] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and ZvonkoVranesic. The multi-

164

cluster architecture: Reducing cycle time through partitioning. In Proceedings of

the 30th International Symposium on Microarchitecture, pages 149–159, December

1997.

[31] Alexandra Fedorova, Margo I. Seltzer, Christopher Small, and Daniel Nussbaum.

Performance of multithreaded chip multiprocessors and implications for operating

system design. InUSENIX Annual Technical Conference, General Track, pages 395–

398, 2005.

[32] Joseph A. Fisher, Paolo Faraboschi, and Giuseppe Desoli. Custom-fit processors:

Letting applications define architectures. InProceedings of the 29th International

Symposium on Microarchitecture, pages 324–335, December 1996.

[33] David Flynn. AMBA: Enabling Reusable On-Chip Designs.IEEE Micro, 17(4):20–

27, 1997.

[34] Daniele Folegnani and Antonio González. Energy-effective issue logic. InProceed-

ings of the 28th International Symposium on Computer Architecture, pages 230–239,

2001.

[35] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumar.Heat-and-run: lever-

aging SMT and CMP to manage power density through the operating system. In

Proceedings of the 11th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 260–270, 2004.

[36] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microproces-

sors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, September 1996.

165

[37] Ricardo E. Gonzalez. Xtensa — A configurable and extensible processor.IEEE

Micro, 20(2):60–70, /2000.

[38] Kazushige Goto and Robert van de Geign. On reducing tlb misses in matrix mul-

tiplication. Technical Report TR-02-55, Department of Computer Sciences, The

University of Texas at Austin, 2002.

[39] Paul Gratz, Changkyu Kim, Robert McDonald, Stephen W. Keckler, and Doug

Burger. Implementation and Evaluation of On-Chip Network Architectures. InIEEE

International Conference on Computer Design, 2006.

[40] Paul Gratz, Karthikeyan Sankaralingam, Heather Hanson, Premkishore Shivakumar,

Robert McDonald, Stephen W. Keckler, and Doug Burger. Implementation and eval-

uation of a dynamically routed processor operand network. In Proceedings of the 1st

International Symposium on Networks-on-Chip, pages 7–17, 2007.

[41] Ed Grochowski, Ronny Ronen, John Paul Shen, and Hong Wang. Best of both la-

tency and throughput. InIEEE International Conference on Computer Design, pages

236–243, 2004.

[42] E.G. Hallnor and S.K. Reinhardt. A fully associative software-managed cache de-

sign. InProceedings of the 27th International Symposium on Computer Architecture,

pages 107–116, June 2000.

[43] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu,

Michael K. Chen, and Kunle Olukotun. The stanford hydra CMP.IEEE Micro,

20(2):71–84, 2000.

166

[44] Reiner W. Hartenstein. A decade of reconfigurable computing: a visionary retro-

spective. InDATE, pages 642–649, 2001.

[45] A. Hartstein and Thomas R. Puzak. The optimium pipelinedepth for a microproces-

sor. InProceedings of the 29th International Symposium on Computer Architecture,

pages 7–13, May 2002.

[46] Allan Hartstein and Thomas R. Puzak. Optimum power/performance pipeline depth.

In Proceedings of the 36th Annual International Symposium on Microarchitecture,

pages 117–128, 2003.

[47] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. InProceedings of the 20th Annual International

Symposium on Computer Architecture, pages 289–300, 1993.

[48] J.M. Hill and J. Lachman. A 900MHz 2.25 MB cache with on-chip CPU now in

Cu SOI. InProceedings of the IEEE International Solid-State Circuits Conference,

pages 171–177, February 2001.

[49] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan Kyker,

and Patrice Roussel. The microarchitecture of the Pentium 4processor.Intel Tech-

nology Journal Q1, 2001.

[50] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future of wires. Proceedings

of the IEEE, 89(4):490–504, April 2001.

[51] M.S. Hrishikesh, Keith Farkas, Norman P. Jouppi, Doug Burger, Stephen W. Keckler,

and Premkishore Sivakumar. The optimal logic depth per pipeline stage is 6 to 8 fo4

167

inverter delays. InProceedings of the 29th International Symposium on Computer

Architecture, pages 14–24, May 2002.

