
Copyright

by

Ramadass Nagarajan

2007

The Dissertation Committee for Ramadass Nagarajan

certifies that this is the approved version of the following dissertation:

Design and Evaluation of a Technology-Scalable

Architecture for Instruction-Level Parallelism

Committee:

Douglas C. Burger, Supervisor

Michael D. Dahlin

Stephen W. Keckler

Kathryn S. McKinley

Gurindar S. Sohi

Design and Evaluation of a Technology-Scalable

Architecture for Instruction-Level Parallelism

by

Ramadass Nagarajan, B.Tech., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2007

To my parents and sisters.

Acknowledgments

I thank the members of my committee, Doug Burger, Mike Dahlin, Steve Keckler,

Kathryn McKinley, and Guri Sohi for supervising this dissertation. I value their

comments and suggestions that have improved its quality. I especially thank Guri

Sohi for taking the time off his busy schedule to come down to Austin and serve on

my committee.

I am eternally grateful to Doug Burger who has been my principal advisor and

mentor through all the years in graduate school. Doug has been as perfect an advisor

as one could ever hope for. I thank him for all the advice—technical, professional,

and otherwise, hand-holding when necessary and cutting me loose at other times,

being patient when I was tardy or sloppy, propping me up on opportune occasions,

and of course, supporting me financially, even if it meant going to loggerheads with

the establishment. His infectious enthusiasm and sharp wit only made the experience

all the more enjoyable.

I thank Steve Keckler for serving as my de-facto co-advisor throughout my

stay in school. Steve has complemented Doug in an advisory capacity in many ways,

and I have benefited immeasurably from it. His insightful opinion, wise counsel, and

deep intuition have been a guiding influence on my development as a researcher.

Steve was the first faculty member that I met after I was admitted to the doctoral

program at UT and he offered me the opportunity to explore architecture research

during my first year. It was that experience and his advice that drew me to the

v

CART group, which he co-leads with Doug, and for that I will be forever grateful.

I thank Kathryn McKinley for several years of research collaboration on the

TRIPS project. I thank her for the numerous interactions and thoughtful advice

on technical writing and presentation. I cannot thank Doug, Steve, and Kathryn

enough for their vision, leadership, and drive that set the direction of the TRIPS

project in general, and this dissertation in particular.

I also thank Daniel Jimenez, Calvin Lin, and Chuck Moore for the research

collaborations on the TRIPS project.

I thank the entire TRIPS team that helped transform an abstract research

idea into working silicon. I would like to thank Robert McDonald for instilling rigor

and attention to detail on every aspect of the TRIPS prototype implementation.

I thank the entire hardware team—Raj Desikan, Saurabh Drolia, Madhu S. Sibi

Govindan, Divya Gulati, Paul Gratz, Heather Hanson, Changkyu Kim, Haiming

Liu, Nitya Ranganathan, Karu Sankaralingam, Simha Sethumadhavan, and Premk-

ishore Shivakumar—and the entire software team—Jim Burrill, Katie Coons, Mark

Gebhart, Madhavi Krishnan, Sundeep Kushwaha, Bert Maher, Nick Nethercote,

Behnam Robatmili, Sadia Sharif, Aaron Smith, and Bill Yoder—for their contribu-

tions. Without their collective contributions, the infrastructure necessary for this

dissertation would not have been possible.

Karu Sankaralingam merits my special gratitude for his close collaboration. I

started working with him on the PowerPC port of the SimpleScalar simulator in my

first year, and the collaboration continued through the implementation of the TRIPS

prototype processor. I have always admired his expansive scholarship, deep insight,

and unique perspective on various issues, research and otherwise. I will forever

cherish our initial joint work on the TRIPS architecture, which included non-stop

brainstorming sessions, simulator hacking, and co-authorship of multiple TRIPS-

related publications. Karu was also a constant source of entertainment around the

vi

cubicle area that brought comic relief to the occasional dreary moment.

I thank Changkyu Kim for adding the TRIPS port to the tsim-flex simulator,

which is one of the simulators that I used to generate the results presented in this

dissertation. I thank Nitya Ranganathan for help with the SimPoint simulations.

I thank Heather Hanson, Divya Gulati, Madhu S. Sibi Govindan, and Aaron

Smith for proof-reading portions of this dissertation.

I thank all the past and current members of the CART group for numerous

technical discussions and feedback on papers and practice talks. I have always

appreciated, and often dreaded, the comments and the questions that they threw

my way, and the experience has made me a better researcher. The members of the

CART group and the Speedway group have also provided a welcome distraction

from the rigors of academic life through numerous social occasions.

I thank M.S. Hrishikesh for his patience and counsel during the numerous

times I have turned to him for advice. He hosted me during my visit to Intel,

Bangalore and has offered valuable feedback on my post-school career choices.

I also thank Kartik Agaram, for tolerating me as his roommate during the

first few months, Simha Sethumadhavan, for enduring me as his cubicle mate for

several years, Heather Hanson for her lessons on power and general advice, and

Madhu S. Sibi Govindan and Suriya Subramanian for their valuable help at critical

junctures.

I thank the staff of the Computer Sciences department, and in particular,

Gloria Ramirez for her help as the graduate coordinator and the entire gripe staff for

the timely resolution of my complaints with the facilities. I also thank Gem Naivar

for her infinite patience, getting me paid on time, and help with travel arrangements

and other miscellaneous paperwork.

I thank all friends outside the immediate research group for their merry com-

pany, numerous hiking, camping, and ski trips, and cooking me several delicious

vii

meals. In particular, I would like to thank Murali Narasimhan, Karthik Subrama-

nian, Siddarth Krishnan, Shobha Vasudevan, Ravi Karthik, Kunal Punera, Vinod

Viswanath, Silpa Sigireddy, Bharat Chandra, Ramsundar Ganapathy, Subbu Iyer,

Vishv Jeet, Prem Melville, Joseph Modayil, Aniket Murarka, Amol Nayate, Arun

Venkatramani, Vibha volunteers, and the entire “Far West” gang.

Last, but not the least, I remain forever indebted to my parents and sisters.

I cannot thank them enough for supporting me unflinchingly, continuing to worry

for my well-being, and tolerating my extended absence from home for several weeks,

months, and years at a stretch ever since high school. I especially thank my mom

for asking me when I was going to graduate every time I spoke with her, and my

dad and sisters for never asking me the same question. Without their constant

encouragement and understanding I could not have come this far. To you, Mom,

Dad, Hema, and Lalitha, I owe everything.

Ramadass Nagarajan

The University of Texas at Austin

May 2007

viii

Design and Evaluation of a Technology-Scalable

Architecture for Instruction-Level Parallelism

Publication No.

Ramadass Nagarajan, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Douglas C. Burger

Future performance improvements must come from the exploitation of con-

currency at all levels. Recent approaches that focus on thread-level and data-level

concurrency are a natural fit for certain application domains, but it is unclear

whether they can be adapted efficiently to eliminate serial bottlenecks. Conventional

superscalar hardware that instead focuses on instruction-level parallelism (ILP) is

limited by power inefficiency, on-chip wire latency, and design complexity. Ulti-

mately, poor single-thread performance and Amdahl’s law will inhibit the overall

performance growth even on parallel workloads. To address this problem, we un-

dertook the challenge of designing a scalable, wide-issue, large-window processor

ix

that mitigates complexity, reduces power overheads, and exploits ILP to improve

single-thread performance at future wire-delay dominated technologies.

This dissertation describes the design and evaluation of the TRIPS architec-

ture for exploiting ILP. The TRIPS architecture belongs to a new class of instruction

set architectures called Explicit Data Graph Execution (EDGE) architectures that

use large dataflow graphs of computation and explicit producer-consumer commu-

nication to express concurrency to the hardware. We describe how these architec-

tures match the characteristics of future sub-45 nm CMOS technologies to mitigate

complexity and improve concurrency at reduced overheads. We describe the archi-

tectural and microarchitectural principles of the TRIPS architecture, which exploits

ILP by issuing instructions widely, in dynamic dataflow fashion, from a large dis-

tributed window of instructions.

We then describe our specific contributions to the development of the TRIPS

prototype chip, which was implemented in a 130 nm ASIC technology and consists

of more than 170 million transistors. In particular, we describe the implementation

of the distributed control protocols that offer various services for executing a single

program in the hardware. Finally, we describe a detailed evaluation of the TRIPS

architecture and identify the key determinants of its performance. In particular,

we describe the development of the infrastructure required for a detailed analysis,

including a validated performance model, a highly optimized suite of benchmarks,

and critical path models that identify various architectural and microarchitectural

bottlenecks at a fine level of granularity.

On a set of highly optimized benchmark kernels, the manufactured TRIPS

parts out-perform a conventional superscalar processor by a factor of 3× on average.

We find that the automatically compiled versions of the same kernels are yet to

reap the benefits of the high-ILP TRIPS core, but exceed the performance of the

superscalar processor in many cases. Our results indicate that the overhead of

x

various control protocols that manage the overall execution in the processor have

only a modest effect on performance. However, operand communication between

various components in the distributed microarchitecture contributes to nearly a

third of the execution cycles. Fanout instructions, which are necessitated by limited,

fixed-width encoding in the dataflow instruction set, also contribute to non-trivial

performance overheads. Our results point to an exciting line of future research to

overcome these limitations and achieve low-overhead distributed dataflow execution.

xi

Contents

Acknowledgments v

Abstract ix

List of Tables xvii

List of Figures xx

Chapter 1 Introduction 1

1.1 Exploiting Concurrency . 3

1.2 TRIPS: An EDGE Architecture . 5

1.3 Thesis Statement . 8

1.4 Dissertation Contributions . 10

1.5 Dissertation Layout . 11

Chapter 2 Related Work 13

2.1 Extending Superscalar Scalability . 14

2.1.1 Issue Logic . 15

2.1.2 Register File . 16

2.1.3 Load-Store Queues . 16

2.1.4 Bypass Networks . 17

2.1.5 Other Scaling Techniques . 17

xii

2.1.6 Discussion . 18

2.2 Static Scheduling of ILP . 18

2.3 ILP from Chip Multiprocessors . 20

2.3.1 Thread-Level Speculation . 20

2.3.2 Pre-computation . 21

2.3.3 Discussion . 21

2.4 Extracting Concurrency through Tiling 22

2.4.1 The RAW Architecture . 24

2.4.2 WaveScalar . 26

2.4.3 Spatial Computation . 29

2.4.4 Other Tiled Architectures . 30

2.4.5 Discussion . 30

2.5 Summary . 31

Chapter 3 TRIPS: An EDGE Architecture 32

3.1 EDGE Architectures . 33

3.1.1 Advantages of EDGE Architectures: 34

3.1.2 Discussion . 36

3.1.3 Implementation Choices . 36

3.2 The TRIPS Architecture . 38

3.2.1 TRIPS ISA . 38

3.2.2 Distributed Microarchitecture 45

3.2.3 Discussion . 53

3.3 Compiling for TRIPS . 54

3.3.1 Scale Framework . 55

3.3.2 Hyperblock Formation . 56

3.3.3 Predication . 56

3.3.4 Register Allocation . 59

xiii

3.3.5 Instruction Scheduling . 60

3.4 Design Alternatives . 61

3.4.1 What to Distribute . 62

3.4.2 How to Distribute . 62

3.4.3 How to Connect . 65

3.4.4 Design Parameters . 67

3.5 Summary . 70

Chapter 4 The TRIPS Prototype Implementation 71

4.1 The TRIPS Prototype ISA . 72

4.2 TRIPS Prototype Microarchitecture 76

4.2.1 Processor Tiles and Networks 78

4.2.2 Secondary Memory System 81

4.2.3 On-Chip Controllers . 82

4.2.4 TRIPS Chip Implementation 83

4.3 Development Effort . 85

4.3.1 Overall Effort . 85

4.3.2 My Contributions . 87

4.4 Block Control . 88

4.4.1 GT Implementation . 89

4.4.2 Block Operations . 94

4.4.3 Discussion . 104

4.5 Performance Validation . 105

4.5.1 Validation Phases . 105

4.5.2 Discussion . 111

4.6 Summary . 111

xiv

Chapter 5 Evaluation Methodology 113

5.1 Benchmarks . 114

5.2 Compilation . 115

5.3 Hand Optimization . 116

5.3.1 Instruction Merging . 116

5.3.2 Predicate Combining . 118

5.3.3 φ-merging . 119

5.3.4 Other Optimizations . 120

5.3.5 Performance Improvements 120

5.4 Simulators . 121

5.4.1 TRIPS Simulation . 121

5.4.2 Alpha Simulation . 123

5.4.3 Reducing Simulation Time 123

5.5 Critical Path Analysis . 127

5.5.1 Prior Critical Path Models 128

5.5.2 TRIPS Critical Path Model 129

5.5.3 Critical Path Framework . 135

5.5.4 Results . 140

5.5.5 Algorithm Performance . 141

5.5.6 Speed of the Critical Path Framework 143

5.5.7 Discussion . 144

5.6 Summary . 146

Chapter 6 Experimental Results 148

6.1 Performance of the TRIPS Architecture 149

6.1.1 TRIPS Hardware Results . 149

6.1.2 Instruction Throughput . 151

6.1.3 Instruction Window Utilization 154

xv

6.1.4 Discussion . 160

6.2 TRIPS ILP Extraction . 161

6.2.1 Dataflow Limit . 161

6.2.2 Effect of L2 misses . 163

6.2.3 Effect of Other Constraints 164

6.2.4 Discussion . 165

6.3 Where Do Execution Cycles Go? . 165

6.3.1 Critical Path Components . 166

6.3.2 Instruction Supply . 168

6.3.3 Data Supply . 173

6.3.4 ALU Execution . 176

6.3.5 Operand Communication . 178

6.3.6 Distributed Protocols . 182

6.3.7 Operand Fanout . 185

6.3.8 Discussion . 189

6.4 Summary . 189

Chapter 7 Conclusions 191

7.1 Dissertation Contributions . 192

7.2 Performance of the TRIPS Architecture 194

7.3 Improving the TRIPS architecture 195

7.4 Concluding Thoughts . 198

Appendix A Comparing tsim-proc and the TRIPS Hardware 203

Appendix B Improving Performance Using Critical Path Analysis 205

Appendix C Front-End Performance in the TRIPS Architecture 209

Bibliography 211

xvi

Vita 238

xvii

List of Tables

2.1 Attributes for various tiled architectures. 24

4.1 Summary of the instructions in the TRIPS prototype ISA. 74

4.2 Composition of the processor tiles. 79

4.3 I-cache storage of a block in the TRIPS processor. 90

4.4 An entry in the I-cache directory. 90

4.5 State tracked for each pending fill. 92

4.6 State tracked for each block in the retirement table. 92

4.7 Area breakdown for the GT. 94

4.8 Minimum latencies for block events. 104

4.9 Microarchitectural events whose latencies or throughput were verified. 107

4.10 Percentage difference in execution cycles between tsim-proc and proc-rtl.109

4.11 Performance issues found and fixed in the RTL. 110

5.1 List of hand-optimized benchmarks used for evaluation. 114

5.2 List of SPEC benchmarks used for evaluation. 115

5.3 Comparison of hand-optimized benchmarks with their compiled ver-

sions. 121

5.4 Expected load-to-use latency for different scenarios in the TRIPS

hardware. 122

xviii

5.5 Simulator parameters for Alpha 21264. 124

5.6 SimPoint regions for SPEC CPU2000 workloads. 126

5.7 Dependences for the TRIPS critical path model. 131

5.8 Benchmark set used for evaluating critical path algorithms. 141

5.9 Relative slowdown of analysis at varying levels of granularity. 143

5.10 Critical path breakdown for matrix. 144

6.1 Performance speedup of the TRIPS hardware over Alpha 21264. . . 149

6.2 Comparison of instruction throughput with the Alpha 21264. 151

6.3 Performance of SPEC workloads. 152

6.4 Different states of occupancy for an instruction window slot. 154

6.5 Benchmark categories for evaluating window utilization. 156

6.6 Categorization of various microarchitecture events into different crit-

ical path components. 166

6.7 Major components of critical path. 167

6.8 Components of instruction supply on the critical path as a percentage

of program execution time. 169

6.9 Types of operand communication. 179

A.1 Percentage difference in execution cycles between the TRIPS hard-

ware and tsim-proc. 204

B.1 Overall critical path breakdown for two versions of memset. 206

B.2 Critical path composition for the block memset test$6 in the pro-

gram memset. 207

B.3 Operand communication and instruction execution cycles on the crit-

ical path for the top five instructions in the block memset test$6 in

the program memset. 207

xix

C.1 Front-end performance for hand-optimized benchmarks. 210

C.2 Front-end performance for SPEC benchmarks. 210

xx

List of Figures

3.1 TRIPS code example. 39

3.2 TRIPS processor microarchitecture organization. 46

3.3 Mapping of instructions in a block to different tiles. 47

3.4 Different states in the execution of a block. 48

3.5 Organization of reservation station slots into different frames. 52

3.6 TRIPS compiler phases. 55

3.7 Predication in the TRIPS architecture. 57

3.8 Different organizations of the distributed components. 63

3.9 Mapping of different blocks to the reservation stations. 69

4.1 Instruction formats in the TRIPS prototype ISA. 73

4.2 Block organization in the TRIPS prototype ISA. 75

4.3 TRIPS chip overview. 77

4.4 TRIPS microarchitectural networks. 80

4.5 TRIPS die photo. 83

4.6 Picture of TRIPS motherboard and package. 84

4.7 High-level organization of the GT. 89

4.8 Refill pipeline. 95

4.9 Fetch pipeline. 97

4.10 Timing of block fetch and instruction distribution. 97

xxi

4.11 Timing of block commit protocol. 101

5.1 Instruction merging in genalg. 117

5.2 Example of φ-merging. 119

5.3 Critical path model for the TRIPS architecture. 130

5.4 Sensitivity of analysis time to region sizes. 142

5.5 Detailed critical path breakdown for matrix. 145

6.1 Window utilization for basefp01, LB GP. 157

6.2 Window utilization for rspeed01, SB GP. 158

6.3 Window utilization for dct8x8, LB PP. 159

6.4 Window utilization for genalg, SB PP. 159

6.5 Available and observed ILP under various machine constraints. . . . 162

6.6 Speedup from a perfect front end. 171

6.7 Components of data supply on the critical path. 174

6.8 Components of data supply from memory on the critical path. . . . 175

6.9 Components of ALU execution on the critical path. 176

6.10 Performance effect of ALU contention. 178

6.11 Components of operand communication latencies on the critical path. 180

6.12 Speedup from perfect operand communication. 182

6.13 Components of block control protocols on the critical path. 183

6.14 Speedup from perfect distributed protocols. 184

6.15 Components of operand fanout on the critical path. 185

6.16 Speedup from a perfect fanout. 186

xxii

Chapter 1

Introduction

Advances in semiconductor technology have spurred a remarkable growth in the

capability of microprocessors. The first general-purpose programmable micropro-

cessor was the 4-bit Intel 4004 and was used in calculators. It debuted in 1971 and

consisted of approximately 2,300 transistors. Three and a half decades later, the

mainstream Intel microprocessors have grown to contain approximately 300 million

transistors. They integrate multiple 64-bit processor cores and several megabytes of

on-chip memory on the same die, and run sophisticated operating systems, process

rich streaming media, and even execute high-performance applications that tradi-

tionally have been in the domain of mainframe supercomputing systems.

