Copyright
by
Changkyu Kim

2007

The Dissertation Committee for Changkyu Kim

certifies that this is the approved version of the followirngsdrtation:

A Technology-Scalable Composable Architecture

Committee:

Douglas C. Burger, Supervisor

James C. Browne

Stephen W. Keckler

Kathryn S. McKinley

Charles R. Moore

A Technology-Scalable Composable Architecture

by

Changkyu Kim, B.S., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

To my loving wife, Eunyoung Park

And my mother, Inja Yum

Acknowledgments

First and foremost, | am forever grateful to my advisor, D&ugger for his constant sup-
port, advice and patience. | thank Doug Burger for being mbt a great research advisor,
but an excellent mentor. He has believed in me from day ore abmays encouraged me
to aim at higher goals than | could think of. It has been alwgrgst pleasure working with
him and | am truly fortunate and at the same time proud to haweak my advisor. | hope
| can make him proud, too, throughout my future career.

| am deeply indebted to my co-advisor Steve Keckler for hiitécal expertise and
guidance. His relentless passion and research vision keaghyginfluenced me. | cannot
thank him enough for his valuable advice and insights ttegiined this dissertation work.

| am very thankful to the other members of my Ph.D. commitkeghryn McKin-
ley, Chuck Moore and James Browne for their helpful feedbackmy thesis research.
Special thanks go to Kathryn McKinley for her thoughtful advand technical comments
on this dissertation work.

The work described in this dissertation would not have bemssiple without the
help of members in the CART research group. | especiallykh&aru Sankaralingam
for having numerous technical and non-technical conviersand keeping me healthy by

exercising together. | would like to give special thanksaehlyuck Huh who helped me to

settle in and has been good company.

Many thanks are extended to Heather Hanson and Sadia Straoifdring help on
proofreading dissertation drafts; Ramadass Nagarajaanf@wering my tedious questions
on simulators and benchmarks patiently; Premkishore &bivar and Simha Sethumad-
havan for sharing joys and difficulties together ever sineealt started doctoral study at
the same time; Madhu Sibi Govindan for bringing humor every @nd being a wonderful
cubicle mate; Paul Gratz for being an great project partriegnawe worked together on
the TRIPS project weekendless; Nitya Ranganathan, Haitiingand Divya Gulati whom
| collaborated with in the TFlex study; Bert Maher, Katie @scand Mark Gebhart for
helping with compiler infrastructure and performance eatbn.

| also thank Pradeep Dubey, Yen-Kuang Chen, and Chris Hughagving me a
great internship opportunity at Intel. | would also like tckaowledge that this work is
supported by the Defense Advanced Research Projects Agendey contract F33615-01-
C-1892, NSF CAREER grants CCR-9985109 and CCR-9984336 gks# EIA-0303609,
two IBM University Partnership awards, and a grant from thtellResearch Council.

Last, but not the least, | would like to thank my mother, Injaryfor her uncondi-
tional sacrifice and love throughout my life. My mom has trben a blessing and | thank
her for her many prayers and support throughout my entiee lifwould like to deeply
thank my brother, Hyungkyu Kim, who has been my best friend gnreat supporter now,
for keeping good company with my mom since | came here in U%att doctoral study. |
thank my loving wife and the best friend, Eunyoung Park, fer tonstant love and emo-
tional support throughout. She brought so much happinegsvarmth in my life. | look
forward to our tomorrow and the next day, as we grow old togrettVithout my mom, my

brother, and my wife, | would not be what | am now. | dedicais thissertation to them.

Vi

CHANGKYU KIM

The University of Texas at Austin

August 2007

vii

A Technology-Scalable Composable Architecture

Publication No

Changkyu Kim, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Douglas C. Burger

Clock rate scaling can no longer sustain computer systeforpgance scaling due
to power and thermal constraints and diminishing perforceareturns of deep pipelining.
Future performance improvements must therefore come fronmgiconcurrency from ap-
plications. However, increasing global on-chip wire dslayill limit the amount of state
available in a single cycle, thereby hampering the abititynine concurrency with conven-
tional approaches.

To address these technology challenges, the processatipndias migrated to chip
multiprocessors (CMPs). The disadvantage of conventiGhdlP architectures, however,
is their relative inflexibility to meet the wide range of aigation demands and operating
targets that now exist. The granularity (e.g., issue wjdtt® number of processors in a chip
and memory hierarchies are fixed at design time based onrjet t&orkload mix, which
result in suboptimal operation as the workload mix and dpegdargets change over time.

In this dissertation, we explore the conceptcoimposabilityto address both the

viii

increasing wire delay problem and the inflexibility of contienal CMP architectures. The
basic concept ofomposabilityis the ability to dynamically adapt to diverse applications
and operating targets, both in terms of granularity andtfanality, by aggregating fine-
grained processing units or memory units.

First, we propose a composable on-chip memory substralied ddon-Uniform
Access Cache Architecture (NUCA) to address increasinghim-wire delay for future
large caches. The NUCA substrate breaks large on-chip niesnoto many fine-grained
memory banks that are independently accessible, with als&dt network embedded in
the cache. Lines can be mapped into this array of memory baitksixed mappings or
dynamic mappings, where cache lines can move around whhigdche to further reduce
the average cache hit latency.

Second, we evaluate a range of strategies to build a comlgogairessor. Com-
posable processors provide flexibility of adapting the glarity of processors to various
application demands and operating targets, and thus chbedeardware configurations
best suited to any given point. A composable processor sBnsf a large number of low-
power, fine-grained processor cores that can be aggregatednitally to form more pow-
erful logical processors. We present architectural intiosa to support composability in a

power- and area-efficient manner.

Table of Contents

Acknowledgments u
Abstract ;
List of Tables ;
List of Figures ;
Chapter 1 Introduction 1

1.1 Microarchitecture Configuration for Optimal Points 2

1.2 OtherApproaches e
1.3 Principles of Composable Architecture |6
1.4 Thesis Statement
1.5 Dissertation Contributions

1.5.1 Composable Memory Systems

1.5.2 Composable Processors L

1.6 Dissertation Organization un. &2
Chapter 2 Related Work E’:

2.1 Composable Processors o 13
2.1.1 Composing Processors from SmallerCores 114
2.1.2 Partitioning largecores o0 116
2.1.3 Multiple Granularities71
2.1.4 Reconfigurability, . 18

2.2 Composable On-chip Memory System 119
2.2.1 Uniprocessor Level-2Caches0 2
2.2.2 Chip Multiprocessor Level-2Caches 21

Chapter 3 Composable On-Chip Memory Systems 23

3.1 UniformAccessCaches. 6 2
3.1.1 Experimental Methodology L. 27
3.1.2 UCAEvaluation29

3.2 Static NUCA Implementations 130
3.21 PrivateChannels 31
3.2.2 SwitchedChannels\ . 33

3.3 TRIPSNUCAdesign e . 36
3.3.1 TRIPSChipOverview 38
3.3.2 TRIPS Secondary Memory Subsystem9 3
3.3.3 Composable Secondary Memory Organization 142
3.3.4 Network Performance Evaluations 45

34 SumMmMary ... e e e e e . 50

Chapter 4 Dynamically Mapped Composable Memories | 52

4.1 Uniprocessor D-NUCA e . 53

Xi

4.1.1

4.1.2

Policy Exploration

Performance Evaluation

4.2 Chip-Multiprocessor D-NUCA

53
61

72

421 CMPL2CacheDesignSpace

4.2.2 Effect of Sharing DegreeinCMPs

4.2.3 Effect of Dynamic Data Migration 79
4.3 SUMMANY . . . o e e e e e . 84

Chapter5 Composable Processors

5.1 ISA Support for Composability

511
51.2
5.1.3

514

Blocks
Direct Instruction Communications
Support for Composability 0.0,

ISA Compatibility

5.2 Microarchitectural Support for Composability

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.2.8

5.3 Microarchitecture Evaluation

5.3.1

Overview of TFlex Execution

Composable Instruction Fetch
Composable Control-flow Prediction
Composable Instruction Execution
Composable Memory System
Composable Instruction Commit
Level-2 Cache Organization for Composable Procsssor

Microarchitectural Reconfiguration

Distributed Fetch and Commit Overheads

Xii

S

=

91

w 18

.39

.95

95

99

100
101
103

106

108
1109
112
113

115

5.3.2 Distributed Block Prediction Overheads[118
5.3.3 Operand Communication Overheads 120
5.3.4 Distributed Memory Disambiguation Overheads |124
5.3.5 Level-2 Cache Organizations for TFlex/127
5.4 Comparison Across Configurations 1128
54.1 Baseline. 129
5.4.2 Performance Comparison. 1.113
5.4.3 Area Efficiency Comparison 413
5.4.4 Power Efficiency Comparison 613
5.4.5 Ideal OperatingPoints 913
55 Summary e .. 142
Chapter 6 Conclusions 144
6.1 Summary e e e . . 145
6.1.1 NUCA (Non-Uniform Access Cache Architecture)[146
6.1.2 CLP (Composable Lightweight Processor)148
6.2 Final Thoughts 151
Appendix A Comparison Between Hand-Optimized And CompiledCode 1155
Appendix B Area Comparison with the Alpha 21264 157
Bibliography 1160
Vita 180

Xiii

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

5.3

Benchmarks used for performance experiments 128
Performance of UCA organizations 129
S-NUCA-levaluation. it i .2
S-NUCA-2 performance
Average L2 cache access time in TRIPS (with synthetfidya. 48
D-NUCAbase performance | .
D-NUCA policy space evaluation 62
Performance of D-NUCA with PTPsearch 165
Performance of an L2/L3 Hierarchy 165
Effect of technology modelsonresults |66
Simulated system configuration 74
Application parameters for workloads |76
Average D-NUCA L2 hit latencies with varying sharingdesgs 80
Microarchitectural parameters for a single TFlexcore... £4
Simulator and Benchmarks [15
Microarchitecture parameters and area estimates?) gs

Xiv

35

61

5.4 Sample Power Breakdown (Watt) for High-ILP and Low-ILEBriBhmarks

5.5 Optimal point at different operatingtargets

B.1 Area comparison between the Alpha 21264 and a singlexidele

XV

. 137

142

.1158

List of Figures

3.1 \Various level-2 cache architectures. |25
3.2 UCAand S-NUCA-l1cachedesign , 7
3.3 Switched NUCAdesign. ittt .
3.4 TRIPSdiephoto, .
3.5 TRIPS prototype block diagram 38
3.6 Memory tile block diagram highlighting OCN router indit. 140
3.7 Network tile block diagram indetail 141
3.8 Various memory organizations in the TRIPS secondary ongsystem | 43
3.9 TRIPS OCN 40-bit address field composition 144
3.10 Throughput with uniform random traffic 146
3.11 Throughput with the neighbor traffic 47
3.12 TRIPS S-NUCAcache hitlatency 48
3.13 Throughput with the various FIFOdepth |49
4.1 Mapping bank setsto banksinD-NUCA 54
4.2 Way distribution of cache hits 60

XVi

34
36

4.3

4.4
4.5
4.6
4.7
4.8

4.9

4.10
411
412

4.13

5.1
5.2
5.3
5.4

5.5

16MB cache performance for various applications inagdSPEC2000,
NAS suite, and Sphinx
Performance summary of major cache organizations : art
Performance summary of major cache organizations : mef.
Performance summary of major cache organizations : AVG

Composable cache substrate for flexible sharing degree

67
68

69
69

72

Various sharing degrees from the sharing degree onthéegharing degree

16 (b), to the sharing degree four (¢)
On-chip network traffic, bank accesses, and off-chip orgrtraffic with

varying sharing degrees (normalizedtoSD=1)
D-NUCA execution times (normalized to S-NUCA with SD=1

On-chip interconnect traffic (normalized to S-NUCAm&D=1)

Total energy consumed by on-chip L2 cache subsysterm@tiaed to S-

NUCAWIth SD=1) e

Three dynamically assigned CLP configurations

Block format (from the paper by Sankaralingam etal.}99] | 9L

Instruction formats (from the paper by Sankaralingaad.§09])

73

An example depicting interleaving of different micrclaitectural structures

for atwo-core processor e .

TFlex execution stages: execution of two successivekblAO, Al) and
(B0,B1) from two different threads executing simultandpus a 16-core

TFlex CLP with each thread runningon8cores

97

5.6 lllustration of different stages of distributed fetaldaassociated latencies rloo

XVii

5.7
5.8
5.9
5.10
511
5.12
5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

Block mapping for one-core and four-core processors
Inter-core operand communication
Four-stage commit procedure in TFlex
Different L2 organizations
Single core TFlex microarchitecture
Distributed fetchoverheads

Distributed commitoverheads

104
106

. 108

110

1113

116
117

Distributed next-block predictor misprediction safeom 1-core to 32-core

configuration

118

Average misprediction rate for 16-core and 32-corh warious starting bit

positions to determine ablockowner
Average hop latency for control hand-off for 16-cord 82-core with var-
ious starting bit positions to determine a block owner

Average delivery times of memory operands and all opkradefault . . |

119

120
121

Average delivery times of memory operands and all opkra assuming

ideal memory scheduling

Operand network sensitivity analysis: High-ILP Bemelnks
Operand network sensitivity analysis: Low-ILP Benelnks

Number of LSQ replays normalized to the configuratio8&#gntry, one-

block wakeupatcommit L.

Performance normalized to the configuration of 36yentre-block wakeup

atcommit e e e e L.]

Performance comparison between the decoupled L2rdasig the inte-

grated L2design e .

XViii

122

5|
N
w

[HEN
N
I

125

126

128

5.24 Relative performance (1/cycle count) for TRIPS noipeal to Intel Core2

. 130

5.25 Performance of different applications running on 22ac8res on a CLP

normalized to a single TFlexcore :

5.26 Performance per unit area for different applicatiamsning on 2to 32 cores

on TFlex CLP normalized to single-core TFlex

. 1135

5.27 Performancéwatt for different applications running on 2 to 32 cores on

TFlex CLP normalized to single-core TFlex - without clockigg

138

5.28 Performancéwatt for different applications running on 2 to 32 cores on

TFlex CLP normalized to single-core TFlex - with clock ggtin.

5.29 Optimal point at different operating targets

A.1 Performance comparison between compiler-optimizethamd-optimized

applications under the baseline configuration and the giectnfiguration

XiX

140

141

156

Chapter 1

Introduction

Over the past two decades, the continuing scaling of CMO&egwand aggressive pipelin-
ing achieved a 40% per year increase in clock speeds: fronHz3mM1990 to over 3GHz in
2004, and contributed the bulk of the performance growtimguhe same period. However,
recent trends show that doubling of clock frequencies ewwgoyyears has come to an end
as power dissipation and thermal issues become first-oesggm constraints [46, 82, 106],
and as pipeline depths have reached their practical lim#sg1]. This technology trend
heralds the end of the frequency scaling era. Intel candtdddgh frequency Pentium 4
successors [125], and major processor companies have razgtbmulticore architectures
for future microprocessor designs, which are further ewigeof the shift into the concur-
rency era. Therefore, most performance improvements urdgystems must come from
power-efficient exploitation of concurrency.
Another technology trend is that the delay of on-chip glolies grows rela-

tive to the delay of gates [50, 77]. The increasing wire ddlag already affected tradi-

tional microarchitectures. For example, the Intel Pentiuassigns two separate pipeline

stages (called “drive” stages) among the total 20 stagesofdmg information around a
chip [49]. In addition, the single uniform access latencgrsin traditional large on-chip
caches has changed into different latencies dependingghifsical location of data within
the cache [88,120]. While the recent trend of deceleratieguency growth may lessen the
effect of wire delays, increasing resistive delay throulgibgl on-chip wires will allow only

a small fraction of a chip to be reachable within a single €y2], and thus limit the ability
to mine concurrency with conventional approaches. Evédlgtuacreasing global on-chip
wire delays will force architectures to become communigatiriven and inherently dis-
tributed [89]. Future architectures must therefore addveise delays explicitly to achieve

high performance.

1.1 Microarchitecture Configuration for Optimal Points

Good microarchitecture configurations are affected by tfieviing two variables, work-

load characteristics and operating targets (metrics).

e Workload Diversity: Over the last decades, application dios: have become in-
creasingly diversified, now including desktop, networkiveg scientific, graphics
and digital signal processing. In each domain, applicatiwave different granulari-
ties of concurrency and place different demands on unaeyljardware. Moreover,
many future applications such as video databases are egpediave heterogeneous
computational requirements [27]. In addition to diversangriarities of concurrency,
applications have diverse memory requirements. FirstliGgtipns from different
domains have different memory access patterns [10]. Toaditdesktop and enter-

prise applications tend to have more irregular accessrpattavhile scientific and

graphics applications typically have regular and stregnaiccess patterns [72]. Sec-
ond, the required size of working sets vary across diffeagatications or different

execution phases within the same application [1,4,26,81,9

Operating Targets: A single application can benefit fromtiplal distinct hardware
configurations depending on operating targets (or metfitd) The operating tar-
gets depend on what we wish to optimize, including the skbdrecution time of
a single-threaded application, maximum throughput, ppeerergy, or the energy-
delay product. For example, to maximize performance of glsithreaded applica-
tion, the whole system needs as many hardware resourcessiblpdo be assigned
for the application, thus leading to a processor design feith but large, aggres-
sive cores. To maximize throughput under abundant thrahdssystem needs to
maximize performance per unit area and should favor manyl so@es. A simi-
lar argument can be applied to maximizing power efficiend].J®OVFS (dynamic
voltage-frequency scaling) can be used to address varmusrgoerformance needs
without changing hardware configurations [73]. Howevew@adng down or reduc-
ing the voltage/frequency of unused structures cannoteethe power consumption
as much as designing a smaller core to begin with [6], whichivaies determin-
ing the right hardware configurations depending on the tgzsgdformance-power-

throughput profiles.

Despite diverse workload characteristics and operatingets, conventional pro-

cessors and cache architectures have a rigid granulaegnimg that designers must fix the

granularity of processors and balance the capacity andsdticee of each cache hierarchy

based on the intended workload mix. This fixed granularityprafcessors and cache hier-

archy will typically result in either performance or powess (or both) outside the target

3

application mix and intended operating settings.

To handle these two types of diversity, future microaratitees should change
configurations to extract different levels of concurrenéficiently and provide optimized
working points at different operating targets. The chaggihhardware configurations in-
cludes both allocating different amounts of hardware resssi(e.g, issue with, issue win-
dow size and cache capacity, etc.) and providing differgmeg of hardware organizations

(e.g, cache memory or scratchpad memory).

1.2 Other Approaches

The recent reduction in frequency scaling rates implies thast performance improve-
ments in the future will come from exploiting more concugnConcurrency can be ex-
ploited by many levels of modern systems: by hardware (llyf¥sscalar processors [109]),
by support in the ISA and compiler (VLIW architectures [8@) by the compiler [71] or
programmer [104] in parallel systems. Since superscaldr\dnW processors’ widths
have not scaled recently due to growing wire delays, inangadesign complexity, and
power constraints, industry has migrated toward chip mprdtessors (CMPs) composed
of moderately complex cores and is hoping that softwareattsewill provide the needed
concurrency. However, such a solution has the severaHiiits.

First, while conventional chip multiprocessors offer a powfficient way to mine
concurrency from parallel workloads, the serial execuportion of these parallel work-
loads or the single-threaded workloads tend to be limitethbyperformance of single core
in CMPs (that can sustain modest ILP). Unless a programmarawmpiler parallelizes
the code (an approach that has produced only limited sufoepsast decades), Amdahl's

law ultimately hampers the overall system performance troecond, current CMP de-

signs have fixed granularity, meaning that the size of a gsmrecore and the number of
processor cores in a chip are fixed at design time. Any sucH fiesign point will result
in suboptimal operation in terms of either performance avgro(or both) across a diverse
workload mix due to the varied granularity of types of comeancy.

One alternative design to alleviate inefficiency causednmgé diversities is inte-
grating multiple heterogeneous processor cores that aegltto specific applications in a
single die. The “Single-ISA Heterogeneous Multi-Core Aretture” work by Kumar et
al. [66, 68] or the “Asymmetric Chip Multiprocessors” worly Balakrishnan et al. [9] is
one approach to address the diversity problem. Their apprizato build a chip multipro-
cessor out of cores of various sizes and performance profliede a large processor core
speeds up a sequential region of code or application witef¢hveads, many small proces-
sor cores collectively run parallel software. The desigmplexity also can be reduced by
reusing the off-the-shelf processor cores from previousgiions. However, the partic-
ular processor core composition is still fixed at design fimkich may cause inefficiency
outside the target workload mix. Another challenge in teohsanufacturability is the
difficulty of silicon integration of heterogeneous coreshé&W processor cores, with differ-
ent performance profiles, from previous generations aegiated, they require different
manufacturing processes [6, 128].

Another approach to integrated heterogeneity is to buildtarogeneous chip that
contains multiple different cores, each designed to runsdndit class of workloads ef-
fectively. The Tarantula processor [29] and the IBM Cell][88e good examples of this
approach. While such specialization provides applicasioecific processor efficiency, the
increased design complexity caused by the poor design ieose of the main drawbacks.

More importantly, programming on application-specificdtegeneous cores poses a sig-

nificant - and in some cases intractable - programming aigdi¢6].

1.3 Principles of Composable Architecture

To address both current technology challenges and diveiation demands, we evalu-
ate a range of techniques to build a technology-scalablgosable architecture. First, we
definecomposabilityasthe ability to adapting underlying hardware resources dyzally
to different applications or operating targets, by aggrigg fine-grained processing units
or memory units The main principles of composable architectures inclingefollowing,

which are developed in the remainder of this dissertation.

e Composable architectures are built on a distributed saestronsisting of multiple
fine-grained processing and memory units. The fine-grainéd are inherently more
power-efficient and achieve technology scalability withpect to future global wire

delay increases.

e Composable architectures provide the ability (1) to agapedine-grained units to
compose into larger logical units and (2) to match each egiitin to the composed

logical unit best suited to meet its performance, power,tarmlighput demands.

e The number of fine-grained units combined to execute eaclicapipn can be dy-

namically changed transparently to the running applicatio

e Composable architectures need to provide an ISA and midnitactural support that
combines distributed fine-grained units in a power- and-affigient manner. The
area and complexity to support composability in a distedusubstrate should be

minimized.

1.4 Thesis Statement

This dissertation introduces the conceptomposability The aggregation of fine-grained
units to adapt to diverse application demands and diffeopetrating targets (metrics).
Compared to monolithic, coarse-grained units, the fingagchunits are inherently more
power-efficient and provide further opportunities to opzenpower consumptions with
finer-granularity. In addition, the fine-grained units areretolerant to future wire-delay
dominated technologies. This dissertation presents teathral innovations to support
composability that provides the flexibility to allocate wasces dynamically to different
types of concurrency and various working set sizes. Spatificthis dissertation first
proposes a novel level-2 cache design to address the imgeglebal on-chip wire de-
lay problem for future large on-chip caches. Second, thésatiation describes ISA and
microarchitectural support for run-time configuration afefigrained CMP processors, al-

lowing flexibility in aggregating cores together to formdar logical processors.

1.5 Dissertation Contributions

This dissertation evaluates composable architecturébdlve two main components: Com-

posable memory systems and composable processors.

1.5.1 Composable Memory Systems

e Future increases in on-chip global wire delays will makeuhidorm access time of
traditional large on-chip caches untenable. Data resittirije part of a large cache
close to the processor can be accessed much faster thamaiateside farther from

the processor. In this dissertation, we explore cache desigat can exploit the non-

uniformity of cache access times among banks of a singleecand evaluate two
different cache substrates depending on types of intessimm network between
multiple cache banks. We call these new cache substratéstdioe wire-delay dom-

inated technologies, Non-Uniform Cache Architecture (M)C

The non-uniform access latency in future large caches cdurbieer exploited by
dynamically migrating important data so that the workints sge clustered near the
processor. By permitting data to be mapped to one of manysbaitkin the cache,
and to migrate among them, a cache can be automatically redriagsuch a way
that most requests are serviced by the fastest bank (thestloank to the processor).
This dynamic migration capability allows caches to adajiplications with various
working set sizes, thereby eliminating the trade-off betkarger, slower caches for
applications with large working sets, and smaller, fastathes for applications that

are less memory intensive.

Applications from various domains have different memorgess patterns, and thus
require various memory organizations. For example, whilglieations that have
irregular access patterns will get more benefits from cachmonies, streaming ap-
plications from the scientific and graphics domains canakptratchpad memories.
The composable memory system that we evaluate in this thtiser provides a flex-
ible substrate that can be reconfigured into various memaygnizations because
it consists of multiple fine-grained memory banks connetigd on-chip switched
network. Each memory bank can be configured differenthhégitache memory or
scratchpad memory) and be aggregated to form various meanganizations de-
pending on the running applications. As a proof of concept bwilt a composable

secondary memory system in the TRIPS prototype [99]. Thé"Becondary mem-

8

ory system supports a wide range of memory organizatioma &dMB L2 cache,
to a 1MB scratchpad memory, to any combination in betweeheagtanularity of

64KB increments.

e The trend of integrating many processor cores in a chip proitessor (CMP) pro-
vides a new challenge in designing the on-chip memory systeéwen though L1
caches in CMPs are likely to remain private and be tightlggnated to the processor
cores, the question of how to manage the L2 caches will bedkbyitding a scalable
CMP. The L2 caches may be shared by all processors or may aeageghinto private
per-processor partitions. While the private L2 designrsffaster access time than
the shared L2 design, the shared L2 design can reduce theenarindritical off-chip
misses with a larger effective cache size. In this disdertatve address the slow hit
time in the shared L2 design with the dynamic working setteliisg capability that
we explored in the uniprocessor context, and thus achiette the benefits of the

private L2 design and the shared L2 design.

e Jaehyuk Huh and I jointly worked to extend the NUCA L2 desig&MP L2 caches.
Jaehyuk Huh led the project and developed the CMP simulfdousing on the effect
of various sharing degrees on cache performance. | exptbeedffect of dynamic

data migration in CMP L2 caches in terms of both performamzkemergy.

1.5.2 Composable Processors

e The processor industry has migrated toward CMPs becaudweohal and power
constraints, but the current CMP designs have significaawldacks. Current CMP
designs have a fixed granularity, meaning that the numbecapabilities of the pro-

cessors are rigid. This fixed granularity will result in spbimal operation outside

9

the intended target domain, and thus either performanceveepefficiency (or both)

will suffer. In this dissertation, we explore a composabMRcalled “Composable
Lightweight Processors” (or CLPs) that provides flexigilif adapting the granular-
ity of processors to various application characteristiod @perating targets. A CLP
consists of a large number of low-power, fine-grained premesores that can be

aggregated dynamically to form more powerful, single-tlled logical processors.

While composability can also be provided using traditioksAs [15], we examine
CLPs in the context of an Explicit Data Graph Execution (EDGEA [54] that pro-
vides the following salient features for composabilityrskiwhen a single-threaded
application runs on multiple distributed cores, tradiibarchitectures will require
careful coordination among cores to maintain the sequesgtimantics of the instruc-
tion stream, especially in the in-order stages of pipelisash as fetch and commit.
This coordination overhead can be significantly reducetigfunit of coordination
is done at a granularity larger than individual instruciorEDGE ISAs allow the
hardware to fetch, execute, and commit blocks of instrastioather than individual
instructions, in an atomic fashion. Second, EDGE ISAs stpgetaflow execution

within a block, by specifying the inter-instruction datgpdadence relationship ex

plicitly. Since the dataflow graph is explicitly encoded Iretinstruction stream, it
is simple to shrink or expand the graph on a smaller or greatatber of execution

resources as desired with little additional hardware.

The microarchitectural structures in a composable pracassjuire capabilities dif-
ferent from those available in some of the microarchitedtstructures of traditional
superscalar processors. These capabilities must permip@sable microarchitec-

tural structures to be incrementally added or removed asuhgber of participating

10

cores increases or decreases. Ideally, the area and catypesupport composabil-
ity should be kept low so as not to increase the power or areehead needed to
support composability. In particular, the hardware resesiishould not be oversized
or undersized to suit either a large processor configuraticansmall configuration.
Additionally, centralized structures that will limit thealability of the microarchi-

tecture must be avoided.

To provide this capability, we identify and repeatedly gpplio principles. First,
the microarchitectural structures are partitioned by esslwherever possible. Since
addresses of both instructions and data tend to be equattjbdited, address parti-
tioning ensures (probabilistically, at least) that thefulseapacity increases/decreases
monotonically. Second, we avoid physically centralizedneérchitectural structures
completely. Decentralization allows the structure sipdsatgrown without the undue
complexity traditionally associated with large centratizstructures. In this disser-
tation, we evaluate the overheads to support composabilaydistributed substrate
and show that the proposed CLP microarchitecture using EIN@EEISA keeps these

overhead sufficiently low.

This dissertation summarizes some of microarchitecturatiranisms that are the
subject of several dissertations including the distridubeanch predictor by Ran-
ganathan [95], the distributed instruction fetch by Liu]j7hd the distributed mem-
ory disambiguation by Sethumadhavan [103], and are coverdetail in their re-

spective dissertations.

This dissertation demonstrates that the best processtigemation is quite different

depending on application characteristics and operatingts— performance, area

11

efficiency, power efficiency. Our proposed CLP architecfur@vides the ability to

shift to different processor configuration when the neeskati

1.6 Dissertation Organization

The remainder of this dissertation is organized as follo@isapter 2 evaluates two differ-
ent cache substrates for composable memory systems degesmdiypes of interconnec-
tion networks that connect multiple cache banks — one witrafe per-bank channels, the
other using an on-chip switched network. Then, we describienglementation of a com-

posable secondary memory system in the TRIPS prototypeTRNeS secondary memory
system exploits the configurable nature of switched netsvarlallow various memory or-

ganizations on the same cache substrate.

Chapter 3 describes the dynamic mapping mechanisms saedgpora composable
cache substrate and presents the performance effect intiext of a uniprocessor design.
Then, we extend this concept of dynamic mapping to L2 cachekip multiprocessors and
investigate the effect of dynamic migration capabilitiéthim the same cache hierarchy on
both the average hit latency and the energy consumed by teadtz subsystem.

Chapter 4 describes strategies for composing processuraghregates lightweight
EDGE cores to form larger, more powerful logical singlestided processors when the
need arises. We show that the composable lightweight pgoceprovide the ability to
expand or shrink the granularity of processor and adapffiereint metrics such as perfor-
mance, area efficiency and power efficiency. Chapter 5 presesummary of the overall

contributions of this dissertation and future work.

12

Chapter 2

Related Work

This chapter discusses and differentiates prior work mosety related to the focus of this
dissertation. We present the prior work as it relates to W rhain components of this

dissertation: (1) composable processors (2) composabbdiprmemory systems.

2.1 Composable Processors

The ability to adapt multiprocessor hardware to fit needfi@ftvailable software is clearly
desirable, both in terms of overall performance and powiiefcy [5,53]. The amount
of prior research that address this problem has been ceoablde and we categorize prior
research into four broad categories. In the first, resescitempt to provide higher single-
thread performance from a collection of distributed uritsthe second, researchers design
large cores and provide the capability to resize or sharesuponents of the processor. In
the third, researchers explicitly implement multiple st granularities to allow software
to choose the appropriate hardware. In the fourth, reseesdjuild a single programmable

substrate that can be reconfigured to match the differenuggety of concurrency.

13

2.1.1 Composing Processors from Smaller Cores

Many research efforts have attempted to synthesize a marerfad core out of smaller or
clustered components.

The recent Core Fusion [54] work is most similar to the CLPrapph. Core Fu-
sion consists of multiple, 2-wide, relatively simple oditesder cores connected by a bus.
Like CLPs, Core Fusion allows multiple dynamically allasgitprocessors to share a sin-
gle contiguous instruction window. The goal is to accommedaftware diversity and
support incremental parallelization by dynamically pding the optimal configuration for
sequential and parallel regions of programs. The advardd@ore Fusion is that it ex-
ploits conventional RISC or CISC ISAs and maintains sofeMemmpatibility. In a Core
Fusion implementation, several structures must be phiysiglaared, limiting the range of
composition up to four cores (8-wide issue).

First, while each core accesses its own |-cache to fetchutgins and facilitates
collective fetch, the centralized fetch management urfidJfr handles the resolution of
control-flow changes among any participating cores. Evieng ta core predicts a taken
branch or detects a branch misprediction, it sends the neyett®C to the FMU. The
FMU collects the target PC information and broadcasts theeeted control-flow to all
participating cores. Second, the centralized steeringagement unit (SMU) takes care
of renaming and steering to track dependence informatioosadifferent cores and keep
the dependent instructions close. After pre-decode, eachsends two instructions to the
SMU, which must support the renaming of up to eight instangi each cycle for a four-
core fused operation. To steer eight instructions everjecyhe SMU requires an eight-
stage rename pipeline and a steering table that has sixté@ehand sixteen write ports.

These physically shared, multi-ported, centralized stings limit the maximum supported

14

composition ranges. The TFlex CLP shares no resourcesaaltlysiso it can scale up to
64-wide issue, but relies on a non-standard EDGE ISA to seHidl composability.

Clustered superscalar processors [16] and the compipgrested multi-cluster de-
sign [30] both aim to improve the scalability of a large, offerder superscalar proces-
sor by using multiple, clustered execution resources. &Vthils approach decreases the
complexity of each cluster, it shares the disadvantageattiaptive processing has of with
respect to its inability to trade off multiple threads foregranularity.