[52] Jaehyuk Huh.Hardware Techniques to Reduce Communication Costs in Multipro-

cessors. PhD thesis, The University of Texas at Austin, Department of Computer

Sciences, May 2006.

[53] Jaehyuk Huh, Doug Burger, and Stephen W. Keckler. Exploring the design space

of future CMPs. InProceedings of the 10th International Conference on Parallel

Architectures and Compilation Techniques, pages 199–210, September 2001.

[54] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martnez. Core Fusion:

Accommodating software diversity in chip multiprocessors. In Proceedings of the

34th Annual International Symposium on Computer Architecture, Jun 2007.

[55] J. Rubinstein, P. Penfield, and M.A. Horowitz. Signal delay in RC tree networks.

IEEE Transactions on Computer-Aided Design, CAD-2(3):202–211, 1983.

[56] J. W. Janzen. DDR SDRAM Power Calculation Sheet. Micron, 2001.

[57] Roy M. Jenevein and James C. Browne. A control processorfor a reconfigurable

array computer. InProceedings of the 9th Annual International Symposium on Com-

puter Architecture, pages 81–89, 1982.

[58] Norman P. Jouppi and Steven J. E. Wilton. An enhanced access and cycle time model

for on-chip caches. Technical Report TR-93-5, Compaq WRL, July 1994.

[59] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R.

Maeurer, and David Shippy. Introduction to the Cell multiprocessor.IBM Journal of

Research and Development, 49(4/5), September 2005.

168

[60] Richard E. Kessler.Analysis of Multi-Megabyte Secondary CPU Cache Memories.

PhD thesis, University of Wisconsin-Madison, December 1989.

[61] Richard E. Kessler. The Alpha 21264 microprocessor.IEEE Micro, 19(2):24–36,

March/April 1999.

[62] Richard E. Kessler, Mark D. Hill, and David A. Wood. A comparison of trace-

sampling techniques for multi-megabyte caches.IEEE Transactions on Computers,

43(6):664–675, June 1994.

[63] Richard E. Kessler, Richard Jooss, Alvin R. Lebeck, andMark D. Hill. Inexpensive

implementations of set-associativity. InProceedings of the 16th Annual International

Symposium on Computer Architecture, pages 131–139, May 1989.

[64] Chankyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform

cache structure for wire-delay dominated on-chip caches. In Proceedings of the 10th

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 211–222, October 2002.

[65] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor architecture with spec-

ulative multithreading.IEEE Trans. Computers, 48(9):866–880, 1999.

[66] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and

Dean M. Tullsen. Single-ISA heterogeneous multi-core architectures: The potential

for processor power reduction. InProceedings of the 36th International Symposium

on Microarchitecture, pages 81–92, 2003.

[67] Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen. Conjoined-core chip mul-

169

tiprocessing. InProceedings of the 37th International Symposium on Microarchitec-

ture, pages 195–206, 2004.

[68] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and

Keith I. Farkas. Single-ISA heterogeneous multi-core architectures for multithreaded

workload performance. InProceedings of the 31th Annual International Symposium

on Computer Architecture, pages 64–75, 2004.

[69] Fernando Latorre, José González, and Antonio González. Back-end assignment

schemes for clustered multithreaded processors. InProceedings of the 18th Annual

International Conference on Supercomputing, pages 316–325, 2004.

[70] K.-F. Lee, H.-W. Hon, and R. Reddy. An overview of the SPHINX speech recog-

nition system. IEEE Transactions on Acoustics, Speech and Signal Processing,

38(1):35–44, 1990.

[71] Walter Lee, Rajeev Barua, Matthew Frank, DevabhaktuniSrikrishna, Jonathan Babb,

Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of instruction-level

parallelism on a RAW machine. InProceedings of the 8th International Conference

on Architectural Support for Programming Languages and Operating Systems, pages

46–57, New York, NY, USA, 1998. ACM Press.