Device scaling, architectural innovations, and cost benefits of a volume pro-

cess have all contributed to this remarkable growth. Feature sizes have shrunk from

10 microns in 1971 to 65 nm in 2007, more or less in accordance with the famed

Moore’s law [103]. Production facilities for 45 nm devices are already on the hori-

zon, and forecasts project continued geometry shrinks to at least 22 nm within the

next decade [2]. Designers have rode this massive device scaling to reap performance

improvements at the rate of nearly 50% per year from the late 1970’s until the early

part of this decade. Of late, this improvement has dropped to a more modest an-

1

nual growth of 20% due to limitations such as stopping clock rate growths and power

constraints [70].

Much of the performance improvements in the early years resulted from ex-

ploiting the increased device density for wider datapaths and hardware support for

memory management. Later, in the 1980’s, microprocessors benefited from on-chip

integration of several components: diverse computation logic, memory hierarchies,

and pipelining. Since then, however, the bulk of the performance growth has come

from increases in clock rates. Clock rates have improved due to equal contribu-

tions from both technology scaling and deeper pipelines, resulting in a 40% annual

increase from 33 MHz in 1990 to over 2 GHz in 2001. Simultaneously microarchitec-

tural techniques such as out-of-order execution, speculation, and cache prefetching

have improved instruction-level parallelism to sustain the performance growth from

increasing clock rates. But as recent trends indicate, the bullish performance ride

on clock rate has abated. Power constraints [69, 157] and diminishing performance

returns of deep pipelines [74] have ended the reign of clock rates in high perfor-

mance microprocessors. Future improvements in performance must therefore come

primarily from the exploitation of concurrency.

To extract concurrency, the microprocessor industry has shifted to multi-core

designs and throughput computing. The reasons for this shift are mainly design

simplicity, increased power efficiency, poor scalability of uniprocessor concurrency,

and the relative ease of exploiting concurrency from data-parallel and thread-parallel

workloads. Commercial dual-core chips debuted in 2001 [45], and recent trends point

to a massive on-die proliferation of processor cores [18]. These approaches target

application domains with explicitly parallel workloads, but neglect serial, irregular

applications. Eventually, poor single-thread performance and Amdahl’s law will

inhibit the overall performance growth even on parallel workloads. Scaling single-

thread performance is therefore important for the foreseeable future.

2

This dissertation presents a design and evaluation of a scalable uniprocessor

solution for improving single-threaded performance. In the rest of this chapter, we

present a brief overview of exploiting concurrency and the scalability problems of

current solutions. We then present a high-level overview of the TRIPS architecture,

which exploits concurrency using ultra-wide issue from a large distributed window

of instructions. We then present the specific contributions of this dissertation and

its relation to related work.

1.1 Exploiting Concurrency

Concurrency is the vehicle through which future microprocessors must attain perfor-

mance improvements. Concurrency or parallelism is a property that determines how

many independent operations can be performed by the hardware simultaneously. It

exists in several forms—instruction-level parallelism (ILP), data-level parallelism

(DLP), or thread-level parallelism (TLP). ILP results from executing multiple in-

structions from the same workload concurrently. DLP results from executing a

single operation on multiple data concurrently. TLP results from executing multi-

ple independent threads—different workloads, different transactions of a workload,

or different threads of a parallel application—concurrently.

Historically, mainstream general-purpose processors have focused on ILP and

exploited other forms of concurrency using extensions to the ILP hardware. For

example, simultaneous multi-threading (SMT) uses ILP hardware to execute inde-

pendent instructions from multiple threads in the same cycle [169]. The hardware

for exploiting ILP dynamically consists of physical register files, register alias tables,

issue windows, bypass networks, branch predictors, cache hierarchies, and prefetch

engines. Exploiting higher ILP typically requires capacity growth in many of these

structures, which engenders increased design complexity, power inefficiency, and

poor delay scalability [102, 115]. Current processors already devote more than 85%

3

of the non-cache, non-TLB die area1 to these structures [102], and further increases

in their area are undesirable due to the above problems. The industry-wide response

to this problem is a shift towards TLP and DLP—at the expense of ILP—and im-

proving system throughput using single chip-multiprocessors (CMPs) [18,84,85,121].

The modular features of CMPs are attractive for reducing complexity, im-

proving designer productivity, and increasing performance for a given power budget.

These processors exploit the multiple cores to improve overall throughput in applica-

tions that exhibit explicit concurrency—internet transactions or parallel workloads.

But serial portions of these workloads and single-threaded workloads utilize only

one of the cores and are starved for performance, as each core itself sustains only

modest ILP. Ultimately, Amdahl’s law and stagnant clock frequencies would force

designers to exploit higher single-threaded concurrency from the multiple cores, ei-

ther by enhancing the ILP capability of the individual cores, or utilizing several of

them to execute a single thread. Utilizing multiple cores to execute a single thread

has been the focus of recent architecture research [15, 63, 67, 86, 113, 114, 159, 177],

but effective solutions are still elusive. In this dissertation, we examine a single,

but powerful core that exploits ILP without incurring the overheads of conventional

superscalar cores.

The fundamental ILP scalability of superscalar cores stem from the over-

reliance on large, centralized structures such as bypass networks, register files, and is-

sue windows. Migration to wider issue architectures typically introduces multi-cycle

wire delays, which increase the latency of critical performance loops—wakeup-select

of back-to-back dependent instructions, register file access, and branch prediction—

and degrade overall performance. Wire delays, in fact, have long been a problem

for superscalar processors. In the late 1990’s, the Alpha 21264 microarchitecture

clustered the functional units, replicated the register files, and incurred a 1-cycle

1The remainder of the area is devoted to functional units.

4

inter-cluster latency to cope with global wire delays [79]. The Pentium 4 microar-

chitecture devoted two pipeline stages solely for transmitting global signals around

the pipeline [73]. Future architectures must therefore address wire delays explicitly

to improve performance.

The power inefficiency of superscalar architectures stem from the dynamic

reconstruction of the program dataflow graph and per-instruction overheads. The

instruction set architecture (ISA) conveys dependences to the hardware indirectly

using register names, and the hardware dynamically identifies independent instruc-

tions using complex associative match logic. Every dynamic instruction must also

access multiple power-hungry structures such as branch predictors, register alias

tables, physical register files, and operand bypass networks. These structures typ-

ically account for more than a third of the total power consumption in modern

processors [21] and inhibit the exploitation of further concurrency. Furthermore,

the monolithic nature of the design increases the design and verification complexity

significantly. Product cycles of 4 to 5 years involving several hundred designers are

not uncommon in the industry. Future implementations must partition the global

structures and limit their access on a per-instruction basis not only to enable mod-

ular design principles, but also to reduce overhead.

In summary, future ILP architectures must exhibit the following characteris-

tics: a) high concurrency, b) complete distribution of hardware resources, c) power-

efficient execution, and d) explicit optimization for wire delays. The design and

evaluation of an architecture to attain these goals is the subject of this dissertation.

1.2 TRIPS: An EDGE Architecture

This dissertation presents the TRIPS architecture, which is an EDGE architecture,

for exploiting high ILP at future, wire-delay dominated, VLSI technologies. Explicit

Data Graph Execution (EDGE) architectures are a new class of instruction-set ar-

5

chitectures, in which the ISA aggregates large groups of instructions into program

entities known as blocks. They convey the data dependences among instructions of

the same block explicitly in the ISA, instead of using indirect register specifiers like

conventional architectures. An EDGE ISA thus expresses the static dataflow graph

directly to the hardware, instead of requiring it to rediscover data dependences

dynamically at runtime.

The TRIPS architecture is an instantiation of an EDGE architecture. It

partitions most of the traditionally centralized hardware structures, and exploits

concurrency by issuing from a large window of in-flight instructions. It exploits the

features of an EDGE ISA and a partitioned microarchitecture to address specific

concerns of future high ILP architectures as follows:

Concurrent execution: The microarchitecture uses an array of concurrently ex-

ecuting ALUs, each of which operate only on a local window of instructions. It

attains out-of-order execution using dataflow firing rules, wherein an instruction ex-

ecutes as soon as all of its operands are available. Aggregated across the entire array,

the hardware offers a highly concurrent, out-of-order execution engine and a large

window of in-flight instructions to exploit parallelism. A prototype implementation,

in fact, supports 16-wide issue from a window of 1024 instructions.

Power efficiency: The architecture reduces many per-instruction overheads such

as branch prediction, register renaming, operand bypass, associative issue window

search, and register file access, which eliminates the need for most of the power-

hungry structures present in a conventional superscalar processor. The explicit de-

pendence encoding in the ISA expresses the dataflow graph directly to the hardware

eliminating the need for dynamic rediscovery of the data dependences. It allows the

hardware to directly forward the result of a computation to the consumer instruc-

tions using point-to-point communication without the use of inefficient centralized

6

structures such as register files, associative instruction schedulers, and ALU bypass

buses. Across blocks, the architecture still performs conventional operations such

as control-flow prediction, dynamic dependence checking, and register renaming.

However, it amortizes these operations using large blocks, reducing the majority of

the per-instruction overheads.

Design complexity: The microarchitecture embraces modular principles for

managing design complexity and enhancing design productivity. It partitions most

of the centralized structures such as data caches, register files, and issue windows

into simple, replicated structures known as tiles. It connects the tiles using point-

to-point networks where the links connect only nearest neighbors. Scaling to large

systems is trivial; it involves additional replication and network connections, both

of which require only modest design changes to microarchitecture.

Tolerance to wire delays: The microarchitecture avoids the scaling problems of

global wire delays by using a tiled organization. It addresses the challenge of low

overhead inter-tile communication using support from the compiler. The compiler

determines placement labels for every instruction in the program, and the microar-

chitecture maps instructions on to the different tiles at runtime accordingly. Given

a tiled organization, the compiler attempts to place instructions on tiles such that

the physical distance that operands must travel en route to dependent instructions

is minimized. The architecture thus couples compiler-driven instruction placement

with hardware-driven execution order to mitigate communication delays and in-

crease performance.

7

1.3 Thesis Statement

This dissertation addresses the design and implementation of a uniprocessor archi-

tecture for exploiting fine-grained concurrency with hardware structures distributed

across the chip. It presents the architectural innovations that expose concurrency

and the microarchitectural protocols that exploit the concurrency in a scalable, dis-

tributed fashion. It presents a detailed performance evaluation that demonstrates

the benefits, overheads, and bottlenecks of single-threaded execution in a distributed

microarchitecture.

This dissertation makes the following specific contributions:

ILP architecture: We describe EDGE ISAs that express dependences explicitly

to the hardware. The TRIPS architecture, which is an EDGE architecture, en-

ables a fine division of labor between the hardware and software for exploiting high

concurrency and allows the reduction of several overheads present in conventional

superscalar processors. The TRIPS microarchitecture integrates multiple, simple,

heterogeneous components to implement a powerful uniprocessor. We describe the

tile-level partitioning and the mechanisms for achieving scalable, wide-issue, out-of-

order execution of single-threaded applications.

Hardware prototype implementation: We describe the TRIPS prototype pro-

cessor, which is the first hardware implementation of the TRIPS architecture. In

particular, we describe the design and implementation of the distributed control

protocols that offer various services for execution, including fetch, flush, and com-

mit. The TRIPS prototype chip is implemented in a 130 nm ASIC technology and

consists of more than 170 million transistors. The chip contains two processors,

each of which implements the TRIPS architecture, and a distributed 1 MB NUCA

L2 cache [80]. At the time of writing this dissertation, the manufactured TRIPS

8

chips are fully operational and run at a clock frequency of 366 MHz.

Performance evaluation: We describe a detailed performance evaluation of the

TRIPS architecture. We describe the mechanisms and methodology for evaluat-

ing the prototype implementation, including the development of a highly-optimized

benchmark suite and the correlation of a detailed performance model with the hard-

ware implementation. Analyzing a highly concurrent processor requires the develop-

ment of sophisticated tools that identify the fine-grained interactions and bottlenecks

among numerous inter-dependent microarchitectural events. This dissertation de-

velops an efficient analysis based on critical path models to identify the bottlenecks

of distributed execution.

Our results demonstrate that the largest overhead of distributed execution

is the operand routing among the participating tiles in the microarchitecture. We

observed that this overhead accounts for nearly a third and as much as 50% of

the execution cycles. Our results illustrate that further research into creating and

exploiting locality of communication is necessary for reducing the overhead of dis-

tributed execution. Fanout of operands to multiple consumers also presents some

overheads, amounting to as much as 16% of the execution cycles. This result sug-

gests a need for better ISA and microarchitecture support for wide broadcast of

some operands.

Despite the overheads of distributed execution, our results, directly obtained

from the TRIPS hardware, demonstrate that for a hand-optimized suite of bench-

marks, the TRIPS processor attains a speedup ranging from 0.9 to 4.9 when com-

pared to an Alpha 21264 core. On the same set of benchmarks, the TRIPS processor

sustains good ILP which range from 1.1 to 6.5 instructions per cycle. The current

compiled TRIPS code does not yet reap the full benefits of the high ILP TRIPS core,

but does exceed the performance of the Alpha core on about half of the benchmarks

we examined.

9

1.4 Dissertation Contributions

The design and development of the TRIPS architecture and the TRIPS prototype

chip have been a collaborative effort involving many students, staff and faculty

members at the University of Texas at Austin. In this section, I highlight my

specific contributions and place it in the context of related work.

Karthikeyan Sankaralingam and I jointly proposed the high-level architec-

tural and microarchitectural ideas, in association with our advisors Doug Burger

and Stephen W. Keckler [109]. I explored the microarchitectural design space for

exploiting ILP, including the necessary support for control speculation and predica-

tion, and the initial compiler algorithms for performing static instruction schedul-

ing [108,135]. I also developed various tools for performance analysis and identified

bottlenecks for performance in the TRIPS architecture [107]. I designed and imple-

mented portions of the TRIPS prototype chip. I led the design and implementation

of the protocols and the global control logic, which provide various services for exe-

cution [136]. I also led the performance verification efforts for the TRIPS prototype

processor. Chapter 4 provides a description of the implementation effort for the

prototype chip and describes my specific contributions in greater detail.

The techniques developed during the research and implementation of the

TRIPS architecture is the subject of multiple dissertations. My dissertation covers

the architecture and microarchitecture for exploiting instruction-level parallelism

and presents a detailed evaluation of various performance bottlenecks. Sankar-

alingam explores the techniques for exploiting data-level parallelism and describes

the polymorphous capabilities of the architecture [132]. Other work has focused on

developing efficient techniques for supporting distributed execution in the TRIPS

architecture—Ranganathan (next-block predictor [126]), Liu (distributed instruc-

tion caches), Sethumadhavan (memory disambiguation [140]), Kim (non-uniform

cache architectures [80]), and Gratz (on-chip networks [65,66]).

10

1.5 Dissertation Layout

The rest of this dissertation is organized as follows. Chapter 2 presents recent,

related work on exploiting ILP and compares it with the TRIPS architecture. In

particular, it describes various tiled architectures, their execution models for ex-

ploiting ILP, and how they differ from the TRIPS architecture.

Chapter 3 presents the class of EDGE architectures, the instruction set model

that exposes concurrency and allows distributed architectures to exploit ILP. It

presents an overview of the TRIPS architecture, which is an EDGE architecture, the

details of a microarchitecture implementation, and the rationale behind its design.

It also presents the role of the compiler in the TRIPS architecture and the different

optimizations it must perform to exploit high ILP.

Chapter 4 presents the details of the TRIPS prototype chip implementation.

It describes the TRIPS prototype ISA, the processor microarchitecture, and the

implementation of the protocols that offer various services for execution. It also

describes the performance validation of the prototype processor and sets the con-

text for understanding its performance. Finally, it describes the overall prototype

implementation effort and highlights my specific contributions.

Chapter 5 presents the methodology for evaluating the performance of the

TRIPS architecture. It describes the evaluation suite of benchmarks, the compila-

tion infrastructure, and where necessary, the set of hand optimizations that were

applied to improve code quality. It also describes the details of the performance

simulators used for evaluating the architecture and the critical path analysis infras-

tructure used for identifying various performance bottlenecks.

Chapter 6 presents the results of our evaluation. It presents the raw per-

formance results measured on the hardware. It reports the potential for high in-

struction throughputs in the TRIPS architecture and various overheads that inhibit

parallelism. It also presents the relative effect of various microarchitectural bottle-

11

necks and suggests suitable enhancements for improving performance.

Finally, Chapter 7 presents a summary of the overall contributions of this

dissertation and specific recommendations for future generations of the TRIPS ar-

chitecture, in particular, and EDGE architectures, in general.