Most other prior work that attempts to synthesize a largécldgorocessor from
smaller processing elements uses independent sequentera mon-contiguous instruc-
tion window. An early example is the Multiscalar architeet{l.12]. Multiscalar processors
used speculation to fill up independent processing elentesitedstage$, with each of the
speculative stages starting from a predicted, contratpedident point in the program. The
Multiscalar design used a shared resource (the ARB) for mglisambiguation and did
not permit the stages to run distinct software threads iedéently. The subsequent spec-
ulative threads work [43, 65] adapted the Multiscalar exiecumodel to a CMP substrate
that could execute separate threads on the individual psocg when not in speculative
threads mode. The CLP approach that we explore in this ahdjfters from such archi-
tectures in that CLPs employ a single logical point of cdpire., a contiguous instruction
window, across the multiple processing elements, whiclpkiies dependence tracking.

Other composable approaches have provided staticallysexiparchitectures that
can be partitioned. The best example is the RAW architedtLt8], an important and
early tiled architecture. The RAW compiler can target anynbhar of single-issue RAW
tiles, forming a single static schedule across them. Edelstill has its own instruction

sequencer, although they are highly synchronized with amthar. Multiple tasks can

15

be run across a set of tiles provided that each task was cednfal the number of tiles
to which it was allocated. While RAW requires recompilingplgations for changing

configurations, CLPs achieve this configurability transpato the software.

2.1.2 Partitioning large cores

The most popular approach for partitioning large cores te das been Simultaneous Mul-
tithreading [121], in which multiple threads share a sinigige, out-of-order core. The
operating system achieves adaptive granularity by adigistie number of threads that are
mapped to one processor. The advantages of SMT are extréomebyerheads for provid-
ing the adaptive granularity. A disadvantage is the limisathe of granularity since proces-
sors are typically restricted to be four-wide, and thredusiag the same core may cause
significant interference. In addition, resources in an SMacpssor may be underutilized
leading to unnecessary power consumption overhead whentéxg a single-threaded ap-
plication that can achieve competitive performance witess lcomplex processor core.
What Albonesi has termed “adaptive processing” [3] inveldgnamically resizing
large structures in an out-of-order core, powering fraxgtiof them down based on expected
requirements, thus balancing power consumption with pedoce by efficiently mapping
threads to right-sized hardware structures. Researcheesgroposed adjusting cache size
via ways [4], issue window size [34], the issue window codphidth the load/store queue
and register file [90], and issue width, along with the reiggifinctional units [7]. While
adaptive processing permits improved energy efficiencydjyséing the core’s resources
to the needs of the running application, it does not permihe-djirained tradeoff between
core granularity and number of threads. While combiningpide processing with SMT

might achieve that goal, the complexity and overheads orga-eentralized core would be

16

significant.

Finally, conjoined-core chip multiprocessing [67] aimsptovide some shared re-
sources, with other explicitly partitioned resourceseetffiely creating a hybrid between
SMT and CMP approaches. Conjoined-core CMP is built on a Cvi3tsate and allows
resource sharing between adjacent cores to reduce die dheminimal performance loss
and thus improves the overall computational efficiency. dithors investigate the possible
sharing of floating-point units, crossbar ports, first-lamstruction caches, and first-level
data caches. To minimize area overheads and design cotgptaxijoined-core CMP only
allows resource sharing between adjacent pairs of proces3terefore, similar to SMT
approaches, the degree of granularity configuration betwegle threads versus multiple

threads is more limited than the CLP approach explored sdhapter.

2.1.3 Multiple Granularities

Some proposals aim to match an application’s granularigdady providing the hardware
that best suits the application. The “Single-ISA Heteragpers Multi-Core Architecture”
work by Kumar et al. [66, 68] or the “Asymmetric Chip Multipressors” work by Balakr-
ishnan et al. [9] is to build a chip multiprocessor out of @ooé various sizes with differ-
ent performance profiles. Single-ISA, heterogeneous roateé architectures [66] reuse a
discrete number of processor cores that were implementedsamultiple previous gener-
ations with each having different issue width, cache siaed,characteristics (e.g, in-order
vs. out-of-order). On the other hand, asymmetric chip mrdtiessors consists of processor
cores with the same size, but introduces heterogeneitysadlifferent cores by changing
the duty cycle of the processor for thermal management.rHoeail is to integrate the vari-

ous granularities of processors to better exploit botrati@ams in thread-level parallelism as

17

well as inter- and intra-thread diversity to increase batgrmance and energy efficiency.
With this approach, a large (or faster) processor core Sspep@ sequential region of code
or application with fewer threads and many small (or slovpedcessor cores collectively
run parallel software.

Both these approaches increase design complexity and lthetnumber of gran-
ularity options. Therefore, for example, while a large, pter core can increase perfor-
mance on sequential code, it may do so at the expense of perfice of parallel applica-
tions. However, this approach does not suffer from the mamitof making the processors

variable-grain or composable.

2.1.4 Reconfigurability

Researchers have also explored a single programmableatelittat can be reconfigured
to match the different granularities of concurrency.

FPGAs provide the finest granularity for reconfiguration.GA3 consist of an ar-
ray of gates or programmable lookup tables interconnebtediggh a configurable network.
While using FPGAs can offer high performance with fine-gedimata parallelism per ap-
plication, achieving good performance on general-pur@osk serial applications has not
been shown to be feasible.

Coarse-grained reconfiguration architectures stressstheficoarse grain reconfig-
urable arrays to address the huge routing area overheadoandqutability of ultra fine-
grained FPGAs [44]. Fisher et al. proposed custom-fit psamrasto choose the right grain
size for specific applications at design time [32]. Similafensilica Xtensa customizes
processor cores at design time for a given application [Xtensa is built on a synthe-

sizable processor that can customize I-, D- cache sizesh&wnonf registers, data RAM

18

size, and external bus width at design time. In additionhXgeprovides the capability of
extending instruction sets to allow application-specifindtionality. These coarse-grained
reconfiguration approaches clearly increase applicajmatific efficiency at the expensive
of run-time flexibility.

The following architectures were proposed to exploit thifedént granularity of
concurrency on a single substrate. Compared to FPGAs amslecgeained reconfigurable
architectures, these novel architectures can supportr@gnérpose sequential programs.
Browne et al. developed the Texas Reconfigurable Array CeenggliRAC) that supports
both SIMD and MIMD processing by reprogramming interconitgrs between individual
processing elements and memory elements [57,100]. Théo&ia®mart Memories archi-
tecture can reconfigure processors and memories in adtitioterconnections and match
various application characteristics [76]. The StanfordaBnMemories support coarse-
grained reconfiguration capabilities that allow diversepating models, like speculative
multithreading and streaming architectures. Sankarafingefined the concept afchi-
tectural polymorphisnand explored a set of mechanisms that configure coarseegraiit
croarchitecture blocks to support different granularifyparallelism in the context of the
TRIPS processor [97]. He formally defined architecturalypmrphism as: “the ability to
modify the functionality of coarse-grained microarchitee blocks at runtime, by chang-
ing control logic but leaving datapath and storage elemianggly unmodified, to build a

programmable architecture that can be specialized on ditatn-by-application basis.”

2.2 Composable On-chip Memory System

There is much prior research in addressing the increasaimpbbn-chip wire delay problem

in future large caches. We first discuss related work in thmtest of uniprocessor systems

19

and then extend the discussion in the context of chip moktpssor systems.

2.2.1 Uniprocessor Level-2 Caches

Prior work has evaluated large cache designs, but not faifgly wire-dominated tech-
nologies; Kessler examined designs for multi-megabytbdeabuilt with discrete compo-
nents [60]. Hallnor and Reinhardt [42] studied a fully agatiee software-managed design,
called “Indirect Index Cache” (or 1IC), for large on-chip lcaches. The IIC does not co-
locate a tag with a specific data block; instead, each tagattnt pointer to locate the
corresponding data block. This indirection allows largeele2 caches to be implemented
with a fully-associative cache amenable to software mamagé However, the IIC did not
consider non-uniform access latencies of a large cache.

Other work has examined using associativity to balance pand performance.
Albonesi examines turning off “ways” of each set to save powken cache demand is
low [4]. He proposes the cache structure that provides thityaio dynamically enable a
subset of data ways on demand, thus reducing the switchtivifyaof the cache. Powell et
al. use way-prediction to predict the matching way numiestgad of waiting on the tag ar-
ray to provide the way number by sequential tag access. fincenergy consumption can
also be achieved when prediction is correct, they evalldalance between incremental
searches of the sets to balance power and performance [91].

Other researchers have examined using multiple banksdbrid@indwidth, as we do
to reduce contention. Sohi and Franklin [113] proposedlied®ing banks to create ports,
and also examined the need for L2 cache ports on less powedoéssors than today’s.
Wilson and Olukotun [123] performed an exhaustive studyhefttade-offs involved with

port and bank replication and line buffers for level-onehemc This dissertation aims to

20

flatten deepening hierarchies; a goal that should be compatie Przybylski’s dissertation,
in which he exhaustively searched the space of multi-leaehes to find a performance-
optimal point [92].

Non-uniform accesses are appearing in high performandeeaesigns [88]. The
following two studies investigated ways to handle incnegghe global on-chip wire delay
problem in large L2 caches. Beckmann and Wood proposed #mesifission Line Cache
(TLC) to replace long wires in large uniprocessor cachef Wi transmission lines for
reducing wire delay [11]. Chishti et al. investigate the ayiic data migration to exploit
non-uniform access latencies in a large cache and extenstudy on non-uniform access
cache architectures. The main difference is that they megbaecoupling data placement
from tag placement to contain more data from “hot” sets wiiate the same index [19].
They used the coarser grained distance group to reduce ¢ngyetonsumption caused by

migrating data.

2.2.2 Chip Multiprocessor Level-2 Caches

Shared caches have been studied in the context of chip muagéigpsors and multithreaded
processors. Nayfeh et al. investigated shared caches ifoagyr and secondary caches
on a multi-chip module substrate with four CPUs [85]. Thegrained how the memory
sharing patterns of different applications affect the lsashe hierarchy. Subsequent work
from the same authors examined the trade-offs of shardukceltistering in multi-chip
multiprocessors [86]. With eight CPUs, they observed thatdoherence bus becomes the
performance bottleneck for private L2 caches, suggestiegutility of shared caches to
reduce bus traffic.

Recent studies considered wire latency as a primary deaijarfin CMP caches.

21

Beckmann and Wood compared three latency reduction teabsigcluding dynamic block
migration, L1/L2 prefetching, and faster on-chip transsiua lines with an 8-CPU shared
cache [12]. They conclude that data migration is less eéffiedor CMPs because each
sharer pulls the data towards it, leaving the block in thedbeidfar away from all sharers.
Chishti et al. study optimizations with NURAPID cache desido reduce unnecessary
replication and communication overheads [20]. Zhang efl&7] proposed the victim
replication cache design which selectively keeps copigsriafiary cache victims in each
local L2 slice. Both NURAPID and victim replication desigasempt to reduce the latency
further by allowing replication, while our study relies origmation and maintains a single
copy of data within the L2 cache to save on-chip capacity. Na®&APID and victim
replication designs have different replication policis8&iRAPID replicates data on access
and victim replication replicates data on eviction. Whie tbove three cache designs are
based on a shared L2 cache, Cooperative Caching [17] usesepciaches as the baseline
design and adopts the benefits of a shared cache by using-ttacaehe transfers and
modifying cache replacement policies. Lastly, Speight.estudied how CMP L2 caches
interact with off-chip L3 caches and how on-chip L2 cachesperarily absorb modified

replacement blocks from other caches [114].

22

Chapter 3

Composable On-Chip Memory

Systems

Historically, the capacity of on-chip level-two (L2) cachigas been limited by the available
number of transistors in a chip. The persistent growth itloip-transistor counts following
Moore’s law increased L2 cache capacity over time. The ARitiE64, introduced in 1994,
had 96KB on-chip L2 cache [28], while today’s high perforroamprocessors incorporate
larger L2 caches (or even L3 caches) on the processor die. HPhEA-8700 contains
2.25MB of unified on-chip cache [48], and the Intel Montedinium contains 6MB of
on-chip L3 cache [79]. The sizes of on-chip L2 and L3 cache oraxs are expected
to continue increasing as the bandwidth demands on the gadyeow, and as smaller
technologies permit more bits perm? [53].

Current multi-level cache hierarchies are organized irfemediscrete levels. Typi-
cally, each level obeys inclusion, replicating the cordenftthe smaller level above it, and

reducing accesses to the lower levels of the cache hierav¥¢hgn choosing the size of each

23

level, designers must balance access time and capacitg sthying within area and cost
budgets. In future technologies, large on-chip caches avitimgle, discrete hit latency will
be undesirable, due to increasing global wire delays a¢hesship [2, 77]. Data residing
in the part of a large cache close to the processor could lssed much faster than data
that reside physically farther from the processor.

In this chapter, we explore the design space for composabtehip memory sub-
strates in future wire-delay dominated technologies. W& §ihow that traditional cache
designs, in which a centralized decoder drives physicadltifioned sub-banks, will be
ineffective in future technologies, as data in those desiggn be accessed only as fast
as the slowest sub-bank. We evaluate multiple composabtéipnmemory substrates in
which large on-chip memories are broken into many fine-g@imemory banks that can
be accessed at different latencies.

Figure 3.1 shows the types of organizations that we explothis chapter, listing
the number of banks and the average access times, assunhitigyce&hes modeled with
a 45nm technology. The numbers superimposed on the cachks bhaw the latency of
a single contentionless request, derived from a modifiedimerof the Cacti [105] cache
modeling tool. The average loaded access times shown betosledved from performance
simulations that use the unloaded latency as the accesstitnehich include port and
channel contention.

We call a traditional cache a Uniform Cache Architecture AyGshown in Fig-
ure[3.1a. Even with aggressive sub-banking, our modelgatglithat this cache would
perform poorly due to internal wire delays and restrictethbars of ports.

Figure| 3.1b shows a traditional multi-level cache (L2 and, lalled ML-UCA.

Both levels are aggressively banked for supporting metparallel accesses, although the

24

I oo G
L2 ED"' Dooo
o0— 4 o 10 4 O§|:| DODDDODD |:|
(a) UCA (b) ML-UCA (c) S-NUCA-1 (d) S-NUCA-2 (e) D-NUCA
Number of banks: 1 bank 8/32 banks 32 banks 32 banks 256 banks
Avg.loaded access time: 255 cycles 11/41 cycles 34 cycles 24 cycles 18 cycles

Figure 3.1: Various level-2 cache architectures.

banks are not shown in the figure. Inclusion is enforced, Bwar the smaller level implies
two copies in the cache, consuming extra space.

Figure 3.1c shows an aggressively banked cache, which gsppan-uniform ac-
cess to the different banks without the inclusion overhdailllioUCA. The mapping of
data into banks is predetermined, based on the block indeixthaus can reside in only one
bank of the cache. Each bank uses a private, two-way, pgeklimnsmission channel to
service requests. We call this statically mapped, noneamifcache S-NUCA-1.

When the delay to route a signal across a cache is significemgasing the num-
ber of banks can improve performance. A large bank can bedded into smaller banks,
some of which will be closer to the cache controller, and kefaster than those farther
from the cache controller. The original, larger bank wasessarily accessed at the speed
of the farthest, and hence slowest, sub-bank. Increassgumber of banks, however, can
increase wire and decoder area overhead. Private per-tamkels, used in S-NUCA-1,
heavily restrict the number of banks that can be implemergisde the per-bank channel
wires adds significant area overhead to the cache if the nuohbanks is large. To circum-
vent that limitation, we explore a static NUCA design thagsia two-dimensional switched

network instead of private per-bank channels, permittitayger number of smaller, faster

25

banks. This organization, called S-NUCA-2, is shown in Fég8.1d. Figure 3./1e repre-
sents the D-NUCA organization that allows frequently usathdo be migrated into closer
banks to further reduce the cache hit latencies. We desdetaied mechanisms to support
dynamic data migration within a cache and evaluate perfoo@én Chapter 4.

At the end of this chapter, we show our implementation of cosaple secondary
memory systems in the TRIPS prototype [99]. TRIPS is a noisttibuted architecture
that is built in 130nm ASIC technologies. The chip contaiws processor cores and the
1MB on-chip secondary memory. The TRIPS secondary mematesyis based on the
S-NUCA-2 design. The flexibility of a switched network in SJ8A-2 allows various
memory organizations on the same cache substrate. The TEet®8Bdary memory system
is composable meaning that it consists of multiple partitioned memoryksaand each
memory bank can be configured differently and be aggregatedrmpose various memory
organizations. The possible memory organizations incladeMB L2 cache or a 1MB

scratchpad memory or any combinations between them.

3.1 Uniform Access Caches

Large modern caches are subdivided into multiple sub-bamkminimize access time.
Cache modeling tools, such as Cacti [58, 124], enable fgdbeation of the cache de-
sign space by automatically choosing the optimal sub-bankf; size, and orientation. To
estimate the cache bank delay, we used Cacti 3.0, which atcéar capacity, sub-bank
organization, area, and process technology [105].

Figurel 3.2 contains an example of a Cacti-style bank, showthe circular ex-
panded section of one bank. The cache is modeled assumimgral gge-decoder, which

drives signals to the local decoders in the sub-banks. Dataaessed at each sub-bank

26

Tag array Sub-bank

Data bus

\ y

[—————————
[rrssssssammmann——

Predecoder

Sense amplifier

Wordline driver
and decoder

Address bus & g

Figure 3.2: UCA and S-NUCA-1 cache design

and returned to the output drivers after passing throughesyuxhere the requested line is
assembled and driven to the cache controller. Cacti usesraustive search to choose the
number and shape of sub-banks to minimize access time. Bdispiuse of an optimal sub-
banking organization, large caches of this type perfornrlgan a wire-delay-dominated
process, since the delay to receive the portion of a line ftwrslowest of the sub-banks is

large.

3.1.1 Experimental Methodology

To evaluate the effects of different cache organizationsystem performance, we used
Cacti to derive the access times for caches, and extendsd theal pha simulator [24] to
simulate different cache organizations with parametefisetfrom Cacti. Thesi m al pha
simulator models an Alpha 21264 core in detail [61]. We assiithat all microarchitec-
tural parameters other than the L2 organization match thbgiee 21264, including issue

width, fetch bandwidth, and clustering. The L1 caches weukited are similar to those

27

Phase L2 load accesses Phase L2 load accesses

SPECINT2000| FFWD RUN Million instr SPECFP2000, FFWD RUN Million instr
176.gcc 2.367B 300M 25,900 || 172.mgrid 550M 1.06B 21,000
181.mcf 5.0B 200M 260,620 || 177.mesa 570M 200M 2,500
197.parser 3.709B 200M 14,400 || 173.applu 267M 650M 43,300
253.perlbmk 5.0B 200M 26,500 || 179.art 2.2B 200M 136,500
256.bzip2 744M 1.0B 9,300 || 178.galgel 4.0B 200M 44,600
300.twolf 511M 200M 22,500 || 183.equake 4.459B 200M 41,100

Speech NAS

sphinx 6.0B 200M 54,200 || cg 600M 200M 113,900
bt 800M 650M 34,500
sp 2.5B 200M 67,200

Table 3.1: Benchmarks used for performance experiments

of the 21264 3-cycle access to the 64KB, 2-way set asseeigfi data cache, and single-
cycle access to the similarly configured L1 I-cache. All lgiees in this study were fixed at
64 bytes. In all cache experiments, we assumed that thénigffraemory controller resides
near the L2 memory controller. Thus, writebacks need to Begwut of the cache, and
demand misses, when the pertinent line arrives, are imjénte the cache by the L2 con-
troller, with all contention modeled as necessary. Howewerdo not model any routing
latency from the off-chip memory controller to the L2 caclomtroller.
Table 3.1 shows the benchmarks used in our experimentserchiostheir high L1

miss rates. The 16 applications include six SPEC2000 flgataint benchmarks [115],
six SPEC2000 integer benchmarks, three scientific apitatfrom the NAS suite [8],
and Sphinx, a speech recognition application [70]. For dssicthmark we simulated the
sequence of instructions which capture the core repetiih@se of the program, deter-
mined empirically by plotting the L2 miss rates over one exien of each benchmark, and
choosing the smallest subsequence that captured theertbeghavior of the benchmark.
Table 3.1 lists the number of instructions skipped to rehehphase start (FFWD) and the

number of instructions simulated (RUN). Table|3.1 also shtive anticipated L2 load, list-

28

Tech L2 Num. Unloaded| Loaded Miss
(nm) | Capacity || Sub-banks| Latency | Latency| IPC | Rate
130 2MB 16 13 67.7 | 041 0.23
90 4MB 16 18 911 | 0.39| 0.20
65 8MB 32 26 1442 | 0.34| 0.17
45 16MB 32 41 255.1 | 0.26| 0.13

Table 3.2: Performance of UCA organizations

ing the number of L2 accesses per 1 million instructions mgsg 64KB level-1 instruction

and data caches. (This metric was proposed by Kesskr[62].)

3.1.2 UCA Evaluation

Table 3.2 shows the parameters and achieved instructiorty@e (IPC) of the UCA orga-
nization. For the rest of this chapter, we assume a constaoathe area and vary the tech-
nology generation to scale cache capacity within that arsiag the SIA Roadmap [101]
predictions, from 2MB of on-chip L2 at 130nm devices to 16MBlanm devices. In Ta-
ble[3.2, the unloaded latency is the average access timgdies} assuming uniform bank
access distribution and no contention. The loaded latenoptained by averaging the ac-
tual L2 cache access time—including contention—acrossf #ifle benchmarks. Contention
can include botthank contentionwhen a request must stall because the needed bank is
busy servicing a different request, addannel contentionwhen the bank is free but the
routing path to the bank is busy, delaying a request.

The reported IPCs are the harmonic mean of all IPC valuessiour benchmarks,
and the cache configuration displayed for each capacityei®tie that produced the best
IPC; we varied the number and aspect ratio of sub-banks stitiely, as well as the number

of banks.

29

In the UCA cache, the unloaded access latencies are sutfydiégh that contention
could be a serious problem. Multiported cells are a poortewitfor overlapping accesses
in large caches, as increases in area will expand loadedsatioees significantly: for a
2-ported, 16MB cache at 45nm, Cacti reports a significameame in the unloaded latency,
which makes a 2-ported solution perform worse than a sipgleed L2 cache. Instead of
multiple physical ports per cell, we assume perfect pijdin that all routing and logic
have latches, and that a new request could be initiated attarval determined by the
maximal sub-bank delay, which is shown in column 4 of Tab 3W\e did not model
the area or delay consumed by the pipeline latches, reguttiroptimistic performance
projections for an UCA organization.

Table[3.2 shows that, despite the aggressive cache pipglitiie loaded latency
grows significantly as the cache size increases, from 6&sya 2MB to 255 cycles at
16MB. The best overall cache size is 2MB, at which the in@sas L2 latency are sub-
sumed by the improvement in miss rates. For larger cachedaténcy increases over-
whelm the continued reduction in L2 misses. While the UCAaoigation is inappropriate
for large, wire-dominated caches, it serves as a baselinenéasuring the performance

improvement of more sophisticated cache organizatiorsgriteed in the following section.

3.2 Static NUCA Implementations

Much performance is lost by requiring worst-case uniforicess in a wire-delay dominated
cache. Multiple banks can mitigate those losses, if eack ban be accessed at different
speeds, proportional to the distance of the bank from thbecaontroller. Each bank is
independently addressable, and is sized and patrtitionedilocally optimal physical sub-

bank organization. As before, the number and physical azgian of banks and sub-banks

30

were chosen to maximize overall IPC, after an exhaustivéoexjion of the design space.
Data are statically mapped into banks, with the low-ordes difi the index determin-
ing the bank. Each bank we simulate is four-way set asseeiafihese static, non-uniform
cache architectures (S-NUCA) have two advantages over @& dtganization previously
described. First, accesses to banks closer to the cachelt@mincur lower latency. Sec-
ond, accesses to different banks may proceed in parakilcieg contention. We call these
caches S-NUCA caches, since the mappings of data to banksatice and the banks have

non-uniform access times.

3.2.1 Private Channels

As shown in Figure 3.2, each addressable bank in the S-NU®Azdnization has two
private, per-bank 128-bit channels, one going in each tiinec Cacti 3.0 is not suited for
modeling these long transmission channels, since it usefKtibenstein RC wire delay
model [55] and assumes bit-line capacitative loading oh @are. We replaced that model
with the more aggressive repeater and scaled wire model afwfaj et al. for the long
address and data busses to and from the banks [2].

Since banks have private channels, each bank can be acdedspéndently at
its maximum speed. While smaller banks would provide morecagency and a greater
fidelity of non-uniform access, the numerous per-bank ceknadd area overhead to the
array that constrains the number of banks.

When a bank conflict occurs, we model contention in two wayscoAservative
policy assumes a simple scheduler that does not place astegue bank channel until
the previous request to that bank has completed. Bank reguesy thus be initiated every

b + 2d + 3 cycles, where is the actual bank access timeijs the one-way transmission

31

Technology| L2 Num. Unloaded latency Conservative Aggressive
(nm) size | banks|| bank min max avg.l Loaded IPC|| Loaded IPC
130 2MB 16 3 7 13 10 11.3 | 0.54 10.0 | 0.55
90 4MB 32 3 9 21 15 17.3 | 0.56 15.3 | 0.57
65 8MB 32 5 12 | 26 19 219 | 061 19.3 | 0.63
45 16MB 32 8 17 | 41 29 34.2 | 0.59 30.2 | 0.62

Table 3.3: S-NUCA-1 evaluation

time on a bank’s channel, and the additional 3 cycles areatktm drain the additional

data packets on the channel in the case of a read requestif@la writeback. Since each
channel is 16 bytes, and the L2 cache line size is 64 byteakeatst4 cycles to remove a
cache line from the channel.

An aggressivepipelining policy assumes that a request to a bank may bateuk
everyb + 3 cycles, wheré is the access latency of the bank itself. This channel madel i
optimistic, as we do not model the delay or area overheadeolatiches necessary to have
multiple requests in flight on a channel at once, although evenddel the delay of the wire
repeaters.

Tablel 3.3 shows a breakdown of the access delays for theugaciche sizes and
technology points: the number of banks to which independemtests can be sent simul-
taneously, the raw bank access delay, the minimum, aveaagenaximum access latency
of a single request to various banks, and the average lasay at run-time (including
channel contention). We assume that the cache controfiefa®in the middle of one side
of the bank array, so the farthest distance that must bersedds half of one dimension
and the entire other dimension. Unlike UCA, the average IRteases as the cache sizes
increases, until 8 MB. At 16MB, the large area taken by thdnearauses the hit latencies
to overwhelm the reduced misses, even though the accessitgt@row more slowly than

with an UCA organization.

32

As technology advances, both the access time of individaak® and the routing
delay to the farthest banks increase. The bank access tim&sNUCA-1 increase from 3
cycles at 100nm to 8 cycles at 45nm because the best organizatsmaller technologies
uses larger banks. The overhead of the larger, slower banless than the delays that
would be caused by the extra wires required for more numeswnaller banks.

The greater wire delays at small technologies cause inetleasiting delays to the
farther banks. At 130nm, the worst-case routing delay isybles. It increases steadily to
reach 33 cycles at 45nm. While raw routing delays in the caclesignificant, contention
is less of a problem. Contention for banks and channels candassured by subtracting
the average loaded latency from the average unloaded Yairedable 3.3. The aggressive
pipelining of the request transmission on the channelsimditas from 1.3 to 4.0 cycles
from the conservative pipelining average loaded bank actzency, resulting in a 5%
improvement in IPC at 16MB.

The ideal number of banks increases from 16 at 2MB to 32 at 4AMBMB and
16MB, the ideal number of banks does not increase furthertalthe area overhead of the
per-bank channels, so each bank grows larger and slowee @sithe size increases. That
constraint prevents the S-NUCA-1 organization from exjigithe potential access fidelity
of small, fast banks. In the next subsection, we describ&eabank network that mitigates

the per-bank channel area constraint.

3.2.2 Switched Channels

Figure 3.3 shows an organization that removes most of tige lammber of wires resulting
from per-bank channels. This organization embeds a liglghtewormhole-routed 2-D

mesh with point-to-point links in the cache, placing simgplétches at each bank. Each link

33

4]] Switch Tag array Sub-bank

Data bus

F

Wordline driver
and decoder

Address bus

B —

o

Predecoder

Sense amplifier

Bank

Figure 3.3: Switched NUCA design

has two separate 128-bit channels for bidirectional rguti/e modeled the switch logic
in HSPICE to obtain the delay for each switch and incorpattza delay into performance
simulations. We again used the Agarvedlal. model for measuring wire delay between
switches. As in the previous configurations, we assume 4sgagssociative banks.

We modeled contention by implementing wormhole-routed ftmmtrol, and by
simulating the mesh itself and the individual switch ocawgain detail as a part of perfor-
mance simulations. In our simulations, each switch bufférbyte packets, and each bank
contains a larger buffer to hold an entire pending requebusTexactly one request can
be queued at a specific bank while another is being serviceithiré\ arrival would block
the network links, buffering the third request in the netkvewitches and delaying other
requests requiring those switches. Other banks alongeliffaetwork paths could still be
accessed in parallel, of course.

In the highest-performing bank organization presentech ank was sized so that
the routing delay along one bank was just under one cycle.iaated switches that had

buffer slots for four flits per channel, since our sensiivahalysis showed that more than

34

Technology| L2 Num. Unloaded Latency Loaded Bank
(nm) Size | Banks || bank min max avg| Latency| IPC | Requests|
130 2MB 16 3 4 11 8 9.7 0.55 17M

90 4MB 32 3 4 15 | 10 119 | 0.58 16M
65 8MB 32 5 6 29 | 18 20.6 | 0.62 15M
45 16MB 32 8 9 32 | 21 24.2 | 0.65 15M

Table 3.4: S-NUCA-2 performance

four slots per switch gained little additional IPC. In outMB S-NUCA-2 simulations, the
cache incurred an average of 0.8 cycles of bank contentidi® &ncycles of link contention
in the network.

Table[3.4 shows the IPC of the S-NUCA-2 design. For 4MB angdelacaches,
the minimum, average, and maximum bank latencies are signtfy smaller than those
for S-NUCA-1. The switched network speeds up cache accésseaise it consumes less
area than the private, per-bank channels, resulting in dlemn@aray and faster access to
all banks. At 45nm with 32 banks, our models indicate that3HeUCA-1 organization’s
wires consume 20.9% of the bank area, whereas the S-NUCAx2neh overhead is just
5.9% the total area of the banks.

The S-NUCA-2 cache is faster at every technology than S-NUCAnd further-
more at 45nm with a 16MB cache, the average loaded lateney 2sc3cles, as opposed to
34.2 cycles for S-NUCA-1. At 16MB, that reduction in laten®sults in a 10% average
improvement in IPC across the benchmark suite. An additibeaefit from the reduced
per-bank wire overhead is that larger numbers of banks assilfle and desirable, as we

show in the following section.

35

f

B il (]

BT Tl TN

Figure 3.4: TRIPS die photo

3.3 TRIPS NUCA design

We showed that the switched static NUCA performs better tharthanneled static NUCA
since the switched network has less area overhead thanivla¢epiper-bank channels. In
addition to the performance benefit, the configuration ofstiviiched networks provides a
variety of on-chip memory organizations on the same suiestres a proof of concept, we
implemented a 1MB switched static NUCA design in the TRIP&qiype hardware [99].
TRIPS is a novel distributed architecture which is compaxdao coarse-grained proces-
sors [84] and a shared NUCA L2 cache. The prototype chip isdated in a 130nm IBM
ASIC technology and has more than 170 million transisto#§. [Figure 3.4 shows the die
photo of the TRIPS chip.

36

TRIPS secondary memory system: The TRIPS secondary memory system has the fol-

lowing five characteristics.

1. Non-uniform access latency: The TRIPS NUCA design ctssisl6 64KB memory
banks. The highly partitioned NUCA design is more toleranincreasing on-chip
wire delays in future technologies. Compared to conveaticaches that have an
uniform access latency, close cache banks from the prateasde accessed faster

than cache banks that are located far from the processor.

2. High-bandwidth access: Ten pairs of 128-bit data chanalédws the NUCA cache
to communicate with the two TRIPS processors. At the arctdte frequency of
500MHz, the peak injection bandwidth is 74 GB/sec, whichvjates high-bandwidth

data accesses for streaming applications.

3. Composibility: Each memory bank can be configured as re#He2 cache bank or
an explicitly addressable scratchpad memory. Dependingpptications’ memory
access patterns, the TRIPS NUCA design allows each memaiy tbabe config-
ured differently and be aggregated to compose various meorganizations. This
composable capability provides a flexibility to organize secondary memory sys-
tem as a 1MB L2 cache, 1MB on-chip physical memory (no L2 cpemel many

combinations in between at the granularity of 64KB incretaen

4. Configurability: The TRIPS NUCA design supports two typésache line inter-
leaving modes to access L2 cache - interleaved or split mblae.interleaved mode
(or shared cache mode) allows a single application to betileze a 1MB L2 cache
and the on-chip network bandwidth. In split mode (or callegaie cache mode),

each processor can use a 512KB L2 cache region privatelyutifhterfering with

37

SDRAMO IRQ EBI
[| ~ Processor 0

EBC

Secondary Memory System

gEEIEEIEIEIEIER
F === =] =] =] =] =]

—RE=I=l= =] = =] =] =]

(%]
_-H
(o]
N
N

Processor 1

w
o
o
>

M1 C2C (x4)

Figure 3.5: TRIPS prototype block diagram

the other assuming the OS page mapping is set up appropriatel

5. High connectivity: The On-chip network (OCN) that are euded in the TRIPS
NUCA serves as the SoC (“System on a Chip”) interconnect. TIRE*S OCN pro-
vides higher connectivity than the current standardizexidasign for SoC intercon-
nects such as the AMBA bus from ARM [33]. The TRIPS OCN conséab pro-
cessors, two SDRAM controllers, two DMA controllers, thet&xal Bus Interface

controller, the Chip to Chip controller, and a 1IMB NUCA array

3.3.1 TRIPS Chip Overview

Figure 3.5 shows the block diagram of the TRIPS prototypp [98]. The TRIPS chip con-

tains two processor cores and a 1MB NUCA array as the majopoaents. Each of the

38

two processor cores is composed of five different typeses:tibne global control tile (GT),
sixteen execution tiles (ET), five instruction cache tild9,(four data cache tiles (DT), and
four register tiles (RT). A scalar operand network and midticontrol networks connect
all of the tiles and construct a processor core with 16-widead-order issue, 64KB L1
instruction cache and 32KB of L1 data cache. In single-thmade, a processor executes
up to 1024 instructions in flight. A multi-threaded mode ftimis execution resources and
supports up to four different threads running concurrenttya single core. The TRIPS
processor implements an Explicit Data Graph Execution (EPi@struction set architec-

ture [15] that allows power-efficient exploitation of com@ncy over distributed tiles.