[72] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark

Horowitz, and Christos Kozyrakis. Comparing memory systems for chip multipro-

cessors. InProceedings of the 34th Annual International symposium on Computer

Architecture, June 2007.

[73] Jian Li and José F. Martı́nez. Power-performance considerations of parallel comput-

170

ing on chip multiprocessors.ACM Transactions on Architecture and Code Optimiza-

tion, 2(4):397–422, 2005.

[74] Haiming Liu. Hardware techniques to improve cache efficiency, Ph.D proposal, April

2007.

[75] Bertrand A. Maher, Aaron Smith, Doug Burger, and Kathryn S. McKinley. Merging

Head and Tail Duplication for Convergent Hyperblock Formation. In Proceedings of

the 39th Annual International Symposium on Microarchitecture, December 2006.

[76] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark

Horowitz. Smart memories: a modular reconfigurable architecture. InProceed-

ings of the 27th Annual International Symposium on ComputerArchitecture, pages

161–171, June 2000.

[77] D. Matzke. Will physical scalability sabotage performance gains?IEEE Computer,

30(9):37–39, September 1997.

[78] Robert McDonald, Doug Burger, Stephen W. Keckler, Karthikeyan Sankaralingam,

and Ramadass Nagarajan. TRIPS processor reference manual.Technical Report TR-

05-19, Department of Computer Sciences, The University of Texas at Austin, March

2005.

[79] Cameron McNairy and Rohit Bhatia. Montecito: A dual-core, dual-thread Itanium

processor.IEEE Micro, 25(2):10–20, 2005.

[80] Andreas Merkel and Frank Bellosa. Balancing power consumption in multiprocessor

systems.SIGOPS Oper. Syst. Rev., 40(4):403–414, 2006.

171

[81] Matteo Monchiero, Ramon Canal, and Antonio González.Design space exploration

for multicore architectures: a power/performance/thermal view. In Proceedings of

the 20th Annual International Conference on Supercomputing, pages 177–186, 2006.

[82] Trevor N. Mudge. Power: A first-class architectural design constraint.IEEE Com-

puter, 34(4):52–58, 2001.

[83] Ramadass Nagarajan.Design and Evaluation of a Technology-Scalable Architecture

for Instruction-Level Parallelism. PhD thesis, The University of Texas at Austin,

Department of Computer Sciences, May 2007.

[84] Ramadass Nagarajan, Karthikeyan Sankaralingam, Stephen W. Keckler, and Doug

Burger. A Design Space Evaluation of Grid Processor Architectures. InProceed-

ings of the 34th Annual International Symposium on Microarchitecture, pages 40–51,

December 2001.

[85] Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. Evaluation of design

alternatives for a multiprocessor microprocessor. InProceedings of the 23th Annual

International Symposium on Computer Architecture, pages 67–77, May 1996.

[86] Basem A. Nayfeh, Kunle Olukotun, and Jaswinder Pal Singh. The impact of shared-

cache clustering in small-scale shared-memory multiprocessors. InProceedings of

the 2nd IEEE Symposium on High-Performance Computer Architecture, pages 74–

84, 1996.

[87] A. Nicolau and J. Fisher. Measuring the parallelism available for very long word

architectures.IEEE Transactions on Computers, 33(11):968–974, November 1984.

[88] H. Pilo, A. Allen, J. Covino, P. Hansen, S. Lamphier, C. Murphy, T. Traver, and

172

P. Yee. An 833MHz 1.5w 18Mb CMOS SRAM with 1.67Gb/s/pin. InProceed-

ings of the 2000 IEEE International Solid-State Circuits Conference, pages 266–267,

February 2000.

[89] Timothy Mark Pinkston and Jeonghee Shin. Trends towardon-chip networked mi-

crosystems.International Journal of High Performance Computing and Networking,

3(1):3–18, 2005.

[90] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. Reducing power require-

ments of instruction scheduling through dynamic allocation of multiple datapath re-

sources. InProceedings of the 34th International Symposium on Microarchitecture,

pages 90–101, 2001.

[91] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K. Roy. Reducing set-

associative cache energy via way-prediction and selectivedirect-mapping. InPro-

ceedings of the 34th International Symposium on Microarchitecture, pages 54–65,

December 2001.