12

Chapter 2

Related Work

Superscalar processors exploit Instruction-Level Parallelism (ILP) in order to exe-

cute more than one instruction in a single clock cycle. They must deal with three

common problems: instruction supply, which must provide an uninterrupted supply

of instructions to execute, data supply, which must provide data just-in-time for

the execution of the instructions, and dynamic instruction scheduling, which must

analyze data dependences among a window of instructions and initiate the parallel

execution of several independent instructions. Originally, the CDC 6600 and IBM

System 360/91 machines used dynamic instruction scheduling mechanisms similar to

modern superscalar processors, but were capable of executing only one instruction

per cycle [10, 165]. Later-era microprocessors enhanced the superscalar capability

by supporting dual issue of integer and floating point instructions [12], or using mul-

tiple integer and/or memory units [9]. Modern superscalar processors expand this

capability significantly using extensive out-of-order execution for all instructions,

support for precise exceptions, and speculation [117].

However, in recent years, superscalar processors have reached the limits of

exploiting ILP. The out-of-order issue rate rarely exceeds four in current proces-

13

sors1—the latest Intel core microarchitecture issues only four instructions per cycle,

and uses techniques such as macro-op fusion to increase the issue rate beyond four

occasionally [85]. Untenable power constraints, high on-chip communication laten-

cies, and increased design and verification costs have limited their scalability to wider

issue. Designing a superscalar fabric that mitigates these constraints has been the

focus of much research in both industry and academia. The proposed designs span

the gamut between simple evolutionary techniques that reduce the complexity of

dynamic schedulers and novel architectures that employ different execution models

to improve ILP.

This chapter describes relevant work and compares it with the TRIPS archi-

tecture. First, it describes techniques that seek to reduce the complexity of various

microarchitectural structures in dynamic superscalar processors, thereby improving

their ILP scalability. Next, it describes alternative approaches that use simpler

hardware by statically scheduling the ILP in a program. As CPU vendors are shift-

ing entire design flows over to chip multiprocessors (CMPs), several researchers have

started proposing techniques to exploit the available cores for improving ILP in a

single program. We describe these techniques in Section 2.3. Finally, this chapter

concludes with a survey of a few newly proposed architectures that employ uncon-

ventional execution models and microarchitectural organizations to exploit ILP.

2.1 Extending Superscalar Scalability

A typical superscalar microarchitecture consists of an in-order front-end, an out-of-

order execution engine, and an in-order back-end [150]. The front-end predicts the

program control flow, renames register operands in every instruction to eliminate

false dependence hazards, and dispatches instructions into one or more issue queues

1The Alpha 21464 was designed to be 8-wide core, but was canceled during an advanced stage
of development [44].

14

where the instructions wait until they execute. The out-of-order execution engine

consists of the issue logic, functional units, and operand bypass networks. The issue

logic buffers waiting instructions in issue queues and selects them for execution as

and when operands become available. The functional units perform the actual exe-

cution and bypass networks forward the result operands to dependent instructions.

The back-end logic commits the execution results to persistent architecture state in

the same order intended by the program. The overall operation, however, involves

several centralized hardware structures—physical register files, wakeup-select issue

logic, load-store queues, and bypass networks—which exhibit poor power, latency,

and area scalability at wider issue and wire-delay dominated technologies [6, 115].

Improving the scalability of these structures has therefore been the subject of much

research effort. We survey relevant work in this section.

2.1.1 Issue Logic

The issue logic typically involves a tag broadcast for every result operand and an

associative lookup of all instructions in the issue queue, and as such, is the one

of the most complex structures in a superscalar processor. Several solutions have

been proposed to mitigate its delay complexity. Prescheduling techniques attempt

to schedule an instruction in advance by anticipating the time when it will be ready

for execution [29, 30, 49, 99, 123]. This approach enables the hardware to consider

only a subset of instructions for wakeup, thereby reducing latency. The proposed so-

lutions differ largely on the mechanisms by which they deal with uncertain latencies

induced by cache misses. Dependence tracking techniques maintain the dependences

within the issue queue explicitly instead of using register tags [29,30,75,112]. When

a register is produced, they use explicit producer-consumer links to minimize the

number of instructions that must be searched for wakeup. Other techniques seek

to reduce the power consumption in the issue queue by adjusting its size dynami-

15

cally [14, 26, 59]. Researchers have also proposed hierarchical queues [20], pipelined

queues [22,158] and segmented issue queues to permit fast clock rates [74,123]. Fi-

nally, researchers have explored alternative circuit designs to improve the scalability

of the issue logic [64, 72,87].

2.1.2 Register File

Large multi-ported physical register files are necessary to eliminate false register

dependences, store results of speculative operations, and support wide issue. The

size of the register file and the number of ports together determine its scalability.

Proposed solutions for improving the scalability typically attempt to minimize one or

both components. Caching accelerates the access to commonly used registers. This

technique uses a smaller, faster register file in front of a larger, slower register file to

store frequently used values [19,25,40,176]. Banking sub-divides a larger register file

into different banks that together provide the same capacity but decrease the size

and ports for each bank [17,40,118,168,174]. Other solutions reduce the size of the

register file by improving its utilization—delaying physical register assignment until

execution or even writeback [101, 174]. Finally, some solutions reduce the number

of ports by using auxiliary structures [81, 82, 118] or partitioning the registers into

distinct read and write sets [142].

2.1.3 Load-Store Queues

Load-Store Queues (LSQs) buffer in-flight memory operations to dynamically dis-

ambiguate memory references. They typically involve an associate lookup structure

that must be accessed for every load and store instruction. Their poor delay, power,

and area scalability is one of the biggest impediments to wide superscalar execution.

Improving LSQ scalability therefore has been an important focus of research in re-

cent years. The proposed solutions attempt one or more of the following: a) reducing

16

the number of searches [139], b) eliminating associative operations [27,61,143,161],

and c) reducing the capacity of the LSQ [141]. We refer the reader to prior work

for a concise description of the differences between various approaches [141].

2.1.4 Bypass Networks

The operand bypass network forwards result values from producer instructions to

consumer instructions to eliminate pipeline bubbles in the execution of dependent

instructions. The broadcast nature of this network inhibits its scalability to wider

issue and wire delay dominated technologies [116]. To mitigate this problem, ar-

chitects have proposed clustering [51, 79, 116, 130]. Clustering couples the issue

queues and register files with the execution units and organizes them into different

partitions. Operand forwarding within a cluster uses a bypass network and incurs

zero-cycle delays, but between clusters it must incur additional delays. A centralized

instruction steering logic directs instructions to different clusters and must balance

the opposing goals of maximizing parallelism and minimizing inter-cluster commu-

nication. Clustering improves delay scalability as each cluster supports only smaller

structures, but poor instruction steering can degrade performance significantly [51].

Tiled architectures described in the next section address the latter problem by us-

ing complete partitioning and an architecturally exposed routed interconnection

networks.

2.1.5 Other Scaling Techniques

In addition to various scalability solutions for specific microarchitecture components,

researchers have sought to improve overall performance by utilizing the existing re-

sources efficiently. Non-blocking schedulers attempt to mitigate issue queue stalls

resulting from long latency instructions and their dependents [73,88,104]. They mi-

grate the stalling instructions from the issue queue to an auxiliary structure and re-

17

insert them at the appropriate time. This approach expands the window of in-flight

instructions and exposes more parallelism. But it incurs the implementation com-

plexity of large physical register files and re-order buffers. Checkpointing attempts to

overcome this limitation [7,39,94]. This approach takes periodic checkpoints of the

processor state and releases resources utilized by independent instructions following

a stalled instruction after they have completed execution. Continual Flow Pipelines

improve this mechanism further by releasing the resources held even by the depen-

dent chain of stalled instructions and reclaiming them only when required [156].

2.1.6 Discussion

The TRIPS architecture takes a different approach to scalability. It is closest in

principle to a clustered architecture, but supports more partitions to improve con-

currency. It partitions all microarchitectural structures, including the instruction

fetch logic and data memory into different tiles. It minimizes inter-tile communi-

cation latency using compiler support. It uses ISA support to eliminate dynamic

scheduling hardware and mitigate the reliance on large unscalable structures.

2.2 Static Scheduling of ILP

VLIW architectures and their EPIC counterparts exploit parallelism by using ex-

tensive compiler support. They were originally proposed to exploit more paral-

lelism using simpler hardware than the scalar machines of the day [56]. Fisher and

Rau characterize them as independence architectures in which the compiler spec-

ifies which operations are independent of one another and orchestrates the entire

execution of a program [57]. The compiler groups all independent operations into

one long instruction indicating to the hardware that they must issue simultaneously.

The hardware issues all these operations at the same time without performing any

dependence or structural hazard checks. This approach reduces hardware complex-

18

ity compared to superscalar architectures.

The principal benefit from the VLIW approach to parallelism is the fact that

the compiler can examine a large program window to discover independent oper-

ations. Using trace scheduling [55], the compiler can speculate on branches and

migrate independent operations from distant program regions upwards. This ability

mitigates Flynn’s bottleneck [166] and offers the potential to increase parallelism

significantly compared to scalar machines. However, poor tolerance to uncertain

runtime latencies inhibits available parallelism. For example, in early VLIW ma-

chines, functional unit stalls for any one operation—such as divide—would suspend

forward progress until that operation completed. The problem is more pronounced in

the event of long cache misses, which would stall execution for several cycles, despite

the availability of independent operations in future instructions. The performance

losses from such uncertain dynamic events, disadvantages of code expansion, back-

ward object code incompatibility, the emergence of RISC techniques, and increasing

on-chip superscalar ability led to the gradual demise of VLIW machines except in

specialized domains.

Superscalar machines increase performance by using branch prediction, which

enhances the scope for parallelism, and dynamic scheduling, which offers the ability

to overlap load miss latencies. Later-era EPIC machines attempted to obtain these

benefits at the cost of increased hardware complexity [76,96]. For example, the Ita-

nium 2 processor includes hardware scoreboard logic to stall on operand use rather

than operand creation to tolerate dynamic latencies [96]. Despite the additional

hardware support, the processor cannot tolerate dynamic latencies as effectively as

a superscalar processor.

The TRIPS architecture mitigates the disadvantages and combines the ben-

efits of both VLIW and superscalar architectures. It uses ISA support to eliminate

complex dynamic scheduling hardware. It exploits the compiler to schedule in-

19

structions for optimized communication, yet it retains the runtime flexibility of the

superscalar hardware.

2.3 ILP from Chip Multiprocessors

Since the mid-1990’s a number of research efforts have explored the option of using

chip multiprocessors (CMPs) to improve single-threaded performance. These pro-

posals fall under two broad categories—thread-level speculation and pre-computation.

Thread-level speculation (TLS) uses multiple cores in a CMP to execute different

portions of the same program concurrently and speculatively. Pre-computation uses

the multiple cores to execute helper threads that enhance the performance of the

main program. This section presents a brief overview of both approaches. For a

comprehensive treatment of this subject we refer the reader to previously published

work [62,153,160].

2.3.1 Thread-Level Speculation

Thread-level speculation (TLS) involves decomposing a single program into sev-

eral small threads—either in the hardware or software—and spawning them in the

hardware speculatively. The hardware usually includes support for detecting and

recovering from any violation of program dependences that are caused by specula-

tive execution. There have been a number of TLS schemes for CMPs [15, 63, 67,

86,113,114,159,177], and they find their roots in the Multiscalar work [152], which

first proposed the creation of speculative tasks from a single program and executing

them on different processing elements of a larger processor.

TLS proposals differ predominantly in their mechanisms for thread creation

and communication of dependences among the threads. Most proposals spawn

threads when the program control flow reaches a particular instruction—subroutine

invocation, loop, or a control-flow split. For example, a TLS scheme may spawn

20

speculative threads for additional loop iterations, but commit them in program or-

der after all dependence violations have been resolved. The thread spawns may be

triggered automatically by the hardware or controlled by the compiler. Balakrishnan

et al. observe that such control-flow mechanisms typically inhibit the ability to ex-

ploit far-flung parallelism [15]. Therefore, they advocate early speculative execution

of many subroutines—triggered by the compiler—in parallel with other subroutines

and the rest of the program. Other researchers advocate the use of transactional

hardware and program annotations [68]. A sequential program written in a trans-

actional language [31] decomposes the execution into several transactions, and the

hardware executes many transactions concurrently.

2.3.2 Pre-computation

Pre-computation relies on the execution of an auxiliary program to aid the exe-

cution of the main program. The auxiliary program aids the main program by

performing timely cache prefetches and resolving branches. Many of the techniques

were developed in the context of SMT processors, but can also be suitably adapted

for CMPs. The auxiliary program may be one of the following: a) a special pro-

gram crafted by software [90,131,179,180] and triggered for execution by the hard-

ware at the opportune time, b) auxiliary program crafted entirely by the hard-

ware [35,50], c) continuation of the main program past a stalling event such as a L2

cache miss [16,32,47,106], and d) second copy of the main program, which may ex-

ecute incorrectly, but faster [122, 178]. Researchers have studied several techniques

to improve the efficacy of the auxiliary program not only to generate useful and

timely prefetches, but also to communicate useful pre-executed values to the main

program and accelerate its execution.

21

2.3.3 Discussion

The recently taped-out “Rock” SPARC processor is purported to implement a form

of run-ahead execution called Scouting [32, 167]. As CMPs continue to dominate

the mainstream processor landscape, similar techniques will likely be adopted in the

near future. Even so, it is unclear whether CMPs can exploit more than two cores

to improve single thread performance. To exploit concurrency from several tens of

cores that are projected to be integrated on a single chip within the next decade,

many researchers are advocating a shift to parallel programming methodologies [11].

The TRIPS architecture takes a fundamentally different approach. It maps large

units of computation from sequential programs on to multiple distributed process-

ing tiles and allows the compiler to optimize for communication latencies. It uses

several protocols to orchestrate the execution of a single program across the dis-

tributed substrate. The distributed tiles provide a large instruction window and

wide execution bandwidth, which are exploited for high concurrency.

2.4 Extracting Concurrency through Tiling

In recent years, tiling has emerged as a microarchitectural technique for mitigating

complexity and enhancing concurrency. It is a technique in which the entire pro-

cessor microarchitecture is physically organized as a collection of numerous smaller

replicated structures called tiles that are connected together using one or more in-

terconnection networks. Each tile performs a small microarchitectural task and

exchanges control and data information with other tiles using the interconnection

network. The hardware exploits parallelism by partitioning the execution of a single

program across several tiles and allowing the tiles to operate concurrently.

In principle, tiling dates back to the Multiscalar processors proposed by

Sohi et al. [152]. A Multiscalar processor sequences through the control-flow graph

22

of a program in large, compiler-constructed units of work known as tasks. The

processor speculatively executes several tasks in parallel on a collection of processing

units that communicate with each other using an interconnection network. The

hardware provides the necessary support to ensure the correct resolution of control

and data dependences among the speculatively executing tasks. Since each task,

which may include entire loop bodies and functions, may dynamically translate

to potentially hundreds and even thousands of instructions, a Multiscalar processor

has the ability to examine far-flung regions in the program simultaneously to exploit

ILP. While Multiscalar architectures demonstrated the potential for exploiting high

ILP, recently proposed tiled architectures extend the concept to address the latency

of communication on a distributed hardware substrate explicitly.

The TRIPS architecture is an example of a tiled architecture in which sev-

eral heterogeneous tiles comprise the entire processor. A number of other recent

architectural proposals also employ tiling. Prominent among those are RAW [172],

Smart Memories [93], WaveScalar [162], and Tartan [100]. The RAW architecture

investigated several advantages and issues with tiling. Specifically, it investigated

the characteristics of scalar operand transport networks [164] necessary for tiled ar-

chitectures and techniques for partitioning code and data across several tiles [89].

This section provides a brief overview of various tiled architectures and compares

them with the TRIPS architecture.

Tiled architectures can be categorized along three defining attributes: a) tile

composition, b) connectivity, and c) execution model. Table 2.1 provides a summary

of these attributes for various tiled architectures. Tile composition refers to the num-

ber and type of the individual tiles that comprise the entire processor. Connectivity

refers to the organization of the interconnection networks that connect various tiles.

Finally, execution model refers to how each architecture exploits concurrency and

the division of labor between the compiler and the hardware. For example, TRIPS

23

Architecture Tile composition Connectivity Execution model

TRIPS heterogeneous dynamically routed mesh block-atomic,
multiple replicated tiles network for operands, hybrid dataflow
each implementing a different simple point-to-point links
functionality—execution, data for control
caches, instruction caches,
and register files

RAW homogeneous two statically routed statically
multiple identical tiles and two dynamically orchestrated
each implementing a complete routed mesh networks for MIMD
processor with caches and control and data
and register files

WaveScalar heterogeneous hierarchical network— tagged-token
groups of identical PEs pipelined buses connect dataflow
coupled with caches to PEs and switched network
form a cluster that is connects the clusters
replicated

SC heterogeneous hierarchical network— static dataflow
identical PEs organized statically routed within
into pages and replicated one cluster, dynamically
to form a cluster, which routed mesh network
is replicated to form the between clusters
entire processor.

Table 2.1: Attributes for various tiled architectures.

uses a collection of heterogeneous tiles, a flat operand interconnection network in

which every tile is a node on the network, and an execution model in which the

compiler assigns placement labels for instructions and the hardware executes them

dynamically in a dataflow fashion. In the sections below, we describes the attributes

of various tiled architectures and how they compare with the TRIPS architecture.

2.4.1 The RAW Architecture

The RAW architecture consists of a homogeneous array of replicated tiles connected

together using programmable point-to-point interconnects. It fully exposes all the

hardware resources—including the tile components and the interconnects—to the

compiler and allows it extract concurrency by precisely orchestrating the computa-

tion within each tile and the communication between different tiles [172]. Taylor

24

et al. describe a hardware implementation that consists of 16 tiles communicating

using four flat two-dimensional mesh networks [163]. All tiles are identical and each

contains a MIPS-like, single issue, in-order execution pipeline, a set of routers im-

plementing various communication protocols, and caches for instructions and data.

The RAW compiler spatially distributes the instructions and data needed

by a program across different tiles. The partitioning is done such that it maxi-

mizes both locality, which reduces communication latencies between producer and

consumer instructions, and parallelism, which distributes independent instructions

across different tiles [89]. Similar to a VLIW architecture, the compiler specifies the

temporal execution order of instructions within each tile. In addition, it specifies the

temporal order of communication events in each tile and the precise communication

routes between instructions in different tiles. The hardware adheres to the statically

specified order faithfully.