3.3.2 TRIPS Secondary Memory Subsystem

The TRIPS secondary memory subsystem consists of forty {ile6 Memory Tiles (MT)

and 24 Network Tiles (NT). Each tile is connected to the OnpQetwork (OCN).

Memory Tiles (MT)

As shown in Figure 3.6, a Memory Tile includes an OCN routdicsmponent and a 64KB
SRAM bank. The OCN router supports four different virtuahohels to prevent deadlocks.
Incoming packets are buffered at the input FIFO in one of fiveations, North, South,
East, West, or Local for a SRAM bank itself. A 4x4 crossbartsiwtonnects each input to
all possible output channels except that the input from ameetion cannot be routed to the
output from the same direction.
The 64KB SRAM bank can be configured as part of a L2 cache or dsopa

scratchpad memory. In L2 cache mode, the SRAM bank acts amyke $iank in a larger

L2 cache. To track a L2 miss in flight, each Memory Tile corgainsingle-entry Miss

39

OCN Router

i VC Arbiter N
s
North! [E%] Arbiter

! Routing
' [VC Arbiter Logic
e [LT
—L
1

VC Arbiter 4x4

East | 'East N
— > Y
‘ West v N
==l I

1 ! \

+ [VC Arbiter | \ SRAM
Local ! EE%] Local \ Bank

Crossbar South \
I

Figure 3.6: Memory tile block diagram highlighting OCN reuin detalil

Status Holding Register (MSHR). When configured as part ®fttratchpad memory, the
tag checks are turned off to allow direct data array accedselsoth L2 cache mode and
scratchpad memory mode, the MT requires three cycles frogiviag a request to produc-

ing the first reply packet.

Network Tiles (NT)

Figure 3.7 contains a detailed block diagram of the Netwdlek The Network Tile consists
of a network router subcomponent and an address translatibn

A network router subcomponent is similar to the one used ireanibty Tile. While
the local channels in a Memory Tile are connected to the metmank, the local channels
in a Network Tile are connected to the OCN clients, such asgasors, and 1/O units.
Another difference is that a 5x5 crossbar switch is usecatsbf a 4x4 crossbar to add a
configuration path to modify the contents of the addressstadion unit.

The TRIPS OCN introduces the mapping between a physicatad@nd a location

40

North ' 1
North L [E%] [Amiter] North
i Routing |

South | Logic |
ou’ ! .o 1
=== |
I Crossbar i South
ot | 55
as| .
=] >< —
West | _West
1
= :
1 1
| [vC At 1
Local , [VC Arbiter | Address 1 Local
—_— Translation
[i |
.| [[VC Amit i
Config ! !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.7: Network tile block diagram in detail

of tiles (X, Y coordinates) in the OCN to allow various memarganizations. This map-
ping occurs in two steps. First, addresses are mapped oéesilogical L2 cache bank.
Second, each logical L2 cache bank is mapped to a specific NBD&AM controller by
the address translation unit. Each entry in the addresslation unit contains the X-Y
coordinates of the M-tile or the SDRAM controller to whicketlogical L2 cache banks are
mapped. The table itself is memory mapped and can be modifi¢desfly by the runtime

system.

On-Chip Network (OCN)

The TRIPS OCN connects 40 tiles in a 4x10, 2D mesh. Each titemmected with each
other using a pair of 128-bit data links. The OCN is a Y-X disien-order, wormhole-
routed network with credit-based flow control, meaning taaender maintains a count of
the number of empty buffers in a receiver and a credit is sack o the sender whenever

the receiver’s buffer gets emptied. Packets travel on thewing four virtual channels to

41

prevent potential deadlock scenarios.

Primary Reply (P1) - Replies to network clients (first pripyi

Secondary Reply (P2) - L2 cache fill and spill replies (seqomakity)

Secondary Request (Q2) - L2 cache fill and spill requestsd(fiiority)

Primary Request (Q1) - Requests from network clients (fopriority)

The OCN supports read, write, and swap transactions. Eaghkaction consists of
a request and a reply. The packets for requests and replige ia size from 16 byte to
80 bytes long broken up into one to five 16 byte flits. The firstidlicalled the “header
flit”, which contains the transaction type, size, locatidos source and destination tiles,
and address information. The remaining flits are the payladuich carry from one to 64

bytes of data. More detailed information on the TRIPS OCNafound elsewhere [39].

3.3.3 Composable Secondary Memory Organization

The TRIPS secondary memory systermasnposablén the sense that it consists of multiple
partitioned memory banks, which can be configured difféyeartd aggregated to compose
various memory organizations. Figure 3.8 shows variousiplessecondary memory orga-
nizations: A 1MB L2 cache (Figure 3.8a), a 1MB scratchpad wgn(Figure 3.8b), and
a 512KB cache and a 512KB scratchpad memory (Figure 3.8c).cAmbinations in be-
tween a 1IMB L2 cache and 1MB scrachpad memory are possiliie gtanularity of 64KB

increments.

42

: M-Tile configured as a level-2 Cache
. M-Tile configured as a scratchpad memory

: 3 : 3
| 3 3 3
> IEEE - DEER
S DEED S EEEE
5 Ny : NEEN E
: NEEE : IEEQ '3
= M=l = UEEN =
¢ EEE ¢t JEEE 8
° IEEE S IEEE S IEHEE
[[e2] [e2] [- NEIEN |
: :
SDC | c2C] i c2C] i
(a) All level-2 caches (b) All scratchpad memories (c) Half level-2 caches,

half scratchpad memories

Figure 3.8: Various memory organizations in the TRIPS sdapnmemory system

Flexible Memory Organization

Composable flexibility comes from remapping from a logidia kbocation, which is fixed
by a physical address into any tile location of 16 Memory Jite the two SDRAM con-
trollers. When a Memory Tile is configured as scratchpad nrgntioe L2 requests to the
corresponding Memory Tile are redirected to other MemoitgsTin L2 mode or directly
to the SDRAM controller. Therefore, when all Memory Tileg @onfigured as scrachpad
memory, all L2 traffic should be routed directly to the SDRAlNtrollers. These con-
figurable mappings are effected by modifying the addresskation table in the Network
Tiles. Before any reconfiguration occurs, all in-flight OQ#ftic must be drained and the

participating Memory Tiles must be flushed. System softwaag then modify the address

43

L2 Mode System Address Map

Low Split Bit Mode (Half Select Bit = 0)
39 3837 32 31 18 17 16 98 65 0

mode Board ID High Tag ‘Sp‘ Index Low MT# Offset

2 6 14 1 8 3 6

High Split Bit Mode (Half Select Bit = 1)
39 3837 32 31 30 17 16 98 65 0

mode Board ID ‘Sp‘ High Tag Index Low MT# Offset

2 6 1 14 8 3 6

SRF mode System Address Map

hardwired index logic
39 38 37 32 31 20 19 18 7 6 5 0
mode Board ID Unused ‘ Hi MT# ‘ Line # Low MT»# Offset
2 6 1 2 10 5 6

Figure 3.9: TRIPS OCN 40-bit address field composition

translation tables in all Network Tiles and resume executio

Flexible Cache Interleaving

The TRIPS NUCA design supports two types of cache line ieéetihg modes to access the
L2 cache - interleaved or split mode. Figure 3.9 shows howdthbit physical address is
interpreted in the different modes. The “Split bit” (call8®) represents whether the address
is mapped to one of top eight Memory Tiles or one of bottom elMdémory Tiles. In split
mode, the “SP” bit is located at the 31st bit in an address,ningathat the entire 4GB
address region in the chip is split into two contiguous 2G@aes. In this mode, the top
eight Memory Tiles are mapped to the first 2GB region and tlieboeight Memory Tiles
are mapped to the next 2GB region. Assuming the operatingreyallocates pages into one
of two contiguous 2GB regions, each processor can use a 512KRBche region privately

without interfering with the other. Therefore, the split deocan be considered a "private

44

cache mode”. In interleaved mode, the “SP” bit is locateth@tlf7th bit in a address, which
allows L2 requests from both processors to be more eventsildised among all sixteen
Memory Tiles. Since the interleaved mode lets applicatminsach processor fully utilize
a 1MB L2 cache and on-chip network bandwidth, the interldan@de is also called a

“shared cache mode”.

3.3.4 Network Performance Evaluations

As a preliminary evaluation of the TRIPS NUCA design, we wrat simulator called
tsim.ocn that simulates the behavior of the L2 cache and the on-chipank at a per-
cycle level. We use two different types of synthetic stat@dtloads to measure the maxi-
mum throughput and the average latency of the switched mktiiat are embedded in the
TRIPS NUCA design. In addition, this network evaluation\pded information in deter-
mining design parameters including the number of SDRAM iabier and the FIFO depth
in each router.

There are five parameters that we varied to measuring OCKrpeathce:

e Request rate: The request rate represented in the x-axigthntiee throughput and

latency graph can be used to estimate the ideal throughput.

e Traffic pattern: The “uniform random traffic” pattern is onktlee most commonly
used traffic in network evaluation [22]. Requesters digtelrequests evenly to all
possible and randomly chosen destinations. We use thisrpdtir evaluating the
TRIPS processor that is configured to maximize ILP. Anothadfic pattern is the
“neighbor traffic” pattern. The “neighbor traffic” pattera used for evaluating the
TRIPS processor where the Memory Tiles that are attachedotmegsors are con-

figured as scratchpad memory. In the “neighbor traffic” pafta requester chooses

45

100, 100, 100,

®
Q
®
@
®
Q

—-100%
— 90%
— 70%
— 50%

—-100%
- 90%
— 70%
—— 50%

——100%
— 90%
— 70%
— 50%

o
@
o
@
o
@

N
o
N
@
N
o

accepted rate (byte/cycle)
accepted rate (byte/cycle)
accepted rate (byte/cycle)

N
Q@
N
Q
N
Q@

o

0

0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
offered rate (byte/cycle) offered rate (byte/cycle) offered rate (byte/cycle)
(a) 1 Memory Controller (b) 2 Memory Controllers (c) 4 Memory Controllers

Figure 3.10: Throughput with uniform random traffic

the destination between two Memory Tiles that are locatethénsame row as the

requester.

e Hit ratio in a Memory Tile: A cache hit ratio in each Memory ils varied from

100%, 90%, 70% to 50%.

e Number of SDRAM controllers: The number of SDRAM controdles varied from

one, two to four.

Throughput

Each Figure 3.10a, b and ¢ shows how the OCN throughput Vayieeanging the number
of memory controllers among one, two and four. Figure 3.10and c plot the accepted
throughput as a function of offered traffic by varying a cabiteatio among 100%, 90%,
70%, and 50%. In Figure 3.10a, the accepted traffic is inedbap to 36 byte/cycle, then
saturates at the 100%, 90%, 70% hit ratio. However, at theliiOeatio, the accepted traffic
is more quickly saturated into 25 byte/cycle than other dtios. In both the Figure 3.10b

and c, the accepted traffic at the the 50% hit ratio shows thee g@eak throughput as

46

N [©
o @ Q

accepted rate (byte/cycle)

N
Q@

o

accepted rate (byte/cycle)

@
@

o
@

'y
@

N}
@

0

accepted rate (byte/cycle)

o

20 40 60 80 100
offered rate (byte/cycle)
(a) 1 Memory Controller

0

20 40 60 80 100
offered rate (byte/cycle)
(b) 2 Memory Controllers

20 40 60 80 100
offered rate (byte/cycle)
(c) 2 Memory Controllers

Figure 3.11: Throughput with the neighbor traffic

the rest of the hit ratios. Also, Figure 3.10b and c are igahtiConsidering extra off-chip
requests and logic complexity (pin count), two memory aultérs seems to be a reasonable
compromise. To summarize, the TRIPS OCN can provide the flealighput up to 36
byte/cycle.

Figure 3.11 shows the OCN throughput with the “neighbofficAfwhich is when
the nearest Memory Tile services load requests from eaakester that is located in the
same row. This distribution assumes the case (1) when Meffitey are configured as
software managed memories (100% hit rate) or (2) when allecaccesses are serviced by
the nearest Memory Tile. The latter case corresponds talde case when dynamic data
migration (described in the next chapter) works.

Figure 3.11 shows that the OCN can sustain its obtainable theaughput (102.4
byte per cycle) with this request pattern. Interestindig accepted traffic is saturated very
quickly at the 90%, 70%, and 50% hit ratios, and the peak titiput at the 50% hit ratio is
less than that in the uniform random traffic. This phenomearises because each Memory

Tile has only single-entry MSHR and most requests are dtdilem the previous miss

47

100+ 100,

80 804

| % 20

. : 0

o
@
o
@

N
o

N
o

latency (cycle)
latency (cycle)

N
@

R

. e+

0 10 20 30 0 10 20 30 40
offered rate (byte/cycle) offered rate (byte/cycle)
(a) Random Traffic (b) Neighbor Traffic

Figure 3.12: TRIPS S-NUCA cache hit latency

Cache Hit Ration in Memory Tiles Random Traffic| Neighbor Traffic
100% 15.9 (cycles) 7.4 (cycles)
90% 22.4 (cycles) 14.4 (cycles)
70% 37.5 (cycles) 30.0 (cycles)

Table 3.5: Average L2 cache access time in TRIPS (with syicttraffic)

request. Since the random traffic is spread more uniformigsacall Memory Tiles, the

buffer in each router can hold more requests than the neighddéc.

Latency

Figures 3.12a and b show the OCN latency with each of the raraitd neighbor traffic
patterns. In this experiment, we define the OCN latency aginme elapsed from when
the request header flit is injected into the OCN until theydydader flit is received by the
requester when a request makes a cache hit on a Memory TieeOTN latency can thus
be considered to be the average L2 hit latency in the TRIP&pswor. Initially, the OCN

latency gradually increases as the offered traffic growshdfoffered traffic exceedes the

48

100+ —e— 1 router entry
—=— 2 router entry
—e— 3 router entry
—— 4 router entry

- 80 -x-- 5 router entry
@ --+-- 6 router entry
3 --e-- 7 router entry
g --a-- 8 router entry
g sl <-- 9 router entry
3 --a-- 10 router entry
P --x-- 20 router entry
2 --+-- 30 router entry
o 40

(O]

=

o

]

8

c 20

0 20 40 60 80 100
offered rate (byte/cycle)

Figure 3.13: Throughput with the various FIFO depth

peak throughput, the OCN is saturated with packets and thiedg goes up exponentially.
The L2 cache access time in the TRIPS design varies depeaditfte number of

requests, traffic patterns, and hit ratios (since stallseaby the limited number of MSHRs

per Memory Tiles increase when a L2 miss ratio increase$)leTa5 shows the TRIPS L2

cache access time measured under the various configutations

Determining the FIFO depth

To find the optimal FIFO depth in each router, we varied the bemof FIFO entries and
measured achieved throughput. Figure 3.13 shows the changhroughput when the
number of FIFO entries per virtual channel increases fromtor80. There are two signif-

icant changes when the number of entries increase from ametand four to five. After

49

five, no additional gains can be found until 20 entries, whedults from the fact that one

OCN packet consists of five flits.

3.4 Summary

To handle the problem of growing wire delays in future largeel-2 caches, we evaluated
several new designs that treat a L2 cache as a network of laadkicilitates non-uniform
cache accesses to different physical regions. In this ehape evaluated cache designs
that consist of multiple independent banks connected bgejirivate per-bank channels or
a wormhole-routed 2-D switched mesh network. We compardid deche designs with a
traditional cache (called Uniform Cache Architecture orAJ@nd showed that the UCA
design would perform poorly due to internal wire delays amestricted number of ports.

We also showed that an embedded mesh network performs thetteper-bank pri-
vate channels since the switched network takes less aneghaer-bank private channels.
On top of the performance benefits, the configurable natusaviithed networks allows
various memory organizations on the same cache substrate.

As a proof of concept, we implemented a composable secomdangory system
in the TRIPS prototype with S-NUCA-2 organization. The TRIfecondary memory sys-
tem iscomposablemeaning that it consists of multiple partitioned memorglband each
memory bank can be configured differently and aggregateatto ¥arious memory organi-
zations. The possible memory organizations include a 1IMBdche or a 1MB scratchpad
memory or any combinations between them.

Finally, for future composable on-chip memory designs,raeresting question is
determining the size of composition units (memory banksdsgvarious cache capacities

and technologies. In this dissertation, we showed that iggpwache capacity at future

50

technologies increases the size of a composition unit tp ke overall average hop count
modest between the processor and the memory banks. Howeeerat the same technol-
ogy, a designer must consider the following factors to firertght size of the composition
unit. While a smaller-sized compaosition unit supports miteribility to provide various
memory organizations and decreases the wire delay betwaes) the area overhead of
composability increases. This dissertation showed a ceaipe secondary memory system
in the TRIPS prototype using a 64KB memory bank as a compasithit at 130 nm ASIC
technology. Even though a switched network consumes lessthan private channels,
the TRIPS implementation shows that 13% of the area of thenslecy memory system
is devoted to routers. These routers would not be requinettdditional non-composable
memory systems. In future technologies, the size of a coitigposunit should be deter-
mined by considering the overall hop counts, the area oaelrend the wire delay between

hops.

51

Chapter 4

Dynamically Mapped Composable

Memories

In Chapter 3, we proposed a composable cache substrateotigists of multiple cache
banks and each bank is connected by a switched fabric. Ciglsedre statically mapped
into banks, meaning that the low-order bits of each addressrmiine the bank, and the
mapping between an address and the bank does not changeichiharm this chapter, we
show how to exploit future cache access non-uniformity bgmatically placing frequently
accessed data in closer (faster) banks and less impor&nstily cached—data in farther
banks.

By providing dynamic mapping and migration of data to banks,show policies
that service most requests by the fastest bank. Using thehsd network, data is gradually
promoted to faster banks based on access frequency. Thiepom is enabled by spread-
ing sets across multiple banks, where each bank forms onefasmget. Thus, cache lines

in closer ways can be accessed faster than lines in farther. Wais dynamic non-uniform

52

scheme is called D-NUCA.
In the first half of this chapter, we investigate the perfanoeeffects of dynamic
data migration within a L2 cache in the context of uniprooess We then extend the

concept of non-uniform cache access architectures to émgechip-multiprocessors.

4.1 Uniprocessor D-NUCA

The D-NUCA organization uses the same cache substrate d$4C3\N; multiple cache
banks are connected by a switched network. On top of the SAPGubstrate, the D-
NUCA organization implements a number of hardware policeggarding where to place
data after data returns from memory, how to migrate datahamdto search for data. With
proper placement and migration policies, D-NUCA enabl@&sdiche to place frequently
accessed blocks in the banks close to the CPU and less ftggaeoessed blocks in the
banks that are far away from the CPU. We first explore diffepaticies to find the best
performing policy for placing and migrating data. Then, vempare the D-NUCA or-
ganization to the S-NUCA organizations and the conventiomdti-level hierarchy cache
organization (or ML-UCA). We show that a D-NUCA cache ackiethe highest IPC across
diverse applications, because it adapts to the workingfsstah application and moves the

working set into the banks closest to the processor.

4.1.1 Policy Exploration

We evaluate a number of hardware policies that migrate aatang the banks to reduce av-
erage L2 cache access time and improve overall perform&acehese policies, we answer
three important questions about the management of date atthe: (1imapping how the

data are mapped to the banks, and in which banks a datum dde, &3 search how the

53

]

(a) Simple Mapping (b) Fair Mapping (c) Shared Mapping

10 L

Figure 4.1: Mapping bank sets to banks in D-NUCA

[

set of possible locations are searched to find a linem@yementunder what conditions
the data should be migrated from one bank to another. We exfilese questions in each

of the following subsections.

Logical to Physical Cache Mapping

A large number of banks provides substantial flexibility fieapping lines to banks. At one
extreme are the S-NUCA strategies, in which a line of dataordy be mapped to a single
statically determined bank. At the other extreme, a lindddme mapped into any cache
bank. While the latter approach maximizes placement flkxibihe overhead of locating
the line is larger because each bank must be searched, thitbegh a centralized tag store
or by broadcasting the tags to all of the banks.

We explore an intermediate solution callgatead setsvhich treats the multibanked
cache as a set-associative structure, each set is spread auultiple banks, and each bank
holds a subset of the “ways” of the set. The collection of lsanged to implement this
associativity is called dank setand the number of banks in the set, multiplied by the

associativity of each bank, corresponds to the assodiativi

54

A cache can be comprised of multiple bank sets. For examplshawn in Fig-
ure/4.1a, a cache array with 32 banks could be organized asraviy set-associative
cache, with eight bank sets, each consisting of four cachksbalo check for a hit in a
spread-set cache, the pertinent tag in each of the four ludks bank set must be checked.
Note that the primary distinction between this organizatind a traditional set-associative
cache is that the different associative ways have diffasiengss latencies.

We evaluate the following three methods of allocating baetlk $0 bankssimple
mapping fair mapping andshared mapping With the simple mapping, shown in Fig-
ure/4.1a, each column of banks in the cache becomes a bardndea|l banks within a
column comprise the set-associative ways. Thus, the caelyebmsearched for a line by
first selecting the bank column, selecting the set withinciblemn, and finally performing
a tag match on banks within that column of the cache. The tawidacks of this scheme
are that the number of rows may not correspond to the numhkrsifed ways in each bank
set, and that latencies to access all bank sets are not tlee same bank sets will be faster
than others, since some rows are closer to the cache centitwdin others.

Figure 4.1b shows thfair mappingpolicy, which addresses both problems of the
simple mapping policy at the cost of additional complexifyhe mapping of sets to the
physical banks is indicated with the arrows and shading éndilgram. With this model,
banks are allocated to bank sets so that the average aceessadross all bank sets is
equalized. We do not present results for this policy, butdles it for completeness. The
advantage of the fair mapping policy is an approximatelyatguerage access time for each
bank set. The disadvantage is a more complex routing path iank to bank within a set,
causing potentially longer routing latencies and more exatitin in the network.

Theshared mappingolicy, shown in Figure 4/1c, attempts to provide fastestk

55

access to all bank sets by sharing the closest banks amotiglsnbbnk sets. This policy
requires that ifn. bank sets share a single bank, then all banks in the cachewsey set
associative. Otherwise, a swap from a solely owned bankarsbared bank could result
in a line that cannot be placed into the solely owned bankesihe shared bank has fewer
sets than the non-shared bank. We allow a maximum of two betsksshare a bank. Each
of then /2 farthest bank sets shares half of the closest bank for orreafibsest: /2 bank
sets. This policy results in some bank sets having a slidtigiier bank associativity than
the others, which can offset the slightly increased aveeagess latency to that bank set.
That strategy is illustrated in Figure 4.1c, in which thetbt bank of column 3 caches
lines from columns 1 and 3, the bottom bank of column 4 cadhes from columns 2 and
4, and so on. In this example the farthest four (1, 2, 7, and 8)eeight bank sets share

the closest banks of the closest four (3, 4, 5, and 6).

Locating Cached Lines

Searching for a line among a bank set can be done with twandigolicies. The first is
incremental searghin which the banks are searched in order starting from theest bank
until the requested line is found or a miss occurs in the laskbThis policy minimizes the
number of messages in the cache network and keeps energynuaticn low, since fewer
banks are accessed while checking for a hit, at the cost atestperformance.

The second policy is callethulticast searchin which the requested address is
multicast to some or all of the banks in the requested banklLsstkups proceed roughly
in parallel, but at different actual times due to routingagsl through the network. This
scheme offers higher performance at the cost of increassdynonsumption and network

contention, since hits to banks far from the processor vélisbrviced faster than in the

56

incremental search policy. One potential performance baak to multicast search is that
the extra address bandwidth consumed as the address id towach bank may slow other
accesses.

Hybrid intermediate policies are possible, sucHimdted multicast in which the
first M of the N banks in a bank set are searched in parallel, followed by enenmental
search of the rest. Most of the hits will thus be serviced bgsalbokup, but the energy and
network bandwidth consumed by accessing all of the waysa wiill be avoided. Another
hybrid policy ispartitioned multicastin which the bank set is broken down into subsets of
banks. Each subset is searched iteratively, but the merobeexch subset are searched in

parallel, similar to a multi-level, set-associative cache

Partial-Tag Predictive (PTP) Search

A distributed cache array, in which the tags are distribukéith the banks, creates two
new challenges. First, many banks may need to be searchaulta fine on a cache hit.
Second, if the line is not in the cache, the slowest bank aéters the time necessary to
resolve that the request is a miss. The miss resolution thme grows as the number of
banks in the bank set increases. While the incrementaltsgalicy can reduce the number
of bank lookups, the serialized tag lookup time increasels thee hit latency and the miss
resolution time.

We applied the idea of theartial tag comparisorproposed by Kessler et al. [63] to
reduce both the number of bank lookups and the miss resoltitie. The D-NUCA policy
using partial tag comparisons, which we gaitial-tag predictive (PTP) searclstores the
partial tag bits into a PTP search array located in the cachealler.

We evaluated two PTP search policies-performancend ss-energy In the ss-

57

performancepolicy, the cache array is searched as in previous politiesvever, in paral-
lel, the stored partial tag bits are compared with the cpieding bits of the requested tag,
and if no matches occur, the miss processing is commencgd &athis policy, the PTP
search array must contain enough of the tag bits per line k@i possibility ofalse hits
low, so that upon a miss, accidental partial matches of chtdgs to the requested tag are
infrequent. We typically cached 6 bits from each tag, batanthe probability of incurring

a false hit with the access latency to the PTP search array.

In the ss-energypolicy, the partial tag comparison is used to reduce the mumb
of banks that are searched upon a miss. Since the PTP seraghakes multiple cycles
(typically four to six) to access, serializing the PTP shaaray access before any cache
access would significantly reduce performance. As an opétiain, we allowed the access
of the closest bank to proceed in parallel with the PTP searchy access. After that
access, if a hit in the closest bank does not occur, all otaekdfor which the partial tag

comparison was successful are searched in parallel.

Dynamic Movement of Lines

Since the goal of the dynamic NUCA approach is to maximizentmaber of hits in the
closest banks, a desirable policy would be to use LRU ordetdnorder the lines in the
bank sets, with the closest bank holding the MRU line, seatwskst holding second most-
recently used. The problem with strictly maintaining the L& dering is that most accesses
would result in heavy movement of lines among banks. In atteagl cache, the LRU state
bits are adjusted to reflect the access history of the lingtsthie tags and data of the lines
are not moved. In an-way spread set, however, an access to the LRU line couldt resu

in n copy operations. Practical policies must balance the @asg@ contention and power

58

consumption of copying with the benefits expected from batlosdering.

We usegenerational promotioto reduce the amount of copying required by a pure
LRU mapping, while still approximating an LRU list mappedothe physical topology of
a bank set. Generational replacement was proposed by Helirsd. for making replace-
ment decisions in a software-managed UCA called the Indinelex Cache [42]. We found
that the best migration policy is that, when a hit occurs taehe line, it is swapped with
the line in the bank that is the next closest to the cache albatr Heavily used lines will
thus migrate toward close, fast banks, whereas infrequastd lines will be demoted into
farther, slower banks.

A D-NUCA policy must determine the placement of an incomingck resulting
from a cache miss. A replacement may be loaded close to tlvegsor, displacing an im-
portant block. The replacement may be loaded in a distar, fi@mahich case an important
block would require several accesses before it is evegtuathrated to the fastest banks.
Another policy decision involves what to do with a victim upa replacement; the two
polices we evaluated were one in which the victim is evicrednfthe cache (aero-copy
policy), and one in which the victim is moved to a lower-pitiprbank, replacing a less

important line farther from the controlleofie-copypolicy).

D-NUCA Policies

The policies we explore for D-NUCA consist of four major camngnts: (1)Mapping:
simple or shared. (2pearch: multicast, incremental, or combination. We restrict the
combined policies such that a block set is partitioned ingb fwo groups, which may then
each vary in size (number of blocks) and the method of actese(mental or multicast).

(3) Promotion: described byromotion distancemeasured in cache banks, gsrxdmotion

59

1.0+

0.8+
I
=
5 0.64 0 perfect LRU
g 8 D-NUCA
9 0.4+
s
53
0.2+
0.0 ,I_I]Iﬂrﬂrnrnrnrn_nrnrnrurnrﬂrﬂm

01234567 8 9101112131415
Associative Way Number

Figure 4.2: Way distribution of cache hits

trigger, measured in number of hits to a bank before a promotion ecd) Insertion:
identifies the location to place an incoming block and whatdavith the block it replaces
(zero copyor one copypolicies).

Our simple, baseline configuration uses simple mappingticast search, one-bank
promotion on each hit, and a replacement policy that choibgeblock in the slowest bank
as the victim upon a miss. To examine how effectively thisaegment policy compares to
pure LRU, we measured the distribution of accesses acresseth for a traditional 16-way
set associative cache and a corresponding 16MB, D-NUCAecadth an 16-way bank
set. Figure 4.2 shows the distribution of hits to the varisets for each cache, averaged
across the benchmark suite. For both caches, most hits apempated in the first two
ways of each set. These results are consistent with thegesidinally shown by So and
Rechtschaffen [111], which showed that more than 90% ofeduits were to the most

recently used ways in a four-way set associative cache. &&®anhtschaffen noted that a

60

Technology Bank org. Unloaded Latency Loaded Miss Bank
(nm) L2 Size | (rows xsets)|| Bank min max avg.| avg. IPC | Rate | Accesses/Setf
130 2MB 4x4 3 4 11 8 8.4 0.57 | 0.23 73M

90 4MB 8x4 3 4 15 10 10.0 0.63 | 0.19 72M
65 8MB 16x8 3 4 31 18 15.2 0.67 | 0.15 138M
45 16MB 16x16 3 3 47 25 18.3 0.71| 0.11 266M

Table 4.1: D-NUCA base performance

transient increase in non-MRU accesses could be used tophade transitions, in which
a new working set was being loaded.

The D-NUCA accesses are still concentrated in the bankegponding to the most
recently used bank. However, the experiments demonstiarger number of accesses to
the non-MRU ways, since each line must gradually traversesgiread set to reach the
fastest bank, instead of being instantly loaded into the MiREltion, as in a conventional

cache.

4.1.2 Performance Evaluation

Table 4.1 shows the performance of the baseline D-NUCA cordtipn, which uses the
simple mapping, multicast search, tail insertion, andleHiigink promotion upon each hit.
As with all other experiments, for each capacity, we chosebimk and network organiza-
tion that maximized overall performance. Since the sharagpimg policy requires 2-way
associative banks, all banks in each experiment were 2-gtagssociative.

As the capacities increase with the smaller technologiesy) 2MB to 16MB, the
average D-NUCA access latency increases by 10 cycles, frérto8.8.3. The ML-UCA
and S-NUCA designs incur higher average latencies at 16Mi;ware 22.3 and 30.4 cy-
cles, respectively. Data migration enables the low avelagacy at 16MB, which, despite

the cache’s larger capacity and smaller device sizdesghan the average hit latency for

61

Av. Miss Bank Av. Miss Bank

Policy Lat. | IPC | Rate | Access Policy lat. | IPC | Rate | Access
Search Promotion
Incremental 249 0.65| 0.114 89M || 1-bank/2-hit | 18.5 | 0.71 | 0.115| 259M

2 mcast + 14 inc 23.8| 0.65| 0.113 96M || 2-bank/1-hit | 17.7 | 0.71 | 0.114 | 266M
2 inc + 14 mcast 20.1 | 0.70 | 0.114 127M 2-bank/2-hit | 18.3 | 0.71 | 0.115 259M

2mcast + 14 mcast 19.1 | 0.71 | 0.113 | 134M Eviction (random eviction, 1 copy)
Mapping inserthead | 15.5| 0.70 | 0.117 | 267M
Fast shared | 16.6] 0.73] 0.119| 266M || insert middle| 16.6 | 0.70 | 0.114 | 267M
|| Baseline simple map, multicast, 1-bank/1-hit, insert at tail | 183]0.71] 0.114] 266M ||

Table 4.2: D-NUCA policy space evaluation

the 130nm, 2MB UCA organization.

At smaller capacities such as 2MB, the base D-NUCA policyashsmall ¢-4%)
IPC gains over the best of the S-NUCA and UCA organizatiore disparity grows as the
cache size increases, with the base 16MB D-NUCA organizaimwing an average 9%
IPC boost over the best-performing S-NUCA organization.