[92] Steven A. Przybylski.Performance-Directed Memory Hierarchy Design. PhD thesis,

Stanford University, September 1988. Technical report CSL-TR-88-366.

[93] R. M. Rabbah, I. Bratt, K. Asanovic, and A.Agarwal. Versatility and versabench: A

new metric and a benchmark suite for flexible architectures.Massachusetts Institute

of Technology Technical Report MIT-LCS-TM-646, June 2004.

[94] Paul Racunas and Yale N. Patt. Partitioned first-level cache design for clustered

microarchitectures. InProceedings of the 17th Annual International Conference on

Supercomputing, pages 22–31, 2003.

173

[95] Nitya Ranganathan. Control flow speculation for distributed architectures, Ph.D pro-

posal, April 2007.

[96] Parthasarathy Ranganathan, Sarita V. Adve, and NormanP. Jouppi. Reconfigurable

caches and their application to media processing. InProceedings of the 27th Annual

International Symposium on Computer Architecture, pages 214–224, 2000.

[97] Karthikeyan Sankaralingam.Polymorphous Architectures: A Unified Approach for

Extracting Concurrency of Different Granularities. PhD thesis, The University of

Texas at Austin, Department of Computer Sciences, October 2006.

[98] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,

Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R.Moore. Exploiting

ILP, TLP, and DLP with the polymorphous TRIPS architecture.In Proceedings of

the 34th International Symposium on Microarchitecture, pages 422–433, May 2003.

[99] Karthikeyan Sankaralingam, Ramadass Nagarajan, Robert McDonald, Rajagopalan

Desikan, Saurabh Drolia, Madhu Saravana Sibi Govindan, Paul Gratz, Divya Gulati,

Heather Hanson, Changkyu Kim, Haiming Liu, Nitya Ranganathan, Simha Seth-

madhavan, Sadia Sharif, Premkishore Shivakumar, Stephen W. Keckler, and Doug

Burger. Distributed microarchitectural protocols in the TRIPS prototype processor.

In Proceedings of the 39th International Symposium on Microarchitecture, pages

480–491, December 2006.

[100] Matthew C. Sejnowski, Edwin T. Upchurch, Rajan N. Kapur, Daniel P. S. Charlu,

and G. Jack Lipovski. An overview of the Texas reconfigurablearray computer. In

AFIPS Conference Proceedings, pages 631–642, 1980.

174

[101] The national technology roadmap for semiconductors.Semiconductor Industry As-

sociation, 2001.

[102] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R. Moore, and

Stephen W. Keckler. Scalable memory disambiguation for high ilp processors.

In 36th International Symposium on Microarchitecture, pages 399–410, December

2003.

[103] Simha Sethumadhavan, Franziska Roesner, Joel S Emer,Doug Burger, and

Stephen W. Keckler. Late-Binding: Enabling unordered load-store queues. InPro-

ceedings of the 34th Annual International symposium on Computer Architecture,

June 2007.

[104] Nir Shavit and Dan Touitou. Software transactional memory. InProceedings of the

14th ACM Symposium on Principles of Distributed Computing, pages 204–213. Aug

1995.

[105] Premkishore Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated cache

timing, power and area model. Technical report, Compaq Computer Corporation,

August 2001.

[106] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankara-

narayanan, and David Tarjan. Temperature-aware microarchitecture. InProceedings

of the 30th Annual International Symposium on Computer Architecture, pages 2–13,

2003.

[107] Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Maher,Nick Nethercote, Bill Yoder,

Doug Burger, and Kathryn S. McKinley. Compiling for EDGE architectures. In

175

Fourth International ACM/IEEE Symposium on Code Generation and Optimization

(CGO), March 2006.

[108] Aaron Smith, Ramadass Nagarajan, Karthikeyan Sankaralingam, Robert McDonald,

Doug Burger, Stephen W. Keckler, and Kathryn S. McKinley. Dataflow Predication.

In Proceedings of the 39th Annual International Symposium on Microarchitecture,

December 2006.