The principal difference between RAW and the TRIPS architectures is the

agent through which each exploits concurrency. The RAW architecture entirely

relies on the compiler, whereas TRIPS employs both the compiler and runtime

hardware for exploiting concurrency. In RAW, the compiler discovers parallelism,

partitions instructions and data among the tiles, performs static branch predic-

tion, disambiguates memory references, and schedules communication routes for

all statically determinable dependence paths. In TRIPS, the compiler expresses

the dependence graph of computation explicitly to the hardware and partitions the

instructions among several tiles to maximize concurrency and minimize communi-

cation overheads. However, the hardware is free to select the temporal order for

both execution and communication, resulting in wide out-of-order execution.

The static orchestration of concurrency and communication in RAW offers a

few benefits: a) with complete knowledge of the hardware configuration, the com-

piler can optimize for both locality of communication and concurrency in execution,

25

b) should the communication paths traverse multiple tiles, the compiler can pick

the best routes by avoiding congested network nodes and links, and c) the absence

of any dynamic scheduling logic reduces hardware complexity. However, it also

suffers from a few disadvantages. First, it limits the scope of scheduling to only

statically determinable dependences. If dependence paths cannot be statically de-

termined, communication has to revert to a slow, fallback dynamic routing network.

If a program has several such paths, performance degrades considerably. Second,

dynamic events such as cache misses limit concurrency by stalling the execution

of independent instructions within a single tile and potentially other tiles. Finally,

it limits the hardware’s ability to further improve concurrency through advanced

speculation techniques such as dynamic branch prediction and dynamic memory

dependence prediction, both of which have proven to be effective for traditional

architectures [105,175].

The TRIPS architecture reaps the same benefit as RAW with respect to the

partitioning of a program’s instructions across several tiles. The compiler estimates

the temporal execution order on the hardware to optimize for communication laten-

cies and concurrency, but does not convey any temporal constraints to the hardware.

This feature allows the hardware to execute instructions dynamically as soon as their

operands are available, providing a better tolerance for long latency events such as

cache misses. The explicit encoding of dependences in the ISA reduces the com-

plexity of dynamic scheduling typically seen in conventional superscalar processors.

Furthermore, the absence of static temporal constraints permits the hardware to

employ control speculation and memory dependence speculation to improve concur-

rency further. The lack of static temporal constraints, however, occasionally causes

contention in the network links and degrades performance.

26

2.4.2 WaveScalar

WaveScalar is a tagged-token dynamic dataflow architecture proposed recently at

the University of Washington [162]. Similar to TRIPS, it uses a dataflow instruction

set. The compiler partitions a program into sets of instructions called waves. Each

wave is an acyclic region of the program’s control flow graph and may include

an arbitrary number of control flow forks and joins. The compiler converts all

control dependences to data dependences, however, using dataflow operators such

as conditional splits.

The microarchitecture of a WaveScalar processor consists of a number of

homogeneous processing elements (PEs) and data cache banks communicating using

a hierarchical interconnection network. Each PE contains an instruction store to

hold the instructions mapped to the PE, a matching table to hold the data tokens

for the instructions, and logic to control the dataflow execution and communication.

A specialized memory interface called wave-ordered memory uses compiler-specified

sequence numbers to enforce correct program ordering of memory operations.

WaveScalar shares some common characteristics with the TRIPS architec-

ture. Both architectures use a dataflow instruction set, which expresses the depen-

dences among instructions explicitly. Both architectures rely on the compiler for

good instruction placement—assignment of instructions to PEs—to reduce dynamic

operand communication latencies. Both architectures employ compiler-specified se-

quence numbers—but use different hardware mechanisms—to order memory oper-

ations correctly, which is necessary for supporting programs written in imperative

languages such a C/C++ and Java. Finally, a WaveScalar wave is similar to a

TRIPS block and is amenable to all the dataflow optimizations developed for TRIPS

blocks [149]. However, WaveScalar differs from TRIPS in significant ways, specifi-

cally the execution model, control flow implementation, and speculative execution.

27

Execution model: WaveScalar uses dataflow execution for the entire program,

whereas TRIPS employs dataflow execution only among a bounded set of instruc-

tions. The execution of an instruction in WaveScalar is purely determined by

dataflow communication. Between different waves, WaveScalar must use special

instructions to manage dataflow tokens and transfer data values. The TRIPS ar-

chitecture, however, transfers data operands between blocks using a register file.

The hardware employs register renaming and dynamic register forwarding similar

to traditional superscalar architectures to support concurrent execution of multiple

blocks.

Control flow overheads: Dataflow architectures incur overheads of managing

control flow within the program. For example, the WaveScalar compiler must con-

vert all control dependences to dataflow using appropriate data steering instruc-

tions. While some optimizations are possible [120], these instructions still present

considerable execution overheads and reduce achievable performance. For example,

executing one fork of a branch often must wait for the resolution of the condition

that defines the fork, which elongates the critical path of execution. On the other

hand, executing both forks of a branch and selecting the appropriate output at

the end results in wasteful execution that increases contention for shared hardware

resources. Extended to an entire program, the overheads of polypath execution

and dependence height extensions inhibit the performance of dataflow architectures

considerably [23].

The TRIPS architecture incurs similar, but fewer overheads. Within a single

TRIPS block, the compiler uses predication to convert control dependences to data

dependences and various predication optimizations attempt to reduce the associ-

ated overheads [149]. Across multiple blocks, however, the compiler retains control

dependences instead of converting them to data dependences. The hardware dy-

namically detects data dependences across multiple blocks and enables dataflow

28

“stitching” of these blocks without incurring any control-flow instruction overheads.

Speculative execution: Pure dataflow execution is not amenable to traditional

speculation techniques such as control speculation and memory dependence specu-

lation. The challenges of detecting mis-speculation and effecting a rollback recovery

protocol have typically prevented dataflow architectures, including WaveScalar, from

employing any form of speculation [23]. On the other hand, the block-atomic execu-

tion model makes TRIPS amenable to many forms of speculation. The boundaries

of a block provide an architectural point to detect mis-speculations and rollback

the execution state to the beginning of an incorrectly executed block. The TRIPS

prototype processor employs both control speculation and memory dependence spec-

ulation to improve performance.

2.4.3 Spatial Computation

Spatial Computation (SC) is a model of computation optimized for wire delays [24].

In this model, programs written in high-level languages such as C are directly com-

piled down to hardware structures that are completely distributed, use only simple

local control protocols, and operate without any global signals. In prior work, re-

searchers have proposed two incarnations of SC, namely Application Specific Hard-

ware (ASH) [24] and its extension, Tartan [100]. An integral component of both

these architectures is an asynchronous hardware fabric that contains a multitude of

heterogeneous functional units, each of which is statically synthesized for a single

program operation and not shared with any other operations.

SC adopts a pure static dataflow execution model originally proposed by

Dennis et al˙ [42]. Therefore, it exhibits all of the disadvantages of pure dataflow

execution such as control flow overheads and lack of speculative execution similar to

WaveScalar. In addition, its static dataflow nature prohibits SC from executing an

instruction unless all consumers have sourced the result produced by the previous

29

instance of the same instruction. This limitation affects loop-level parallelism, as

effectively only one iteration of a loop can be in execution at any instant. TRIPS,

however, uses control speculation to execute several iterations concurrently and

exploit loop-level parallelism.

2.4.4 Other Tiled Architectures

There have also been a number of other proposals for tiled architectures—Smart

Memories [93], Vector-Threaded Architectures [83], Synchroscalar [111], and CDE [5].

The Smart Memories architecture uses a reconfigurable fabric consisting of homo-

geneous tiles and a hierarchical network, and is suited for exploiting all types of

parallelism [93]. Vector-Threaded Architectures use multiple lanes of homogeneous

processors connected by a unidirectional ring network and are specifically designed

to improve performance on data-parallel workloads [83]. The Synchroscalar archi-

tecture consists of homogeneous tiles and a reconfigurable interconnect fabric and is

tailored towards statically-orchestrated SIMD-style computation [111]. Finally, the

CDE architecture consists of a number of homogeneous processors connected by a

dynamic mesh network, and exploits both compiler support and runtime speculation

to exploit ILP [5]. Unlike these architectures, TRIPS combines several heteroge-

neous tiles on an interconnection network to form one large uniprocessor that can

be configured to exploit all types parallelism.

2.4.5 Discussion

A tiled microarchitecture offers a number of benefits. First, it enhances design

scalability by recognizing and tolerating wire delays. By keeping each tile small,

typically to a few mm2 of area, signals within a tile need to traverse only small

distances. Global communication among different tiles, however, is exposed at the

architectural level and accomplished using point-to-point interconnection networks

30

and communication protocols, without the use of any global wires. Second, tiling

enhances design productivity. Design complexity is limited to the design of a single

tile—one for each type—and the interconnection network. The entire processor can

then be constructed by merely replicating a single tile and connecting the replicas

together. This modular organization lends to hierarchical implementation and ver-

ification methodology, easing the overall design effort considerably. Finally, tiling

offers an easy migration path to larger architectures. Future generations can stamp

out larger processors without significant rework by merely replicating the tiles and

expanding the interconnection network to include more nodes.

2.5 Summary

In this chapter, we presented an overview of different approaches to exploiting ILP

and compared them with the TRIPS architecture. We described several proposals

that examined techniques to scale different portions of a traditional superscalar

processor. We described approaches that seek to exploit the multiple processors in

a chip-multiprocessor to improve the performance of a single thread of execution.

Finally, we described in depth various recent proposals that organize the processor

microarchitecture as replicated tiles to address the complexity and delay constraints

of future technologies. The subsequent chapters describe the TRIPS approach to

concurrency using ISA support, the compiler, and a tiled microarchitecture.

31

Chapter 3

TRIPS: An EDGE Architecture

The instruction set architecture (ISA) for a machine delineates the responsibilities

of the hardware and the software, and aids the independent development of each.

The most popular ISAs have enormous installed software bases, and therefore, ISA

re-designs are only glacial in nature. To exploit new hardware capabilities, ISAs

typically add only extensions [46, 119], and avoid the introduction of any new fea-

tures that would mandate the recompilation of existing software. However, as the

underlying silicon technology changes, existing ISAs must undergo suitable changes.

Otherwise, they will inhibit the benefits offered by new technologies.

New hardware technologies, in fact, have spurred radical changes to ISAs in

the past. When memory was at a premium, CISC ISAs featured dense encodings,

variable instruction lengths, and few architected registers to reduce the program

footprint in memory. As VLSI technology evolved, memory became cheaper and

the number of on-chip transistors became a limiting resource. Therefore, RISC

ISAs and their CISC equivalents of µ-ops were introduced—with simpler encodings,

fixed-length instructions, and few instruction modes—to simplify the control logic,

implement aggressive pipelining, and fit an entire microprocessor on a single chip.

However, as VLSI technologies yield power and wire latency-dominated substrates,

32

pipeline-centric RISC ISAs are no longer viable options for high performance [74].

Microprocessor designs must turn to new ISAs that are both conducive to the ex-

pression of concurrency and amenable to communication-dominated execution for

attaining high performance.

EDGE architectures are a new class of architectures intended for extracting

high concurrency at future sub-45 nm CMOS technologies. This chapter describes

the salient features of EDGE architectures and their differences from conventional

architectures. It then describes the TRIPS architecture, which is an example of an

EDGE architecture, and the architectural and the microarchitectural features that

expose and exploit high concurrency. It also describes the responsibilities of the

compiler, and shows how the division of labor between the compiler and the mi-

croarchitecture is a good match for future technologies. Along the way, this chapter

also discusses various design alternatives and contrasts them with the particular

design choices made in the TRIPS architecture.

3.1 EDGE Architectures

EDGE stands for Explicit Data Graph Execution and has two defining characteris-

tics: block-atomic execution and direct instruction communication.

Block-atomic execution: An EDGE architecture aggregates a group of instruc-

tions into a single entity called a block that is treated as an atomic unit of execution.

Just as a conventional architecture sequences through instructions, an EDGE ar-

chitecture sequences through blocks. Logically, the runtime hardware fetches the

instructions belonging to a single block en masse, maps them to the execution re-

sources, executes the instructions, and commits their results in an atomic fashion.

The hardware either commits the results of all instructions in the block or nullifies

the execution of the entire block.

33

Direct instruction communication: An EDGE architecture permits the hard-

ware to communicate the result of a producer instruction directly to the consumer

instruction within the same block, instead of writing to an architected namespace

such as the register file. The ISA provides support for specifying the consumers for

an instruction directly, instead of specifying them indirectly using source register

names. For example, consider the following RISC instruction that adds the values

stored in registers R1 and R2 and stores the result in R3:

add R3, R1, R2

An EDGE architecture may encode the instruction as follows:

add T1, T2

The above encoding specifies the consumer instructions T1 and T2 directly

with the add instruction, instead of expressing that data dependence through the

register name R3. The source operands are not specified with the instruction. In-

stead, they will be specified by the producer instructions that target the add in-

struction. In this model, register data dependences can be expressed explicitly us-

ing target encoding. Memory dependences, however, must still be expressed using

a shared namespace.

3.1.1 Advantages of EDGE Architectures:

An EDGE architecture provides an alternative interface between the compiler and

the hardware compared to conventional architectures. Its two attributes of block-

atomic execution and direct-instruction communication offer the following benefits:

Explicit conveyance of dependences: In a conventional out-of-order RISC (or

CISC) architecture, the dataflow graph of execution known to the compiler is lost

amidst the indirect register encoding of dependences. The hardware dynamically

reconstructs the dependence graph using register alias tables and issue queues, and

picks independent instructions to execute from potentially hundreds of instructions

34

in flight. VLIW architectures instead pack multiple independent operations within a

single instruction. However, the statically orchestrated issue has a poor tolerance to

dynamic latencies such as cache misses. EDGE architectures use the direct instruc-

tion communication to make the dataflow graph explicit and allow the hardware to

execute each instruction in a dataflow fashion as soon as all of its operands are avail-

able. This feature provides dynamic issue, which helps tolerate long cache misses,

and extricates the hardware from unscalable dynamic dependence check logic.

Reduction in per-instruction overheads: In conventional out-of-order pro-

cessors, every instruction must traverse through multiple large structures for highly

concurrent execution—register alias tables, issue queues, ALU bypass buses, and

multi-ported register files. The latency and power dissipation in these structures

scale poorly to smaller device widths, and inhibit the use of wide issue and large

instruction windows [6, 115]. An EDGE architecture mitigates these problems. It

allows the hardware to forward the result of an instruction directly to its consumer,

thus triggering its execution without any associate issue queue lookups. Further-

more, it allows the hardware to route the result to its consumers using point-to-point

communication instead of broadcast on a bypass bus. The block-oriented execution

allows the architecture to avoid saving temporary result values within a block to a

register file. It thus minimizes accesses of the register alias table and the register

file to only the register inputs and outputs of a block.

Match for distributed architectures: The latency of communication between

different processing elements affects the performance of a distributed architecture.

EDGE architectures provide the opportunity to minimize communication latency.

For example, mapping dependent instruction paths along short physical routes in

the hardware and mapping independent instructions to different processing elements

optimizes both concurrency and latency. The explicit expression of dependences in

35

the ISA permits the hardware to realize direct producer-communication on short

paths using guidance from the compiler.

Division of labor between the compiler and hardware: EDGE architectures

exploit the capabilities of both the compiler and the hardware for higher concurrency

without the attendant inefficiencies of large structures required for out-of-order su-

perscalar execution. They permit the compiler to focus on exposing concurrency

through large blocks of instructions. The ISA expresses the concurrency to the

hardware using dependence arcs and the hardware exploits the concurrency using

low-overhead dataflow execution.

3.1.2 Discussion

The concept of block-atomic execution is not new; it was originally proposed in

the form of block-structured ISAs by Melvin et al. to improve superscalar exe-

cution [97, 98]. EDGE architectures augment a block-structured ISA with direct

instruction communication to reduce the overhead of dynamic superscalar execu-

tion. Atomic execution of instruction sequences also shares some similarities with

checkpoint-based execution [7, 39, 94] and transactional execution [68]. Both tech-

niques roll back the execution state of a group of instructions to recover from in-

correct speculation. However, when speculation is correct, checkpoint-based mech-

anisms expose architecture state modified by individual instructions of a group,

whereas transactional execution and EDGE architectures provide the semantics of

“indivisible” group execution.

3.1.3 Implementation Choices

Given the two defining attributes of an EDGE architecture, numerous implemen-

tation choices are possible. The particular design points may vary based on the

36

composition of a block and the expression of inter-instruction dependences within

the block. In the following paragraphs, we explore these two design axes.

Block composition: A block in an EDGE architecture could be any sequence of

instructions—a basic block, a superblock [77], a hyperblock [92], or even a runtime

trace of instructions [130]. Blocks may be of a fixed size or variable sizes and

may include instructions from only one control path or multiple control paths. An

architecture may also impose other constraints on the block composition, such as the

maximum number of instructions, maximum number of load or store instructions,

and the maximum number of inputs and outputs from the block.

Dependence encoding: An EDGE architecture may choose to express inter-

instruction dependences in different ways. Similar to the example described in the

previous sections, an architecture may directly encode the consumers with each

instruction. Alternately, it may also use a special set of instructions to communi-

cate the result to one or more consumers, similar to the RAW architecture. If it

encodes consumers directly with an instruction, the architecture may choose fixed

length instructions and restrict the number of consumers, or choose variable length

instructions and encode all consumers.

The TRIPS architecture described in the next section is an example of an

EDGE architecture. Recently proposed tiled architectures such as RAW [172] and

WaveScalar [162] may also considered as EDGE architectures. The TRIPS archi-

tecture composes a block from a linear control sequence of instructions and encodes

intra-block consumers directly with an instruction. The RAW architecture sup-

ports direct producer-consumer communication through special statically-scheduled

instructions that specify the communication routes. WaveScalar encapsulates all

control paths of a program region into a single group called a wave, and supports

direct producer-consumer communication using dataflow arcs similar to the TRIPS

37

ISA.