Tablel 4.1 also lists miss rates and the total number of aesdesndividual cache
banks. The number of bank accesses decreases as the cachmgig because the miss
rate decreases and fewer cache fills and evictions are eglguilowever, at BMB and 16MB
the number of bank accesses increase significantly bechesaulticast policy generates
substantially more cache bank accesses when the numbenlaf imeeach bank set doubles
from four to eight at 8MB, and again from eight to 16 at 16 MBcremental search policies
reduce the number of bank accesses at the cost of occasdtteal hit latency and slightly

reduced IPC.

62

Policy Evaluation

Table[4.2 shows the IPC effects of using the baseline couwfiigur and adjusting each
policy independently. Changing the mapping function fromgse to fair reduces IPC due
to contention in the switched network, even though unloddtzhcies are lower. Shifting
from the baseline multicast to a purely incremental seaddicypsubstantially reduces the
number of bank accesses by 67%. However, even though masadatound in one of the
first two banks, the incremental policy increases the awsaagess latency from 18.3 cycles
to 24.9 cycles and reduces IPC by 10%. The hybrid policiesh(sis multicast-2/multicast-
14) gain back most of the loss in access latency (19.1 cyeled)nearly all of the IPC,
while still eliminating a great many of the extra bank acesss

The data promotion policy, in which blocks may be promotely after multiple
hits, or blocks may be promoted multiple banks on a hit, hte kffect on overall IPC, as
seen by the three experiments in Table 4.2. The best eviptibicy is as shown in the base
case, replacing the block at the tail. By replacing the haad,copying it into a random,
lower-priority set, the average hit time is reduced, butittease in misses (11.4% to
11.7%) offsets the gains from the lower access latencies.

While the baseline policy is among the best-performingngishe 2 multicast/14-
multicast hybrid look-up reduces the number of bank aceass£34 million (a 50% reduc-
tion) with a mere 1% drop in IPC. However, the number of bardeases is still significantly
higher than any of the static cache organizations. Tablesth@vs the efficacy of the PTP
search policy at improving IP@nd reducing bank accesses. We computed the size and
access width of the different possible PTP search configustand model their access
latencies accurately using Cacti.

By initiating misses early, the SS-performance policy ltssin a 8% IPC gain, at

63

the cost of an additional 1-2% area (a 224KB PTP search tay)arin the SS-energy
policy, a reduction of 85% of the bank lookups can be achidwedaching seven bits of
tag per line, with a 6% IPC gain over the base D-NUCA configanat Coupling the SS-

energy policy with the shared mapping policy results in gtly larger tag array due to
the increased associativity, so we reduced the PTP seayahidéh to six bits to keep the
array access time at five cycles. However, that policy resalivhat we believe our best
policy to be: 47M bank accesses on average, and a mean IPC%f Dhe last two rows

of Tablel 4.3 shows two upper bounds on IPC. The first upper doow shows the mean
IPC that would result if all accesses hit in the closest baithk mo contention, costing three
cycles. The second row shows the same metric, but with editigtion of misses provided
by the PTP search array. The highest IPC achievable was Wt8éh is 16% better than
the highest-performing D-NUCA configuration. We call thdippof SS-energy with the

shared mapping the “best” D-NUCA policy DN-best, since ilabaes high performance

with a relatively small number of bank accesses. The uppandbis 19% than the DN-best

policy.

Comparison to ML-UCA

Multi-level hierarchies permit a subset of frequently udath to migrate to a smaller, closer
structure, just as does a D-NUCA design, but at a coarsem gran individual banks. We
compared the NUCA schemes with a two-level hierarchy (L2 aBY called ML-UCA.
We modeled the L2/L3 hierarchy as follows: we assumed thifit legels were aggressively
pipelined and banked UCA structures. We also assumed that3thad the same size as
the comparable NUCA cache, and chose the L2 size and L3 aag#on that maximized

the overall IPC. The ML-UCA organization thus consumes nawea than the single-level

64

Configuration Loaded | Average| Miss Bank Tag | Search
Latency IPC Rate | Accesses|| Bits | Array
Base D-NUCA 18.3 0.71 | 0.113| 266M - —
SS-performance 18.3 0.76 0.113| 253M 7 224KB
SS-energy 20.8 0.74 | 0.113| 40M 7 | 224KB
SS-performance + shared bank 16.6 0.77 | 0.119| 266M 6 | 216KB
SS-energy + shared bank 19.2 0.75 | 0.119 47M 6 | 216KB
Upper bound 3.0 0.83 | 0.114 — - —
Upper bound + SS-performange 3.0 0.89 | 0.114 — 7 | 224KB
Table 4.3: Performance of D-NUCA with PTP search
Technology L2/L3 Num. | Unloaded| Loaded | ML-UCA | DN-best
(nm) Size Banks| Latency | Latency IPC IPC
130 512KB/2MB || 4/16 6/13 7.1/13.2 0.55 0.58
90 512KB/4MB || 4/32 7/21 8.0/21.1 0.57 0.63
65 1MB/8MB 8/32 9/26 9.9/26.1 0.64 0.70
45 1MB/16MB 8/32 10/41 | 10.9/41.3 0.64 0.75

Table 4.4: Performance of an L2/L3 Hierarchy

L2 caches, and has a greater total capacity of bits. In aulitve assumed no additional
routing penalty to get from the L2 to the L3 upon an L2 misseasally assuming that the
L2 and the L3 reside in the same space, making the multi-reeelel optimistic.

Tablel 4.4 compares the IPC of the ideal two-level ML-UCA watiD-NUCA. In
addition to the optimistic ML-UCA assumptions listed abowe assumed that the two
levels were searched in parallel upon every accelse IPC of the two schemes is roughly
comparable at 2MB, but diverges as the caches grow largerl6MB, the overall IPC
is 17% higher with DN-best than with the ML-UCA, since manytioé applications have
working sets greater than 2MB, incurring unnecessary rejssel some have working sets

smaller than 2MB, rendering the ML-UCA L2 too slow.

The IPC of an ML-UCA design was 4% to 5% worse when the L2 and kBavgearched serially instead
of in parallel.

65

Tech. Num. Configuration Loaded| Average| Miss | Bank
model | banks latency IPC rate | accesseg

SIA1999| 32 S-NUCA1 21.9 0.68 0.13 15M
64 Shared bank D-NUCA | 125 0.78 0.12 | 144M
SS-energy + shared bank 15.6 0.78 0.12 36M

SIA2001| 32 S-NUCA1 30.2 0.62 0.13 15M
256 Shared bank D-NUCA | 16.6 0.73 0.12 | 266M
SS-energy + shared bank 19.2 0.75 0.12 47M

Table 4.5: Effect of technology models on results

The two designs compared in this subsection are not the aifhtsin the design
space. For example, one could view a simply-mapped D-NUC#aslevel cache (where
n is the bank associativity) that does not force inclusiord amwhich a line is migrated
to the next highest level upon a hit, rather than the highdstD-NUCA design could
be designed to permit limited inclusion, supporting migdtipopies within a spread set.
Alternatively, a ML-UCA in which the two (or more) levels weeach organized as S-
NUCA-2 designs, and in which inclusion was not enforced, lef@tiart to resemble a D-

NUCA organization in which lines could only be mapped to tviacps.

Cache Design Comparison

Figure 4.3 compares the 16MB/45nm IPC obtained by the besadi major scheme that
we evaluated: (1) UCA, (2) aggressively pipelined S-NUCA3) S-NUCA-2, (4) aggres-

sively pipelined, optimally sized, parallel lookup ML-UCAB) DN-best, and (6) an ideal
D-NUCA upper bound. This ideal bound is a cache in which mfees always hit in the

closest bank, never incurring any contention, resulting donstant 3-cycle hit latency, and
which includes the PTP search capability for faster misslugisn.

The results show that DN-best is the best cache for all beetbf the benchmarks

66

0.6- = 1 1.0—_ 104 [T 204

0.4+

IPC

0.54 0.5 0.54 1.0-

0.2] ” i] ’,
0.0 0.0- 0.0 (0.0 0.0

172.mgrid 173.applu 176.gcc 177.mesa 178.galgel

1 0.6 1
1.0] 0.8 {7
| 1 1.0+
] 0.4- 041 [T 0.6 _
0.5 ‘ | 0.41]
1 0.24 0.2+ 0.5]
| | | 0.2- 1
0.0- 0.0- 0.0 0.0- 0.0-
10 179.art 181.mcf 183.equake 253.perlbmk 256.bzip2
d] 0 8- 0.6+ 0.6-
] 1 0.8 '] _m fouca
i | _ 1 O S-NUCA1
1 . Tl O ML-UCA
. 0.6+ 0.6 0.44 0.4+ @ S-NUCA2
0.5 1]] B D-NUCA
] 0.4- 0.4+ B UPPER
| 1 1 0.2+ 0.2
] 0.24 0.2- | " {
0.0 0.0 0.0- 0.0 0.0
300.twolf sphinx cg sp bt

Figure 4.3: 16MB cache performance for various applicatimeluding SPEC2000, NAS
suite, and Sphinx

67

1.5,

~UPPER
—-D-NUCA
~+-S-NUCA2
1.0 ~ML-UCA
o -~ S-NUCA1
a
0.51
0.0

f?:%lrl?m 49Mr?m 8 E’m 164 r|13m
(a) 179.art

Figure 4.4: Performance summary of major cache organizati@rt

(mgrid, gcg and andbt). In those three, DN-best IPC was only slightly worse thanliast
organization. The second-best policy varies widely actbedenchmarks; it is ML-UCA
for some, S-NUCA-1 for others, and S-NUCA-2 for yet otheree DN-best organization
thus offers not only the best but the most stable performaft® ideal bound (labeled
Upperon the graphs) shows the per-benchmark IPC assuming a lé&daccess latency
of 3 cycles, and produces an average ideal IPC across alhbemks of 0.89. We found
that the DN-best IPC is only 16% worse tHdpperon average, with most of that difference
concentrated in four benchmarlepply art, mcf, andsphinx.

Figure 4.4, 4.5 and 4.6 shows how the various schemes pedomss technology
generations and thus cache sizes. The IP@ripfwith its small working set size, is shown
in Figure/4.4. Figurée 45 shows the same information for acherark (nc that has a
larger-than-average working set size. Figure 4.6¢ shoasidnmonic mean IPC across all
benchmarks.

First, the IPC improvements of D-NUCA over the other orgatioms grows as the

68

0.8

0.61 — UPPER
= D-NUCA
~S-NUCA2

| ~+-ML-UCA

0.4 - S-NUCAL

0.2

0.0

%Mrl]am 49Mr?m 8 rl?m 164 rI13m
(b) 181.mcf

Figure 4.5: Performance summary of major cache organizationcf

1.0/
e UPPER
- D-NUCA
—+ S-NUCA2
~+-ML-UCA
0.5 < S-NUCA1
0.0

fS%Ir?m 4QMrlle 86'\\4rl?m 164 an
(c) All Benchmarks

Figure 4.6: Performance summary of major cache organizmatidvG

69

cache grows larger. The adaptive nature of the D-NUCA achite permits consistently
increased IPC with increased capacity, even in the facengiiowire and on-chip commu-
nication delays. Second, the D-NUCA organization is stainliéhat it makes the largest
cache size the best performer for twelve applications,initBo of the best for two applica-
tions, within 5% for one application, and within 10% for ormphlcation. Figure 4.4 shows
this disparity most clearly in that D-NUCA is the only orgaaiion for whichart showed

improved IPC for caches larger than 4MB.

4.2 Chip-Multiprocessor D-NUCA

Chip-Multiprocessors (CMPs) are now commonplace. The mg@jocessor companies
have adopted CMP designs across various domains; sensiktodeand embedded do-
mains. As more transistors are integrated at smaller téobies, more processor cores are
expected to be integrated in the chip. While much work existbuilding multi-processor
systems, the best design for building a scalable CMP istitin research question. In
particular, the trend of integrating many cores in a sindlg grovides a new challenge
in designing on-chip memory hierarchy. Even though L1 cadre likely remain private
and tightly integrated to processor cores, how to manageakcBeas will be a key design
decision to building a scalable CMP.

The L2 caches may be shared by all processors or may be sspamniat private per-
processor partitions. The completely private L2 cachegiheprovides faster access time
than the shared design since the private per-processatiqrais smaller than the shared
cache. In addition, the private L2 design allows a replidatepy of data in individual
private partitions, which further reduces the cache actiess if a cache hit occurs in a

private partition. On the other hand, the completely sharddache design maintains a

70

single copy of data in the entire shared pool that resultslamger effective cache size and
the corresponding lower miss rate.

The tension between a private cache design and a shared desiga is driven
by application characteristics. Each application will &ndifferently with the reduced
hit latencies of a private cache design versus the reducssembf a shared cache design.
The applications with larger working sets and less datairsfpaenefit more from a shared
cache design while the applications with smaller workintgasel high data sharing get more
benefits from a private cache design.

To address the design trade-off between private and shaokes, we first propose
a composable cache substrate based on the non-uniform asnttiecture (NUCA) design
that can be configured as a private cache design or as a slaatezidesign per-application
basis. In addition to the two ends of the spectrum of cachigegprivate, shared), the un-
derlying cache substrate permits dynamic selection of agyes: of cache sharing, adjusted
by the operating system. Here, we define sharing degreeas the number of processors
that share a given pool of cache. In this terminology, a sigatiegree of one means that
each processor has its own private L2 partition, whereasidnghdegree of sixteen means
that all processor are sharing a single large cache arrayli+arocessor CMP system.
Since the detailed discussion on the performance effetiecdtiaring degree was discussed
by Huh's dissertation [52], this dissertation focuses ame¢hergy implication of various
sharing degree.

Secondly, we evaluate the effect of dynamic data migratioR-NUCA to reduce
average L2 hit latencies and thus support larger sharingedegWhile cache designs with
a large sharing degree reduce the overall cache miss fagiaache hit latencies increase

significantly with larger effective cache capacity. In threyious chapter, we showed how

71

[eo][p2][p2][s][+][s][Pe][p7k
: : Processor Core
Hufol[e}t fel [Io] | el { 1 [o) | o} 1 [ol
scamems {| SIS i o cun
_ HOH R I T~ Switched
Directory for L2~ St o e S i . Network
Conerence ™ ¢ L q o A it it A
HIRIRIR(IR|OR|DE{DR|NEE
: [P15|[P14] [P13| [12] [P11 [P1of [Po || Pe]

Figure 4.7: Composable cache substrate for flexible shdeggee

dynamic data migration in D-NUCA reduces the average cadhtatencies of a large
uniprocessor L2 cache. In the following subsections, wevsihat dynamic mapping ca-
pabilities can potentially reduce long latencies in a lasbaring degree CMP cache. We
also show that dynamic mapping can reduce the total enermgguaoed by an on-chip cache

subsystem, by reducing the on-chip network traffic in higttering degrees.

4.2.1 CMP L2 Cache Design Space

As shown in Figure 4.7, a cache substrate we evaluate to gufgdble sharing degree
is based on a composable cache substrate that is explordunjsteé 3. The composable
cache substrate breaks large on-chip L2 caches into mangraieed SRAM banks that are
independently accessible, with a switched 2-D mesh net{@@kembedded in the cache.

The configurable nature of switched network allows cachégtoomposed to sup-

port various sharing degrees. By adjusting the bits usedutermemory addresses to a

72

|
I

I
[N
[ie2]ie2)]
[

oo [} [of {1 [off rlof | o

p1s| (P14 [paaf[P12| [p1][p10] | po

(@)

Figure 4.8: Various sharing degrees from the sharing degneda), the sharing degree 16
(b), to the sharing degree four (c)

cache bank, the cache array is configurable by the systermetanysdegree of sharing. If

each processor maps the same address bit string to a diffeaek, the sharing degree is
one. If all processors map the same address bits to a single @ sharing degree is

sixteen.

Lines can be mapped into this array of cache banks with fixgzpimgs or dynamic
mappings, where cache lines can move around within the ¢adheher reduce the average
cache hit latency. With a static mapping policy, a fixed hasicfion uses the lower bits
of a block address to select the correct bank. The L2 acceswiais thus proportional to
the distance from the issuing L1 cache to the L2 cache bankallBywing non-uniform hit
latencies, static mapping can reduce hit latencies ofticadil monolithic cache designs,
which fix the latency to the longest path [64]. Because a béackbe placed into only one

bank, the L2 access latency is essentially determined byck lslddress.

73

Parameter | Value

Processor frequency 5 GHz

Issue width 4

Window size 64-entry RUU

Number of CPUs 16

L1 I/D cache 32KB, 2-way, 64B block, 8 MSHRs

L2 cache 8x8 banks

L2 cache bank 256KB, 16-way, 5 cycle latency

Network 1 cycle latency between two adjacent banks
On-chip directory | 10 cycle access latency

Main Memory 260 cycle latency, 360 GB/s bandwidth

Table 4.6: Simulated system configuration

Figure[4.8 shows three possible partitioning schemes inprdéessor CMP that
have sharing degrees of one, 16, and four, respectivehh &&haring degree of one (Fig-
ure/4.8a), the CMP has sixteen 1 MByte caches, each of whiativiste to one processor.
With a sharing degree of sixteen (Figure |4.8b), the CMP h&gs @me 16 MByte cache,
which is shared by all sixteen processors. Figure 4.8c stiosvsonfiguration of the shar-
ing degree four,in which four processor cores share 4MB pbohche banks. In addition to
the shown three configurations, the evaluated cache stéostrpports the sharing degrees
of two and eight as well. To change sharing degrees, the ignetherence mechanism

must have the flexibility to adapt to different organization

Methodology

We evaluated our CMP cache designs using MP-sauce, an exeduaien, full-system
simulator [52]. The simulator was derived from IBM's SIm®®C, which uses AlX
4.3.1 as the simulated OS. The processor model extendsrtieScalar processor timing

model, adding multiprocessor support. Table 4.6 shows asamnof the main architectural

74

parameters to measure performance and energy.

The L2 cache bank array is connected with a 2D-mesh poiptiot interconnec-
tion network comprised of links and switches. While we maoalélmessages for coher-
ence and data migration to assess network bandwidth, wenassfinite buffering at each
switching node. To evaluate the effect of input buffer simgperformance, we used a sepa-
rate cycle-accurate on-chip network simulator with expéctetwork traffic [39]. With the
trace-driven network simulation, we confirmed that theéase of input buffer size beyond
five entries has little effect on performance compared tartfieite input buffers.

We estimate the dynamic energy consumption of the L2 cadbgystem to inves-
tigate the energy consumption effects of varying the syatiggree and using dynamic data
migration. We include all L2 cache bank accesses, on-chigridiry accesses for coher-
ence management and the partial tag accesses for the D-N@§ignd On a 45nm design
at 5GHz, we estimate that the energy consumption ratio ofdche bank access: cache
line movement per hop: on-chip directory access: part@laecess is about 7:5:2:1. To
model the router energy consumption, we use the structuralddsed energy estimation
technique with the Synopsys Primepower tool. The router RTdbtained from the TRIPS
prototype that implemented the S-NUCA L2 cache [99]. We 3AE&TI [117] to estimate
the energy consumption for accessing various SRAM arragtsires in the L2 subsystem,
including cache banks, the on-chip directory and the gdaggastructure.

We used three commercial applications: SPECWeb99, TPGiWVS#EC|bb, and
four scientific shared-memory benchmarks from the SPLASIHH2 [126]: Ocean, Barnes,
LU, and Radix. Table 4|7 shows the dataset size and othebladtatures of each applica-

tion.

75

| Application | Dataset/Parameters
SPECWeb99 Apache web server, file set: 230MB, 480 transactions
TPC-W 185MB databases using Apache & MySQL, 48 transactipns
SPECjbb IBM JVM version 1.1.8, 16 warehouses, 3000 transactions
Ocean 258 x 258 grid
Barnes 16K particles
LU 512 x 512,16 x 16 blocks
Radix 1M integers

Table 4.7: Application parameters for workloads

4.2.2 Effect of Sharing Degree in CMPs

In this section, we briefly summarize the trade-offs of highed lower sharing degrees.
Then, we discuss the effect of various sharing degrees oartbgy consumed in the L2

subsystem.

Hit latency versus hit rate

The main advantage of higher sharing degrees is higher Li#edait rates. If the working
sets across CPUs are not well balanced, private L2 cachemakem one CPU suffer from
capacity misses while other CPUs have unused cache spaaeedStaches, on the other
hand, allow otherwise unused cache space to be used by tbe-spagry CPU. Further-
more, shared caches keep at most one copy of a block, nohgagtace by storing multiple
copies of the same block, unlike private L2 caches sharipjesoof the same line. As a
result, shared caches can effectively store more dataeitti increasing hit rates.
However, the drawback of a higher sharing degree is the pakéor higher average
hit latency due to the larger size, longer wire delays, anctbismsed bandwidth requirements.

In future wire-dominated implementations, the effect af@ased hit latency may outweigh

76

the benefit of increased hit rates for shared caches.

On a set of benchmarks (described in Table 4.7), we obsehatddr shared S-
NUCA organizations, low-to-medium sharing, from one torfquovide the best perfor-
mance for all applications except one. The best sharingegegcross all benchmarks is
four. We confirmed that significant latency reductions arssjiie for private L2 caches,
and significant miss reductions are possible for shared t2esa More detailed evaluations

are presented by Huh in his dissertation [52].

Coherence overheads

Inter-processor communication through a shared L2 caclf@sisr than through private
L2 caches connected by a coherent bus. With shared L2 cgutoegssors communicate
through L2 cache blocks directly. As sharing degrees irsergamore processor-to-processor
communication can be transferred within local shared cacieoiding slower coherence
networks across shared caches. Furthermore, since thefdidecaches is smaller than
the size of L2 caches, modified data in the L1 are frequentkhéid to shared L2 caches,
making the modified data readily available to other proaesgothe same shared cache.
By absorbing many local communications into shared cadtigler sharing degree caches

can reduce slower three-hop cache-to-cache transfers.

Energy efficiency

The sharing degree can affect energy consumed by on-chimrietraffic. If the majority
of cache accesses hit in small local caches, a lower shaegged cache can reduce the
network traffic. In this situation, most data traffic is lazald between processors and close

cache banks, reducing traversal distances. However, #f a@etesses to on-chip remote

77

1)

—<— On-chip network traffic
--o-- Bank accesses
--0-- Off-chip network traffic

Number of accesses (Normalized to SD

SD=1 SD=2 SD=4 SD=8 SD=16
SPECWeh99: Sharing Degrees (SD)

Figure 4.9: On-chip network traffic, bank accesses, anglaffi-memory traffic with vary-
ing sharing degrees (normalized to SD=1)

caches are frequent, a lower sharing degree may increaserkeraffic, bank accesses
and L2 directory accesses. Furthermore, a higher sharigiggelean be more efficient for
off-chip memory accesses, since the hit rate can be highaniiith a lower sharing degree.
If driving off-chip signals and external DRAMs consume ayportion of system power,
decreasing off-chip accesses will become critical.

Figure[4.9 presents three energy related statistics: gn+wtwork traffic, bank
accesses and off-chip memory traffic across various shdeggees. Each statistic is nor-
malized to the sharing degree (SD) of one. Across differpptieations, these metrics do
not change significantly, so we present the result from SP&H/

The most significant change in the energy efficiency is thevordt traffic increase.
The network traffic increases as sharing degrees becomerhigihce command and data
packets must traverse more hops in higher-sharing-degielees. Between SD=4 and

SD=8, the traffic increases sharply, since processors meaccess banks on the opposite

78

of the chip. On-chip network traffic increases by 170% from=3@Do SD=16. However,
up to SD=4, the increase is modest a 35%. A 2-D mesh networkucoes less area than a
higher degree networks, such as a torus. However, higheeelegtworks, which can re-
duce network hop distance at the cost of added area, may é¢oatelduce hit latencies for
higher sharing degrees. Sharing degree changes do ndt ladiielc accesses significantly,
but off-chip memory accesses can be affected considemdhending on the applications.
As higher sharing degrees can improve hit rates, off-chimorg traffic decreases.

We draw three conclusions from these results. First, higgree shared caches for
CMPs do not have any advantages in wire-delay dominatedeftéghnologies even when
high degrees of application sharing exist. The increaseihitlatency in shared caches
degrades performance more than the reduced misses impr®exond, the sharing degree
can change overall performance significantly. Third, na@leirsharing degree provides
the best performance for all benchmarks. NeverthelesSEhe! design point has the best
average performance for the applications used in this atialy and is the best compromise

fixed design point for this mix of workloads on S-NUCA.

4.2.3 Effect of Dynamic Data Migration

Dynamic mapping capabilities can potentially reduce latgrcies with large sharing de-
grees. Performance improvements are achieved when thatiaigpolicy is successful and
the reduction in latency dominates the increased latenttyeaihore complex lookup mech-
anism. To isolate the effectiveness of dynamic migratiemfthe overheads of the search
mechanism, we evaluated an ideal D-NUCA with a perfect searechanism (D-NUCA
Perfect). The perfect D-NUCA configuration assumes an ersearching mechanism that

allows L1 misses to be sent directly to the L2 bank storingdygiested block on a hit. L2

79

Sharing Degree | SD=1| SD=2| SD=4| SD=8| SD=16
S-NUCA 11.7] 12.6 | 14.3| 20.5| 24.7
D-NUCA Perfect 8.7 | 9.2 | 10.7| 15.1| 19.1
D-NUCA Real 9.5 |10.0| 114 18.1| 21.9

Table 4.8: Average D-NUCA L2 hit latencies with varying shgrdegrees

111

1 1 4
102 Apgenn g b Qoo g R
== S-NUCA
2 16 16 == D-NUCA perfect
= D-NUCA
0.5+
0.0-

Figure 4.10: D-NUCA execution times (normalized to S-NUCAWSD=1)

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
2

Execution Time

misses are also detected without any search overhead ietteefpconfiguration. However,
the perfect D-NUCA configuration still models other overtieauch as network and bank
bandwidth consumption for accesses and block migration.

Table[4.8 shows the average L2 hit times across all apmicatfor five sharing
degrees. With the perfect lookup mechanism, D-NUCA migrafolicies show signifi-
cant reductions in L2 hit latencies. The latency reductimiegsease as the sharing degree
increases. At SD=16, the perfect D-NUCA policy reduces trerage L2 hit latency by
23% compared to the S-NUCA design. However, with a realsg@rch mechanism with
distributed partial tags, the hit latencies of D-NUCA argndficantly increased from the
perfect lookup mechanism, confirming that the search mestmais a key design issue
with D-NUCA.

Figure 4.10 shows the relative execution times of the bebmeing sharing degree

80

for the S-NUCA and D-NUCA design points across all applmagi. Each bar shows the
SD with the best performance noted at the top. This figurstifies the following: (1) the

performance potential of the perfect search and migratienhanism and how closely the
realistic implementations can match them, and (2) perfacaef the realistic D-NUCA

design compared to S-NUCA with the best sharing degree.

The perfect search mechanisms with dynamic migration adunceeexecution time
by 3-28%, except for Ocean. For Ocean, although D-NUCA redlaverage hit laten-
cies, L2 miss rates are increased since blocks are not pedngoickly, and are victimized
prematurely by new blocks. For SPECjbb, the performancedugment is small, since
SPECjbb does not take advantage of the increased sharimgegdemd the effect of dy-
namic migration is not high at low sharing degrees. Withistialsearch mechanisms, the
performance improvement of D-NUCA can be lost (SPECWeb39 HAC-W). For LU
and Radix, dynamic migration shows large improvements &6-25%. LU has a relatively
large L1 data miss rate of 12%, but the entire working setindis in the L2 caches.
The reduction in L2 hit latencies directly improves perfamoe. In Radix however, ex-
ternal memory accesses dominate performance due to botititapnd conflict misses.
Therefore, the best performance for Radix is achieved wihaaing degree of sixteen for
both S-NUCA and D-NUCA. Furthermore, the increased banka@atvity in D-NUCA
reduces conflict misses significantly. D-NUCA enables iaseg effective associativity
since a cache address can be mapped to any cache bank in theaakset. Since shared
caches, especially with high sharing degrees, are pronertfliat misses, the increased

associativity in D-NUCA helps avoid certain pathologicahdicts.

81

Solid: S-NUCA

7 SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix
Striped: D-NUCA
mSD=1

mSD=2
=SD=4
aSD=8
..o B | IR B SN N | R B BN CUE R N AN R I " . —
H A \f T o it =SD=16
o ol 7 W ‘ 1l w WA g 4
| e 1l 21 o il i P i 7 |

124816 124816 124816 124816 124816 124816 124816
Sharing Degree

w

Interconnect Traffic
~
L

-

1l
o
”
|
|

LN NN
AN RNN

LN NY

isuuy
AN ¥

[(ANNY
LN NV
LN N

o

Figure 4.11: On-chip interconnect traffic (normalized tBlBCA with SD=1)

Results: Energy Trade-Offs

To compare the relative energy consumption of S-NUCA andWENK, we tabulated the
power consuming events in the memory system (as in Table@-8)UCA has the potential
to reduce on-chip interconnect traffic by placing frequenitcessed blocks close to their
requesting cores. However, block migration in D-NUCA geaes extra traffic since a
migration victim needs to be transferred back to the bank&hédit occurs. D-NUCA also
increases the number of bank accesses because three eiadlaips are necessary for
every migration.

Figures 4.11 and 4.12 compare D-NUCA and S-NUCA using twaioseton-chip
interconnect traffic and number of bank accesses. Figui® grdsents the total energy
consumed by the on-chip L2 cache subsystem. We accountdogrtrgy consumed by
accessing partial tag arrays in D-NUCA. All numbers are radizad to S-NUCA with
the sharing degree of one. S-NUCA numbers are representedlibybars and D-NUCA
numbers are represented by striped bars.

Figurel 4.11 shows that placing frequently accessed blods®icto the processor

provides the benefits in reducing the on-chip interconnedti¢. The decreased network

82

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix Solid: S-NUCA

Striped: D-NUCA
I mld P ----- - -
N H 2 Ll

1 a Ll 218
124816 124816 124816 124816 124816 124816 124816
Sharing Degree

=SD=1
mSD=2
- mSD=4
aSD=8
oSD =16

Number of Bank Accesses

Figure 4.12: Number of banks accesses (normalized to S-NWittASD=1)

hops to access blocks are higher than the traffic increaséodugration. D-NUCA with
the sharing degree of one effectively reduces the on-clépdannect traffic by 18% on av-
erage compared to S-NUCA. As sharing degree increasesdhetion grows and reaches
45% on average with the sharing degree of sixteen. In termetwfork traffic, D-NUCA
can be more effective and the gains become higher as shaimgeadincreases.

As expected, Figure 4.12 shows that block migration in D-MUi@creases the
total bank accesses significantly. The number of bank agsdesreases by 31-40% for
the tested applications with a sharing degree of sixteen, tdtally to block migration.
Note that the number of bank accesses for D-NUCA increasts skiaring degrees of
eight and sixteen while the number for S-NUCA remains ungkdracross various sharing
degrees. This is because of our assumption in floorplandipgpoessor cores and L2 cache
banks. In eight and sixteen sharing degrees, each colunindedris expanded vertically
and contains eight cache banks as shown in Figure 4.7. Whéochk is shared by two
processors located in the top and bottom, the block may teigpetween eight banks in the
column bank set and generate extra bank accesses.

In Figure 4.13, we observe that the total energy consumebteogr-chip L2 cache

83

SPECweb99 TPC-W SPECjbb Ocean Barnes LU Radix :
4 Solid: S-NUCA
Striped: D-NUCA

mSD=1
mSD=2
mSD=4
- =mSDh=8
oSD =16

L2 Cache Energy

124816 124816 124816 124816 124816 124816 124816
Sharing Degree

Figure 4.13: Total energy consumed by on-chip L2 cache sidusy (normalized to S-
NUCA with SD=1)

subsystem follows the on-chip interconnect traffic tremdsithe energy consumed by bank
accesses and partial tag accesses are relatively smalbcethip the energy consumed by
the on-chip network. Therefore, dynamic migration can Gbute to energy reduction as

well as performance improvement.

4.3 Summary

Non-uniform accesses are appearing in high performandeeadesigns [88]. In the first
half of this chapter, we evaluate a range of policies to stppigrating data dynamically

on a composable cache substrate, thereby clustering tHeéngaets within a cache near

the processor.

This study shows that uniprocessor D-NUCA cache designigaelthe following

four goals:

e Low latency accessthe best 16MB D-NUCA configuration, simulated with pro-
jected 45nm technology parameters, demonstrated an avacagss time of 17 cy-

cles, which is a lower absolute latency than conventionatdches.

84

e Technology scalability Increasing wire delays will increase access times foritrad
tional, uniform access caches. The D-NUCA design scaleshrbatter with tech-
nology than conventional caches, since most accessesraieedeby close banks,

which can be kept numerous and small with a switched network.

e Performance stabilityThe ability of a D-NUCA to migrate data eliminates the trade
off between larger, slower caches for applications withdarorking sets and smaller,

faster caches for applications that are less memory iensi

e Flattening the memory hierarchyfhe D-NUCA design outperforms multi-level caches
built in an equivalent area, since the multi-level cache firael partitions that are
slower than an individual bank. This D-NUCA result augurewersal of the trend
of deepening memory hierarchies. We foresee future memergirichies having two
or at most three levels: a fast L1 tightly coupled to the pssoe a large on-chip
NUCA L2, and perhaps an off-chip L3 that uses a memory dewckrtology other
than SRAM.