[109] James E. Smith and Gurindar S. Sohi. The microarchitecture of superscalar proces-

sors.Proceedings of the IEEE, 83(12):1609–1624, December 1995.

[110] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultaneous

multithreading processor. InProceedings of the 9th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

234–244, 2000.

[111] Kimming So and Rudolph N. Rechtschaffen. Cache operations by MRU change.

IEEE Transactions on Computers, 37(6):700–109, July 1988.

[112] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In

Proceedings of the 22nd Annual International Symposium on Computer Architecture,

pages 414–425, June 1995.

[113] Gurindar S. Sohi and Manoj Franklin. High-performance data memory systems for

superscalar processors. InProceedings of the Fourth Symposium on Architectural

Support for Programming Languages and Operating Systems, pages 53–62, April

1991.

[114] Evan Speight, Hazim Shafi, Lixin Zhang, and Ram Rajamony. Adaptive mechanisms

176

and policies for managing cache hierarchies in chip multiprocessors. InProceedings

of the 32nd Annual International symposium on Computer Architecture, June 2005.

[115] Standard Performance Evaluation Corporation.SPEC Newsletter, Fairfax, VA,

September 2000.

[116] Herb Sutter and James R. Larus. Software and the concurrency revolution. ACM

Queue, 3(7):54–62, 2005.

[117] David Tarjan, Shyamkumar Thoziyoor, and Norman Jouppi. CACTI 4.0. Technical

Report HPL-2006-86, HP Labs, 2006.

[118] Michael Bedford Taylor, Walter Lee, Saman P. Amarasinghe, and Anant Agarwal.

Scalar Operand Networks: On-Chip Interconnect for ILP in Partitioned Architec-

tures. InProceedings of the 9th International Symposium on High-Performance

Computer Architecture, pages 341–353, February 2003.

[119] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben

Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf,

Nathan Shnidman, Volker Strumpen, Matthew Frank, Saman P. Amarasinghe, and

Anant Agarwal. Evaluation of the RAW microprocessor: An exposed-wire-delay

architecture for ILP and streams. InProceedings of the 31th Annual International

Symposium on Computer Architecture, pages 2–13, 2004.

[120] Joel M. Tendler, J. Steve Dodson, J. S. Fields Jr., HungLe, and Balaram Sin-

haroy. Power4 system microarchitecture.IBM Journal of Research and Develop-

ment, 46(1):5–26, 2002.

[121] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading:

177

Maximizing on-chip parallelism. InProceedings of the 22nd International Sympo-

sium on Computer Architecture, June 1995.

[122] Vibhore Vardhan, Daniel Grobe Sachs, Wanghong Yuan, Albert F. Harris, Sarita V.

Adve, Douglas L. Jones, Robin H. Kravets, and Klara Nahrstedt. Integrating fine-

grain application adaptation with global adaption for saving energy. InProceedings

of the 2nd International Workshop on Powe-Aware Real-Time Computing (PARC),

2005.

[123] Kenneth M. Wilson and Kunle Olukotun. Designing high bandwidth on-chip caches.

In Proceedings of the 24th Annual International Symposium on Computer Architec-

ture, pages 121–132, June 1997.

[124] Steven J. E. Wilton and Norman P. Jouppi. Cacti: An enhanced cache access and

cycle time model.IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996.

[125] Alexander Wolfe. “Intel Clears Up Post-Tejas Confusion”, May 2004.

http://www.crn.com/it-channel/18842588.

[126] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 programs: Characterization and methodological con-

siderations. InProceedings of the 22nd Annual International Symposium on Com-

puter Architecture, pages 24–36, June 1995.

[127] Michael Zhang and Krste Asanovic. Victim replication: Maximizing capacity while

hiding wire delay in tiled chip multiprocessors. InProceedings of the 32nd Annual

International Symposium on Computer Architecture, pages 336–345, June 2005.

178

[128] Hongtao Zhong, Steven Lieberman, and Scott Mahlke. Extending multicore architec-

tures to exploit hybrid parallelism in single-thread applications. InProc. 2007 Inter-

national Symposium on High Performance Computer Architecture, February 2007.