3.2 The TRIPS Architecture

This section describes the TRIPS architecture, which is one possible instantiation

of an EDGE architecture. It couples dynamic, hardware-controlled out-of-order ex-

ecution with a compiler-ordained mapping of instructions. The compiler specifies

implicit placement labels for instructions, and the hardware maps instructions to

physical hardware locations accordingly. The ISA encodes each program as a se-

quence of large blocks, and instructions in each block explicitly encode the labels

of intra-block consumer instructions. The hardware uses this explicit encoding for

point-to-point data communication between producers and consumers, and performs

dataflow execution of intra-block instructions. This section describes the features

of the TRIPS architecture and how it supports a distributed microarchitecture for

exploiting high concurrency.

3.2.1 TRIPS ISA

The key design decisions for an EDGE architecture are the block composition and

the expression of inter-instruction dependences. As outlined in the previous section,

numerous design choices exist for each. An ideal architecture is one that uses large

blocks to reduce per-instruction overheads and uses few overhead instructions for

managing control flow. The architecture must provide solutions for expressing de-

pendences among the instructions of the same block and across multiple blocks with

few overheads. We begin this section by illustrating the choices made in the TRIPS

architecture. At the end of this section, we discuss the rationale behind its design

features and possible alternatives.

Figure 3.1 shows a simple C program and its representation using the TRIPS

ISA. The first portion shows the program, which traverses a linked list and counts

38

while (ptr != NULL) {

 if (x < ptr->data) {

 num++;

 }

 ptr = ptr->next;

}

begin blk0

read $t0, $g0 ; ptr

read $t1, $g1 ; x

read $t2, $g2 ; num

ld $t3, ($t0) ; ptr->data

tlt $t4, $t1, $t3 ; x < ptr->data

addi_t<$t4> $t5, $t2, 1 ; num++

mov_f<$t4> $t5, $t2

ld $t6, 8($t0) ; ptr->next

tnei $t7, $t6, 0 ; ptr != 0

bro_t<$t7> blk0 ; branch to block blk1

bro_f<$t7> blk1 ; branch to block blk2

write $g2, $t5 ; num

write $g0, $t6 ; ptr

end blk0

begin blk0

R[0] read G[0] N[1,L] N[0,L]

R[1] read G[1] N[5,L]

R[2] read G[2] N[2,L] N[9,L]

N[1] ld N[5,R]

N[5] tlt N[2,p] N[9,p]

N[2] addi_t 1 W[2]

N[9] mov_f W[2]

N[0] ld 8 N[4,L]

N[4] mov W[0] N[8,L] ; fanout

N[8] tnei 0 N[12,L]

N[12] mov N[16,p] N[6,p] ; fanout

N[16] bro_t blk0

N[6] bro_f blk1

W[2] write G[2]

W[0] write G[0]

end blk0

read read read

mov_f

tlt

ld

addi_t

write

bro_f

ld

tneiwrite

bro_t

a) C code fragment

b) TRIPS RISC-like instructions

c) Loop body DFG

d) TRIPS instructions

Figure 3.1: TRIPS code example.

39

the number of elements greater than a given value x. The second portion shows the

entire body of the while-loop accommodated in a single TRIPS block and represented

using a RISC assembly language similar to MIPS. The annotations next to each

instruction describe the program statement corresponding to that instruction. The

block carries the label blk0, and the branches transfer control flow to the beginning

of the same block or the beginning of another block labeled blk1. The third portion

shows the dataflow graph of the block, and the last portion depicts the instructions

encoded using the TRIPS ISA. We observe that the TRIPS ISA exhibits several key

differences from its RISC counterpart: a) read instructions, b) write instructions, c)

use of predication, d) fanout instructions, e) target encoding, and f) block format.

The following paragraphs describes each of these differences in detail.

Read/Write instructions: Read instructions and write instructions specify the

live register inputs and outputs of a block explicitly, instead of specifying them with

other instructions. Read instructions specify the input registers for the block and

the instructions that consume those values. For example, the instruction read $t1,

$g1 forwards the value of x saved in register $g1 to the test instruction tlt. Simi-

larly, the write instructions specify live registers written by the block. For example,

the instruction write $g0, $t6 consumes the result of the second ld instruction

and saves it in the general register $g0, which corresponds to the live program vari-

able ptr. By isolating register file accesses using read and write instructions, all

other instructions strictly operate on temporaries and never access the register file.

Predication: Predication converts control dependences to data dependences. As

described in later sections, predication enables the formation of large blocks essential

for high concurrency. In Figure 3.1b, instead of using a conditional branch and

a control dependent instruction to perform the increment, the compiler uses the

test instruction tlt to compute a predicate and uses it to guard the execution of

40

the increment instruction—addi t. The dotted arcs in Figure 3.1c depict these

predicate dependences. The suffix (t or f) next to an instruction indicates that

the instruction is predicated, and the value of the predicate at runtime determines

whether the instruction will execute or not. The instruction must receive a predicate

that matches its suffix in order to execute. For example, if the tlt instruction

evaluates to false, the dependent addi t instruction will not execute, but the mov f

instruction will execute. However, if the tlt instruction evaluates to true, the mov f

instruction will not execute, and the addi t instruction will execute. The absence

of a suffix indicates that the instruction is not predicated.

Target encoding: Instructions do not encode their source operands; they en-

code only their consumers. For example, in Figure 3.1d the encoding for the first

load instruction specifies the consumer test instruction tlt using the label N[5,R],

which denotes that the result of the load is the right operand of the instruction

labeled N[5]. Instruction addi t produces a result that is live from the block—num.

Hence it targets the write instruction denoted by W[2] that saves the result to the

general register $g2. In the TRIPS architecture, the compiler assigns labels for all

instructions in a block, and the hardware interprets these labels to map instructions

to appropriate locations in the hardware.

Fanout: Encoding limitations prevent the ISA from specifying all of the consumers

with the same producer instruction. In such cases, the ISA inserts additional mov

instructions called fanout instructions to forward the results to every consumer.

Figure 3.1d shows these fanout instructions. The example assumes that the encoding

allows the specification of only one target with any instruction that consumes an

immediate value. For example, the predicate computed by the instruction tnei is

consumed by both the branch instructions, bro t and bro f. However only one of

them can be encoded with the tnei instruction, resulting in an extra mov instruction,

41

labeled N[12], that consumes the result from tnei and forwards it to the two branch

instructions.

Block format: TRIPS blocks are single-entry, multiple-exit regions of instruc-

tions with no internal transfers of control. In TRIPS blocks, instructions do not

contain any control dependences. The only dependences are true data dependences

and dependences enforced via reads and writes to data memory. Every block must

contain exactly one branch that will be taken at runtime. Furthermore, a taken

branch must transfer control to a succeeding block, and not to another instruction

within the same block. In our example, only one of the two branch instructions—

bro t or bro f—will receive a matching predicate and alter the control flow in the

program, leading it to either the beginning of the same block—blk0—or a different

block—blk1.

Discussion

The TRIPS ISA specification is the culmination of much research that explored sev-

eral design alternatives. In this section, we describe the progression of that research.

That block-atomic execution had the potential to reduce per-instruction overheads

was obvious in principle. To evaluate that premise, we examined several possi-

bilities for constructing a block—basic blocks, traces [130], and hyperblocks [92].

Basic blocks are small and often contain fewer than six instructions. Amortizing

the overheads of block-oriented execution requires larger blocks. Runtime traces

are one solution, but they incur the hardware complexity of constructing a trace

from dynamic distributed execution. Furthermore, they sacrifice the ability in the

compiler to optimize for the latency of communication on a distributed substrate.

Therefore, we settled on compiler-constructed hyperblocks, originally defined by

Mahlke et al. as single-entry, multiple-exit regions of code with no internal control

flow changes [92]. In an initial evaluation, we chose the hyperblocks produced by

42

Trimaran [4], which is a compilation framework targeted for VLIW/EPIC machines.

Our initial evaluation showed that hyperblocks are effective in statically com-

bining several basic blocks from hot runtime control paths [134,135]. Furthermore,

large blocks exposed only few input and output register values for every block

and confined most inter-instruction dependences within the boundaries of a single

block [134]. Finally, nearly 80% of all instructions had fewer than two consumers,

indicating low overheads for fanout [134]. Our subsequent research focused on defin-

ing the attributes of a block to reduce the complexity of a hardware implementation.

The guiding design principles through that exploration were simple uniform mecha-

nisms for two features—dataflow firing and inhibiting the effect of instructions that

must not execute. To ease the hardware implementation, we added a few constraints

to the block: fixed number of instructions, the maximum number of register read

and write instructions, and the maximum number of load and store instructions.

We discuss these constraints further in Chapter 4.

The delineation of register read and write instructions from other instructions

helps in the quick identification of inter-block dependences. Prior to the complete

execution of a block, the hardware can identify the set of registers defined in one

block and resolve inter-block register dependences quickly. This identification of

register definitions is similar to create masks used by Multiscalar processors [152].

The explicit read/write instructions also help preserve uniform dataflow firing rules

for every instruction. Rather than requiring an instruction executing at a functional

unit to fetch a required value from the register file, it allows the hardware to push

values from the register file to the consumers and execute instructions in a dataflow

fashion.

Directly encoding the targets with an instruction reduces overhead instruc-

tions required just for operand communication. Target encoding also reduces most

of the operand communication to temporaries and minimizes the overall number of

43

accesses to the register file. An instruction can push values to its consumers and

cause dataflow firing, instead of having the consumers read values from a centralized

register file. However, as we described earlier, the presence of more targets than al-

lowed by the encoding space mandate overhead instructions for fanout, degrading

overall performance. The exact number of targets supported with each instruction is

determined by the length of the encoding and whether the encoding supports fixed-

length or variable-length formats. A fixed-length format simplifies the instruction

decode logic, whereas a variable-length format reduces fanout instruction overhead.

The TRIPS ISA chooses fixed-length formats to reduce hardware complexity.

Predication is a necessary artifact of large instruction blocks that do not

support internal control flow changes. The lack of control flow changes within one

block reduces the hardware overhead of distributed control flow synchronization that

must communicate the taken/not-taken status of an internal branch to other instruc-

tions mapped on the distributed substrate [89]. Predication also eliminates hard-to-

predict branches from the instruction flow, which helps uninterrupted instruction

fetch and enlarges the parallelism scope for the compiler. However, retaining con-

trol dependences across blocks enables the hardware to use dynamic speculation and

improve performance.

The hyperblocks originally generated by Trimaran featured multiple exits, of

which exactly one will be taken at runtime. However, these exits complicate the pre-

cise identification of register definitions from a block. Early exits convey an implied

sequentiality in the execution of instructions within the block, which is not a good

match for dataflow execution. Instruction sequences separated by a taken branch

may have no data dependences among them. Therefore inhibiting the dataflow exe-

cution of the instructions “following” the branch requires the communication of the

branch status to those instructions. The TRIPS ISA takes the simpler approach of

inhibiting instruction execution through the predication.

44

3.2.2 Distributed Microarchitecture

The TRIPS microarchitecture exploits the parallelism exposed by large blocks us-

ing wide issue and a large window of instructions. It is designed with the fol-

lowing principles: a) complete distribution, b) simple distributed components, and

c) point-to-point communication. Distribution improves concurrency, whereas the

use of simple components and point-to-point communication links improves scala-

bility. Given these goals and benefits, numerous design possibilities exist for the

microarchitecture. The overarching questions for a distributed organization are: a)

what to distribute, b) how to distribute, and c) how to connect the distributed

components. In addition, the microarchitecture must provide suitable mechanisms

for conducting distributed execution—mapping instructions on to the distributed

substrate, operand communication, atomic commit of architectural state, and spec-

ulation. This section describes the particular choices made in the TRIPS microar-

chitecture. In Section 3.4 we revisit these questions, discuss design alternatives, and

the rationale behind our particular choices.

High Level Organization

Figure 3.2 shows the specific organization of the TRIPS prototype processor, which

is the first hardware implementation of the TRIPS architecture [136]. It shows a

tiled organization where the entire microarchitecture is partitioned into a number

of tiles. Each tile implements a particular microarchitecture functionality, and the

different tiles are connected together using simple point-to-point network links.

Figure 3.2 shows the different tiles in the microarchitecture and the function-

ality implemented by each. It shows a 4×4 array of execution tiles (ET) surrounded

by register tiles (RT) along the top edge, one control tile (GT) at the top left cor-

ner, and instruction tiles (IT) and data tiles (DT) along the left edge. Each ET

consists of a multi-entry reservation station that holds the operands and instruc-

45

G

E

R

D

I

G RR R R

TRIPS Processor Core

I

I

I

I

I

D

D

D

D

I

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

C
a

ch
e

 I
n

te
rf

a
ce

 S

e
co

n
d

a
ry

Global Tile

implements block control operations,

predicts next block addresses,

manages block execution state

Register Tile

contains portion of the

architecture register state

Instruction Tile

contains i-cache banks,

interfaces with L2 cache

Execution Tile

contains an execution pipeline,

integer/FP functional units,

reservation stations,

Data Tile

contains d-cache banks,

load/store queues,

dependence predictor

Figure 3.2: TRIPS processor microarchitecture organization. The microarchitecture
consists of multiple, replicated, heterogeneous tiles connected with each other by
point-to-point interconnection links.

tions destined for that tile, a standard execution pipeline that fires an instruction

as soon as all of its operands are available, and router connections to its neighbors.

After executing an instruction, an ET can forward the result to another reservation

station slot in the same or different ET using the routing network.

The ITs and the DTs implement the distributed primary memory system for

data and instructions respectively. Each IT couples an instruction cache bank with

the row of ETs or RTs in the same row. The IT at the top-most row caches the read

and write instructions, whereas the ITs in the rest of the rows cache the instructions

for their corresponding row of ETs. Each DT contains a data cache bank and a load-

store queue for sequencing the memory operations in program order. The DTs are

address partitioned. The hardware executes a load or store instruction by computing

the effective address at an ET and forwarding the computed address to one of the

DTs. The targeted DT performs the required operation, and for a load, forwards

the result directly to the consumer instruction using the routing network. The RTs

at the top row statically partition the architecture register state among them and

46

R[0] read G[0] N[1,L] N[0,L]

R[1] read G[1] N[5,L]

R[2] read G[2] N[2,L] N[9,L]

N[1] ld N[5,R]

N[5] tlt N[2,p] N[9,p]

N[2] addi_t 1 W[2]

N[9] mov_f W[2]

N[0] ld 8 N[4,L]

N[4] mov W[0] N[8,L]

N[8] tnei 0 N[12,L]

N[12] mov N[16,p] N[6,p]

N[16] bro_t block0

N[6] bro_f block0

W[2] write G[2]

W[0] write G[0]

N[1] ld

N[5] tlt

N[9] mov_f

N[0] ld 8

N[4] mov

N[8] tnei

N[12] mov

N[16] bro_t

N[2] addi_t

N[6] bro_f

R[0] read

W[0] write

R[1] read R[2] read

W[2] write

RT0 RT1 RT2 RT3

ET1 ET2 ET3

GT

DT0

DT1

DT2

ET4

ET8

ET5

ET9

ET6

ET10

ET7

ET11

DT3 ET12 ET13 ET14 ET15

a) TRIPS assembly code b) Instruction mapping on the distributed array

c) Mapping function

 N[x] to ETy

row = x / 32;

col = x % 4;

y = row * 4 + col

Figure 3.3: Mapping of instructions in a block to different tiles.

supply the register values to the ETs using the routing network. The singleton GT

sequences and manages the overall execution, and is the only centralized resource

in the microarchitecture.

The microarchitecture combines the reservation stations across all ETs to

form a large, distributed instruction window, and executes instructions out-of-order

using dataflow firing rules. It translates static instruction labels assigned by the

compiler to physical locations in the window where the instructions must execute

and where the operands must be transmitted. Figure 3.3 depicts the assignments

of the instructions in our example block to physical tile locations. For example,

the addi t instruction that carries the label N[2] is assigned to ET2, and the tlt

instruction that carries the label N[5] is assigned to ET1. Read and write instructions

47

Deallocated

Start Ready

Dispatched Execution

Flushed

I-cache fill

fetch

Committed

Completed

flush
commit

inputs outputs

flush

Figure 3.4: Different states in the execution of a block.

are assigned to the RTs as shown in the figure. Figure 3.3 shows the specific mapping

function from the instruction labels to the execution tiles in the microarchitecture.

Other implementations may choose different mappings.

As shown in Figure 3.3, the hardware essentially maps the instructions in a

block to a 3-D volume of reservation stations. The x-dimension and the y-dimension

determine the ET, and the z-dimension determines the reservation station slot within

the ET where an instruction must be mapped. The compiler assigns labels seeking

a hardware placement on to the 3-D topology that minimizes the physical distances

that operands must travel along the block’s critical dependence paths.

Block Execution

The distributed execution of each TRIPS block begins and ends at the GT. As

shown in Figure 3.4, a block goes through different states during its execution in

the microarchitecture. This section describes the various states and the transitions

among them.

• Start — The life of a block begins when the GT determines that this block is

the next one to execute on the processor.

48

• Ready — If the ITs do not contain the block, the GT instructs them to fetch the

block from the secondary memory system. Subsequently, the block becomes

resident in the I-cache. The GT then allocates the necessary resources and

prepares the microarchitecture for executing the block.

• Dispatched — The GT instructs each IT to access their respective cache banks

and dispatch the instructions. The ITs dispatch read and write instructions

to the RTs and other instructions to the ETs.

• Execution — An instruction fires as soon as all of its operands are available.

After execution, it sends the result to the targets specified in the instruction

encoding using the routing network. Read instructions execute by reading

the values from the register file and sending it to their consumer instructions.

For example, using the instruction mapping shown in Figure 3.3, the read

instruction R[2] fires by reading the register $g2 and sending it to the addi t

instruction at ET2. The addi t instruction fires upon receipt of the value

and subsequently sends the computed result to the write instruction W[2]

instruction. A load instruction computes the address at an ET and sends

the address to one of the DTs. Since the DTs are address partitioned, the

value of the address determines the particular DT to which the ET will send

the address. The targeted DT performs the load operation subsequently and

forwards the value to the consumers directly. For example, if the address

computed by the load instruction N[1]—after it fires at ET1—is destined for

DT3, then DT3 will receive the address, perform the cache lookup, and send the

load result to the consumer instruction N[5].