In the second half of the chapter, we extend the concept clundorm cache ac-
cess architecture to emerging chip-multiprocessors (QMRd explore the well-known
design trade-off between the lower average hit latency thigtprivate L2 cache design and
the larger effective cache capacity with the shared L2 cagsign. The CMP L2 cache
substrate we evaluate is designed to support both lowedgtenivate logical caches as well
as highly shared caches, simply by adjusting the mappingeofame address on different
processors to the L2 cache.

The results show that—compared to private, non-shared tRipas—the L2 la-

tency more than doubles for a fully shared cache. The reaiglisshow that the fully shared

85

cache could eliminate a third of off-chip misses. Howeuee, fully shared cache can in-
cur a 170% network traffic increase. Clearly, a large opmitguexists if this gap can be
bridged. The S-NUCA organization (static mapping) is bestaf low-to-medium sharing
degrees for all applications; the extra hit latency is sintpb detrimental for larger sharing
degrees.

For a subset of applications, we observe that the dynamécrdigiration capabilities
of D-NUCA can reduce the average hit latency, driving thalddaring degree higher. In
addition, D-NUCA showed the potential benefit of reducing #mergy consumption as
well by decreasing the on-chip network traffic in higher gtgdegrees. However, both
performance gains and energy reductions over the S-NUCymegth the best sharing
degree are shown to be modest. We conclude that the perfoengains of the D-NUCA

design are unlikely to justify the added design complexity.

86

Chapter 5

Composable Processors

Due to limitations on clock frequency scaling, most futuoenputer system performance
gains will come from power-efficient exploitation of conoemcy. Consequently, the com-
puter industry has migrated toward chip multiprocessoMRE), in which the capability of
the cores depends on the target market. Some CMPs use a gnaateer of narrow-issue,
in-order cores (Niagara), while others use a smaller nurobeut-of-order superscalar
cores with SMT support (IBM Power5). In the non-server damsathe application soft-
ware threads must be able to provide sufficient concurrenaytilize all the processors.
Another disadvantage of conventional CMPs is their redaitiflexibility. In a conventional
design, the granularity (i.e., issue width) and number otpssors on each chip are fixed
at design time, based on the designers’ best analyses dtgodéesired workload mix and
operating points. Any fixed design point will result in subiogal operation as the number
and type of available threads change over time.

In this chapter, we describe and evaluate a potential alties) composable pro-

cessors that build on composable on-chip memories. A coatp®processor consists of

87

multiple simple, narrow-issue processor cores that carghgeegated dynamically to form
more powerful logical single-threaded processors. Thesnumber and size of the pro-
cessors can be adjusted on the fly to provide the target tisatshis the software needs
at any given time. The same software thread can run trangharewithout modifications
to the binary—on one core, two cores, up to as many as 32 cord® idesign that we
simulate. Low-level run-time software can decide how tot iedance thread throughput
(TLP), single-threaded performance (ILP), and energyiefiity. Run-time software may
also grow or shrink processors to match the available ILP tir@ad to improve perfor-
mance and power efficiency. Henceforce, we call a compogabtessor that we evaluate
shortly “CLP” (Composable Lightweight Processor).

Figure 5.1 shows a high-level floorplan with three of manysjiule configurations
of a CLP. The small squares on the left of each floorplan reptea single core while
the squares labeled L2 on the right represent some form witdited level 2 cache. The
system could obviously decide to run 32 threads on one cark @&gurel 5.1a) if the
number of available threads were high. If single-threadedopmance was paramount,
and the thread contained high internal concurrency, the &@id be configured to run
that thread across the number of cores that maximized peafuce (up to 32, as shown
in Figurel5.1c). If energy efficiency was paramount, for egharin a data center or in
battery-operated mode, the system could configure the Cltent@ach thread at its best
energy-efficient point, which in our experiments rangesnfitovo to 16 cores per thread,
depending on the application. Figure 5.1b shows an enguggrized CLP configuration
running eight threads across a range of processor gratiegari

A fully composable processor is signified by three chargsttes: (1) serial pro-

gram execution is distributed over multiple processorsn@hardware structures are phys-

88

(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

18 I 8 1 e 1 0 2 3 o f (2] [] [1o] [12]
8 o I I | 5 9 Y (9] [9] [[2]
[e] [p] [P] [P] (2] [i2] [2] [2] p || p |][] [2] [2] [i2] [2]
[P [P] [P] [P] (2] [c2] [2] 2] [L2] [] [12] [L2] P [2] [2] [c2] [2]
[P1|lP1I[P] [PI[e2] [2] [c2] [12] p
[P [P] [P] [P] (2] [c2] [2] [2] [L2] [2] [c2] [2] [L2] [2] [c2] [2]
[P [P] [P] [P][t2] [c2] [c2] [2] p | [2] [2] [c2] [2]
[PTTPT T [P I o] oo o]

Figure 5.1: Three dynamically assigned CLP configurations

ically shared by these processors, and (3) the number oégsocs combined to execute a
serial program can be dynamically changed transparenetoutiming application. Creat-
ing larger logical microarchitectural structures from #araones is the principal challenge
for the design of a composable processor. Composing somelsis, such as register
files and level-one data caches, is straightforward as thtegetures in each core can be
treated as address-interleaved banks of a larger aggrstgateure. Changing the mapping
to conform to change in the number of composed processomsiyneruires adjusting the
interleaving factor or function.

However, banking or distributing other structures reqliiby a conventional in-
struction set architecture is difficult. For example, opdraypass (even when distributed)
typically requires some form of broadcast, as tracking th&Jéin which producers and
consumers are executing is difficult. Similarly, instroatifetch and commit require a sin-
gle point of synchronization to preserve sequential exesigemantics, including features
such as a centralized register rename table and load/steteeg. While some of these chal-
lenges can be solved by brute force, supporting composifiadarge number of processing

elements can benefit from instruction-set support.

89

A better-fitting class of ISAs may be explicit data graph exienn (EDGE) archi-
tectures, which employ block-based program execution apticé intra-block dataflow
semantics, and have been shown to map well to distributedoarichitectures [15]. The
particular CLP we evaluate, called TFlex, achieves the asaple capability by mapping
the large, structured instruction blocks across partigigacores differently depending on
the number of cores that are running a single thread.

When multiple cores collaborate to run a single thread, fathe distributed re-
sources in each core are used by the thread. Each instrindtickis split among the cores,
with operands being routed across a scalar operand netd@rk 18] to wake up instruc-
tions on participating cores. The other resources, sudtedsltinstruction and data caches,
register files, branch predictors, and load/store queuwe form a physically distributed
but logically single resource, using support in the miccba@ecture that we describe in
Section 5.2.

In this chapter, we describe the TFlex CLP microarchitegtand compare the
performance, area, and power consumed by various confignsaagainst the TRIPS pro-
cessor, which use the same ISA, as a reference processofFIgheCLP microarchitecture
allows the dynamic aggregation of any number of cores—ug for3each individual thread—
to find the best configuration under different operatingatagperformance, area efficiency,
or energy efficiency. The performance, area, and power madelderived from and vali-
dated using the TRIPS hardware. On a set of 26 benchmarksding both high- and low-
ILP codes, results show that the best configurations ramge fme to 32 dual-issue cores
depending on operating targets and applications. The Tdiésign achieves a 1.4x per-
formance improvement, 3.4x performance/area improvenagut 2.0x performanéénatt

improvement over the TRIPS processor. The capabilitiesredf by CLPs thus permit flexi-

90

ble execution depending on workload and environmental spixeaking them a good match

for future, general-purpose parallel substrates.

5.1 ISA Support for Composability

The TFlex execution model employs an EDGE (Explicit DatapBr&xecution) instruc-
tion set architecture [15] proposed to better exploit corency from applications while
handling the growing wire-delay and the power-scaling leimgies of modern superscalar
processors.

EDGE instruction sets have two distinguishing featuresstFihey employblock-
atomic executionin which groups of instructions execute as a logical atoomit, either
committing all of their output state changes or none (in seerese like transactions). Sec-
ond, they supportlirect-instruction communicatiowithin each block, allowing instruc-
tions to specify their dependent instructions in the iredtan itself, rather than communi-
cating through a shared namespace like a register file.

In this section, we first describe these two distinguishieagfdres of EDGE ISA in
detail. Then, we discuss how these features of EDGE ISA stupgbkicient and flexible

composability.

5.1.1 Blocks

An EDGE compiler [107] constructs blocks [75,108] and assigach instruction to a loca-
tion within the block. Each block is divided into between tamd five 128-byte chunks by
the microarchitecture. As shown in Figlre 5.2, every blaehtdes a header chunk which
encodes up to 3Read and up to 32w i t e instructions that access the 128 architectural

registers. The read instructions pull values out of thestegs and send them to compute

91

S— Bit Offsets

PC —» — —
- — __ 3 6 5 0
Header o [Ho Read 0 Write 0 Header includes:
Chunk 128 Bytes - Up to 32 reads
4 H1 Read 1 Write 1 - Up to 32 writes
H2 Read 2 Write 2 - 128 bits in upper nibbles for
. 12 | H3 Read 3 Write 3 - header marker (8 bits)
Instruction % [ra Read Wie 4 - block size (8 bits)
Chunk 0 - block flags (8 bits)
128 Bytes 20 | H5 Read 5 Write 5 9 .
. \ - store mask (32 bits)
(32 Instructions) 24 | He Read 6 Write 6
H7 Read 7 Write 7
28
Instruction \
Chunk 1 128 Bytes 9% [H24 Read 24 Write 24
(32 Instructions) e\ 100 [H25 Read 25 Write 25
\ 104 |H26 Read 26 Write 26
Instruction \ 108 |H27 Read 27 Write 27
Chunk 2 12 |H28 Read 28 Write 28
128 Bytes \ 16 [H29 Read 29 Write 29
(32 Instructions) \ 120 [H30 Read 30 Wit 30
124 |H31 Read 31 Write 31
Instruction
Chunk 3 Byte
128 Bytes Offsets
(32 Instructions)

Figure 5.2: Block format (from the paper by Sankaralingaral €f99])

instructions in the block, whereas the write instructioetsim outputs from the block to the
specified architectural registers.

The header chunk also holds three types of control statehfoblock: a 32-bit
“store mask” that indicates which of the possible 32 memnosjructions are stores, block
execution flags that indicate the execution mode of the hlaa#l the number of instruction
“body” chunks in the block.

A block may contain up to four body chunks—each consisting2ahstructions—for
a maximum of 128 instructions, at most 32 of which can be |l@adbstores. In addition,
all possible executions of a given block must always emistme number outputs (stores,
register writes, and one branch) regardless of the prediqadth taken through the block.
This constraint is necessary to detect block completionhendistributed substrate. The

compiler is responsible for generating blocks that confayrthese constraints [107].

92

5.1.2 Direct Instruction Communications

Direct instruction communication—in which instructiomsa block send their operands di-
rectly to consumer instructions within the same block in &afilaw fashion—permits dis-
tributed execution by eliminating the need for any inteimgrshared, centralized structures
such as an issue window or a register file between the prodimceconsumer.

As shown in Figure 5/3, the ISA supports direct instructiomemunication by en-
coding the consumers of an instruction as targets withiptbducing instruction, allowing
the microarchitecture to determine where the consumedessind forward a produced
operand directly to its target instruction(s). The ninethrget fields (TO and T1) shown
in the encoding each specify the operand type (left, rigietdisate) with two bits and the
target instruction with the remaining seven. A microamtiitire supporting this ISA will
determine where each of a block’s 128 instructions is maptietieby determining the
distributed flow of operands along the dataflow graph witkioheblock.

More details on the instruction set architecture and exacuodel are available in

the TRIPS ISA Manual [78].

5.1.3 Support for Composability

These features of EDGE ISAs offer power and performanceiaifiy by removing the
overhead of rediscovering dataflow dependences by the haedsince the compiler ex-
plicitly encodes the dependences in the ISA. This encodiingireates the need for most
of the unscalable power-hungry structures in the conveatisuperscalar processors, in-
cluding associative issue window, complex dynamic scheduhulti-ported register files,
per-instruction register renaming, and complex broaduastypass network.

While composability can also be provided using traditiof®As [54], EDGE ar-

93

General Instruction Formats

31 252423 22 18 17 98 0
[opcooe [PrR| xop | T | T0 |G INSTRUCTION FIELDS
| opcopE [PrR| xop | IMM | TO |1 OPCODE = Primary Opcode

XOP = Extended Opcode

Load and Store Instruction Formats PR = Predicate Field

31 25 24 23 22 18 17 98 0 IMM = Signed Immediate
| opcopE [PrR| Lsp | IMM | TO | L T0 = Target 0 Specifier
T1 = Target 1 Specifier
| opcobe [PR]| s | (MM | 0 |'s LSID = Load/Store ID
8 h Instruction F " EXIT = Exit Number
ranch Instruction Forma OFFSET = Branch Offset
25242322 20 19 0 CONST = 16-bit Constant
| opcope [PR| EXT | OFFSET |B V = Valid Bit
i GR = General Register Index
Constant Instruction Format RTO = Read Target 0 Specifier
31 2524 98 0 RT1 = Read Target 1 Specifier
[opcobe | CONST [T0 | c
Read Instruction Format
2120 1615 8 7 0
[vV[e [rm RO |R

Write Instruction Format
5 4 0

] ok Jw

Figure 5.3: Instruction formats (from the paper by Sankagalm et al. [99])

chitectures provide the salient feature of composabilijtst, since the dataflow graph
is statically and explicitly encoded in the instructionestm, it is simple to shrink or ex-
pand the graph on fewer or larger number of execution reesuas desired with virtually
no additional hardware. Second, when a single thread apiglit runs on multiple cores,
traditional architectures will require careful coordioatamong cores to maintain the se-
guential semantics of the instruction stream, especialig-arder stages of pipelines such
as fetch and commit [54]. This coordination overhead canidgpafecantly reduced if the
unit of coordination is done at much larger granularity thatividual instructions.
TRIPS is the first architecture to employ an EDGE ISA. It aimsstipport dif-

ferent granularities of parallelism and takes a partitignapproach, which implements a
coarse-grained CMP and logically partitions the large gssors to exploit thread-level
parallelism when it exists [98]. While this approach is gdodimproving performance of

applications with a moderate number of threads, it proviiheised opportunity to adapt to

94

different performance, power, or throughput needs. Ini@der, an ultra-large core with
SMT support would not be an ideal match for applications kiaae limited parallelism or
applications that have abundant threads. The TFlex aothite takes, conversely, a syn-
thesis approach that uses a fine-grained CMP to exploitdHese| parallelism and tackles
irregular, coarser grained parallelism by composing mldtcores into larger logical pro-

Cessors.

5.1.4 ISA Compatibility

Despite the advantages that EDGE ISAs offer, major ISA cesiage a daunting challenge
for industry, considering the complexity that systems heseumulated. However, several
technologies have been developed to transit into a new |8éedully under the hood. For
example, Transmetra’s code morphing software dynamit@hslates x86 instructions into
VLIW code for its processors [23]. We are working on similectiniques and have built a
simple PowerPC-to-TRIPS static binary translator. Wedvelithat such static and dynamic

translators will enable the easier adoption of new ISAs.

5.2 Microarchitectural Support for Composability

The microarchitectural structures in a composable pracaessst allow the capacity of the
structures to be incrementally added or removed as the nuaflmrticipating cores in-
creases or decreases. For instance, ideally, doublinguimber of cores should double
the number oflusefulLSQ entries, double thesefulstorage in branch predictors, etc. To
provide efficient operation at a range of composed poineshdrdware overheads to sup-
port the composability should be kept low. In particulaie thardware resources should

not be oversized or undersized to suit either a large processfiguration or a small con-

95

figuration. At the same time, centralized structures thdit it the scalability of the
microarchitecture should be avoided.

To provide this capability, we identify and repeatedly gppVo principles. First,
the microarchitectural structures are partitioned by esklwherever possible. Since ad-
dresses of both instructions and data tend to be equallsibdittd, address partitioning
ensures (probabilistically, at least) that the useful cdpancreases/decreases monoton-
ically. Second, we avoid physically centralized microdettural structures completely.
Decentralization allows the size of structures to be grovithout the undue complexity
traditionally associated with large centralized struesur

This complete partitioning addresses some of the limitatiof the original TRIPS
microarchitecture. Specifically, the next-block predicitate and the number of data cache
banks were limited by the centralization of the predictad #re load-store queue, respec-
tively. Full composability necessitates distributinggbatructures as well, which provides
higher overall performance than the TRIPS microarchitectirespective of the compos-
able capabilities. However, those performance gains ai@eabgnefit to the significantly
increased flexibility that composition provides.

Figure 5.4 shows how TFlex partitions the microarchiteaitstructures and inter-
leaves them across participating cores. The microar¢hitecises three distinct hash func-

tions for interleaving across three classes of structures:

e Block starting address: The next-block predictor resaifeay., BTBs and local his-
tory tables) and the block tag structures are partitionexdba@n the starting virtual
address of a particular block, which corresponds to therprogounter in a conven-
tional architecture. Predicting control flow and fetchingtructions in TFlex occurs

at the granularity of a block, rather than individual instrans.

96

Program

Blocko Core0 Corel
(Inst0 \ * 1 1 i .
o H2 (# Block address) 12 (# Block address) Hashing Function For Interleaving Resources :
H Block Next-Block Block Next-Block
. Tag Predictor Tag Predictor Hash1l (# Inst ID) =
Inst126 (# Inst ID) % (# of participating cores)
Inst127 HI1 @# Inst ID) H3 (# Data address) HI (# InstID) ' H3 (# Data address)
— Hash2 (# Block address) =
Blockl _\kO 1so 10 ((# Block address) >> 12) % (# of participating cores)
-\ —
::z:g \ Llh — L1 Hash3 (# data address) =
" eache L1 I-cache L1 (' (High-order bits from # data address)
. — D-cache D-cache XOR
d o Low-order bits from # data address)
Inst126 Inst Window Inst Window (ow-orde . .
InSt27) % (# of participating cores)

Figure 5.4: An example depicting interleaving of differemicroarchitectural structures for
a two-core processor

e Instruction ID within a block: A block contains up to 128 ingttions, which are
numbered in order, 0 through 127 as shown in Figure 5.4. astms are inter-
leaved across the partitioned instruction windows andhintibn caches based on the
instruction ID, theoretically permitting up to 128 coresledolding one instruction

from each block.

e Data address: The load-store queue (LSQ) and data cachearétiwned by data
address from load/store instructions, and registers aeddéaved based on the low-

order bits of the register number.

In addition, register names are interleaved across thetezdiles. However, be-
cause a single core must have 128 registers to support dilmglle execution, register file
capacity goes unused when multiple cores are aggregatecauBe interleaving is con-
trolled by bit-level hash functions, the number of cored tten be aggregated to form a
logical processor must be a power of 2.

In this section, we first give a brief overview of how the TFlmicroarchitecture

implements the block-oriented execution model of the EDGE. We describe each of the

97

Lifetime of block A0
in threadO and
block BO in threadl

Lifetime of block Al
in threadO and
block B1 in threadl

Figure 5.5: TFlex execution stages: execution of two swseesblocks (A0, Al) and
(B0O,B1) from two different threads executing simultandpus a 16-core TFlex CLP with
each thread running on 8 cores

major pipeline stages: block fetch, next-block predictioiock execution, and block com-
mit. Then, we describe the required microarchitecturallmasms at each stage to support
the composable capabilities. we also discuss the chabengaipporting composability in

the context of traditional architectures and how the TFl&troarchitecture addresses these

challenges.

. The owner of block AO, BO

The owner of block A1, B1

Thread0

Block A0

Block A1

Inst127

Block BO

Block B1

threado

threadl

thread0 threadl

(a) FetchO (b) Next-Block Prediction0 (c) Execution0 (d) Commit0
[lhreado - threadl threado thread1 threado thread1 threado ~ threadl
GRiE OO0 00
RS T H I SN
Oy @R (0N 00
............ Ol RO0 D0

(e) Fetchl

(f) Next-Block Prediction1

98

(g) Executionl

(h) Commitl

5.2.1 Overview of TFlex Execution

The basic unit of resource management in the TFlex micrieathre is a block — a sin-
gle entry, multiple exit group of instructions — which isdbeéd and committed atomically.
Managing the microarchitectural resources for blocks efrirctions rather than individ-
ual instructions reduces both the number of resource mamageoperations and the state
required for the management. Each in-flight block is asslgae owner core, based on
a hash of the block address, which initiates block fetchdipte the next block, sends the
next-block prediction to the core that owns the next predittiock and eventually commits
the block. The block core also takes the responsibility aftfing a block when a branch
misprediction or load mispeculation is reported.

Figure 5.5 provides an overview of TFlex execution for tietine of one block. It
shows two threads running on eight cores each. In the bldck fgage, the block owner
accesses the I-cache tag for the current block and broadeasth commands to all the par-
ticipating cores (Figure 5.5a). In parallel, the owner qmegdicts the next block address and
transfers control to the next block owner so that the nextlbtawner can initiate the fetch
of the next block (Figure 5/5b). Up to eight blocks may be igHtifor eight participating
cores. As soon as a fetch command is delivered at each individre, each core accesses
its own I-cache (the instructions in a block are distribuitecll participating cores) with
address information available from the fetch command, asphtches fetched instructions
into the issue window (Figure 5.5c). When a block completes,owner detects comple-
tion, and when it is notified that it holds the oldest blocklainches the block commit
protocol, shown in Figure 5.5d. Figures 5.5e-h show the danmestages of execution for
the next block controlled by a different owner; fetch, exemy and commit of the blocks

are pipelined and overlapped. Finally, the diagrams shaitito distinct programs can be

99

2. Control Hand-off 4. Sending Fetch Commands 6. Dispatch

+«3 cyclesar—Variable -3 cycles>|<7Vanable 2 cycles Variable4>|
Block 0

1. Block Prediction 3. Block Tag Access 5. |-cache Access

Block 1 + | | | | | |

Block Prediction : The start of next block fetch can be pipelined

1. Block Prediction

2. Control Hand-off : Variable depending on the number of participating cores (0 - 10 cycles)

3. Block Tag Access

4. Sending Fetch Commands : Variable depending on the number of participating cores (0 - 10 cycles)
5. I-cache Access

6. Dispatch : Variable depending on the number of cores and the block size (from 1 cycle to 32 cycles)

Figure 5.6: lllustration of different stages of distribditeetch and associated latencies

run on non-overlapping subsets of the cores.

5.2.2 Composable Instruction Fetch

Each core has its own I-cache for storing instructions. Withre cores being composed
into a larger processor, the overall fetch bandwidth angiche capacity scales up. The key
challenge in composable instruction fetch is how to mamthe sequential order of the
instruction stream among different cores, each capabletoiiihg independently. Conven-
tional processors will need a centralized unit to coordirfatches among different cores,
especially when the control flow changes in any of cores. Th@dination creates the
sequential order among fetched instructions.

However, the TFlex execution model eliminates the need totaia the sequential
order through a centralized unit since there is no contra tbange within a block (exe-
cution is done in dataflow fashion). The sequencing of diffiéiblocks is implemented by
the following distributed fetch protocol.

Figure 5.6 shows how the TFlex microarchitecture sequedistisbuted fetch op-

100

erations, in six stages. After next-block prediction is€lorontrol is transferred to the next
block owner using a control hand-off message. The arrivitt®@hand-off message triggers
an |-cache tag access in the new block owner as well as théotaok prediction in parallel.
We assume that the I-cache tag for an entire block is maedaiy the owner core, while
instructions in a block are distributed in each core’s Iheadf there is a hit on the I-cache
tag, the owner broadcasts fetch commands that containsdhehke index and the size of
I-cache fetch to all the participating cores. As soon as@éhfebommand arrives, each core
accesses its I-cache and dispatches the fetched instsigtito the issue window. Each
core can dispatch four instructions per cycle.

The configurable capability of each instruction cache is tth@ number of instruc-
tions from each block that must be mapped to each slave ledaahk changes depending
on the configuration. In 32-core mode, only four instrucsidrom a block are mapped
to each node. This fine-grain distribution requires moreeagjve L1 I-cache misses, as
blocks must be fetched from the L2 and distributed to all theigipating cores. However,
the tag overhead does not increase, since the tags areadsdaowith the blocks, not each

individual instruction.

5.2.3 Composable Control-flow Prediction

Control-flow prediction structures are one of the most emaging of all structures to par-
tition for composability. The key challenge is how to digtrie state that has been tradi-
tionally handled in a logically centralized manner. Fortamee, when a branch resolves
in a core that is different from an owner core for a block, hexaen, and where should
the predictor be trained and repaired? Further, rate ofigtied needs to match or exceed

the fetch rate leading to using very minimal communicatietween different predictors

101

during time-critical operations.

Similar to the TRIPS prototype microarchitecture, the Krdentrol flow predictor
issues one next-block prediction for each 128-instructigperblock—a predicated single
entry, multiple exit region—instead of one per basic bloBkedication of hard-to-predict
branches within a single block can potentially increaseptiegliction accuracy. The main
difference from the TRIPS predictor is that the TFlex congibs predictor treats the dis-
tributed predictors in each composed core as a single lqgiedictor, exploiting the block-
atomic nature of the TRIPS ISA to make this distributed apphatenable. The owner core
for a block is responsible for generating the predictiontiiersuccessive block, and sending
that prediction to the next owner core.

The TFlex next-block predictor uses an Alpha 21264-likealaglobal tournament
exit predictor and a target predictor comprising a brandletebuffer, a call target buffer, a
return address stack and a branch type predictor. To pedistnibuted block exit and target
prediction, several extensions are necessary. All comeation to maintain the predictor
resources is carefully designed to be done with point-otpoessages.

The local history table naturally supports address paniitig since the next block
prediction is performed by the block owner core and the bloaker is determined by
hashing on the block address. The block prediction that n@apsgiven core will always
map to that core, preserving local histories. To suppottajlprediction, the global history
register is transmitted from core to core as each prediégtianade. Since the prediction
tables in each core are small, each predictor uses histioinda(splitting and XORing parts
of longer histories) to support longer histories and rediestructive aliasing. On a flush,
the core owning the block signals misprediction, initiates correct fetch and re-sends the

rolled-back global history vector to the new block owner.

102

For target prediction, the type predictor and the branchcaatidtarget buffers are
address partitioned. The return address stack is seqgileptaitioned across all the cores.
The stacks from all the participating cores form a logicalbgll stack. Calls and returns
send messages to update the stack top in the appropriateloaddition, they also send
the updated top of the stack value to the next block owner Gost as the global histories
are sent). This communication avoids additional penaltfetthing the top of the stack
from a different core in case the next block fetched has amditanch. We present the

detailed analysis of the predictor in Section 5.3.2.

5.2.4 Composable Instruction Execution

The twin goals of CLP microarchitectural mechanisms fotrircdion execution are (1)
tracking the data dependence information across diffezergs, and (2) trying to keep
dependent instructions as close to each other as possible.

To support execution across a variable number of cores indheentional super-
scalar processors, the data dependence information mugétiEied and stored together
when an instruction is steered and slotted into the indalidwre. While the dependences
between pairs of instructions within a core can be trackea loystributed local register
alias table at each core, a centralized global registemrenable is required to resolve
dependences across different cores. With more coresipatiigy, the number of ports re-
quired to sustain the total rename bandwidth becomes ptiwkib The instructions in an
EDGE ISA contain the dependence information, eliminatheypgower-hungry, centralized
register rename table.

The TFlex architecture couples compiler-driven assigrnnoénnstructions num-

bers with hardware-determined issue order to minimize canication delays statically

103

7 2 5 9 9
|Opcode |PR| XOP| Target 1 | Target 0 |

Target type 7

00 = no target

General (arithmetic)
TRIPS instruction format

Example.' Instruction #5 (ADI?) hasa 01 = predicate Target ID
target O field of Ox17F, targeting the 10 = left operand 0<=X<=127
left operand of instruction #127. 11 = right operand
Inst. 5, target O field: Inst.5 in block 1, target O field:
High-order two bits of target selects left operand, High-order two bits of target (10) selects left operand,
low-order seven bits index into entry 127 of low-order two bits (11) select X, Y location of target core,
the instruction window. block ID (01) forms high-order two bits of operand index
Core 0 Core 1
Core 0 2 2E
G &0 = H
£258 8 E
—4 0 x O o §
35 0
e — H
£ — = Core 2 Cor
2 °
- °
2 ° _ 80
= — H H — H
X —H z B z
- —H E I I
- £ 82 £
127, 10 83
(a) One-core example (b) Four-core example

Figure 5.7: Block mapping for one-core and four-core preces

and tolerate uncertain latencies dynamically. The statppmg of instructions to exe-
cution resources, in particular, makes the TFlex architecamenable to distributed and
composable substrates. Each core only needs to reinténeretatic mapping between an
instruction and its physical location depending on how ezmk is composed.

Figure 5.7 shows the mechanism that TFlex uses to permit isstoss a variable
number of composed cores. Each instruction in a TRIPS blonkains at least one nine-bit
targetfield, which specifies the location of the dependent insimadhat will consume the
produced operand. Two of the nine bits specify which opexarttie destination instruc-

tion is targeted, and the other seven bits specify which eflt?8 instructions is targeted.

104

Figure 5.7a shows how the target bits are interpreted incone-mode, if instruction five is
targeting the left operand of instruction 127. All severs lite used to index into the single
instruction block held in the 128 instruction buffers.

Figure 5.7b shows how the microarchitecture interpretsatyget bits when running
in a four-core configuration. The four cores can hold a totdibor instruction blocks, but
each block is striped across the four participating cotass(teach core hold 32 instructions
from each of the four blocks in-flight). In this configuratiaghe microarchitecture uses the
low-order two bits from the target to determine which corbading the target instruction,
and the remaining five bits to select one of the 32 instrustmmthat core. When instruction
five issues, the microarchitecture uses the low-order twstbiroute the operand to the
correct core, using the dynamic block identifier and the feraaining target bits to index
into the instruction window and wake up the destinationrirctton.

A key question is how much latency is incurred communicatiog core to core,
and how much performance is lost as a result. In the TFlexydettie cores are connected
by a two-dimensional mesh network. Figure 5.8 shows thepd#tiafrom the output of an
ALU in one core to the input of an ALU in an adjacent core angsiitates cycle-by-cycle
activities when the execution result at core 0 is bypasstmdare 1. While dependent
instructions can issue back-to-back within one core, tiege one-cycle bubble between
two dependent instructions for each network hop an operanst travel. Only a one-
cycle pipeline bubble is required for adjacent cores bexdius operand network sends a
control packet a cycle in advance of the data, permittingenpkto happen in advance of
the operand arrival. Area estimates for 65nm indicate a-cen¢er to core-center distance
of 1.5mm, corresponding to an optimally repeated wire defai/70ps. With a fast router

that matches the wire delay, the total path delay would eetlesn 350ps and a one-cycle

105

Core O Core 1 Cycle 0:

> - An instruction is woken up and

. Distance between £ selected at Core 0.
§- |4 adjacent cores: § 4 - The control packet is created and
E 1.52mm at 65nm :® stored into the local out FIFO.
Cycle 1:
“ - Core 0 executes the instruction and
$ oS o stores the data packet into the local
g g P S output FIFO.
S E € s - The control packet sets up the routing
L 3 path for the data packet and is
A delivered into the east input FIFO.
Cycle 2:: Cycle 3: Data Packet
Cycle 0 : Ctrl Packet premm— (il P G | " Cycle 2:
LK‘ - The control packet wakes up and
East} Y selects an instruction at Core 1.
H (LT ‘ : Cycle 1. Ctil Packet " ([TT] ‘ - The data packet is delivered into the
westi[[[]] ‘ \ Ciyete 2 okt PRl ; east input FIFO.
Northi . B
[NEERCc o I [Cycle 3:
SOUth’\D]_—L‘ D]E . - The data packet is directly bypassed
Operand Network Router at Core 0 Operand Network Router at Core 1 Nt the ALU input at Corel

Figure 5.8: Inter-core operand communication

inter-core hop latency could be supported at well over 2.5G%ection 5.3/3 contains the

detailed operand network analysis with various hop latemzybandwidth assumptions.

5.2.5 Composable Memory System

As with clustered architectures [69,94], L1 data cachesGihB can be address partitioned
and distributed into each core. When running in single-coogle, each thread can access
only its own bank. When multiple cores are composed, the Ichedecomes a cache-
line interleaved aggregate of all the participating L1 eschWith each additional core,
each running thread obtains proportionally greater L1 Bheacapacity and an additional
memory port. The cache bank accessed by a memory instrustitgiermined by XORing
the high and low portions of the virtual address modulo theloer of participating cores.
All addresses within a cache line will always map to the saarklin a given configuration.

However, unlike conventional architectures, when a coremges the effective address of

106

a load, the address and the target(s) of the load are routkd sppropriate cache bank, the
look-up is performed, and the result is directly forwardedhe core containing the target
instruction.

One of the microarchitectural challenges to support a caaigle memory system
is the efficient handling memory disambiguation on a sulestrdth a variable number of
cores. Each TFlex core relies on an unordered, late-bindiag store queue (LSQ) struc-
ture [103] to disambiguate memory accesses dynamicallyné® cores are aggregated to
construct a larger window, more entries in the LSQ are reguio track all in-flight mem-
ory instructions. Partitioning LSQ banks by address anerligaving them with the same
hashing function as the data caches is a natural way to bialdje distributed LSQ. How-
ever, unless each LSQ bank is maximally sized for the woist (e instruction window
size), the system should be able to handle the situation alpamticular LSQ bank is full,
and thus cannot slot an incoming memory request. (calledy'b@erflow”). Prior work has
shown that both throttling fetch to prevent LSQ overflow angliing on overflows cause
significant performance losses [102]

The TFlex microarchitecture uses a low-overhead mechathiatrexploits the func-
tionality of the underlying scalar operand network to makesHes extremely rare [103].
The microarchitecture reserves a fraction of each LSQ (desitfor the non-speculative
block in flight. If an LSQ bank is full, and a load or store frohethon-speculative block
arrives, the pipeline is flushed and the non-speculativekbi® run in single-block mode
to guarantee forward progress. If a load or store from onb@Epeculative blocks arrives
at a core where its LSQ bank is full, the request is sent batkedssue window with a
negative-acknowledgement (NACK) message and waits et §Q bank has an available

slot. The question of when to re-issue a NACKed memory iesisn imposes an important

107

* A black box represent the current block owner

]]
NN NN
10 10

() Completion Report (b) Commit (c) Commit (d) Deallocate
Acknowledgement Resources

Figure 5.9: Four-stage commit procedure in TFlex

trade-off between the amount of ILP and operand network estign. We examine a range

of policies to determine the optimal configuration in Sett3.4.