179

Vita

Changkyu Kim was born in Seoul, Korea on August 26th 1973, theson of Taewon Kim and

Inja Yum. After graduating from Seoul Science High School, he entered Seoul National

University in 1993. He received a Bachelor of Science degreein Computer Engineering

from Seoul National University in February 1997, followed by a Master of Science degree

in Computer Engineering in 1999. In the fall of 2000, he joined the doctoral program at the

Department of Computer Sciences at the University of Texas at Austin.

Permanent Address: Seocho Gu, Banpo Dong

MIDO APT 303-1211,

Seoul, Korea, 137-044

This dissertation was typeset with LATEX 2εby the author.

180

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Microarchitecture Configuration for Optimal Points
	1.2 Other Approaches
	1.3 Principles of Composable Architecture
	1.4 Thesis Statement
	1.5 Dissertation Contributions
	1.5.1 Composable Memory Systems
	1.5.2 Composable Processors

	1.6 Dissertation Organization

	Chapter 2 Related Work
	2.1 Composable Processors
	2.1.1 Composing Processors from Smaller Cores
	2.1.2 Partitioning large cores
	2.1.3 Multiple Granularities
	2.1.4 Reconfigurability

	2.2 Composable On-chip Memory System
	2.2.1 Uniprocessor Level-2 Caches
	2.2.2 Chip Multiprocessor Level-2 Caches

	Chapter 3 Composable On-Chip Memory Systems
	3.1 Uniform Access Caches
	3.1.1 Experimental Methodology
	3.1.2 UCA Evaluation

	3.2 Static NUCA Implementations
	3.2.1 Private Channels
	3.2.2 Switched Channels

	3.3 TRIPS NUCA design
	3.3.1 TRIPS Chip Overview
	3.3.2 TRIPS Secondary Memory Subsystem
	3.3.3 Composable Secondary Memory Organization
	3.3.4 Network Performance Evaluations

	3.4 Summary

	Chapter 4 Dynamically Mapped Composable Memories
	4.1 Uniprocessor D-NUCA
	4.1.1 Policy Exploration
	4.1.2 Performance Evaluation

	4.2 Chip-Multiprocessor D-NUCA
	4.2.1 CMP L2 Cache Design Space
	4.2.2 Effect of Sharing Degree in CMPs
	4.2.3 Effect of Dynamic Data Migration

	4.3 Summary

	Chapter 5 Composable Processors
	5.1 ISA Support for Composability
	5.1.1 Blocks
	5.1.2 Direct Instruction Communications
	5.1.3 Support for Composability
	5.1.4 ISA Compatibility

	5.2 Microarchitectural Support for Composability
	5.2.1 Overview of TFlex Execution
	5.2.2 Composable Instruction Fetch
	5.2.3 Composable Control-flow Prediction
	5.2.4 Composable Instruction Execution
	5.2.5 Composable Memory System
	5.2.6 Composable Instruction Commit
	5.2.7 Level-2 Cache Organization for Composable Processors
	5.2.8 Microarchitectural Reconfiguration

	5.3 Microarchitecture Evaluation
	5.3.1 Distributed Fetch and Commit Overheads
	5.3.2 Distributed Block Prediction Overheads
	5.3.3 Operand Communication Overheads
	5.3.4 Distributed Memory Disambiguation Overheads
	5.3.5 Level-2 Cache Organizations for TFlex

	5.4 Comparison Across Configurations
	5.4.1 Baseline
	5.4.2 Performance Comparison
	5.4.3 Area Efficiency Comparison
	5.4.4 Power Efficiency Comparison
	5.4.5 Ideal Operating Points

	5.5 Summary

	Chapter 6 Conclusions
	6.1 Summary
	6.1.1 NUCA (Non-Uniform Access Cache Architecture)
	6.1.2 CLP (Composable Lightweight Processor)

	6.2 Final Thoughts

	Appendix A Comparison Between Hand-Optimized And Compiled Code
	Appendix B Area Comparison with the Alpha 21264
	Bibliography
	Vita