• Completed — Instructions execute, operands trickle through the network, and

eventually, the block produces outputs—branches, registers and stores, which

are routed to the RTs and the DTs. After all outputs of the block have been

49

produced, the block is said to have completed its execution. For example,

in Figure 3.3, the block completes its execution after RT0 and RT2 have both

received the values for their respective write instructions and the GT has

received the branch target from either N[16] or N[6].

• Flushed — If the execution of the block must be annulled for any reason, the

GT instructs all tiles to flush the execution state corresponding to the block.

• Committed — If the execution of a block completed without any exceptions,

the GT directs the RTs and the DTs to commit the outputs produced by

the block. The RTs and DTs independently commit the architectural state

modified by the block.

• Deallocated — After a flush or a commit operation has completed, the GT

reclaims the resources allocated for the block and reserves it for use by the

next block.

The execution of a single block involves all the tiles in the microarchitecture.

For example, the RTs are needed to provide register values, the DTs for memory

operations, and the ETs for executing instructions within the block. The microar-

chitecture must implement precise protocols and networks to control the operations

in each tile and manage the overall execution of a block. Chapter 4 presents the

details of these protocols for the TRIPS prototype processor.

Executing Multiple Blocks

Although the previous sections described the block operations as indivisible, the

hardware can exploit concurrency within and across various operations. For ex-

ample, the dispatch of each instruction is independent of the others, which allows

different ITs to dispatch instructions concurrently. Even as the ITs are dispatching

instructions, a few ETs may begin to execute their instructions, if they have their

50

operands available. Aside from the intra-block concurrency, the hardware can use

speculation to exploit concurrency across multiple blocks. This section describes

the necessary hardware for support for speculative execution.

The reservation stations distributed throughout the array of ETs provide

a window on to which the hardware can map instructions and exploit ILP. The

hardware can expand the window by merely augmenting each ET with additional

reservation station entries without the attendant complexity present in conventional

superscalar machines. It can then use the additional slots to map multiple blocks

speculatively and execute them. Different possibilities exist for partitioning the

reservation stations among multiple blocks. Specific implementations may choose

to devote all slots within the same row to the same block, and different rows to

different blocks. Alternative implementations may devote all slots within the same

column to the same block. These schemes offer different tradeoffs with respect to

the latency of operand communication within the block. Section 3.4 discusses these

tradeoffs in greater detail.

In the TRIPS microarchitecture, the hardware maps an entire block to all

rows and columns of ETs. It groups a set of reservation station in each ET and

aggregates them across all ETs to form a frame. Figure 3.5 shows the partitioning

of the reservation stations at one ET into eight different frames, with each frame

containing four slots per ET. If each frame supported eight frames per ET, the

4×4 array of ETs provides 128 slots per frame on to which the hardware can map

an entire 128-instruction block. A multi-entry reservation station at each ET thus

provides a three-dimensional volume of instruction storage across the entire array

as shown in Figure 3.5. On to this volume, the hardware can map multiple blocks

and execute them concurrently.

The hardware fills empty frames with speculatively mapped blocks, predict-

ing which blocks to execute next and mapping them to empty frames. The hardware

51

Frame 0 Frame 1 Frame 7

Frame 0

Frame 1

Frame 7

(0,0,0)

row

col

frame/slot

ET at row 2, col 3

2 1 3
row slot col

1
Frame

Frame 0 (slots 0-3)

Frame 1 (slots 4-7)

Frame 7 (slots 28-31)

a) ET with 32 reservation stations

partitioned into eight frames

b) Alternate view of the reservation stations

 in one ET (each frame contains four slots)

c) 3-D view of entire execution array

2 1 3
row slot col

1
Frame

Figure 3.5: Organization of reservation station slots into different frames.

uses a control flow predictor to predict the address of the next block that must be

executed in the program. It can map the block to an available frame and execute it,

even as the previous one is still executing. The frames are treated as a circular buffer

in which the oldest frame is non-speculative and all other frames are speculative.

When the frame holding the oldest block completes, the block is committed and

removed. The next oldest block becomes non-speculative, and the released frame

can be filled with a new speculative block. On a misprediction, all blocks past the

incorrect prediction are squashed and restarted.

Since frames are assigned to blocks dynamically and all intra-block commu-

nication occurs within a single frame, each producer instruction prepends its frame

identifier to the 3-D coordinates of the consumer to form its correct reservation sta-

tion address. Figure 3.5 shows an example of how this addressing works. The row

and the column components of the coordinates determine the ET, and the frame

52

identifier together with the slot component of the coordinates determines the reser-

vation station address. Data passed between blocks are transmitted through the

register file or the load-store queues. Register values are forwarded aggressively

when they are produced, using forwarding logic at the RTs that match the outputs

of earlier blocks with the inputs of later blocks. The precise identification of the

register definitions within the block enables the hardware to identify inter-block de-

pendences quickly. The load-store queues use a similar mechanism to forward values

from stores to consuming loads in other blocks.

3.2.3 Discussion

The TRIPS microarchitecture exhibits several advantages over conventional super-

scalar architectures for exploiting concurrency.

Instruction fetch: A single prediction is sufficient for fetching an entire block of

instructions. The next-block predictor provides a single block address, and the ITs

independently fetch and dispatch instructions for the block, thus providing a highly

parallel instruction fetch interface. Furthermore, the hardware reduces the pressure

on the next-block predictor to make fast predictions, as the fetch of a large block

may incur multiple cycles, offering sufficient slack for making an accurate prediction

for the next block. By contrast, modern control flow predictors must often trade

off accuracy with prediction latency in order to sustain high-bandwidth instruction

fetch [78].

Data memory: The distributed data cache banks offer a high-bandwidth primary

memory system interface. Since the DTs are address-partitioned, they can sup-

port multiple independent accesses simultaneously. However, maintaining correct

program-order semantics for loads and stores efficiently is an important design issue

for distributed primary memory interfaces and is the subject of other work [141].

53

Register interface: Large blocks reduce many data dependences to strictly intra-

block, direct-instruction communication. They alleviate the register pressure as

most dependences do not need to access the register file. An initial evaluation indi-

cated that by converting most dependences to intra-block dependences, 30%–90%

reduction in register bandwidth be achieved [109]. Furthermore, for the residual

register accesses that are necessary for inter-block dependences, the hardware pro-

vides distributed register banks, offering concurrent accesses to different registers.

Across blocks, registers must still be renamed to eliminate anti- and output-data

hazards, but the few block input and output registers reduce the complexity of the

rename logic.

Operand communication: The hardware connects the distributed components

with point-to-point interconnects, instead of an unscalable bypass network. The

compiler optimizes for the latency of operand communication through the critical

path of dependent instructions.

Wide issue: The array of execution units provide both wide issue and a large win-

dow of instructions. Parallelism results from concurrent execution in different ETs,

restricted only by the data dependences. The explicit expression of dependences

obviate associative operand tag match hardware, which improves the scalability to

wider issue.

3.3 Compiling for TRIPS

The compiler for the TRIPS architecture has many of the same responsibilities as

a classical optimizing compiler. In addition, it has two new responsibilities: a) de-

compose a program into a sequence of blocks and b) perform instruction scheduling.

This section describes the compiler transformations that accomplish these tasks.

54

a) Control-flow graph b) Unrolled CFG

 - predic

c) Hyperblocks e) Scheduled &
 assembled code

d) Optimized
 hyperblocks

read_0

andi_1 srli_17

or_3

andi_25 srli_34srli_47

read_11

mov_f_10

mov_f_32

read_2

or_26

or_39

and_5slli_8mov_f_14 and_27

slli_30

mov_f_33

and_40 slli_43 mov_f_46

read_18

subi_19 subi_36 subi_48

tlt_24 tlt_37 tlt_50 write_73

teqi_6extuw_9

enter_4

teqi_28

teqi_41

xori_7mov_t_10

mov_f_45

movi_23

extuw_31xori_29

andi_38 mov_t_32

write_75

movi_35

extuw_44 write_70

xori_42 mov_t_45

mov_t_46

write_72 bro_f bro_t

movi_49

Front-end

 - parsing

 - generate CFG

High-level transformations

 - loop unrolling

 - loop peeling, flattening

 - inlining

Code generation

Block formation

 - more unrolling

 - if-conversion

 - predication

 Register allocation

 Backend optimizations

 - peephole optimizations

Scheduler

 - Inserts moves

 - Places instructions

 - Generates assembly

Figure 3.6: TRIPS compiler phases.

3.3.1 Scale Framework

The TRIPS compiler is based on Scale, a Java-based compilation framework origi-

nally targeted for Alpha and SPARC architectures [3]. Figure 3.6 depicts the typical

phases in the TRIPS compiler. The compiler uses a front-end to parse source pro-

grams written in C and FORTRAN and transforms them into control flow graphs.

The first part of the figure shows a typical control flow graph (CFG), where each

node represents a single basic block. The compiler then performs several high-

level transformations such as loop unrolling and flattening to expand the CFGs. It

then performs several scalar optimizations to produce efficient code: global variable

replacement, sparse conditional constant propagation, copy propagation, loop in-

variant code motion, useless copy removal, dead code elimination and dependence

analysis. Figure 3.6b shows the CFG after these transformations. The compiler then

generates TRIPS instructions and forms TRIPS blocks using additional unrolling, if-

conversion, and tail duplication. It then performs various predication optimizations,

register allocation, and peephole optimizations. It finally schedules instructions and

assembles the final object code. Figures 3.6c–e depict these phases.

55

3.3.2 Hyperblock Formation

Hyperblock formation is a transformation that combines several basic blocks, includ-

ing those on disjoint control paths, into a larger block called the hyperblock [92].

To expose opportunities for hyperblock formation, Scale uses transformations such

as function inlining, loop unrolling, loop peeling, loop flattening, if-conversion and

tail duplication [91]. All of these optimizations, besides exposing opportunities for

scalar optimizations, eliminate control boundaries that inhibit hyperblock forma-

tion. Scale then combines several basic blocks to form a larger hyperblock. It

uses predication to merge basic blocks from disjoint control paths into the same

hyperblock. To maximize the chances of merging only useful basic blocks into a

hyperblock, Scale can use heuristics based on profile information such as basic block

execution frequencies, control flow edge frequencies, sizes of the basic blocks, and

loop counts.

Figure 3.6 shows these transformations of the while-loop code example de-

picted earlier in this section. The first portion shows the CFG of the loop. Each

circle in the graph represents a single basic block and the solid circles mark the

prologues and epilogues for the loop. The compiler then unrolls the loop thrice as

shown in the second portion of the figure. It decides to merge all 12 basic blocks

corresponding to the three loop iterations into the same hyperblock. It performs if-

conversion and predication and forms one large hyperblock as shown in Figure 3.6c.

It then performs several backend optimizations, and does register allocation. Finally

it performs instruction scheduling and produces TRIPS object code.

3.3.3 Predication

Predication is an architectural concept in which the execution of an instruction is

guarded by a predicate operand [8]. A compiler transformation called if-conversion

converts control dependences to data dependences, by computing a predicate and

56

teq teq

subi addi

muli

i j

if (i == 0 && j == 0) {

 b = a + 2;

 c = b * 2;

} else {

 b = a - 2;

 c = b / 2;

}

d = c * 5;

d

slli srai

a

Figure 3.7: Predication in the TRIPS architecture.

making the control dependent instructions data dependent on that predicate. It is

this transformation that enables basic blocks on disjoint control paths to be part

of the same hyperblock. The TRIPS architecture exploits dataflow execution to

implement predication efficiently [149].

Nearly all instructions can be predicated in the TRIPS architecture. A spe-

cial field with every instruction specifies whether an instruction is predicated and

if so, the polarity of the predicate on which the instruction must be executed.

Figure 3.7 illustrates the various features of predicated execution in the TRIPS

architecture—predicate ANDs, predicate ORs, and implicit predication. We provide

an overview of these features in the following paragraphs and refer the reader to

prior work for a comprehensive treatment on the subject [149].

The figure shows an if-then-else construct with a short-circuiting conditional

computation. Two test instructions, the second predicated upon the first, compute

the conditions for executing either the if statement or the else statement. The circle

next to an instruction specifies the polarity of the predicate on which the instruction

will execute—a black circle indicates a predicate value of true, while a white circle

57

indicates a predicate value of false. For example, if the first test instruction teq

evaluates to false, the subi instruction will receive a matching predicate and will

execute when it has its data operand available. The second teq instruction will not

execute, since it will receive a non-matching predicate.

Predicate ANDs: The execution of the if statement must be protected by a

compound predicate that is the boolean conjunction of the two test instructions.

By predicating the second teq instruction on the true condition of the first teq

instruction, the compiler implements an implicit AND chain. This implementation,

enabled by predicated test instructions, is more efficient than the explicit conjunc-

tion operators, which increase both the code size and the critical path length.

Predicate ORs: The execution of the else statement must be triggered if ei-

ther of the test instructions evaluate to false. Instead of an explicit disjunction

of the outputs from the two test instructions, the TRIPS ISA supports an implicit

predicate-OR operation. If the first teq instruction evaluates to true and the second

evaluates to false, the subi instruction receives two values for the predicate operand,

but only one of them is a matching predicate. If the first teq instruction evaluates

to false, the second teq instruction does not execute as it receives a non-matching

predicate. Therefore, regardless of the outcome of the two test instructions, the

subi instruction will receive at most one matching predicate. By targeting multi-

ple predicates that are defined on mutually exclusive paths to the same predicate

operand, the TRIPS compiler implements an implicit predicate-OR operation. As

we describe in Chapter 5, this feature exposes more opportunities for optimization.

Implicit predication: Prior predication architectures required every predicated

instruction to read its predicate operand explicitly. The same requirement for the

TRIPS architecture would incur significant overhead. For example, if the execution

58

of a basic block is guarded by the predicate p, then the single predicate must be de-

livered to every instruction in the basic block resulting in increased fanout overhead.

Fortunately, the TRIPS compiler can exploit the dataflow execution to mitigate this

overhead. It uses two techniques: hoisting and implicit predication. For example, on

the right-hand side of the if-then-else fork, the compiler predicates only the bottom

srai instruction on the true value of the predicate, effectively hoisting the dataflow

antecedent to execute speculatively in parallel with the predicate computation. If

the predicate for the bottom instruction evaluates to false, the effect of the hoisted

instruction is automatically nullified. On the left-hand side of the if-then-else fork,

the compiler predicates only the top instruction, implicitly predicating its dataflow

descendant. If the predicate for the subi instruction is non-matching, it will not

fire, so the implicitly predicated dataflow chain also will not fire.

After all of the predication transformations, the TRIPS compiler produces a

TRIPS block that includes instructions from several basic blocks, and among which,

the only instruction dependences are data dependences. Its next step is to express

the inter-block register dependences using architecture register names.

3.3.4 Register Allocation

Recall from the TIL code example in Figure 3.1 that register names express data de-

pendences between instructions, unless the dependences must be expressed through

data memory. Register allocation assigns these names to architecture registers or

spills to memory. However, unlike traditional architectures, the register allocator

does not assign registers whose live ranges are contained entirely within the bounds

of a single block. For the purposes of register allocation, the compiler treats each

block as a large instruction that uses and defines several registers. It prioritizes

the registers based on their definitions, uses, and spill costs, and also the size of the

block that uses and defines them. It then performs a partitioned register assignment

59

or spills to memory in priority order. Specific constraints in the ISA—such as the

maximum number of definitions allowed in a single RT—may cause the allocator to

iterate several times until all constraints are satisfied [147].

3.3.5 Instruction Scheduling

The final phase of compilation is instruction scheduling. The TRIPS architec-

ture breaks instruction scheduling into two complementary components: instruction

placement and instruction issue [108]. Conventional architectures sit at opposite

ends of the spectrum with regard to these demands on the scheduler. VLIW pro-

cessors use both static placement (SP) and static issue (SI), resulting in a SPSI

approach to scheduling. Out-of-order superscalar architectures, conversely, rely on

both dynamic placement (DP), since instructions are dynamically assigned to ap-

propriate ALUs, and dynamic issue (DI), resulting in a DPDI model. For VLIW

processors, the static issue is the limiting factor for high ILP, whereas for super-

scalar processors, poor dynamic placement locality limits ILP. Static placement

makes VLIW a good match for partitioned architectures, and dynamic issue per-

mits superscalar processors to exploit parallelism and tolerate uncertain latencies.

The TRIPS architecture combines the strengths of these two models, coupling static

placement with dynamic issue, resulting in an SPDI model. The TRIPS compiler

optimizes for placement on the hardware, and the hardware issues instructions dy-

namically, as their operands become available.

The TRIPS scheduler has the following responsibilities: a) Placement for Lo-

cality: select an instruction mapping that minimizes communication latencies among

execution resources, the register file, and cache banks for dependent operations and

b) Contention Reduction: reduce contention by spreading independent instructions

across the execution resources, balancing this benefit against the goal of reducing

communication latencies. The TRIPS scheduler uses an algorithm called Spatial

60

Path Scheduling to perform these two functions [38]. It is an improvement over the

previously proposed greedy list scheduling algorithm [108] and exploits the following

techniques:

Anchor points: Exploits known routing locations, which includes register des-

tinations, branch destinations, approximate memory instruction destinations, and

previously scheduled instructions to determine the best placement for an instruction.

Contention modeling: Estimates contention for an ALU—both intra-block and

inter-block—and the network links, and augments them with static properties of a

block such as its size to balance the load across all ALUs.

Global register prioritization: Prioritizes for critical global paths that tran-

scend block boundaries by considering loop-carried register dependences and register

dependences across neighboring blocks.

Path volume scheduling: Plans routes for long paths by considering an entire

group of instructions for placement, instead of a single instruction at a time.

Fanout generation: Estimates criticality of various consumers and constructs

necessary fanout trees from producer instructions.

The TRIPS scheduler repeats this operation for every block in the program. Finally,

the TRIPS assembler encodes the instructions in every block according to the ISA

and produces the final object code that will execute on the hardware.