5.2.6 Composable Instruction Commit

To sequence the committed instruction stream among differeres, traditional architec-
tures must be able to coordinate multiple cores to retir&lingons in lockstep. With
more cores participating, the overhead of exchanging sgnasupport lockstep commit
increases.

The TFlex architecture reduces the overheads of coordimatiross different cores
by committing a group of instructions en masse. To commitoglylthe following four-
stage protocol is used, adding one extra stage compareck tthtbe-stage protocol in
TRIPS. First, the block owner detects that a block is coregbetcause the block has emit-
ted all of its outputs, consisting of stores, register vgritand one branch (Figure 5.9a).
The second stage occurs when the block in question is thetditteck, at which point the
block owner sends out @ammitcommand (Figure 5/9b). All distributed cores write their

outputs to architectural state, and when finished respotil a@immit acknowledgement

108

signals (Figure 5.9c). Finally, the block owner broadc#stsesource deallocation signals,
at which point, the youngest block owner can initiate its datich and overwrite the com-
mitted block with a new block (Figure 5.9 d). This final stagsich is not present in the
three-stage commit protocol in the TRIPS architecturegdgiired in the TFlex architec-
ture. While TRIPS has a single centralized block owner, grticipating core in TFlex
can be a block owner based on the block address. If the youbigek owner and the
oldest block owner differ in TFlex, the youngest owner mussiriformed from the oldest
block owner that it is safe to initiate a new block fetch anérawrite the oldest block with
a new block. Note that the commit steps from Figure 5.9a tor€i¢.9d can be pipelined
across different blocks, thereby reducing the effect ofishaking overhead on overall per-
formance. In Section 5.3.1, we measure the overhead of cooomidination and its effect
on performance.

An alternative way to initiate the fetch of a new block is tdyren point-to-point
communication from the oldest owner to the youngest owrferiimng it of resource deal-
location. In order to enable this, the oldest owner must kttiocation of the youngest
owner, which is discovered earlier when the new youngeseovwaidentified and a control
message is sent to the oldest owner. Point-to-point messadace the total message traf-
fic and consume less power with a more complex communicatiotogol than a simple
broadcast protocol. The design trade-off between the atmfumessage traffic and the

complextity of the communication protocol is an interegtopen question.

5.2.7 Level-2 Cache Organization for Composable Processor

We explore two design choices to organize L2 caches in CLR® fifst choice is the

decoupled L2 organization (Figure 5.10 a) that separatgithcessor core regions from

109

IT IT IT IT 2] [2] [z
IT IT IT IT L2 ||| L2 ||| L2 ||| L2
IT IT IT IT L2 ||| L2 ||| L2 ||| L2
20 1N A 3 3 3
318 1 1 3 e 3
IT IT IT IT L2 ||| L2 ||| L2 ||| L2
IT IT IT IT L2 ||| L2 ||| L2 ||| L2
IT IT IT IT L2 ||| L2 ||| L2 ||| L2
C sc]
(a) Decoupled L2 Organization (b) Integrated L2 Organization

Figure 5.10: Different L2 organizations

the L2 bank regions. With the decoupled L2 design, distamteden cores in a composed
processor becomes shorter than the integrated L2 desigeh mtovides significant benefits
to applications that are more sensitive to operand delilaency.

The integrated L2 organization (Figure 5.10 b) combinesgssor cores and L2
cache banks into homogeneous building blocks. The integia2 organization can localize
communication between cores and L2 banks within a buildiegh) thus removing data
transport delay to and from the corresponding L2 bank. Apgibns that require high
bandwidth channels between cores and L2 banks will faverdésign.

In addition to latency and bandwidth differences, the detamli L2 organization
makes it easy to expand/shrink L2 cache capacity with weligtismall design changes.
Many processor vendors offer products with various L2 céigacdepending on target mar-
ket segments and fabrication process maturity. Changimd.2hcapacity in the integrated
L2 design has more design constraints, since the increasedfsa building block can

affect the latency between hops to deliver operands in a osatpprocessor.

110

Finally, while more tightly packed processor cores prositigency benefits in the
decoupled design, the integrated L2 design has a betteicghyiesign for avoiding hot
spots by spreading the cores across in the entire chip. intégrated design, the processor
cores are spread over the entire chip and each “hot” corarswded by “cool” L2 cache
banks.

Private L2 design Versus. shared L2 designAnother important design trade-off
in L2 caches is whether to manage L2 as private caches or eisteches. In Section 4.2,
we described the detailed trade-off between the privatedsiyth and the shared L2 design.
To summarize briefly, private L2 caches provide shortemizateat the expense of lower
effective on-chip cache capacity.

While both the decoupled and the integrated L2 organizatdmnot restrict them-
selves to either the private or shared design, we choosdénedsdesign for the decoupled
L2 organization and the private design for the integrate@iganization based on our sim-
ulation results. Especially, with the integrated orgatiizg the private cache design allows
L2 caches to be interleaved with the same hashing functidheas1 caches, which elimi-
nates the need to route a L1 fill request to a L2 cache bank iffiemedit building block.

We evaluated directory protocols to maintain coherencédth private and shared
L2 designs: coherence among multiple L1 caches in the sha&tatbsign and coherence
among multiple L2 caches in the private L2 design.

For the coherence of L1 caches in the shared L2 design, ttaf tagL2 cache line
contains the sharing status vectors to indicate which Lhesbave copies of the line. In
the private L2 design, we use a centralized L2 tag directiouny ghysically partitioned into
two, each one is located next to the SDRAM controllers as shiovigure 5.10). When

an L2 miss is detected, the request is sent to the centrdl2éag directory, which decides

111

whether to obtain data from another L2 cache on the chip othvend¢o issue an off-chip
memory request.

Managing both L1 and L2 coherence is designed to be obliviotmw each pro-
cessor is composed. For example, in the shared L2 desigshériang status vector in the
tag keeps track of L1 coherence by handling each L1 cache a&lapendent coherence
unit, which requires enough bits in the status vector foresenting all L1 caches. This
configuration-independent coherence management allotgsaw®id L1 cache flushing on
reconfiguration (described in Section 5/2.8). When the napping results in L1 misses,
the underlying coherence engine can correctly forward ¢lqeest to L1 caches in the old

mapping (if necessary).

5.2.8 Microarchitectural Reconfiguration

There are many factors affecting the ideal number of coresakd to a single com-
posed processor. One set of factors is the desired metriéorpwnce, throughput (per-
formance/area), or energy efficiency. Many factors bedstesge width affect performance.
When cores are added to a logical processor, they provideearliscaling of resources,
such as memory ports, issue window capacity and registelditelwidth. When running
a thread in the largest, 32-core, 64-wide issue configuratimat processor has a 4K issue
window, a 1.2K entry LSQ, a 256-Kbit next-block predictande256KB L1 instruction and
data caches with 32 independent banks.

To adjust the configuration, the running processes on théwaae to be adjusted
need to be interrupted. The instruction caches must beidiatatl, since the instruction
mapping across cache banks will change. The registers rausaved and copied into the

new configuration according to the new interleaving degFarally, two control registers

112

Control
networks

Block
control
128-entry

8-Kbit architectural Reg\ster
|- next-block register file forwarding

predictor 2R, 1W port logic & queues

Operand
NetWork gt
in queue

4KB
direct-mapped
L1 I-cache

Operand Int.
buffer ALU
128x64b

Operand
——{ network fe——t=—p

1
I out queue
Operand
buffer —
128x64b

=
4KB block
header cache . N
instruction
¥

window M

2
>
o
©
a
o]
@

40-entry

| Memory frziﬁ:i load/store
» network €= queue

in/out

Figure 5.11: Single core TFlex microarchitecture

need to be written in each participating core, specifyirggdize of the logical configuration
and the ID of each core within that configuration. To supporhposing cores across non-
contiguous processor cores, each core needs a mapping&ieen the ID of each core
and its physical location (coordinates) on a processortgibs At that point, the logical
processor(s) can be restarted. The data caches do not needfltshed, since the new

mapping will result in misses, which will be handled corhediy the cache coherence

logic.

5.3 Microarchitecture Evaluation

In this section we evaluate the TFlex microarchitecturehyparticular emphasis on mea-
suring the overheads of distributed execution with respeéétch, commit, control-flow
prediction, operand delivery and memory disambiguatidgufe/5.11 shows the microar-

chitecture of a single TFlex core and Table 5.1 summarizesricroarchitectural param-

113

| Parameter | Configuration |

Instruction Sup-| Partitioned 8KB I-cache (1-cycle hit), Local/Gshare Tament predic-

ply tor (8K bits, 3-cycle latency) with speculative updatesgélo 512(L1) +
1024(L2), Global: 4096, Choice: 4096, RAS: 128, BTB: 2048.

Execution Out-of-order execution, RAM structured 128-entry issuadew, dual-

issue (up to two INT and one FP). 128 architectural registers

Data Supply Partitioned 44-entry LSQ bank, Partitioned 8KB D-cachey2le hit, 2-
way assoc, 1l-read port and 1-write port). 4MB S-NUCA L2 caff#q

(8-way assoc, LRU, the L2 hit latencies vary from 5 cyclesta@ycles de-
pending on memory addresses) Average (unloaded) main nyetatancy

is 150 cycles
Interconnection | Each router uses round-robin arbitration. There are foffietsiin each
Network direction per router. The hop latency is 1 cycle.

Table 5.1: Microarchitectural parameters for a single XElere

eters. The size of the structures ensure that one block oarically execute and commit.
For instance, the instruction window can hold all 128 inginns in a block and the LSQ
must be large enough to hold at least 32 load/store insbtngtietc.

Tablel 5.2 summarizes the simulator and the benchmarks wiousige study. To
model the TFlex microarchitecture, we wrote an executioved simulator. When config-
ured to have the same number of resources as the TRIPS petmtycessor [99], this sim-
ulator reports performance within 7% of real system measarg on a set of microbench-
marks. We use two different benchmark suites: a hand-opgidhsuite and a compiler-
generated suite. The hand-optimized suite consists ohdeEMBC 2.0 benchmarks, two
from Versabench [93], and three signal processing kermete MIT Lincoln Labs. The
compiler-generated suite consists of eight integer anfigting point SPEC benchmarks
that are currently supported in the infrastructure.

For the TFlex configurations, these programs are schedyledihg the TFlex in-

struction scheduler, which differs from the TRIPS sched{24] in the following ways.

114

Simulator Execution-driven simulator validated to be within 7% oflregs-
tem measurement.

EEMBC | a2time0l1, autocor00, basefp0l1, bezier02, ditherOl, dffdes
tblook01

LL Kernel | corner turn (ct), convolution (conv), genetic algorithneifglg)
Versabench| 802.11b, 8b10b

SPEC INT | 164.gzip, 176.gcc, 186.crafty, 197.parser, 253.perlt28k,vor-
tex, 256.bzip2, 300.twolf

SPEC FP | 168.wupwise, 171.swim, 172.mgrid, 173.applu, 200.sckrdl
301.apsi

Benchmarks

Table 5.2: Simulator and Benchmarks

First, the scheduler assumes the 32-core configurationcfoedslling instructions. We
found that performing instruction scheduling for a largemiber of cores and running it
on fewer cores results in little performance degradaticeto8d, the TFlex scheduler con-
siders the differences between TFlex and TRIPS in termseif thistribution of registers
and L1 data cache banks. TFlex distributed 128 registersngrab participating cores
while TRIPS maintains registers only in the top four registies. Likewise, TFlex dis-
tributes L1 data cache banks into all participating cordslen RIPS has all of the L1 data
cache banks in the left column of tiles. The TFlex scheduies treasons about register

placement but eliminates the memory placement heuristittsei TRIPS scheduler.

5.3.1 Distributed Fetch and Commit Overheads

Distributed Fetch: Figure 5.12 shows the breakdown of average latencies fardhgpo-

nents of the distributed fetch protocol shown in Figure SlBree components of the six
components of the fetch mechanism, block tag access, bleckgtion and I-cache access
incur a constant total latency of seven cycles for a blockdpkfor the 1-core configura-

tion, in which there is no next-block speculation and hemeeprediction latency is zero).

115

(a) Latency breakdown in distributed fetch
30 -

25 [R

@ Dispatch

Fetch Distribution
O Control Hand-off
B Block Prediction
W I-cache Access

D Block Tag Access

15 -

Cycles

10 -

oL

1-core 2-core 4-core 8-core 16-core 32-core

Figure 5.12: Distributed fetch overheads

Of the remaining three components, control hand-off anddtEh command distribution
are communication latencies due to distributed execufitve. last component, the dispatch
latency, which is the latency to fetch from I-cache into thstiuction window, incurs a
variable latency depending on the number of instructiogpatthed at each core.

Figure| 5.12 shows that the overall fetch latency dependshemtimber of cores
and is a balance between the variable overheads of contnol-of, fetch distribution,
and dispatch. The largest increase comes from broadcaktnfgtch command over the
multi-hop network to all participating cores, which dontemwhen 16 or more cores are
aggregated. Conversely, the effective dispatch bandwidtieases linearly with the number
of cores, and the time to dispatch becomes a very small dractithe overall latency at 16
or more cores.

Distributed Commit: As described in Section 5.2.6, the distributed commit pro-
tocol in TFlex consists of four stages: (1) send commit diga all cores, (2) update

architectural state including store and register file compnamd (3) send “commit complete”

116

(b) Latency breakdown in distributed commit

18 B
16
14 .
g 12 e SR -
3 20 b ~|mcommiting values
6 @ commit hand-shaking

1-core 2-core 4-core 8-core 16-core 32-core

Figure 5.13: Distributed commit overheads

signals back to the block owner (4) send signals to all gpetig cores for deallocating
the hardware resources. Figlre 5.13 shows the latency dfvihg@rincipal components
of commit: updating architectural state and handshakimgsacmultiple cores (including
sending commit signals, sending “commit complete” signaiel sending “resource deal-
location” signals). As expected, the handshaking overteaeases with the number of
cores while the architectural state update latency deeselbscause the register file and
data cache bandwidth increase linearly with the number &fsco
Summary: While these latencies can be significant, they will not affeerfor-

mance if they are not on the critical path. To quantify thdgenance impact of the coor-
dination overheads of fetch and commit, we simulated anitacthre in which all of the
distributed handshaking occurs instantaneously. We wbddhat the performance degra-
dation was less than 2% for the largest composition (32 ydraticating that the overheads

of distributed fetch and commit can be amortized by a bldoketured I1SA.

117

N
o

N
o
—1

w
[
T

W
o
T

O 1-core
W 2-core
O 4-core
0 8-core
W 16-core
@ 32-core

N
a1
T

N
o
T

=
al
T

Block mis-prediction rate

=
o

al

-

bzip2 crafty gzip perlbbmk twolf MEAN

Figure 5.14: Distributed next-block predictor mispreiintrates from 1-core to 32-core
configuration

5.3.2 Distributed Block Prediction Overheads

Figure 5.14 (a) shows the misprediction rate for five of thE Shhteger benchmarks across
various numbers of cores. As described in Section 5.2.3[fthex block predictor address-
partitions the local predictor resources among partigigatores while transmitting the
global information with point-to-point communication. Figure 5.14, the overall mispre-
diction rate decreases from 19.94% to 7.28% as more corexggregated. Though small
core configurations show high miss rate, the associatedredgion penalty is low since
the block speculation depth is proportional to the numberasficipating cores. The aver-
age miss rate of 7.28% in the 32-core configuration seems highwe observed that the
MPKI (Mispredictions Per Kilo Instructions) number is 2 @& fthe 32-core configuration
and the number is comparable to some of the best conventiwaath predictor like the

PAs/Gshare hybrid predictor.

118

25 r
20 -
15

——16-core
—=-32-core

10

Block mis-prediction rate

b07 b08 b09 b10 b1l bl2 b13 bl4 bl5 bl6 b1l7 bl8 b19 b20
Starting bit position to determine a block owner

Figure 5.15: Average misprediction rate for 16-core anat@2 with various starting bit
positions to determine a block owner

The low MPKI combined with the fact that a block can containltiple control
flows and potentially hide the hard-to-predict branches lmamised to explain the higher
performance of the TFlex microarchitecture compared tdfRE’S which also uses blocks
but does not have the ability to aggregate branch predistiate. Although the small core
configurations have an undesirable high MPKI, the perfogaaenalty is not high because
they intrinsically run at lower performance levels.

Unlike conventional monolithic branch predictors, a distted branch predictor
makes an interesting trade-off between the predictionracgyFigure 5.15) and the com-
munication overheads (Figure 5/16) to reach the distribptedictor resources.

In the TFlex block predictor, a block owner takes charge eflting the next block
address and transferring control to the next owner. Thekbtmenership is determined
statically by applying a hashing function on a block addréfdsigher-order bits are chosen

for hashing, the block prediction accuracy goes down duentteriutilization of predictor

119

I
)

I
w

w
T

N
o

N
T

——16-core
—=-32-core

=
2]

[
T

Average hop latency to transfer controls

o
2]
T

|

o

b07 b08 b09 bl0 bll bl2 bl3 b1l4 bl5 bl6 bl7 b18 bl9 b20
Starting bit position to determin a block owner

Figure 5.16: Average hop latency for control hand-off force and 32-core with various
starting bit positions to determine a block owner

tables because too many blocks are mapped to few cores. @ithirehand, using lower-
order bits increases the control hand-off latency due teguient change of block owners.
As shown in Figure/ 5.16 and Figure 5.15, using bits 12 throlfgtachieves both a low
misprediction rate and low handshaking overhead. The B2-@nfiguration shows similar
trend but with greater variance in the hop latency. Becahisestlection of bits depends on
the core configuration and potentially the program’s charéstics, opportunities exist to

adjust the hash function dynamically.

5.3.3 Operand Communication Overheads

Figures 5.17 and 5.18 show the two components that corgrittubperand delivery la-
tency: the network hop latency and the latency due to networkention. Both figures
show the average delivery time for memory operamder() and the average delivery time
for all operandsdll). The memory operands include either operands transféroed a

memory instruction to a destination cache bank or from airtst&in cache bank to a tar-

120

Realistic configuration
6.00
5.00
400
O Hop

2.00 r

1.00

Operand Delivery Latency (Cycles)

0.00

£ £
< <
€ €

16-core 32-core

Figure 5.17: Average delivery times of memory operands draparands : default

get instruction. The hop latency increases more sharplyrfemory operands than for
all, which includes all operands. Because the compiler inflegmestruction placement, it
can optimize for communication locality by placing depemdastructions on the same or
nearby cores [21]. As shown in Figure 5.17, the compilercgiffely reduces the operand
delivery latency, producing an average hop latency ranfyjorg 0.4 at two cores to 2.3 cy-
cles at 32 cores. (As opposed to 3.9 cycles at 32 cores withatio mstruction placement
optimization)

Because memory addresses are not known until runtime, theit@ cannot opti-
mize memory instruction placement. Thus the hop counts famory operands depend on
to which core’s cache their addresses map. Figure 5.18semethe average operand de-
livery time if memory scheduling could be made perfect, niegthat all memory operands
are serviced at the local core’s cache bank. Perfect mersbedsling reduces the operand

delivery time between a memory instruction and a destinatache bank to zero, thereby

121

Perfect memory scheduling

o
o
S

o
o
S

4.00 -
3.00 r

B Contention
O Hop

2.00

1.00

Operand Delivery Latency (Cycles)

0.00

£ £
< <
€ €

16-core 32-core

Figure 5.18: Average delivery times of memory operands #raparands : assuming ideal
memory scheduling

reducing the overall hop latency to 1.7 cycles at 32 corespanduces a 7% performance
improvement. This result demonstrates the potential bsneficompile-time memory

disambiguation techniques which would allow better memiasgruction alignment and

scheduling.

High latency and/or low bandwidth channels between pradand consumer in-
structions spread across different cores can negativglgdtperformance on spatial archi-
tectures like TFlex, TRIPS or CMPs. To examine the crittgatif operand delivery, we
measure TFlex performance using different operand networfigurations with 1-cycle
and 2-cycle latency per hop across cores and with channdks eviough to communicate
one (1x) and two data operands (2x) simultaneously. We alsasare the performance
with infinite bandwidth, which eliminates all network cont®n.

Figures| 5.19 and 5.20 shows that the speedup for each of ¢ive abnfigurations

over 1-core for varying number of cores and the best perfogmiumber of cores for both

122

High-ILP Benchmarks

@ 1x OPN, 2 cycles m1x OPN, 1cycle O2x OPN, 2 cycles
O2x OPN, 1cycle mldeal BW, 2 cycles mldeal BW, 1 cycle

Speedup over 1-core

O P N W M OO N

2-core 4-core 8-core 16-core 32-core Best

Figure 5.19: Operand network sensitivity analysis: HigR-Benchmarks

high-and low-ILP benchmarks. The bar groBpstrepresents the performance when each
application is run with its own best-performing number ofe

We observe that in the low-ILP benchmarks, the low operandedyg latency is
crucial and the OPN with 2x bandwidth and 2-cycle latencyhmgr performs 18% worse
than the OPN with 1x bandwidth and 1-cycle hop latency. Ferhigh-ILP benchmarks,
however, bandwidth is also crucial and the OPN with 2x badtiwand 2-cycle latency per
hop performs equivalent to the OPN with 1x bandwidth anddleckiop latency. Intuitively,
this is behavior is to be expected as benchmarks with mowlgiésm are likely to have
more operands in-flight and benchmarks with low parallelismlikely to have dependence
chains on the critical path.

When configured to the best-performing number of cores palicgtion, doubling
bandwidth for high-ILP benchmarks provides 17% perfornaaineprovement, while dou-

bling bandwidth for low-ILP benchmarks shows only 4% immment. On the other hand,

123

Low-ILP Benchmarks

@ 1x OPN, 2 cycles m1x OPN, 1cycle O2x OPN, 2 cycles
O2x OPN, 1 cycle mldeal BW, 2 cycles @mldeal BW, 1 cycle

3 r

Speedup over 1-core

2-core 4-core 8-core 16-core 32-core Best

Figure 5.20: Operand network sensitivity analysis: LovrIBenchmarks

reducing the end-to-end operand hop latency is equally itapbboth for high-ILP bench-
marks and for low-ILP benchmarks, resulting in 22% diffex@for high-ILP benchmarks
and 27% difference for low-ILP benchmarks between 1-cyole latency and 2-cycle hop
latency.

Unsurprisingly, our sensitivity analysis illustrates theeresting interplay between
available parallelism, latency and bandwidth. TFlex cgastdhe number of cores to meet
the concurrency needs of the application, even if it meairgguewer processor to limit

operand communication overheads.

5.3.4 Distributed Memory Disambiguation Overheads

As described in Section 5.2.5, the TFlex microarchitecaan@bines flush and NACK/retry
features of the operand network to reduce the overhead of &&¢flow. We evaluate

a range of policies to determine when to re-issue a NACKed ongrimstruction in the

124

Normalized to the Configuration of 36 Entries, 1-Block Wakeup at Commit

25

@ 1-block
W 4-block
08-block
15 0O12-block
M 16-block
[@20-block
W 24-block

Number of Replays

05

36 40 44 48 52
Number of Entries in One LSQ Bank

Figure 5.21: Number of LSQ replays normalized to the conéigan of 36-entry, one-block
wakeup at commit

issue window. Re-issuing instructions too soon (i.e. imiatety upon NACK) can degrade
performance by clogging the network, possibly re-genegatiultiple NACKs for the same
instruction. Instead, our policy triggers re-issue wheroa-gpeculative block commits,
which is likely the right time since the overflowed LSQ bankynudbtain available slots
after block commit.

However, waking up all NACKed instructions simultaneouspon block commit
can still bring the same negative effect as re-issuing ustitns too soon. Conversely,
constraining the timing for re-issue too much can limit theoant of instruction-level par-
allelism. To find the optimal policy, we vary the number of gplative blocks that contain
NACKed instructions to wake up when a block commit signalrizdolcasted.

For six of a total 26 benchmarks, the memory accesses arenigalistributed and

cause significant LSQ overflows on a 32-core TFlex architectiigure 5.21 shows the

125

Normalized to the Configuration of 36 Entries, 1-Block Wakeup at Commit

25

) [1 F @ 1-block

W 4-block
08-block
15 0O12-block
M 16-block
[@20-block
W 24-block

Performance

05

36 40 44 48 52
Number of Entries in One LSQ Bank

Figure 5.22: Performance normalized to the configuratioBGséntry, one-block wakeup
at commit

number of re-issues in those six benchmarks normalizecet8@kentry LSQ bank with the
policy of waking up NACKed instructions from one speculathock ahead.

The number of re-issues due to LSQ overflow can affect the poaesumed by
operand network and execution units and also affect thepedance by causing network
congestion (as shown in Figure 5.21). In general, as more K¢aldnstructions are wo-
ken up upon block commit, the possibility of re-generatingrflow increases, resulting in
more re-issues. Interestingly, we notice that the numbee-idsues decreases when wak-
ing up instructions from one speculative block to four spetive blocks. This is because
waking up more instructions can hasten the rate of committiocks, which deallocates
the occupied LSQ entries faster.

Figure 5.22 shows that as we wake up NACKed instructions fopegond a certain

number of speculative blocks (i.e., 12 blocks at 44-entr@lfank), increasing the number

126

of re-issued instructions does not contribute to speedmthe rate of committing blocks
any more and only congests the network, decreasing perfmenand increasing power

consumption.

5.3.5 Level-2 Cache Organizations for TFlex

To understand how Level-2 cache designs affect performameeompare the decoupled
L2 and integrated L2 organization. As shown in Figure 5.10yiéding block in the inte-
grated L2 organization consists of two TFlex cores and a 56K cache. For comparison,
we add the 4x OPN configuration in the integrated design she&otal number of operand
network routers is the half of those in the decoupled desifya.use a two-cycle latency
between hops in the integrated design due to the increaseehdion of a building block.
In Figure 5.23, we split the benchmarks into two categoriesgathe amount of ILP, and
normalize the performance of two integrated L2 configuretito the performance of the
decoupled L2 design at various numbers of cores.

We first observe that the integrated L2 design outperforraglétoupled design at
smaller processor configurations by offering the high baddwand low latency access to
L2 caches. The smaller processor configurations are alse samsitive to L2 access la-
tency due to the small issue window size. However, as morescare aggregated, cores
that belong to different building blocks are spaced fartdqeart, which affects the perfor-
mance negatively. At both 16-core and 32-core configuratitime low-ILP benchmarks
with the integrated L2 show 14% less performance than theugded design while the
high-ILP benchmarks show almost no difference. HoweveleX Ean be configured with
the best-performing number of cores per application, aadrtegrated L2 design can min-

imize the impact of increased hop latency by choosing a smptibcessor configurations

127

3
S LA
Q@
S 12 -
o
)
S Lol ol m Tl
g 08 ! E Decoupled
I M Integrated, 2x OPN
20'6’ NN S LM I Te M| Il O Integrated, 4x OPN
2 04 H
3
c 0.2 A
g
5 0 1 | |
= [%] (%] 0 [%] (%] ‘(7)‘ 0 [%] %] (%] (%] "(7)'
@ gl L1022 g gl Qg
o c|lo|o|o|o|lm c|c|o|o|lo|m
(&) (&) o o (&) o o (&) (&) o
High-ILP Benchmarks Low-ILP Benchmarks

Figure 5.23: Performance comparison between the decougleésign and the integrated
L2 design

for low-ILP benchmarks, thus showing 5% improvement forhigh-ILP benchmarks and
1% improvement for low-ILP benchmarks.

5.4 Comparison Across Configurations

In this section, we evaluate the TFlex processor with varimumber of cores and compare
against a fixed-granularity TRIPS processor in terms ofetittiéferent operating targets:

performance, area efficiency, and energy efficiency.

128

5.4.1 Baseline

We choose the TRIPS processor as the baseline to companstab@lex for three reasons.
First, because TRIPS and TFlex share the same ISA and sefimaastructure we can
compare their microarchitectures without needing to corepte for ISA and system level
artifacts. Second, TRIPS is a natural baseline becausikgeuniFlex, TRIPS has limited
options for supporting different processing granulasiti€or instance, TRIPS can only be
configured either as an ILP engine supporting 1K in-flightringtions, or in an SMT mode
with four threads each with maximum of 256 instructions geead. We only compare
against the single-threaded mode of TRIPS. TFlex can iddbeaconfigured for a range
of granularities to adapt to various operating targets whemeed arises. Finally, having
access to the TRIPS hardware design and implementatioidesoa solid methodology for

modeling TFlex, giving us higher confidence in the perforogmrea, and power estimates.

Baseline Validation: For TRIPS to be a satisfactory baseline, it must achieveaat le
reasonable level of performance. To establish this baselre compare the performance of
the TRIPS hardware to that of an Intel Core2 Duo system onuhe sf EEMBC, SPEC,
and hand-optimized benchmarks shown in Table 5.2. The Guet2 Duo measurements
were taken on a Dell E520 system that has a 2.1GHz Intel CoweR2pbocessor with 2GB
533 MHz DDR2 SDRAM memory. The TRIPS system has two TRIPSgssors running
at 366Mhz and 2GB DDR1 SDRAM memory running at 200 MHz. The @ Bortran
codes for Intel Core2 Duo were compiled using gcc 4.1.2 -@d,the PAPI 3.5.0 library
was used to collect performance counter results [14]. FoIMRIPS system also perfor-
mance counters are used to read cycle counts. All experinusetonly a single core in the

Core2 and TRIPS systems, and we use cycle count only as thie feetcomparing per-

129

W Hand-Optimized

A O Compiled-Only |77 7""77777777~
3
2 LH-- - -F-------- L g
NS hh 77t 777 H 77777 ” 77777777777777777 7
o|glzle 5 < e}
217|888 s -
S 3 2 o 13

SPEC FP

Speedup relative to Intel Core2 Duo

.
Matrix ———

autocor |H——

bzip2 =

AVG
parser =

wersa- | I EEMBC
bench |kernels

[%2]
)
m
O
z
=

Figure 5.24: Relative performance (1/cycle count) for TRIRormalized to Intel Core2
Duo.

formance to account for differences in process technolbgsign methodology, and size of
the design team.

Figurel 5.24 shows that on the hand-optimized benchmark®$Rihiformly out-
performs the Core2 and achieves an average 2.7x spgeﬁopthe compiled benchmarks,
TRIPS is approximately 50% faster on average than the CaneZmsabench, lI-kernels
and EEMBC benchmarks, 3% worse on SPEC FP and 57% worse on BHEONgo-
ing work on the TRIPS compiler promises to close the gap framdhoptimized code as
the hand-optimizations were performed with compiler awgtiam in mind and include tun-
ing loop unroll counts and eliminating false load/store efgfence with enhanced register

allocation.

Simulator Validation: The simulator used in this study can model both the TRIPS-hard
ware prototype and the TFlex microarchitecture since tlodly bse the same ISA, and also

have similar functional components such as on-chip intereotion networks, caches, ex-

1For matrix multiplication, we use the optimized binary fr@otoBLAS [38] for Intel Core2 Duo and we
compare the FPC (FLOPS/cycle) instead of cycle counts.

130

ecution units, and register files. The simulator was vadiddly simulating a configuration
similar to the TRIPS prototype hardware and comparing tloéeayounts against the actual
hardware on a set of EEMBC benchmarks and microbenchmattacesd from the SPEC
2000 suite. We observe that the cycle count estimates frersithulator are within 7% of
the hardware cycle counts. The results, presented in threequbnt sections, indicate that
TFlex performance improvements are much greater than thikeling error.

The simulated baseline TRIPS microarchitecture matclasittscribed by Sankar-
alingam et al. [99] with the exception that the L2 capacityhef simulated TRIPS processor
is 4MB to enable a fair comparison with TFlex.

The TFlex architecture also includes two microarchitextystimizations that could
be applied to improve the baseline performance and aresefficof the TRIPS processor.
First, the bandwidth of the operand network is doubled tacedcontention and improve
performance. Second, TFlex cores are dual-issue, as appmfiee single-issue execution
tiles in TRIPS. For a comparable issue width processor, idaaé improves area efficiency
by reducing the number of FPUs without changing the peakértisssue bandwidth.

Our results show that TFlex can be configured to have optimwlgssor ganulari-

ties depending on different application characteristios @perating targets.

5.4.2 Performance Comparison

Figure 5.25a and b show the performance of the TRIPS pratayphitecture and that of
TFlex configurations ranging from 2 to 32 cores, normalizethe performance of a single
TFlex core. The 26 benchmarks on the x-axis are arrangedatégories of low and high

IPC. On average, the 16-core TFlex configuration perfornss &ied shows 3.5x speedup

over a single TFlex core. When the processor is configurekdetdést performing number

131

@ 2-core M 4-core O8-core @ 16-core M 32-core

10
G 9 el e
g 8
E 7r
2 6
g 5¢
o 4Tl ATl kA
g 37
T 27
x 1t - - - - - - - AR ------] —] —] -HIW--------]]---- :
0 | |
> c — o - N P=)] e 1= k=] 3 7] = (2]
S 2121281 %| 8 2|8 s |5 8| g 2 &
1S o @ N | o 2 o = 5 0 o
= S 7] S 2l o © =
S|z | 82| g °
Hand-Optimized Compiled Only
(a) High-ILP Benchmarks
@ 2-core B 4-core O 8-core O 16-core M 32-core
4

Relative Performance
N

Total
AVG

[r—
|
|
L
|
| —————
L |
i
TRIPS s
T |
|
|
L
fr—
|
L
TRIPS ::.

sixtrack

Hand-Optimized Compiled Only

(b) Low-ILP Benchmarks

Figure 5.25: Performance of different applications rugnom 2 to 32 cores on a CLP
normalized to a single TFlex core

132

Structures Single TFlex core 8 TFlex cores Single TRIPS core
| Subcomponent Size | Area Size | Area Size | Area
Fetch. Block Predictor 8Kbhit 64Kbit 64Kbit
I-Cache 8KB 1.36 64KB 10.88 80KB 7.66
Register Files 128 entries | 0.81 1K entries 6.47 512 entries 3.04
Exec. Issue Window 128 entries 1K entries 1K entries
ALU INT(2) FP(1) | 2.95 | INT(16) FP(8) | 23.6 | INT(16) FP(16) | 39.36
Primary D-Cache D-Cache 8KB 3.48 64KB 32KB
Subsystem LSQ 44 entries 352 entries 27.84 1K entries 33.44
Routers 0.88 7.04 11
| Sum | | [9.48 | | 75.83] | 945 |

Table 5.3: Microarchitecture parameters and area estinfate:?)

of cores for each application (represented by the bar “BESM& performance of TFlex

increases an additional 13% and the overall speedup ovegke siFlex core reaches 4x.
These results indicate that, using the proposed executiatelnsequential applications can
be effectively run across multiple cores to achieve sultisiespeedups.

On average, an 8-core TFlex, which has the same area andigltheas the TRIPS
processor, outperforms TRIPS by 17%, reflecting the beradfitdditional operand network
bandwidth as well as twice the L1 cache bandwidth stemming fine-grained distribution
of the cache. The best TFlex configuration outperforms TRIPS2% demonstrating
that adapting the processor granularity to the applicagi@nularity provides significant
improvements in performance.

Considering the increased resources within each core,seeah simulations with
two cycles per hop in the operand network. When configureldgdést performing number
of cores per application, TFlex with the two-cycle hop latetost performance by 22%,

reducing the speedup over TRIPS to 19%.

133

5.4.3 Area Efficiency Comparison

We examine the area required for a TFlex processor and tlierpemce/area as a func-
tion of the number of cores. The area of each microarchitaiceomponent in a single
TFlex core was estimated from the post-synthesis netlefo(b final place-and-route) of
the 130nm ASIC implementation of the TRIPS prototype. TabRpresents the area of
different microarchitectural components in a single TFlexe and a single TRIPS core. In
the table, we also present the 8-core TFlex configuratiohighiine largest configuration
that can fit in a single TRIPS core area. We excluded the L2e;atiemory controller,
and peripheral devices to compare the area of the two prases$able 5.3 shows that a
single TFlex core is approximately ten times smaller thamgls TRIPS core. Since the
TRIPS chip contains dual TRIPS cores in the 130nm ASIC tddgypthe same die area
has enough room to allow 16 TFlex cores. A 130nm, 18mm x 18nencah accommodate
8 TFlex cores with 1.5MB of L2 cache. Assuming linear scaliag32-core TFlex array
with 4MB of L2 cache would fit comfortably on a 12mm x 12mm diet&hm.

Figure 5.26a and b plot the performance per area (1/(cyoles?)) for the TRIPS
processor and various TFlex configurations, all normalipesisingle TFlex core. If ample
threads are available, the performance/area metric isa&qut to a throughput metric. For
most benchmarks, area efficiency peaks either at one or tves;deeyond two cores (four-
wide issue), performance improvements scale at a slowestirah area growth. On average,
TFlex can produce up to 3.4 times better performance/agaTRIPS. The fixed, aggres-
sive processor configuration in TRIPS (16-wide issue, 1kKiaswindow) pays a higher
penalty in terms of performance/area, especially for laR-benchmarks and results in
around 5x degradation in performance/area.

Unlike a fixed-granularity architecture, a composable i&cture can balance area

134

@ 2-core W 4-core O8-core O 16-core M 32-core

& 1r n .
5]
Lo8 111 F% SRt | BEEE | CEEEE | SEEEEESEES | | S | Rt IR
m
£ 06
o
< L L
> 04
>
=1
802 r ﬁ
[5)
@
0 |
> s - o - N o © o £ =] 3 B = 0
S 218128 |%5| 898 515|388 ¢ 2L
© £ o © N [CR N a 2] £ © om o
1 N [} o [
S| 2|8 2 8
o El k=1 = 4]
Hand-Optimized Compiled Only
(a) High-ILP Benchmarks
Tu 2-core B 4-core O8-core O 16-core B 32-core
1
o)
& o8
o
£
= 0.6
o
<
< 04
2
<
<02
.)
0 |
o x - | » = 2| »w
g g oo £9 8|2
<} 5 w o F< O x
o 2 o | =
um "
Hand-Optimized Compiled Only

(b) Low-ILP Benchmarks

Figure 5.26: Performance per unit area for different apgibims running on 2 to 32 cores

on TFlex CLP normalized to single-core TFlex

135

efficiency versus peak performance demand depending ayugamintime factors including

the number of active threads.

5.4.4 Power Efficiency Comparison

In this section, we compare the power dissipation of thellmes€RIPS processor with that
of various TFlex configurations. First, we present the pomedeling methodology and

next, we present the results.

Power Modeling Methodology

| collaborated with Madhu Saravana Sibi Govindan to deriy@aer model for both the
TRIPS and the TFlex processors. To estimate the power catsioyn the TFlex proces-
sor, we estimated the power of three constituent compontrsclock power, the DIMM
power, and the core power which includes everything on ckigueling clock and the
DIMM power. We estimated the core power and the clock powanfthe TRIPS hardware
netlist. Since TFlex and TRIPS use similar microarchitesdtbuilding blocks, we were
able to obtain capacitance estimates for scaled micrdanthral structures from TRIPS.
The activity factors for each of these structures were abthfrom the cycle-accurate sim-
ulator. The clock tree power for TFlex was estimated by meaguhe clock power for the
TRIPS implementation and scaling it down to one TFlex coree Tlock power was then
scaled linearly according to number of TFlex cores. The Dllgider was estimated using
analytical power models from Micron [56] and by counting thenber of off-chip accesses
in the simulator. Since the baseline TRIPS processor dadsane clock-gating, our TFlex
power models do not support clock-gating to enable a faioenpgarison. However, we

did implement a simple clock-gating power model to examio& khe optimal number of

136

Structures 8 TFlex cores Single TRIPS core

High-ILP | Low-ILP High-ILP | Low-ILP
Fetch. 1.07 (4.2%) 1.24 (5.3%) 0.91 (3.1%) 1.06 (3.9%)
(Block Predictor, I-cache)
Exec. 3.04 (12.0%) 1.44 (6.1%) 2.94 (10.0%) 1.25 (4.5%)

(Reg, issue window, ALUS)
L1 D-cache subsystem 0.57 (2.2%) 0.33 (1.4%) 0.59 (2.0%) 0.29 (1.0%)
(D-cache, LSQ, MSHR)
Operand Network Routers| 0.22 (0.9%) 0.36 (1.2%) 0.30 (1.1%)

L2, DIMM, /O 3.33 (24.2%) | 3.34 (14.2%) | 3.46 (11.7%) | 3.33 (12.2%)
Clock tree 14.89 (58.5%)| 14.89 (63.2%)| 18.39 (62.4%)| 18.39 (67.1%)
Leakage 2.06 (8.1%) | 2.06(8.7%) | 2.81(9.5%) | 2.81(10.2%)

[Sum [25.45 (100%) | 23.54 (100%) | 29.45 (100%) | 27.42 (100%) |

Table 5.4: Sample Power Breakdown (Watt) for High-ILP anevtlaP Benchmarks

TFlex cores for a given benchmark changes. We validatedaiveipmeasurements by con-
figuring the TFlex simulator in the TRIPS mode and comparirgreported power against

the power measured from the hardware system. The powerdtiffe between two models

for the benchmark suite was less than 10%.

Power Estimation Results

Table 5.4 breaks down the average of total power dissipafiail benchmarks into various
categories like Fetch, Execution, L1 D-Cache, Routers,dche/DIMM/I0, the clock tree
and leakage power. The benchmarks are categorized intorowpg; high-ILP benchmarks
and low-ILP benchmarks. The power dissipated in the indizidcategories are relatively
small because the clock tree power in all these categoriedéen reported as a separate
category in the table. We show this breakdown for 8 TFlexsara a single TRIPS core.
We use the performant@Vatt metric to assess the overall energy efficiency - this
metric accounts for the power efficiency of the architeceaa@ed by the time taken to exe-
cute the benchmark [36]. Figure 5/27a and b show perfornténizat metric for the various

TFlex configurations and the TRIPS configuration over alllkachmarks. On average,

137

@ 2-core W 4-core O 8-core O 16-core M 32-core
44.3 70.1
B 25 f-mm T |
c
2
o [
£ 20
]
15 I
2
[=]
o 10 —-\--1(0--TF---do--I0--+I0---IIF---N@-—----—------ R T |
[}
=
g, li
[}
R O Il Il Il
2 S = o = N = 1 fel £ k] = B = n
18|88 §3¢ - -
ElS|g 5| 8 a8 5| E| @ o |
slglg 2 g8
© 3 a = [
Hand-Optimized Compiled Only
(a) High-ILP Benchmarks
Tu 2-core B 4-core O8-core @ 16-core M 32-core
- e
S] [
o
m 6 —-——-H{--—-—----"-"-"-"-"-"-"-"-"-"J--"""" R |
Pl i | I | e R | I
[
W 4 --Ay---M-----M---tt-wH---w---"""""""""-""""""""--- R | It
° 3 r--WMe-—"-"M—=-M--HW WA “Ar--lr-
Z 2 MW IR e ot |t
RNl N T W —- [S
0 | | | | | | | | |
x n < 7 (%]
g 5 |pl2] BgE|g
o 5 w | < 0| x
oS X m | =
..m "
Hand-Optimized Compiled Only

(b) Low-ILP Benchmarks

Figure 5.27: PerformanéANatt for different applications running on 2 to 32 cores ¢iek
CLP normalized to single-core TFlex - without clock gating

138

the results show that TFlex with 8 cores performs the bestrimg of performancéwatt
metric. The most power-efficient TFlex configuration ranffesn 4 to 32, with 8 cores
being the best overall fixed configuration. The flexibilitydmoose the best one on a per-
application basis produces an overall average improvewfeabout 22% over any fixed
TFlex system. The power efficiency of a fixed 8-core TFlexaysts about 64% better
than a fixed TRIPS system. Although both have the same erechtindwidth, TRIPS
has twice the power-hungry floating-point units, but which mot used every cycle. Fine-

grained clock gating of these FPUs could improve the radgiower efficiency of TRIPS.

Clock-Gating Results

As previously mentioned, the above results assume thatTdetdx and TRIPS do not sup-
port clock-gating - all latches are switching every cycle make a fair comparison with
TRIPS. We also did an experiment with a simple clock-gatiraget for the TFlex cores -
the model assumes that when all the units of a TFlex core &eall of them are clock-

gated except the operand network routers (to enable rothimgperands to other TFlex
cores), the L2 subsystem and the on-chip network routerssh@s/n in Figure 5.28, the
clock-gating results indicate that the overall power edficly increases with clock gating,
but the optimal number of cores did not change from the erpents without clock-gating
- TFlex with 8 cores were the optimal configurations in terrhgperformancé/Watt both

with and without clock-gating.

5.4.5 Ideal Operating Points

The most important capability of the CLP approach is not theolute benefit over the

alternatives at any operating targets, but the ability i $b different operating points

139

@ 2-core M 4-core O8-core @ 16-core M 32-core

52.1_89.9
30 r .
5]
G 2T
=
w2 ft------Af--------""---P---------@p--ooo |-
g
15
a
o 10 -l S S| a1 e ! || i | et ettt | R |
2
© L
< 5
R O Il Il % Il
> G — o — N — @© el £ k=] 3 B [0
5 T8 /8] 323 |5 &8 ¢§ 0|z
ElS8 |3 |5 | 8§ o |8 @l E | ® o | F
S|z 8|8 g °
Hand-Optimized Compiled Only
(a) High-ILP Benchmarks
@ 2-core W 4-core O8-core @ 16-core M 32-core
97 o
28 r
[
o7
e | ———————————— -
@
W 5
2 4
ERCINF | || Sttt 1l TR 1 e 1 1 ol el Rl | et | bty -
22 Okl j “““ -
[J}
1
4
0 | | | | | | | | | |
g : Gleg| E9% 2
B w g 0| x
m X o | = =
m 2]
Hand-Optimized Compiled Only

(b) Low-ILP Benchmarks

Figure 5.28: PerformanéANatt for different applications running on 2 to 32 cores ¢iek
CLP normalized to single-core TFlex - with clock gating

140

—e—Perf-HILP - -m- - Perf- LILP —e—Perf/mm”2 - HILP - -m- - Perffmm”2 - LILP

=
[N}

o
© =
T

Relative Area Efficiency
o o
IS =

Relative Performance
w

o
N

o
o

1core 2cores 4cores 8cores 16 cores 32 cores lcore 2cores 4cores 8cores 16 cores 32 cores

(a) Optimal Point for Performance (b) Optimal Point for Area Efficiency

‘—O—Perf"Z/Watt -HILP - -m- - Perf"2/Watt - LILP ‘

[N
IS

B
o ® o N

IN

Relative Power Efficiency

lcore 2cores 4cores 8cores 16 cores 32 cores

(c) Optimal Point for Power Efficiency

Figure 5.29: Optimal point at different operating targets

when the need arises. Figure 5.29 and Table 5.5 shows thealpibints depending on
application characteristics and operating targets. We tpl® performance, performance
per area, and the performadper watt, categorized by the high- and low-ILP benchmark
groups. The graph shows how each metric varies acrossatiffeomposed processor sizes,
while the table shows the number of cores at which each mistnimximal.

Depending on which metric is most important—raw perfornggrazea efficiency,
or energy efficiency—the best configuration is quite difféyeganging from one core per

thread for maximum area efficiency, eight cores per threathBximum energy efficiency,

141

Metrics High-ILP | Low-ILP | All apps. Fixed Best

of cores | # of cores| # of cores| Ratio to the TRIPS| Ratio to the TRIPS
Perf 16 8 16 1.2 1.4
Perfimm? 1 1 1 3.4 3.4
Perf/Watt 8 8 8 1.6 2.0
Perf /Watthnm? 8 4 4 2.8 4.1

Table 5.5: Optimal point at different operating targets

to 16 for maximum performance. Moreover, if the system camiidly the best operat-
ing point at an application-specific granularity, addisbmprovements are possible. An
interesting open question is whether further improvemeats be obtained by exploiting
coarse-grain program phases using dynamic reconfiguratie the applications are run-

ning.

5.5 Summary

In this chapter we have described a CLP (Composable Lightwd?rocessor) that pro-
vides microarchitectural support for run-time configuratiof fine-grained CMP proces-
sors, allowing flexibility in aggregating cores togethefdom larger logical processors. A
disadvantage of this approach is that it relies on noniimadil ISA support, using EDGE
architectures rather than RISC or CISC. An advantage isuthldte prior work, the larger
logical processor groups together distributed resouradertn unified logical resources,
including instruction sequencing, memory disambiguataata caches, instruction caches,
register files, and branch predictors. That grouping perimigher performance than pre-
vious distributed approaches (such as thread-level spia) as well as a finer degree of

configurability.

142

Since most future performance gains will come from conawyefuture systems
will need to mine concurrency from all levels. Depending loeworkload mix and number
of available threads, the right place to find the concurremithlikely change frequently for
general-purpose systems, rendering the design-timeifiggefprocessor granularity in tra-
ditional CMPs a highly undesirable option. A CLP permits thie-time system to make in-
formed decisions about how to go about exploiting concuryewhether it be from a single
thread running on many distributed cores, or many threautsimg on partitioned resources.
Other factors that may affect the resource configuratioludtecpower/performance trade-

offs and the amount of concurrency within each thread.

143

Chapter 6

Conclusions

Clock rate scaling can no longer sustain computer systelmgaiue to power and thermal
constraints, diminishing performance returns of pipetinaling [45, 51], and process vari-
ation [13]. Future performance improvement must therebmme primarily from mining
concurrency from applications. Unfortunately, convemdibapproaches will be problem-
atic, as increasing global on-chip wire delays will limit anmt of state available in a single
cycle, thereby hampering the ability to mine concurrency.

To address these technology challenges, industry has tedigta chip multipro-
cessors in the hope that software threads will provide tmewwency needed for future
performance gains. However, relying on compilers or pnognars to parallelize applica-
tions has had only limited success over the past years andesaly in disrupting software
development productivity in the future. Moreover, Amdaltdiw dictates that the sequential
portions of execution will eventually hamper the overalifpemance growth.

Another disadvantage of conventional CMP architecturatés relative inflexi-

bility, making any fixed CMP designs ill-suited to meet vaisoapplication demands and

144

operating targets. Application domains have become isgrgly diverse, how spanning
desktop, network, server, scientific, graphics, and digignal processing. In each do-
main, applications have different granularity of concoog and memory requirements.
Even within the same application, the amount of computaticequirement and the size of
working set differ across various execution phases.

In current designs, the granularity (e.g., issue widthg,ihmber of processors on
each chip, and the memory hierarchies (e.g., cache cadeagch level) are fixed at design
time based on the target workload mix. Once deployed, howthesideal balance between
the granularity, the number of cores per chip, and capadigaoh level may change as
the workload mix changes. While parallel (TLP-centric) Woads favor a processor de-
sign with many small cores, the “inherently sequential’Ritentric) workloads take good
advantage of a few, but large, aggressive cores. Thereastralde-off between larger,
slower caches for applications with large working sets andlker, faster caches for appli-
cations that are less memory intensive. These diverse atbasdics of workloads render
the design-time freezing of granularity in traditional pessor and cache architectures an
undesirable option.

In this dissertation, we explored the concept of toenposability for both pro-
cessors and on-chip memories, to address both the incgeasia delay problem and the
inflexibility of conventional CMP architectures for meeaginarious application demands.
The basic concept of composability is the ability to adadite@rse applications and oper-

ating targets by aggregating fine-grained processing onitsemory units.

6.1 Summary
This dissertation identifies four main principles for a casgble architecture.

145

Composable architectures employ a distributed substaaisisting of multiple fine-
grained processing and memory units. The fine-grained anisnherently more
power-efficient and achieve technology scalability withpect to future global wire

delay increases.

Composable architectures provide the ability (1) to agamedine-grained units to
compose into a larger logical unit and (2) to match each egiidin to the composed

logical unit best suited to meet its performance, power,tarmlighput demands.

The number of fine-grained units combined to execute eaclicafipn can be dy-

namically changed transparently to the running applicatio

Composable architectures provide an ISA and microardhitelcsupport to combine
distributed fine-grained units in a power- and area- efficlanner. The overheads

to support composability in a distributed substrate shbeldninimized.

This dissertation evaluates composable architecturdgshthee two main compo-

nents: (1) NUCA (Non-Uniform Access Cache Architecturasil £2) CLP (Composable

Lightweight Processors)

6.1.1 NUCA (Non-Uniform Access Cache Architecture)

The current designs of large level-2 caches will not worledffely in future wire-delay

dominated technologies. This dissertation describes dafmentally new class of cache

design, called Non-Uniform Access Level-2 Cache Architezt{NUCA). NUCA caches

break large caches into many banks that are independemiigsible with a switched net-

work embedded in the cache. Lines can be mapped into thig efrmemory banks with

146

fixed mappings, as in the static NUCA organization (S-NUGX)dynamic mappings (D-

NUCA), where cache lines can move around within the cache.

Adaptivity for various working set sizes: This dissertation shows that by gradually mi-
grating cache lines within the cache nearer to the processtiey are used, the bulk of
accesses go to banks close to the processor. The workingusetlusters in the banks
closest to the processor, so long as the working set is anthda the cache, resulting in
hit latencies considerably lower than the average accémsclato a bank. Because of its
adaptability, the D-NUCA eliminates the trade-off betwderger, slower caches for ap-
plications with large working sets and smaller, faster esclor applications that are less

memory intensive.

Composability for various memory organizations: Applications from different domains
have different memory access patterns. While applicatibashave irregular access pat-
terns will favor the cache design, streaming applicatiososfscientific and graphics do-
main will take good advantage of a scrachpad memory. As af mfoconcept, we built
a composable secondary memory system in the TRIPS protoflipe TRIPS secondary
memory system is composable, as it consists of multiplereagdple memory banks, which
can be configured differently. The possible memory orgdiaiza include a 1MB L2 cache

or a 1MB scratchpad memory or any mix between them totalll@ 1

Extension of NUCA to CMP Level-2 Caches: In this dissertation, we extended the con-
cept of NUCA to CMP Level-2 caches and explored the well-knalgsign trade-offs be-
tween a private L2 design with lower hit latency and a shar2dlésign with larger ef-

fective cache capacity. The proposed L2 cache substratsuagport a flexible sharing

147

degree from low-latency, private logical caches, to higdtigred caches, or any intermedi-
ate design point between the two. We show that the L2 hit ¢gtemore than doubles for
a fully shared cache compared to private caches and makegea $haring degree less ef-
fective; despite the benefits of eliminating many of thedffp misses. Then, we explored
a dynamic mapping policy to address slow access time in dyhidtared cache. On the
16-processor CMP design that we evaluated, we observedodiest performance gains
over the S-NUCA design with the best sharing degree. Thehewael of searching data in
the D-NUCA design degrades performance significantly. gloee, we conclude that the
performance gains of the D-NUCA design are unlikely to fystihe added design com-
plexity. However, for a subset of applications we obserted the dynamic data migration
capabilities of D-NUCA can reduce the average hit latendyjriy the ideal sharing degree
to higher sharing degrees. In addition, D-NUCA showed themqt@l benefit of reducing
energy consumption by decreasing the on-chip network araffhigher sharing degrees.
Based on our observation of when dynamic mapping works, micenapping could be a
more attractive alternative to static mapping as the nurabprocessor cores and L2 cache
capacities increase. However, inventing a less complaxis@echanism in D-NUCA will

be the key enabler for adopting D-NUCA designs in future CMEhes.

6.1.2 CLP (Composable Lightweight Processor)

A CLP consists of a large number of low-power, lightweightqessor cores that can be ag-
gregated dynamically to form more powerful logical sintleeaded processors. Compared
to conventional CMP architectures that have a “rigid” gtarity, CLPs provide flexibility

to dynamically allocate resources to different types ofotmrency, ranging from running a

single thread on a logical processor composed of many loisédl cores, to running many

148

threads on separate physical cores. The system can alsoergy and/or area efficiency

as metrics to choose the configurations best suited for aney gioint.

ISA support for Composability: While composability can also be provided using tradi-
tional ISAs [54], we examined CLPs in the context of a bloelséd Explicit Data Graph
Execution (EDGE) architectures [15], that provide manydfiés over traditional ISAs.

The EDGE ISA has the following two key features: (1) expljtecification of
producer-consumer relationship between dependent atisting (2) block-atomic execution
of hyperblocks. These two features alleviate the need faepbungry hardware structures
like associative register renaming and issue windows.

This dissertation shows that the above mentioned featditee @& DGE ISA make it
attractive for providing efficient composability as welinge the dataflow graph is statically
and explicitly encoded in the instruction stream, it is dienjp shrink or expand the graph
on fewer or larger number of execution resources as desiidvivtually no additional
hardware. Further, the coordination overheads requiredrt@a single thread application
on multiple cores can be significantly reduced if the unit obrclination is a block of
instructions rather than individual instructions. Usifg EDGE ISA, we developed an

implementation of CLP, named “TFlex”.

Microarchitecture for Composability: The microarchitectural structures in a compos-
able processor must allow their capacity to be incremgntatireased or decreased as the
number of participating cores increase or decrease.

To provide this capability we identify and repeatedly apmbg principles. First, the
hardware resources should not be oversized or undersizeditteither a large processor

configuration or a small configuration. Second, we avoid glajly centralized microar-

149

chitectural structures completely. Decentralizationval the size of structures to be grown
without the undue complexity traditionally associatedhwitrge centralized structures. We
evaluate the overheads to support composibility in a disted substrate and show that the

TFlex microarchitecture keeps these overheads suffigitowi.

Configuration for an ldeal Operating Point: This dissertation demonstrates that the
best processor configuration is quite different dependmgpplication characteristics and
operating targets (metric) — raw performance, area effigiear power efficiency. The
TFlex microarchitecture provides the ability to shift tdfelient processor configurations

when the need arises.

Scaling Degree of Composition: In this dissertation we explored a range of compaositions
(i.e. degree of composition) — from two to 32 cores — to sysihe a logical processor
to run a single-threaded application. We found that aggimeg@ores beyond 16 does not
yield enough benefits to justify the additional resourcegerin terms of raw performance,
we observed that only a few benchmarks (from the high-ILRugyashowed reasonable
benefits beyond 16 cores. Moreover, the ideal configurationboth area- and power-
efficiency were achieved at a much smaller number of coreg. niin reason is that the
performance penalty due to the increased number of hopsemite/the benefits from ex-
ploiting higher concurrency. Prior research has also shiwahoperand communication
latency is the primary bottleneck for scaling single-tliie performance in a distributed
architecture [83]. While we present a composable architedior efficiently mining par-
allelism from a contiguous program region, we believe tludtitsons composing greater
than 16 cores for achieving even higher performance frogieithreaded application must

extract concurrency from non-contiguous regions of thegm.

150

6.2 Final Thoughts

A composable architecture aggregates fine-grained pliogessits or memory units into
larger logical units and provides the ability to adapt tdedi#nt application demands and

various operating targets. This dissertation opens up teadchallenges for future work.

Finding an optimal point: While this dissertation presents composable architestinat
can adapt to different application demands and variousatipgrtargets, the detailed mech-
anisms on how to find an optimal point are not explored. Westowimultiple methods of
controlling the allocation of cores to threads. Compilexs provide hints on the amount of
ILP by analyzing the whole program statically and perforgnaif-line profiling. Depend-
ing on the granularity of configuration and the number of adseinvolved, the following
two approaches can be considered: hardware-based dsasidisoftware-based decisions.
Hardware-based decisions can respond more quickly totagtage thermal events or adapt
to fine-grained intra-thread phase diversity. On the othadhthe software-based approach
(possibly by the operating system) can involve multiple#ids and introduce more com-
plex scheduling algorithms considering time, space, jidriy, and other operating targets
(e.g., energy).

There is much related work on optimal job scheduling. Sévempers [31, 110]
focused on SMT/CMP job scheduling that aims at attainingnogdtthroughput. Recent
scheduling work on heterogeneous CMP demonstrates théitsesfenapping each job to
the core that most closely matches the resource demands apfication [9,68]. Besides
pure performance, energy-aware job scheduling [25] takespor energy into consider-
ation to make scheduling decisions. Techniques such as DVE8ead migration can be

used to enable energy-aware scheduling [35, 80, 122].

151

The configurability of a composable architecture offersth@odegree of freedom
when balancing power and performance. However, too muetémm does not necessar-
ily produce the best policy because of possible state-spagi®sion. The right schedule
should be both workload- and operating target-dependehbamble to dynamically adjust

itself to discover the optimal point.

Finding the best balance between ILP and TLP: There are many advantages to build-
ing a future CMP out of fine-grained small processor coresstFsmall processor cores
are inherently more power efficient because of lower capacé in the active state asso-
ciated with physically small layout and wires. The finersgriarity control by DVFS pro-
vides further opportunities to optimize power consumpti@econd, small cores produce
higher performance per unit area for parallel software alyinthe low design complexity
compared to designing a large core is a significant advantegevever, the criticality of
single-thread application performance and Amdahl’s laW leéimper adoption of smaller
processor cores in current CMP architectures. We envisiahdomposability proposed in
this dissertation could open the door to adopting smallecgssor cores in future CMPs.
The best way to exploit many small cores is to extract thieadtparallelism (TLP)
from applications. Generally, exploiting TLP (throughpigt a more power-efficient way
of obtaining performance than exploiting ILP (scalar) [4¥ore applications in the future
therefore are anticipated to be written in multi-threadashfon [116], with support from
programming languages [18] or hardware/software mecheni® ease concurrent pro-
gramming [47]. However, balancing between ILP and TLP intirthteaded applications
will pose a great challenge due to the following reasonsstFapplications have different
characteristics in terms of granularity of parallelism:n#oapplications from scientific,

media, and server domain are more amenable to extractingwHile other applications

152

are inherently sequential. Second, many parallel apmigsiare incrementally parallelized
to amortize the programming effort over time, and thus predédferent amounts of TLP
depending on stages of development [54]. Finally, the dpéthparallel software for one
CPU generation may not produce the optimized performancedoh successive genera-
tion of CPUs as the number of integrated cores in a chip isaggddo keep increasing. We
envision that future CMPs should be flexible and reconfigheamiselves to perform best
amidst various amount of ILP and TLP existing in applicagidny considering the amount
of ILP per thread, thread synchronization overheads, acdnfegguration cost. Looking
forward, a composable architecture will further blur thstidiction between conventional

uniprocessors and multiprocessors, which we view as a giogdirection.

153

Appendices

154

Appendix A

Comparison Between
Hand-Optimized And Compiled
Code

In Section 5.4.2, we reported the performance of TFlex withttvo different benchmark
suites: a hand-optimized suite and a compiler-generatiéel su

Figure[A.1 shows the performance of kernel benchmarks isE&MBC bench-
marks, three LL kernels, two Versa benchmarks) before aed bind optimizations. For
reference, the figure also shows the performance with thegiesonfiguration in which
performance is only constrained by issue width, using petiéock prediction, perfect
memory disambiguation and zero-cycle operand deliveri witimited bandwidth.

Unsurprisingly, the difference between the real and théepeconfiguration is less
for the hand-optimized benchmarks (compared to the compiiemized benchmarks) and

for the low-ILP benchmarks (compared to the high-ILP benatks). The right side of Fig-

155

25

Kernel Benchmarks SPEC Benchmarks

Dreal
M perfect

Speedup over Alpha21264

HILP HILP hand LILP LILP hand SPEC FP SPEC INT
compiler compiler compiler compiler

Figure A.1: Performance comparison between compilemupdd and hand-optimized ap-
plications under the baseline configuration and the pedeatiguration

ure A.1 shows the performance of SPEC benchmarks with omhpder optimizations (we
did not hand-optimize the SPEC benchmarks). We found tleaS®EC floating-point and
integer benchmarks follow trends similar to the high-ILR éow-ILP kernel benchmarks,
respectively.

Our hand-optimizations for the benchmarks did not involhe®mplete rewrite, but

instead focused on optimizations that we expect the compilperform well:

e Instruction merging when the same instructions are préstican both true and false

predicates.
e Tuning the loop unroll counts.
¢ False load/store dependence elimination with enhanceasteegllocation.

The performance gap between the compiled code and the hmimdized code is
about 3x in both the high- and the low- ILP benchmarks. This igdicates the potential

optimization opportunities for the compiler.

156

Appendix B

Area Comparison with the Alpha

21264

In Section 5.4.3, we evaluated the area efficiency with warioumber of cores in TFlex
and compared against the TRIPS processor. We reportedttha®am, a 18mm x 18mm
die can integrate 8-TFlex cores with 1.5MB of L2 cache. Assigntinear scaling, at 45nm
on a 12mm x 12mm die a 32-core TFlex with 4MB cache seems feasbompared to
conventional out-of-order issue CMP architectures, Tklax integrate more cores in a
chip.

To analyze the area benefits against a conventional outdef-superscalar proces-
sor core, we estimate the area of each microarchitecturapooent in the Alpha 21264
processor core by using the published die sizes and the diegiaph [61]. The die size
of the Alpha 21264 is reported to be 322 at 350nm. To compare the Alpha 21264
core and the single TFlex core at the same technology, we swhrea of each component

to a 65nm technology. In the Alpha, we apply a 10% reductioadmount for die photo

157

Structures Alpha scaled TFlex scaled Alpha uarch TFlex uarch
(mm? at65nm)| (mm? at 65nm)

Fetch (I-cache + 2.65 (29%) 0.35 (15%) 64KB I-cache 8KB I-cache

ITLB + BP)

Register File 1.02 (11%) 0.17 (7%) 10-port 232 entrie§ 2-port 128 entries

Renaming and 1.30 (14%) 0.21 (9%) 35-entry CAM 128-entry RAM

Issue Window (no renaming)

Functional Units 1.28 (14%) 0.60 (26%) 4-INT ALU, 2FP | 2-INT ALU, 1FP

D-cache 1.94 (21%) 0.45 (19%) 64KB D-cache 8KB D-cache

LSQ + DTLB + 0.86 (10%) 0.36 (16%) 2 32-entry CAMs | 1 40-entry CAM

Miss Handling

Routers N/A 0.19 (8%)

Sum 9.04 (100%) 2.32 (100%)

Table B.1: Area comparison between the Alpha 21264 and &esirtgex core

measurement errors. Since a custom implementation of TR be smaller than an
ASIC implementation, we apply a 40% area reduction to ranttmjic in TFlex and leave
the SRAM/register arrays untouched. Finally, we add a 108 encrease to both the Alpha
and TFlex to reflect estimation errors in our linear proceskitology scaling model.