3.4 Design Alternatives

In Section 3.2, we described the features of the TRIPS microarchitecture. Three im-

portant issues arise when designing a distributed microarchitecture such as TRIPS:

61

a) what to distribute, b) how to distribute, and c) how to connect the distributed

components. In addition to the exploration of the ISA design space, our initial re-

search also focused on exploring the design space of the microarchitecture. In this

section, we describe a few design alternatives and the rationale behind the design

parameters chosen by the TRIPS microarchitecture.

3.4.1 What to Distribute

The first issue with distribution is deciding which microarchitectural components to

distribute. The TRIPS microarchitecture targets the centralized structures that are

fundamental impediments for scalability in conventional superscalar processors. It

replaces the centralized primary memory system with distributed instruction cache

banks, distributed data cache banks, and distributed LSQs. It replaces the central-

ized register file and register rename tables with distributed register file banks. It

replaces the centralized OOO instruction scheduler with multiple simple dataflow

schedulers distributed throughout the array of execution units. Finally, it replaces

the broadcast operand bypass buses with a point-to-point interconnection network.

The only centralized component is the GT, which includes the next-block

predictor and the block control logic. Fortunately, both of these structures are ac-

cessed only at the block boundaries and not for every instruction. By using the

large blocks, the microarchitecture amortizes the overhead of directing the overall

execution from a single centralized component. A completely distributed implemen-

tation for control flow management is beyond the scope of this dissertation and is

the subject of other work [125].

3.4.2 How to Distribute

The second issue deals with the number of partitions for each distributed com-

ponent and how they must be organized. The fundamental tradeoff that decides

62

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

R

I D
G

RG GR

RG GR

I D I D

I D I D

I D I D

I D I D

D

R

D

D

D

G R R RI

I

I

I

I

a) Homogeneous tile partitioning

Each tile includes an execution unit,
register bank, control logic, and cache
banks

b) Heterogeneous tile partitioning

Execution units are clustered
with register bank or control logic,
cache banks coupled with execution
tiles

c) Heterogeneous TRIPS partitioning

Array of execution units surrounded
by register banks, cache banks, and
control logic

ALU Reservation
Stations

ControlRegister File I-cache D-cacheG I DR

Figure 3.8: Different organizations of the distributed components.

the distributed organization is the complexity in each tile versus the communication

latency between the tiles. Figure 3.8 depicts a few organizations of a distributed mi-

croarchitecture. Each organization depicts a different arrangement of the individual

components. For example, Figure 3.8a shows a 4×4 array of tiles, with each tile con-

sisting of an execution unit, register file, reservation stations, caches, and a control

predictor. This organization has equal number of partitions for each distributed

component and yields a homogeneous arrangement in which each tile integrates

several distinct components, and multiple identical tiles form the microarchitecture.

Figure 3.8c depicts the heterogeneous organization of the TRIPS microarchitecture.

It features unequal number of partitions for the different components and multiple

replicated heterogeneous components comprise the microarchitecture. Figure 3.8b

also shows a heterogeneous microarchitecture, but with a different organization.

The co-location of instructions and data with the execution unit in the ho-

mogeneous organization reduces the communication latency for loads, stores, and

63

instructions that access the register file, and also improves the bandwidth. However,

it increases the area of each tile, or conversely, forces a reduction in the capacities

of the individual components. Larger tiles increase the inter-tile communication

latencies and also expose wire delays within one tile. A homogeneous organization

must also deal with other design issues:

Instruction cache: The instruction cache is the simplest to distribute and co-

locate with the execution units. If instruction mappings to execution units do not

change dynamically, or change infrequently, this organization reduces the latency

of dispatching instructions to the execution units and improves instruction fetch

bandwidth, but increase tile area.

Register file: Replicating the registers across different register banks requires

mechanisms to maintain consistent data for the same register in multiple banks.

Partitioning the registers statically among different register banks increases the con-

straints for static register allocation; the instruction scheduler must work in con-

junction with the register allocator to minimize remote accesses for register data,

increasing its constraints.

Data memory: A distributed primary memory system must deal with two im-

portant issues—cache coherency and load/store synchronization. Static partitioning

of the address space among the tiles obviates the need for explicit cache coherence.

But this policy requires sophisticated data partitioning and instruction scheduling

algorithms to minimize the occurrences of a remote cache bank access. Alternative

designs may choose replication, instead of hard partitioning, and migrate data closer

to tiles that access them. But, they must incur the overhead of keeping the caches

coherent.

Efficient synchronization mechanisms are also necessary for enforcing the

64

correct program order of loads and stores. Since addresses for loads and stores

cannot be perfectly disambiguated at compile time, a single partition must provide

runtime mechanisms for servicing all possible in-flight memory operations. Naive

policies incur a complexity that is proportional to the number of partitions and

therefore, do not scale. Sethumadhavan et al. describe these issues in greater detail

in recent work [140,141].

When we began the implementation of the TRIPS microarchitecture, efficient

policies for register and data distribution were still being investigated. Consequently,

the TRIPS microarchitecture opted for the simpler middle ground of fewer partitions

of the register file, the data caches, and the LSQs. This policy offers the benefits

of higher bandwidth and scalability than a centralized mechanism, but without the

additional complexity of more distribution. Furthermore, to keep the tiles simple,

the microarchitecture pushed the register and cache banks to the edges of the exe-

cution array and relied on the compiler to reduce communication latencies. Using

large blocks generated by the compiler, the hardware also expected to amortize the

latencies of traversing to the edges of the array for accessing registers and caches.

3.4.3 How to Connect

The third issue for distributed architectures is the interconnection network that

connects the different tiles. Taylor et al. [164] and Sankaralingam et al. [137] de-

scribe different taxonomies for on-chip interconnection networks, and in particular,

operand networks that connect the partitions in a tiled architecture [164]. Routed

on-chip networks are also popular as an alternative to global interconnects to re-

duce wire delays [41]. The fundamental design issues for these networks include

the topology of the network, routing protocols, scalability to larger topologies, and

deadlock detection and avoidance. There is a vast design space for each and their

treatment is beyond the scope of this dissertation. In the following paragraphs, we

65

highlight the basic design choices we made and their rationale.

The topology determines the latency and bandwidth of the network, which

in turn affect performance. During the early design space evaluation of the TRIPS

architecture, we considered a low-degree M-network, which connects each tile to

the three nearest neighbors (two diagonal, one below) in the succeeding row, to

reduce the routing latency per-hop and approximately match the shape of the pro-

gram DFGs [109]. Ultimately, the best topology is the one that provides sufficient

reachability for any pair of nodes to communicate with each other, attains a good

balance between the number of routing hops between communicating pairs and the

latency per hop, enables simple routing algorithms, and matches well with the chip

floorplan. The mesh network provided the best compromise. Its routers have four

input and four output ports each, where as the routers in a M-network have only

three input ports and three output ports. On the one hand, the additional ports

increase the latency per hop in the mesh network. On the other hand, the mesh

network yields fewer hops on average between any pair of tiles compared to the M-

network. Singh et al. describe a study that explored different routing topologies and

concluded that a simple mesh network attains much of the performance of a higher-

connectivity star network, and superior performance compared to a low-connectivity

M-network [146].

The TRIPS microarchitecture chooses a simple dimension-ordered dynamic

routing protocol. The MIT RAW processor uses a statically scheduled network to

optimize around congested links and avoid contention. However, RAW also needed

a slow dynamic network to cope with unexpected events such as cache misses [163],

which inhibit parallelism. We opted for dynamic routing to enable out-of-order

execution. We also chose dimension-ordered routing and guaranteed delivery of

packets to simplify the router design and avoid deadlocks. However, as our results

in Chapter 6 illustrate, this policy leads to contention stalls under heavy traffic and

66

degrades performance.

3.4.4 Design Parameters

A number of design parameters exist for the TRIPS microarchitecture. Among

these are the dimensions of the array, composition of the ETs, speculation depth,

and mapping of the blocks.

Array Dimensions

The TRIPS prototype microarchitecture uses a 4×4 array of ETs. This organization

offers a peak execution rate of 16 instructions per cycle. To increase the peak

execution rate, alternate designs may increase the dimensions of the execution array.

Sankaralingam et al. evaluate the scalability of ILP to larger cores [135]. They

explore different array configurations—2×2, 4×4, 8×4, 8×8. A fixed organization

of register banks and data cache banks at the edges of the execution array increases

the latency for register access and load/store instructions in larger arrays, if the

consuming instructions are placed at farther ETs. The increased latency trades off

with the increased concurrency offered by larger arrays.

Sankaralingam et al. measure the performance of several SPEC CPU2000

workloads and conclude that the wide variance in ILP in the workloads demand

both larger processors (8×8) and smaller processors (4×4) [135]. However, larger

cores provide better overall performance for several workloads, with the 8×8 con-

figuration performing the best. The 8×4 configuration attains nearly the same

performance, whereas the 4×4 configuration reduces performance by 12% on inte-

ger workloads and nearly 50% on numeric workloads. Ultimately, the number of

execution units that can be accommodated on the chip will be limited by avail-

able die area. Whereas the TRIPS prototype processor uses a 4×4 configuration,

larger arrays offer a scalability path for increasing performance at future technolo-

67

gies. Workloads with abundant ILP will continue to exploit the increased execution

bandwidth. However, the microarchitecture must introduce new mechanisms to

improve the efficiency of execution in workloads with low available ILP.

Speculation Depth

The number of frames in the microarchitecture determines the instruction win-

dow size. The microarchitecture can map several blocks in the available frames

speculatively, thus providing a larger window for exploiting ILP. For example, a mi-

croarchitecture with 8 available frames, where each frame can accommodate a single

128-instruction block, provides a window of up to 1024 instructions. The accuracy

of control speculation determines the effective utilization of the frames. The avail-

able die area also restricts the number of frames, as each tile must provide support

for more speculative blocks and the increased number of in-flight instructions. Due,

in a large part, to the area constraints and branch misprediction rate, the TRIPS

prototype processor supports only eight frames.

Block Mapping

The TRIPS microarchitecture maps a single block across the reservation stations

in all ETs. Alternate mapping policies may choose just a subset of ETs to map

a single block. Figure 3.9 depicts the mapping of two blocks using three different

policies. In the first policy, Uniform, the microarchitecture distributes the contents

of each block across all ETs. In the second policy, Vertical, the microarchitecture

chooses a subset of the ETs to map a single block. The figure shows a mapping, in

which the first block, block0, is mapped to the left half of the ET array, whereas the

second block, block1 is mapped to the right half. The third policy, Horizontal, also

chooses a subset of the ETs to map a single block. However, instead of partitioning

the scheduling volume vertically, it partitions the volume horizontally for the two

68

a) Uniform b) Vertical c) Horizontal

Instructions in a block mapped to all
execution units.

Reservation station slots divided
among blocks in the z-dimension

Instructions in a block mapped to a
subset of the execution units.

Reservation station slots divided
among the blocks in the y-dimension

Instructions in a block mapped to a
subset of the execution units.

Reservation station slots divided
among the blocks in the x-dimension

Mapping of block0 Mapping of block1

Figure 3.9: Mapping of different blocks to the reservation stations.

blocks.

The two mapping policies—Uniform and Vertical—represent opposite ends

of the spectrum with respect to exploiting parallelism and minimizing communica-

tion. Uniform chooses to maximize parallelism among the instructions of the same

block, whereas the Vertical chooses to maximize parallelism among multiple blocks.

Uniform optimizes for communication with register files and data caches, whereas

Vertical optimizes for communication among the ETs for a single block. For exam-

ple, the maximum latency for intra-block communication among the ETs is 6 cycles

for Uniform, while it is 4 cycles for Vertical, assuming single-cycle hops in the net-

work. On the other hand, the minimum roundtrip load-to-use latency for loads in

block1 is six cycles for Vertical, as opposed to two cycles for Uniform. In fact, the

fixed organization of the register banks and data cache banks hamstrings every map-

ping policy other than Uniform with respect to load and register communication.

We chose Uniform to optimize for the loads and registers.

69

3.5 Summary

In this chapter, we described the architectural and microarchitectural principles of

a TRIPS processor. We began by describing EDGE architectures, a new class of

instruction set architectures that convey instruction dependences explicitly to the

hardware. We described how these architectures elevate the granularity of process-

ing to large program regions called blocks and reduce the instruction-level overheads

of register file access, branch prediction, renaming, and dynamic scheduling that are

present in conventional superscalar architectures. We then described the TRIPS

architecture, an instance of an EDGE architecture, which executes instructions in

dynamic dataflow order on a distributed array of heterogeneous processing tiles.

We described how the architecture uses compiler assistance to reduce the latency

of distributed execution, resulting in a statically placed (SP) and dynamically is-

suing (DI) variant of an EDGE architecture. We described the microarchitectural

execution of a program on a particular implementation of the TRIPS architecture.

We described various design alternatives and discussed their relative merits.

The choices made in the TRIPS architecture and microarchitecture represent only

one point in the design space. Few of the alternatives such as a homogeneous

organization and different block mapping policies show promise and merit further

exploration. As our results in later chapters show, operand communication latency

is a significant determinant of performance, and these alternatives present different

tradeoffs for reducing latency. However, other decisions such as the fixed static

mapping of instructions to execution units and the mesh network topology are likely

best matches for distributed microarchitectures. Static mapping offers the ability

to exploit the compiler to reduce latency. A mesh network provides simple routing

algorithms, good performance, and maps well with the straight-line, physical wiring

tracks in the hardware. Different implementations of the TRIPS architecture are

likely to retain these two design choices.

70

Chapter 4

The TRIPS Prototype

Implementation

Previous chapters described the basic principles behind the TRIPS architecture. A

high-level exploration quantified the merits of the architecture and demonstrated its

ability to exploit significant instruction-level parallelism [109]. However, that study

omitted several low-level implementation details, the design challenges that were

involved, and the potential performance overheads of a hardware implementation.

The development of the TRIPS hardware prototype system is a comprehensive effort

to understand those issues [136]. This chapter describes the details of the prototype

implementation. In subsequent chapters, we use the prototype implementation for

a detailed evaluation of the TRIPS architecture.

The TRIPS prototype chip is a single-chip multiprocessor consisting of two

16-wide TRIPS processors and a shared 1MB NUCA L2 cache [136]. It is im-

plemented in a 130 nm IBM ASIC process and consists of more than 170 million

transistors on a die area of 336 mm2. Each processor itself implements the TRIPS

architecture. This chapter presents the salient features of the prototype ISA, mi-

croarchitecture, and the chip implementation in Section 4.1 and Section 4.2. Sankar-

71

alingam also describes similar details in his dissertation [132].

This chapter then describes two aspects of the TRIPS prototype implemen-

tation that are the direct contributions of this dissertation: a) implementation of

the global protocols and the control logic that manages the overall execution in

the TRIPS processor, and b) performance validation of the prototype processor.

Section 4.4 and Section 4.5 present these details. We use an understanding of the

mechanisms described in these sections to drive the methodology for a detailed

quantitative evaluation, which is the subject in later chapters.

4.1 The TRIPS Prototype ISA

The TRIPS processor is a hardware implementation of the TRIPS architecture.

For ease of implementation, the prototype ISA places several restrictions on the

composition of a block. First, each block must obey a few control flow restrictions;

it may not have any internal transfers of control and may execute only one branch.

In addition, each block may have only a maximum of 128 instructions, of which

no more than 32 can be load or store instructions, and read up to 32 registers and

write up to 32 registers. Furthermore, each execution of the block must emit exactly

the same number of register outputs and stores. As we describe in Section 4.4,

this restriction enables the hardware to identify the expected number of outputs

from the block using static information, simplifying the implementation of the block

commit protocol. To ensure this restriction, the compiler must predicate multiple

instructions that define the same register such that only one of them will execute

at runtime. Moreover, if a register is conditionally defined on a predicated path,

null writes must be defined on the complimentary paths to ensure that an output is

always produced—a true output or a null output.

A null write to a register indicates that the register is not defined by the block.

Similarly, null stores indicate that the corresponding stores will not be produced

72

V GR W

5 04

Write Instruction Format

N
o

rm
a

l
In

s
tr

u
c

ti
o

n
s

S
p

e
c

ia
l

In
s

tr
u

c
ti

o
n

s

INSTRUCTION FIELDS

OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate

T0 = Target 0 Specifier

T1 = Target 1 Specifier

LSID = Load/Store ID

EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant

V = Valid Bit

GR = General Register Index

RT0 = Read Target 0 Specifier

RT1 = Read Target 1 Specifier

M3TX = M3 Target Upper Bits

M3T0-M3T2 = M3 Targets

M4TX = M4 Target Upper Bits

M4T0-M4T3 = M4 Targets

OPCODE T1 T0XOPPR

OPCODE IMM T0

OPCODE OFFSET

Branch Instruction Format

Load and Store Instruction Formats

General Instruction Formats

Constant Instruction Format

L

B

G

I

OPCODE CONST C

LSIDPR

31 25 24 23 22 818 17 9 0

PR

31 25 24 23 22 818 17 9 0

OPCODE IMM T0XOPPR

T0

31 25 24 089

EXIT

31 25 24 23 022 20 19

OPCODE IMM 0 SLSIDPR

Read Instruction Format

V GR RRT0

21 1620 078

RT1

15

OPCODE M3M3TX

31 25 24 23 02022

PR

14 13 7 6

M3T0 M3T1 M3T2

21

MOVE3 Instruction Format

OPCODE M3M3TX

31 25 24 23 02022

PR

14 13 7 6

M3T0 M3T1 M3T2

21

MOVE3 Instruction Format

OPCODE M4M4TX

31 25 24 23 020 19

0

1514 10 9 45

M4T0 M4T1 M4T2 M4T3

MOVE4 Instruction Format

OPCODE M4M4TX

31 25 24 23 020 19

0

1514 10 9 45

M4T0 M4T1 M4T2 M4T3

MOVE4 Instruction Format

Figure 4.1: Instruction formats in the TRIPS prototype ISA.

when the block completes execution. The compiler inserts these null instructions

such that whenever their complementary register defining or store instructions do

not execute, the null instructions will execute and emit the outputs. For example,

in Figure 3.1c, the compiler uses a mov instruction to copy the unmodified value

of register $g3 back to $g3 in order to preserve its value whenever the if condition

evaluates to false. Instead, the compiler could attain the same effect by replacing

the mov instruction with a null instruction. The null instruction avoids the explicit

read of the register and eliminates that dependence edge from the DFG, offering the

potential for improved performance.