Table B.1 shows that a single TFlex core is approximately fimnes smaller than
the Alpha 21264 in 65nm. To first order, this ratio is reasémabkince a TFlex core has
1/8th the instruction and data cache capacity and half timebeu of ALUs. The major
area advantages in TFlex (aside from smaller caches) camedliminating complex out-
of-order structures such as a per-instruction registeamam, an associative issue window,
and multi-ported register files, each of which is obviatedh®y TRIPS ISA and execution
model. For example, the 10-ported register files in the Alpfenabout six times larger
than the dual-ported TFlex register file, even though thal toatimber of entries is only
twice that of TFlex. In addition, the RAM-structured issuegdow in TFlex is six times

smaller than the CAM-based window in the Alpha, even withrfoones the number of

158

issue window entries. Based on the results in Table B.1, bnatprocess, a 32-core TFlex

microarchitecture with 4MB L2 cache could be implementedrity 144mnm?.

159

Bibliography

[1]

Kartik K. Agaram, Stephen W. Keckler, Calvin Lin, and Kagn S. McKinley. De-
composing memory performance: data structures and phbsBsoceedings of the

5th International Symposium on Memory Managemeages 95-103, 2006.

[2] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, ahalug Burger. Clock rate

[3]

[4]

[5]

versus IPC: The end of the road for conventional microagchitres. IrProceedings
of the 27th Annual International Symposium on Computer ifacture pages 248—

259, June 2000.

David H. Albonesi, Rajeev Balasubramonian, Steve Dhopssandhya Dwarkadas,
Eby G. Friedman, Michael C. Huang, Volkan Kursun, Grigoiegklis, Michael L.

Scott, Greg Semeraro, Pradip Bose, Alper BuyuktosunoghterPV. Cook, and
Stanley Schuster. Dynamically tuning processor resoungés adaptive process-

ing. IEEE Computer36(12):49-58, 2003.

D.H. Albonesi. Selective cache ways: On-demand cackeuree allocation. In
Proceedings of the 32nd International Symposium on Micioigecture pages 248—

259, December 1999.

Murali Annavaram, Ed Grochowski, and John Paul Shen.igditng Amdahl’s law

160

through EPI throttling. InProceedings of the 32nd International Symposium on

Computer Architecturgpages 298—-309, 2005.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaloseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, Williaester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. Thadacape of parallel
computing research: A view from berkeley. Technical Rep@B/EECS-2006-183,

EECS Department, University of California, Berkeley, Dmber 18 2006.

[7] R. Iris Bahar and Srilatha Manne. Power and energy régluctia pipeline balanc-
ing. In Proceedings of the 28th International Symposium on Computhitecture

pages 218-229, 2001.

[8] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NASglkel benchmarks. Tech-
nical Report RNR-91-002 Revision 2, NASA Ames Research taiooy, Mountain

View, CA, August 1991.

[9] Saisanthosh Balakrishnan, Ravi Rajwar, Michael Uptamd Konrad K. Lai. The
impact of performance asymmetry in emerging multicore itectures. InProceed-
ings of the 32th Annual International Symposium on Compéitehitecture pages

506-517, 2005.

[10] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, MaBashnan, and Peter Mar-
wedel. Scratchpad memory: design alternative for cachehqgmmemory in embed-

ded systems. IRODES pages 73-78, 2002.

[11] Bradford M. Beckmann and David A. Wood. TLC: Transmissline caches. IRro-

161

[12]

[13]

[14]

[15]

[16]

[17]

[18]

ceedings of the 36th Annual International Symposium onddrchitecture pages

43-54, 2003.

Bradford M. Beckmann and David A. Wood. Managing wirdagein large chip-
multiprocessor caches. Proceedings of the 37th Annual International Symposium

on Microarchitecture pages 319-330, 2004.

Shekhar Y. Borkar. Designing reliable systems fromelinable components: The

challenges of transistor variability and degradatitfEE Micro, 25(6):10-16, 2005.

Shirley Browne, Jack Dongarra, N. Garner, Kevin S. Lamdand Philip Mucci. A
scalable cross-platform infrastructure for applicatienfprmance tuning using hard-
ware counters. IfProceedings of the 2000 ACM/IEEE conference on Supercemput

ing, page 42, 2000.

D. Burger, S.W. Keckler, K.S. McKinley, M. Dahlin, L.Klohn, Calvin Lin, C.R.
Moore, J. Burrill, R.G. McDonald, and W. Yoder. Scaling te tbtnd of silicon with

EDGE architectureslEEE Computer37(7):44-55, July 2004.

Ramon Canal, Joan-Manuel Parcerisa, and Antonio &lemzA cost-effective clus-
tered architecture. IRroceedings of the 8th International Symposium on Parallel

Architectures and Compilation Techniqgu@sges 160-168, 1999.

Jichuan Chang and Gurindar S. Sohi. Cooperative cgdbinchip multiprocessors.
In Proceedings of the 33rd Annual International Symposium omguter Architec-

ture, pages 264-276, June 2006.

Philippe Charles, Christian Grothoff, Vijay A. SaraswChristopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivekkaa X10: an object-

162

[19]

[20]

[21]

[22]

[23]

[24]

oriented approach to non-uniform cluster computing OlaPSLA pages 519-538,

2005.

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumdbistance associativity
for high-performance energy-efficient non-uniform cactehectures. IrfProceed-
ings of the 36th Annual International Symposium on Micrb#ecture pages 55-66,

2003.

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykum&ptimizing replication,
communication, and capacity allocation in CMPsPhoceedings of the 32th Annual

International Symposium on Computer Architectyrages 357—368, 2005.

Katherine E. Coons, Xia Chen, Doug Burger, Kathryn SKimtey, and Sundeep K.
Kushwaha. A spatial path scheduling algorithm for edgeitectures. InProceed-
ings of the 12th International Conference on Architect@apport for Programming

Languages and Operating Systempages 129-140, October 2006.

Willian James Dally and Brian Towle®rinciples and Practices of Interconnection

Networks Morgan Kaufmann Publishers, Inc, 2004.

James C. Dehnert, Brian Grant, John P. Banning, Richaintison, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The Transmeta code hiogp- Software: Us-
ing speculation, recovery, and adaptive retranslatiordtlyess real-life challenges.
In Proceedings of the 1st Annual International Symposium ate@@eneration and

Optimization pages 15-24, 2003.

Rajagopalan Desikan, Doug Burger, Stephen W. Kecaled, Todd M. Austin. Sim-

163

[25]

[26]

[27]

[28]

[29]

[30]

alpha: A validated execution-driven Alpha 21264 simulatbechnical Report TR-

01-23, Department of Computer Sciences, University of $etaAustin, 2001.

Matt Devuyst, Rakesh Kumar, and Dean Tullsen. Expigitunbalanced thread
scheduling for energy and performance on a CMP of SMT pracsssin Inter-

national Parallel and Distributed Processing Symposi2®06.

Ashutosh S. Dhodapkar and James E. Smith. Managing-ouiifiguration hard-
ware via dynamic working set analysis. Bioceedings of the 29th Annual Interna-

tional Symposium on Computer Architectyoages 233—, 2002.

Pradeep Dubey. A platform 2015 workload model: Rectigmj mining and synthe-

sis moves computers to the era of tera. Technical repodi, IRebruary 2005.

John H. Edmondson, Paul I. Rubinfeld, Peter J. BannaadBy J. Benschnei-
der, Debra Bernstein, Ruben W. Castelino, Elizabeth M. @gdpaniel E. Dever,
Dale R. Donchin, Timothy C. Fischer, Anil K. Jain, Shekhartitée Jeanne E. Meyer,
Ronald P. Preston, Vidya Rajagopalan, Chandrasekharartabnaam, Scott A. Tay-
lor, and Gilbert M. Wolrich. Internal organization of thephh 21164, a 300-mhz

64-bit quad-issue cmos risc microprocesdaigital Technical Journal 7(1), 1995.

Roger Espasa, Federico Ardanaz, Joel Emer, Stepheq Fdio Gago, Roger Gra-
munt, Isacc Hernandez, Toni Juan, Geoff Lowney, Mathew iNkttand Andre

Seznec. Tarantula: A Vector Extension to the Alpha Architex InProceedings of

The 29th International Symposium on Computer Architectoages 281-292, May
2002.

Keith I. Farkas, Paul Chow, Norman P. Jouppi, and ZvoXkanesic. The multi-

164

[31]

[32]

[33]

[34]

[35]

[36]

cluster architecture: Reducing cycle time through partitig. InProceedings of
the 30th International Symposium on Microarchitectysages 149-159, December

1997.

Alexandra Fedorova, Margo |. Seltzer, Christopher Bnaad Daniel Nussbaum.
Performance of multithreaded chip multiprocessors andidgauions for operating
system design. INSENIX Annual Technical Conference, General Traeges 395—

398, 2005.

Joseph A. Fisher, Paolo Faraboschi, and Giuseppe DeSoktom-fit processors:
Letting applications define architectures. Rroceedings of the 29th International

Symposium on Microarchitectyrpages 324—335, December 1996.

David Flynn. AMBA: Enabling Reusable On-Chip DesighS8EE Micro, 17(4):20—

27, 1997.

Daniele Folegnani and Antonio Gonzalez. Energyiie issue logic. IlProceed-
ings of the 28th International Symposium on Computer Aechire pages 230-239,
2001.

Mohamed Gomaa, Michael D. Powell, and T. N. VijaykumBeat-and-run: lever-
aging SMT and CMP to manage power density through the opgratistem. In
Proceedings of the 11th International Conference on Aechitral Support for Pro-

gramming Languages and Operating Systepages 260-270, 2004.

R. Gonzalez and M. Horowitz. Energy dissipation in gah@urpose microproces-

sors. IEEE Journal of Solid-State Circuits, 31(9):12784,September 1996.

165

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ricardo E. Gonzalez. Xtensa — A configurable and exideagirocessor.IEEE

Micro, 20(2):60—70, /2000.

Kazushige Goto and Robert van de Geign. On reducing tfts@s in matrix mul-
tiplication. Technical Report TR-02-55, Department of Qmier Sciences, The

University of Texas at Austin, 2002.

Paul Gratz, Changkyu Kim, Robert McDonald, Stephen Wcker, and Doug
Burger. Implementation and Evaluation of On-Chip NetworkHiitectures. INHEEE

International Conference on Computer Desi@006.

Paul Gratz, Karthikeyan Sankaralingam, Heather HanBoemkishore Shivakumar,
Robert McDonald, Stephen W. Keckler, and Doug Burger. Imglietation and eval-
uation of a dynamically routed processor operand netwarkrdéceedings of the 1st

International Symposium on Networks-on-CGlppges 7-17, 2007.

Ed Grochowski, Ronny Ronen, John Paul Shen, and Hongg\WaBest of both la-
tency and throughput. IMEE International Conference on Computer Desigages

236-243, 2004.

E.G. Hallnor and S.K. Reinhardt. A fully associativefta@re-managed cache de-
sign. InProceedings of the 27th International Symposium on Computhitecture

pages 107-116, June 2000.

Lance Hammond, Benedict A. Hubbert, Michael Siu, MaaotK. Prabhu,
Michael K. Chen, and Kunle Olukotun. The stanford hydra CMEBEE Micro,
20(2):71-84, 2000.

166

[44] Reiner W. Hartenstein. A decade of reconfigurable cdingu a visionary retro-

spective. INDATE, pages 642—649, 2001.

[45] A. Hartstein and Thomas R. Puzak. The optimium pipetiapth for a microproces-
sor. InProceedings of the 29th International Symposium on Computditecture

pages 7-13, May 2002.

[46] Allan Hartstein and Thomas R. Puzak. Optimum poweffparance pipeline depth.
In Proceedings of the 36th Annual International Symposium @rddrchitecture

pages 117-128, 2003.

[47] Maurice Herlihy and J. Eliot B. Moss. Transactional nogyn Architectural sup-
port for lock-free data structures. RProceedings of the 20th Annual International

Symposium on Computer Architectupages 289-300, 1993.

[48] J.M. Hill and J. Lachman. A 900MHz 2.25 MB cache with dmig CPU now in
Cu SOIl. InProceedings of the IEEE International Solid-State Cirsutonference

pages 171-177, February 2001.

[49] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggsugd&armean, Alan Kyker,
and Patrice Roussel. The microarchitecture of the Pentiypmodessor.Intel Tech-

nology Journal Q12001.

[50] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The futurbvares. Proceedings

of the IEEE 89(4):490-504, April 2001.

[51] M.S. Hrishikesh, Keith Farkas, Norman P. Jouppi, Dougder, Stephen W. Keckler,

and Premkishore Sivakumar. The optimal logic depth perlipipestage is 6 to 8 fo4

167

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

inverter delays. IrProceedings of the 29th International Symposium on Compute

Architecture pages 14-24, May 2002.

Jaehyuk Huh.Hardware Techniques to Reduce Communication Costs in foHti
cessors PhD thesis, The University of Texas at Austin, DepartmdnCemputer

Sciences, May 2006.

Jaehyuk Huh, Doug Burger, and Stephen W. Keckler. Bimjothe design space
of future CMPs. InProceedings of the 10th International Conference on Patall

Architectures and Compilation Techniqueages 199-210, September 2001.

Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Maez. Core Fusion:
Accommodating software diversity in chip multiprocessohs Proceedings of the

34th Annual International Symposium on Computer Architectiun 2007.

J. Rubinstein, P. Penfield, and M.A. Horowitz. Signalagiein RC tree networks.

IEEE Transactions on Computer-Aided Desi@AD-2(3):202-211, 1983.
J. W. Janzen. DDR SDRAM Power Calculation Sheet. Mic2901.

Roy M. Jenevein and James C. Browne. A control procefsoa reconfigurable
array computer. IfProceedings of the 9th Annual International Symposium am-Co

puter Architecturepages 81-89, 1982.

Norman P. Jouppi and Steven J. E. Wilton. An enhancedsacand cycle time model

for on-chip caches. Technical Report TR-93-5, Compaq WRly, 1994.

James A. Kahle, Michael N. Day, H. Peter Hofstee, ClsaRe Johns, Theodore R.
Maeurer, and David Shippy. Introduction to the Cell mubtiggssorlBM Journal of

Research and DevelopmenB(4/5), September 2005.

168

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Richard E. KesslerAnalysis of Multi-Megabyte Secondary CPU Cache Memories

PhD thesis, University of Wisconsin-Madison, Decemberal98

Richard E. Kessler. The Alpha 21264 microprocesd&EE Micro, 19(2):24-36,

March/April 1999.

Richard E. Kessler, Mark D. Hill, and David A. Wood. A cparison of trace-
sampling techniques for multi-megabyte cach&EE Transactions on Computers

43(6):664—675, June 1994,

Richard E. Kessler, Richard Jooss, Alvin R. Lebeck, Bfatk D. Hill. Inexpensive
implementations of set-associativity. Pnoceedings of the 16th Annual International

Symposium on Computer Architectupages 131-139, May 1989.

Chankyu Kim, Doug Burger, and Stephen W. Keckler. Anpid&, non-uniform
cache structure for wire-delay dominated on-chip cacheBrdceedings of the 10th
International Conference on Architectural Support for Bramming Languages and

Operating Systempages 211-222, October 2002.

Venkata Krishnan and Josep Torrellas. A chip-multi@ssor architecture with spec-

ulative multithreadinglEEE Trans. Computergt8(9):866—880, 1999.

Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Padtathy Ranganathan, and
Dean M. Tullsen. Single-ISA heterogeneous multi-core itgctures: The potential
for processor power reduction. Rroceedings of the 36th International Symposium

on Microarchitecture pages 81-92, 2003.

Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen.j@uaed-core chip mul-

169

tiprocessing. IrProceedings of the 37th International Symposium on Micbiec-

ture, pages 195-206, 2004.

[68] Rakesh Kumar, Dean M. Tullsen, Parthasarathy RanganalNorman P. Jouppi, and
Keith I. Farkas. Single-ISA heterogeneous multi-core éeckures for multithreaded
workload performance. IRroceedings of the 31th Annual International Symposium

on Computer Architecturgpages 64—75, 2004.

[69] Fernando Latorre, José Gonzalez, and Antonio GemzaBack-end assignment
schemes for clustered multithreaded processor®rdneedings of the 18th Annual

International Conference on Supercomputipgges 316-325, 2004.

[70] K.-F. Lee, H.-W. Hon, and R. Reddy. An overview of the SRM speech recog-
nition system. IEEE Transactions on Acoustics, Speech and Signal Prougssi

38(1):35-44, 1990.

[71] Walter Lee, Rajeev Barua, Matthew Frank, Devabhak8rikrishna, Jonathan Babb,
Vivek Sarkar, and Saman Amarasinghe. Space-time scheduoflimstruction-level
parallelism on a RAW machine. Iroceedings of the 8th International Conference
on Architectural Support for Programming Languages and@fieg Systemspages

46-57, New York, NY, USA, 1998. ACM Press.

[72] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, #niroozshahian, Mark
Horowitz, and Christos Kozyrakis. Comparing memory systdéon chip multipro-
cessors. IrProceedings of the 34th Annual International symposium omguter

Architecture June 2007.

[73] Jian Li and José F. Martinez. Power-performance idenations of parallel comput-

170

ing on chip multiprocessoredACM Transactions on Architecture and Code Optimiza-

tion, 2(4):397-422, 2005.

[74] Haiming Liu. Hardware techniques to improve cache ifficy, Ph.D proposal, April

2007.

[75] Bertrand A. Maher, Aaron Smith, Doug Burger, and Kath8, McKinley. Merging
Head and Tail Duplication for Convergent Hyperblock Foriorat In Proceedings of

the 39th Annual International Symposium on MicroarchitegtDecember 2006.

[76] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William dllyp and Mark
Horowitz. Smart memories: a modular reconfigurable archite. InProceed-
ings of the 27th Annual International Symposium on Compéitehitecture pages

161-171, June 2000.

[77] D. Matzke. Will physical scalability sabotage perfante gains1EEE Computer
30(9):37-39, September 1997.

[78] Robert McDonald, Doug Burger, Stephen W. Keckler, Kikdyan Sankaralingam,
and Ramadass Nagarajan. TRIPS processor reference maeckahical Report TR-
05-19, Department of Computer Sciences, The Universityegf¥ at Austin, March

2005.

[79] Cameron McNairy and Rohit Bhatia. Montecito: A duakeodual-thread Itanium

processorlEEE Micro, 25(2):10-20, 2005.

[80] Andreas Merkel and Frank Bellosa. Balancing power aamgion in multiprocessor

systems.SIGOPS Oper. Syst. Re#0(4):403—-414, 2006.

171

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Matteo Monchiero, Ramon Canal, and Antonio Gonzalgasign space exploration
for multicore architectures: a power/performance/thémi@wv. In Proceedings of

the 20th Annual International Conference on Supercomgupages 177-186, 2006.

Trevor N. Mudge. Power: A first-class architectural igasconstraint.IEEE Com-

puter, 34(4):52-58, 2001.

Ramadass Nagarajabesign and Evaluation of a Technology-Scalable Architectu
for Instruction-Level Parallelism PhD thesis, The University of Texas at Austin,

Department of Computer Sciences, May 2007.

Ramadass Nagarajan, Karthikeyan Sankaralingamh8teV. Keckler, and Doug
Burger. A Design Space Evaluation of Grid Processor Archites. InProceed-
ings of the 34th Annual International Symposium on Micrbéexcture pages 40-51,

December 2001.

Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. liation of design
alternatives for a multiprocessor microprocessorPioceedings of the 23th Annual

International Symposium on Computer Architeciyrages 67—77, May 1996.

Basem A. Nayfeh, Kunle Olukotun, and Jaswinder Pal Bifithe impact of shared-
cache clustering in small-scale shared-memory multigemes. InProceedings of
the 2nd IEEE Symposium on High-Performance Computer Axctoite pages 74—

84, 1996.

A. Nicolau and J. Fisher. Measuring the parallelismilale for very long word

architectures|EEE Transactions on Computei®3(11):968—-974, November 1984.

H. Pilo, A. Allen, J. Covino, P. Hansen, S. Lamphier, Cunghy, T. Traver, and

172

[89]

[90]

[91]

[92]

[93]

[94]

P. Yee. An 833MHz 1.5w 18Mb CMOS SRAM with 1.67Gb/s/pin. Rnoceed-
ings of the 2000 IEEE International Solid-State Circuitsn@mwence pages 266—267,
February 2000.

Timothy Mark Pinkston and Jeonghee Shin. Trends toweardhip networked mi-
crosystemslnternational Journal of High Performance Computing andwarking,

3(1):3-18, 2005.

Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. Radugower require-
ments of instruction scheduling through dynamic allogatib multiple datapath re-
sources. IrProceedings of the 34th International Symposium on Miabidecture

pages 90-101, 2001.

M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, drK. Roy. Reducing set-
associative cache energy via way-prediction and seledireet-mapping. IrPro-
ceedings of the 34th International Symposium on Microdechirre pages 54-65,
December 2001.

Steven A. PrzybylskiPerformance-Directed Memory Hierarchy DesidgthD thesis,

Stanford University, September 1988. Technical report TR-88-366.

R. M. Rabbah, I. Bratt, K. Asanovic, and A.Agarwal. Vatiity and versabench: A
new metric and a benchmark suite for flexible architectukdassachusetts Institute

of Technology Technical Report MIT-LCS-TM-646, June 2004.

Paul Racunas and Yale N. Patt. Partitioned first-lewhe design for clustered
microarchitectures. IRroceedings of the 17th Annual International Conference on

Supercomputingpages 22-31, 2003.

173

[99]

[96]

[97]

[98]

[99]

[100]

Nitya Ranganathan. Control flow speculation for disited architectures, Ph.D pro-

posal, April 2007.

Parthasarathy Ranganathan, Sarita V. Adve, and NofPndauppi. Reconfigurable
caches and their application to media processindgrateedings of the 27th Annual

International Symposium on Computer Architectyrages 214—-224, 2000.

Karthikeyan SankaralinganPolymorphous Architectures: A Unified Approach for
Extracting Concurrency of Different GranularitiesPhD thesis, The University of

Texas at Austin, Department of Computer Sciences, Octdi@s.2

Karthikeyan Sankaralingam, Ramadass Nagarajan, idgimiu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charléédere. Exploiting
ILP, TLP, and DLP with the polymorphous TRIPS architectuhe Proceedings of

the 34th International Symposium on Microarchitectysages 422—-433, May 2003.

Karthikeyan Sankaralingam, Ramadass Nagarajan, iRdMmDonald, Rajagopalan
Desikan, Saurabh Drolia, Madhu Saravana Sibi Govindan,®atiz, Divya Gulati,
Heather Hanson, Changkyu Kim, Haiming Liu, Nitya RangaaathSimha Seth-
madhavan, Sadia Sharif, Premkishore Shivakumar, Stephdtetkler, and Doug
Burger. Distributed microarchitectural protocols in thelPPS prototype processor.
In Proceedings of the 39th International Symposium on Miabidecture pages

480-491, December 2006.

Matthew C. Sejnowski, Edwin T. Upchurch, Rajan N. KadDaniel P. S. Charlu,
and G. Jack Lipovski. An overview of the Texas reconfiguraslay computer. In

AFIPS Conference Proceedingsmges 631-642, 1980.

174

[101]

[102]

[103]

[104]

[105]

[106]

[107]

The national technology roadmap for semiconduct&smiconductor Industry As-

sociation, 2001.

Simha Sethumadhavan, Rajagopalan Desikan, DougeButdparles R. Moore, and
Stephen W. Keckler. Scalable memory disambiguation foh hig processors.
In 36th International Symposium on Microarchitectupages 399-410, December

2003.

Simha Sethumadhavan, Franziska Roesner, Joel S Hbwmrg Burger, and
Stephen W. Keckler. Late-Binding: Enabling unordered {etmte queues. IRro-
ceedings of the 34th Annual International symposium on Q@oenpArchitecture

June 2007.

Nir Shavit and Dan Touitou. Software transactionahmey. InProceedings of the
14th ACM Symposium on Principles of Distributed Compuytpages 204—213. Aug
1995.

Premkishore Shivakumar and Norman P. Jouppi. Ca6ti Bn integrated cache
timing, power and area model. Technical report, Compaq CoenpgCorporation,

August 2001.

Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumdusamy, Karthik Sankara-
narayanan, and David Tarjan. Temperature-aware micrivectire. InProceedings
of the 30th Annual International Symposium on Computer ifecture pages 2—13,

2003.

Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Mahdick Nethercote, Bill Yoder,

Doug Burger, and Kathryn S. McKinley. Compiling for EDGE hitectures. In

175

[108]

[109]

[110]

[111]

[112]

[113]

Fourth International ACM/IEEE Symposium on Code Generaind Optimization
(CGO), March 2006.

Aaron Smith, Ramadass Nagarajan, Karthikeyan Salikgam, Robert McDonald,
Doug Burger, Stephen W. Keckler, and Kathryn S. McKinleytdflaw Predication.
In Proceedings of the 39th Annual International Symposium @rddrchitecture

December 2006.

James E. Smith and Gurindar S. Sohi. The microardhite®f superscalar proces-

sors.Proceedings of the IEEB3(12):1609-1624, December 1995.

Allan Snavely and Dean M. Tullsen. Symbiotic jobsahlédy for a simultaneous
multithreading processor. IRroceedings of the 9th International Conference on
Architectural Support for Programming Languages and OfiataSystemspages

234-244, 2000.

Kimming So and Rudolph N. Rechtschaffen. Cache ofmratby MRU change.

IEEE Transactions on Computer37(6):700-109, July 1988.

Gurindar S. Sohi, Scott E. Breach, and T. N. VijaykunMultiscalar processors. In
Proceedings of the 22nd Annual International Symposiumamiter Architecture

pages 414-425, June 1995.

Gurindar S. Sohi and Manoj Franklin. High-performartata memory systems for
superscalar processors. Rroceedings of the Fourth Symposium on Architectural
Support for Programming Languages and Operating Syst@gages 53-62, April
1991.

[114] Evan Speight, Hazim Shafi, Lixin Zhang, and Ram Rajam#éxaptive mechanisms

176

[115]

[116]

[117]

[118]

[119]

[120]

[121]

and policies for managing cache hierarchies in chip mutpssors. liProceedings

of the 32nd Annual International symposium on Computer ifecture June 2005.

Standard Performance Evaluation CorporatioBPEC NewsletterFairfax, VA,

September 2000.

Herb Sutter and James R. Larus. Software and the cammyr revolution. ACM
Queue 3(7):54-62, 2005.

David Tarjan, Shyamkumar Thoziyoor, and Norman Jau@ACTI 4.0. Technical
Report HPL-2006-86, HP Labs, 2006.

Michael Bedford Taylor, Walter Lee, Saman P. Amargki& and Anant Agarwal.
Scalar Operand Networks: On-Chip Interconnect for ILP intifened Architec-
tures. InProceedings of the 9th International Symposium on HigHeParance

Computer Architecturgpages 341-353, February 2003.

Michael Bedford Taylor, Walter Lee, Jason Miller, DawVentzlaff, lan Bratt, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, Jas@a PArvind Saraf,
Nathan Shnidman, Volker Strumpen, Matthew Frank, Samamiarasinghe, and
Anant Agarwal. Evaluation of the RAW microprocessor: An esgd-wire-delay
architecture for ILP and streams. Rroceedings of the 31th Annual International

Symposium on Computer Architectupages 2—-13, 2004.

Joel M. Tendler, J. Steve Dodson, J. S. Fields Jr., Huegand Balaram Sin-
haroy. Power4 system microarchitecturM Journal of Research and Develop-

ment 46(1):5-26, 2002.

Dean M. Tullsen, Susan J. Eggers, and Henry M. LevyuBiameous multithreading:

177

Maximizing on-chip parallelism. IfProceedings of the 22nd International Sympo-

sium on Computer Architecturdune 1995.

[122] Vibhore Vardhan, Daniel Grobe Sachs, Wanghong Yudbe\ F. Harris, Sarita V.
Adve, Douglas L. Jones, Robin H. Kravets, and Klara Nahtstéutegrating fine-
grain application adaptation with global adaption for sgvénergy. InProceedings
of the 2nd International Workshop on Powe-Aware Real-Timm@uting (PARG)

2005.

[123] Kenneth M. Wilson and Kunle Olukotun. Designing higindwidth on-chip caches.
In Proceedings of the 24th Annual International Symposium em@iter Architec-

ture, pages 121-132, June 1997.

[124] Steven J. E. Wilton and Norman P. Jouppi. Cacti: An eckd cache access and

cycle time modellEEE Journal of Solid-State Circuit81(5):677—688, May 1996.

[125] Alexander Wolfe. “Intel Clears Up Post-Tejas Confusi May 2004.

http://www.crn.com/it-channel/18842588.

[126] Steven Cameron Woo, Moriyoshi Ohara, Evan Torriewiteder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization astthadological con-
siderations. IrProceedings of the 22nd Annual International Symposium am-C

puter Architecturepages 24-36, June 1995.

[127] Michael Zhang and Krste Asanovic. Victim replicatidiaximizing capacity while
hiding wire delay in tiled chip multiprocessors. Rroceedings of the 32nd Annual

International Symposium on Computer Architectyrages 336—345, June 2005.

178

[128] Hongtao Zhong, Steven Lieberman, and Scott Mahlkéetitking multicore architec-
tures to exploit hybrid parallelism in single-thread apations. InProc. 2007 Inter-

national Symposium on High Performance Computer ArchitecEebruary 2007.

179

Vita

Changkyu Kim was born in Seoul, Korea on August 26th 1973stmeof Taewon Kim and
Inja Yum. After graduating from Seoul Science High Schod,dmtered Seoul National
University in 1993. He received a Bachelor of Science degréeomputer Engineering
from Seoul National University in February 1997, followegddMaster of Science degree
in Computer Engineering in 1999. In the fall of 2000, he joitlee doctoral program at the

Department of Computer Sciences at the University of Tekasistin.

Permanent Address: Seocho Gu, Banpo Dong
MIDO APT 303-1211,

Seoul, Korea, 137-044

This dissertation was typeset withTieX 2-by the author.

180

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Microarchitecture Configuration for Optimal Points
	1.2 Other Approaches
	1.3 Principles of Composable Architecture
	1.4 Thesis Statement
	1.5 Dissertation Contributions
	1.5.1 Composable Memory Systems
	1.5.2 Composable Processors

	1.6 Dissertation Organization

	Chapter 2 Related Work
	2.1 Composable Processors
	2.1.1 Composing Processors from Smaller Cores
	2.1.2 Partitioning large cores
	2.1.3 Multiple Granularities
	2.1.4 Reconfigurability

	2.2 Composable On-chip Memory System
	2.2.1 Uniprocessor Level-2 Caches
	2.2.2 Chip Multiprocessor Level-2 Caches

	Chapter 3 Composable On-Chip Memory Systems
	3.1 Uniform Access Caches
	3.1.1 Experimental Methodology
	3.1.2 UCA Evaluation

	3.2 Static NUCA Implementations
	3.2.1 Private Channels
	3.2.2 Switched Channels

	3.3 TRIPS NUCA design
	3.3.1 TRIPS Chip Overview
	3.3.2 TRIPS Secondary Memory Subsystem
	3.3.3 Composable Secondary Memory Organization
	3.3.4 Network Performance Evaluations

	3.4 Summary

	Chapter 4 Dynamically Mapped Composable Memories
	4.1 Uniprocessor D-NUCA
	4.1.1 Policy Exploration
	4.1.2 Performance Evaluation

	4.2 Chip-Multiprocessor D-NUCA
	4.2.1 CMP L2 Cache Design Space
	4.2.2 Effect of Sharing Degree in CMPs
	4.2.3 Effect of Dynamic Data Migration

	4.3 Summary

	Chapter 5 Composable Processors
	5.1 ISA Support for Composability
	5.1.1 Blocks
	5.1.2 Direct Instruction Communications
	5.1.3 Support for Composability
	5.1.4 ISA Compatibility

	5.2 Microarchitectural Support for Composability
	5.2.1 Overview of TFlex Execution
	5.2.2 Composable Instruction Fetch
	5.2.3 Composable Control-flow Prediction
	5.2.4 Composable Instruction Execution
	5.2.5 Composable Memory System
	5.2.6 Composable Instruction Commit
	5.2.7 Level-2 Cache Organization for Composable Processors
	5.2.8 Microarchitectural Reconfiguration

	5.3 Microarchitecture Evaluation
	5.3.1 Distributed Fetch and Commit Overheads
	5.3.2 Distributed Block Prediction Overheads
	5.3.3 Operand Communication Overheads
	5.3.4 Distributed Memory Disambiguation Overheads
	5.3.5 Level-2 Cache Organizations for TFlex

	5.4 Comparison Across Configurations
	5.4.1 Baseline
	5.4.2 Performance Comparison
	5.4.3 Area Efficiency Comparison
	5.4.4 Power Efficiency Comparison
	5.4.5 Ideal Operating Points

	5.5 Summary

	Chapter 6 Conclusions
	6.1 Summary
	6.1.1 NUCA (Non-Uniform Access Cache Architecture)
	6.1.2 CLP (Composable Lightweight Processor)

	6.2 Final Thoughts

	Appendix A Comparison Between Hand-Optimized And Compiled Code
	Appendix B Area Comparison with the Alpha 21264
	Bibliography
	Vita