Table 4.1 presents a summary of the instructions in the ISA. The ISA pro-

vides instructions for accessing the registers, memory, integer and floating point

73

Category Description # instructions

Register access Retrieves or writes to a general register. 2

Load Retrieves a byte, half-word (2 bytes), word (4 bytes) 7
or a double-word (8 bytes) from memory. Accesses must
be aligned, and different instructions are provided for
accessing signed and unsigned data.

Store Modifies a byte, half-word, word or a double-word 4
in memory.

Integer Supports integer arithmetic operations—add, 10
arithmetic subtract, multiply, divide. Supports mostly

unsigned operations and immediate operands.

Integer Supports bitwise logical operations—and, or, 6
logical and xor. Supports immediate operands.

Integer Supports signed and unsigned integer shift 6
shift operations. Supports immediate operands.

Integer Sign-extends to a 64-bit integer. 6
extend

Integer Performs relational and equivalence tests 20
comparison on signed and unsigned integers.

Supports immediate operands.

Floating-point Supports double-precision floating-point 4
arithmetic operations—add, subtract, multiply, and divide.

Floating-point Converts to or from single-precision 4
conversion and double-precision to integer.

Floating-Point Performs relational and equivalence tests. 6
comparison

Branch Implements control flow. 6

Other Generates large constants, move data values, 11
and performs miscellaneous operations.

Total 92

Table 4.1: Summary of the instructions in the TRIPS prototype ISA.

arithmetic operations, logical operations, and relational operations. We refer the

reader to the TRIPS ISA manual for a detailed description of these instructions [95].

The ISA encodes all instructions using exactly 32 bits. Figure 4.1 presents the en-

coding for various instruction formats. This encoding permits the specification of

up to two targets in most instructions. However, instructions that consume imme-

diate operands (I-form) and load instructions (L-form) can specify only one target.

Additional targets, if any, must be specified by constructing a fanout tree of mov in-

structions. To minimize the number of fanout instructions, the ISA introduces two

74

Header

Chunk

Instruction

Chunk 0

128 Bytes

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Header

Chunk

Instruction

Chunk 0

PC

Instruction

Chunk 1

Header

Chunk

Instruction

Chunk 0

Instruction

Chunk 1

Instruction

Chunk 2

Header

Chunk

Instruction

Chunk 0

Instruction

Chunk 1

Instruction

Chunk 2

Instruction

Chunk 3

Instruction

Chunk 1

Instruction

Chunk 2

Instruction

Chunk 3

Header Chunk Fields

8 read instructions

8 write instructions

8-bit magic block marker

8-bit block execution flags

32-bit store mask

8-bit block type

Block Type 1 Block Type 2 Block Type 3 Block Type 4

Figure 4.2: Block organization in the TRIPS prototype ISA.

special instructions—mov3 and mov4—that specify three targets and four targets

respectively. Figure 4.1 specifies the encoding formats for these instructions. Unlike

other instructions that specify the complete coordinates for a target—row, column,

reservation slot index, and the left/right/predicate operation position, the mov3 and

mov4 instructions place restrictions on the locations of their targets. A mov3 instruc-

tion requires all of its targets to address the same operand position—left, right, or

predicate—specified by the M3TX bits in Figure 4.1. A mov4 instruction requires all

of its targets to target the same operand position and reservation station slots in

the same row, as specified by the M4TX fields in Figure 4.1. These two instructions

sacrifice the generality of the target encoding to reduce the overhead of fanout.

The prototype ISA arranges the instructions of a block in up to five 128-byte

chunks. Figure 4.2 depicts the organization for four types of blocks. The header

chunk encodes all the read and write instructions. It also encodes meta information

about the block: a magic marker that identifies a legal block, the number of instruc-

75

tions chunks, control flags that specify any special execution modes for the block,

and a 32-bit mask that indicates which of the 32 memory operations in the block

are stores. Each instruction chunk encodes up to 32 compute instructions. Every

block must include a header chunk and instruction chunk 0, and may optionally

include the remaining instruction chunks. If an instruction chunk has fewer than

32 compute instructions, it is padded with NOP instructions to compose a fixed-

size chunk. While the NOPs are not a requirement for the TRIPS architecture or

EDGE architectures, the prototype ISA uses them for managing implementation

complexity. We will revisit the benefit of fixed size chunks later in Section 4.4.

Restricting the number of read and write instructions to 32 each helps main-

tain the encoding of the header chunk within 128 bytes. Fewer than 32 would

increase the pressure on the register allocator in the compiler and greater than 32

would necessitate a larger header chunk that not only increases the code footprint

in memory, but also the I-cache capacity requirements. Restricting the number

of loads and stores in the block to 32 reduces the number of entries needed in the

load-store queue and reduces its complexity. The explicit encoding of read and write

instructions in the block header helps the resolution of inter-block data dependences.

Using this encoding a new block can quickly identify if any of the previous blocks

produce its input registers at fetch time; otherwise it must wait until all previous

blocks have completed their execution, reducing the overall performance.

4.2 TRIPS Prototype Microarchitecture

The TRIPS prototype chip consists of two processors adjacent to an array of non-

uniform cache access (NUCA [80]) L2 cache banks. Figure 4.3 provides an organi-

zational overview of the TRIPS chip. Each of the two processors implements the

TRIPS microarchitecture described in Chapter 3. Each processor issues 16 out-of-

order operations per cycle, buffers 1024 in-flight instructions, and contains 80 KB

76

I R R R R G

E E EE D I M M M M N

N
C2C

NN
SDC

N
DMA

E E EE D I M M M M N

E E EE D I M M M M N

E E EE D I M M M M N

N

EBCSDCDMA
I R R R R G

E E EE D I M M M M N

N NNN

E E EE D I M M M M N

E E EE D I M M M M N

E E EE D I M M M M N

N

Processor 0

Processor 1

NUCA L2

G Global Tile

R Register Tile

I Instruction Tile

D Data Tile

E Execution Tile

N Network Tile

M Memory Tile (L2 cache bank)

DMA Direct memory access controller

SDC SDRAM memory controller

EBC External interface (interrupt controller)

C2C Chip-to-chip communication controller

Processor tiles

On-chip memory and other tiles

Figure 4.3: TRIPS chip overview.

of L1 instruction cache and 32 KB of L1 data cache. A processor can utilize all

these resources for one thread or up to four simultaneously multi-threaded (SMT)

threads, thus providing the ability to exploit both instruction-level parallelism and

thread-level parallelism. The two processors share the L2 memory system. The

sixteen L2 cache banks together provide a 1 MB L2 cache in the prototype chip.

As described in Chapter 3, the chip implementation embraces a few key

design principles for managing complexity and enhancing design productivity: a)

use of a small number of heterogeneous components, b) component re-use, and c)

avoidance of global wires. Accordingly, the processor microarchitecture consists

of multiple heterogeneous tiles—execution units, register file banks, data and in-

struction cache banks—and connects them using a set of simple data and control

networks. Likewise, the on-chip memory system is composed from multiple mem-

ory tiles residing on a switched-network. Each tile has a small area, ranging from

1–9 mm2, so that local wires—in low-level metal layers—can accomplish the com-

munication needs within the tile. For inter-tile communication, global wires are

77

replaced by point-to-point networks. Such an organization enhances scalability to

larger implementations that support more tiles and larger network topologies, with-

out significant re-design of each tile.

4.2.1 Processor Tiles and Networks

Each processor core is implemented using 30 tiles that belong to five unique types:

one global control tile (GT), 16 execution tiles (ET), four data tiles (DT), four

register tiles (RT), and five instruction tiles (IT). Table 4.2 presents the composition

of each tile. Each ET consists of an integer and floating point unit, a 64-entry

reservation station, and a standard single-issue execution pipeline. Each RT contains

a portion of the architecture and physical register file. Each DT consists of a data

cache bank, cache miss handling logic, load/store queues, and a 1-bit dependence

predictor to predict the dependences among in-flight memory loads and stores. The

ITs comprise the primary memory system for instructions. The GT sequences the

overall execution of a program. The particular configuration shown in the table

provides a 16-wide issue, 1024-instruction window TRIPS processor.

As described in Chapter 3, the reservation stations in the execution array

are partitioned into equal portions in each ET. These portions are aggregated across

all the ETs to form a frame, on which a single block can be mapped and executed.

The prototype microarchitecture supports eight frames, each containing eight reser-

vation station entries per ET, thus providing a window of 128 slots across the entire

array of ETs. The hardware maps each new block in an available frame and exe-

cutes it. The hardware can be configured to run in either single-threaded mode or

simultaneous multi-threaded mode. In the single-threaded mode of operation, up to

eight blocks belonging to the same thread can be in flight simultaneously, seven of

them speculatively. In the multi-threaded mode of operation, each thread can have

up to two blocks in flight, one of which is speculative. Control registers within the

78

Tile Composition

GT Block management state supporting eight blocks in single-threaded mode
and two blocks for each of 4 SMT threads in multi-threaded mode,
processor status and control registers,
interface to on-board master control processor,
L1 I-cache tags, 128 TRIPS blocks, 2-way set-associative,
16-entry, fully-associative instruction TLB,
84 Kbit next-block predictor that includes a local/global adaptive
tournament exit predictor with speculative updates,
branch/call target buffers, branch type and return predictors,
3-cycle predict and update operations, 2-cycle repair operation.

RT Four 32-register banks, one each for 4 SMT threads,
64 physical registers, eight for each in-flight block,
inter-block register dependence check logic.

IT 16 KB bank, 64-byte lines, one cycle hit latency,
128-bit input and output interfaces to the OCN,
transfers 64 bytes every five cycles with L2 cache in each direction.

DT 2-way, one-cycle 8 KB L1 cache bank, with 64-byte cache lines,
cache-line interleaving among 4 DTs,
one 256-entry LSQ, one-entry coalescing write buffer,
16-entry, fully-associative data TLB,
MSHRs supporting up to 16 requests to up to four cache lines,
memory-side, 1024-entry, single-bit dependence predictor to
predict the dependences between program stores and loads.

ET 64-entry reservation station holding decoded instructions, each with
two 64-bit data operands, and one-bit predicate operand,
a five-stage, single-issue execution pipeline,
one integer unit and one FP unit,
single cycle basic integer operations,
3-cycle, pipelined integer multiply,
24-cycle, non-pipelined integer divide,
4-cycle FP operations, no support for FP divide and sqrt

Processor 30 tiles: 1 GT, 4 RTs, 5 ITs, 4 DTs, 16 ETs
16-wide issue, 1024-entry window

Table 4.2: Composition of the processor tiles.

79

Operand Network (OPN)

Global Commit Network (GCN) Global Status Network (GSN)

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

Global Refill Network (GRN) Global Dispatch Network (GDN)

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

Transports data operands

140 bits wide

Issues I-cache fill requests

36 bits wide

Issues block fetch commands,

dispatches instructions

210 bits wide

Signals block completion,

I-cache fill completions,

commit completions

13 bits wide

Issues block commit

and flush requests

6 bits wide

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

Data Status Network (DSN)

Communicates store information

70 bits wide

Figure 4.4: TRIPS microarchitectural networks.

GT configure the processor into one of these two modes of operation.

Seven different point-to-point networks connect the tiles together. Each link

on a network connects only nearest neighbors—north, east, south, or west in a Man-

hattan topology—and incurs a one-cycle transmission latency. Figure 4.4 shows the

connections in six of these networks. It also provides a brief summary and the width

of each network. One network, called the global dispatch network (GDN), is used

for dispatching instructions from the ITs to the ETs and the RTs. Another network,

called the global refill network (GRN), is used for directing the ITs to fill missing

instruction cache lines. Three other networks, global control network (GCN), global

80

status network (GSN), and external store network (not shown in Figure 4.4) are

used for exchanging global control information back and forth between the GT and

other tiles. Finally, the data status network (DSN) connects the DTs together to

communicate store information among them. There is no flow control in any of these

networks, and the consumer is expected to sample a link each cycle and source the

data immediately.

The major network in the processor, however, is the operand network (OPN).

It connects all tiles except the ITs in a 5 × 5, worm-hole routed, mesh network

and communicates data operands between them [66]. Each link consists of separate

control and data channels and can transfer one 64-bit data operand each cycle. Every

packet sent on the network consists of two flits—control and data. The control flit

leads the data flit by exactly one cycle and prepares the consumer to receive and

use the data operand in the following cycle. This mechanism reduces the latency

of execution of dependent instructions mapped on different tiles. The OPN avoids

deadlocks using guaranteed reception of a delivered packet and a dimension-ordered

routing policy—each packet first traverses vertically to the destination’s row and

then traverses horizontally to the destination. The OPN uses on-off flow control to

implement loss-less FIFO-ordered delivery of packets between any pair of tiles on

the network.

4.2.2 Secondary Memory System

The TRIPS prototype chip contains a 4-way, 1 MB, on-chip L2-cache, implemented

using 16 memory tiles (MTs) as shown in Figure 4.3. Each MT contains a 64 KB data

bank, which may be configured as a cache bank or as a byte-addressable scratch-pad

memory. The network tiles (NTs) surrounding the MTs translate memory addresses

to determine where the data for a particular address may be found. The NTs and

MTs are clients on another network called the On-Chip Network (OCN), which is

81

a 4×10, two-dimensional, worm-hole routed network [65]. The OCN also interfaces

with each of the ITs on the edge of the TRIPS processors to provide high-bandwidth

L2 cache access. Each IT/DT pair on the same row share the OCN port to inject

cache fill requests to the L2 cache. A processor may request up to five cache line

fills each cycle through its five OCN output ports. The NTs translate the address

for a fill request and the OCN routers eventually transmit the request to the MT

that can service the request.

4.2.3 On-Chip Controllers

The TRIPS chip also includes several controllers that are attached to the OCN for

implementing different system-level functionalities. The two SDRAM controllers

(SDC) each connect to a separate 1GB SDRAM module. The chip-to-chip controller

(C2C) connects a TRIPS chip to other chips in the system. The two direct memory

access (DMA) controllers are used to transfer data directly to and from any two

portions of the physical address space, including the SDRAM and any memory-

mapped, on-chip storage such as the L2 cache and the processor registers. Finally,

the external bus controller (EBC) provides an interface to an on-board PowerPC

processor, to which the TRIPS processors act as slave co-processors. To simplify

the design, the prototype chip off-loads all operating system functionality to the

PowerPC processor and a host PC connected to the TRIPS motherboard. A host

PC running a commodity OS downloads a program to run on to the address space

visible to the TRIPS chip. The chip runs the program until it encounters a system

call, upon which it relinquishes control to the host PC to service the system call.

After the host PC services the system call, it resumes the execution of the TRIPS

chip.

82

Fabrication process 130 nm ASIC

Die size 18.3 mm x 18.37 mm

 (336 sq. mm)

Transistor count 170 million

Package 47 mm x 47 mm ball grid array

Pin count 626 signals, 352 Vdd, 348 Gnd

Routed cells 6.1 million

Routed nets 6.5 million

Total wire length 1.06 Km

Worst case clock period 4.5 ns

Processor 0

Processor 1

L2

Figure 4.5: TRIPS die photo. Picture shows the boundaries of the two TRIPS
processors and the secondary cache.

4.2.4 TRIPS Chip Implementation

The TRIPS chip was implemented in the IBM Cu-11, 130 nm ASIC process. It

consists of more than 170 million transistors in a chip area of 18.30 mm by 18.37 mm.

Figure 4.5 shows the die photograph of the chip and the boundaries of the processors

and the L2 cache superimposed over the photograph. It also shows various physical

attributes of the chip implementation. The TRIPS chip taped out in August, 2006

and first silicon was delivered in October, 2006. After initial electrical testing, the

first TRIPS chip was mounted onto the prototype system boards and brought to

life in early November, 2006. Figure 4.6 shows photographs of the delivered TRIPS

chip part and the TRIPS motherboard. The TRIPS chip is mounted on a separate

daughtercard, which offers plug-and-play testing of individual TRIPS chips. The

daughtercard is mounted on to the motherboard which interfaces with a host PC.

At the time of writing this dissertation, in Spring 2007, all the major func-

tionalities of the TRIPS prototype system have been tested successfully. The chips

83

Voltage
Regulator

Heat Sink /
Fan atop
TRIPS chip

Power
Supply

DIMM
Slots

Figure 4.6: Picture of TRIPS motherboard and package.

are able to run several workloads, including single-threaded workloads such as SPEC

CPU2000, successfully. In addition, they are able to run SMT threads and multi-

threaded MPI workloads successfully. The peak clock rate of the functional chips

was observed to be 366 MHz, which is in tune with the taped-out worst-case clock

period of 4.5 ns and improvements from nominal process corners of the fabrication

technology. Current hardware measurements indicate a peak power consumption of

45 W at a clock frequency of 366 MHz for the entire TRIPS chip. Most of this power

is spent in the clock distribution network and idle dynamic power.

Full-custom implementations of the TRIPS chip will offer higher clock rates

than the ASIC prototype implementation. Chinnery et al. discuss a number of

limitations of ASIC design flows, which when addressed in custom design can offer

dramatic improvements in clock rates [33]. The modular organization of the TRIPS

microarchitecture and short point-to-point interconnections greatly facilitate a high

frequency design as they mitigate the effect of wire delays. However, logic paths

within various tiles and those that span neighboring tiles will undoubtedly need

to be re-designed to support high clock rates. Nevertheless, we expect the TRIPS

design to support competitive clock rates in a custom design.

84

4.3 Development Effort

Developing a working silicon prototype, especially for distributed microarchitecture

with an unproven design and ambitious performance goals, is an enormous under-

taking. Many people have contributed to this effort over the course of three years.

In this section, I describe the design and implementation effort for the TRIPS pro-

totype chip and highlight my specific roles and contributions.

4.3.1 Overall Effort

The design and implementation of the TRIPS prototype chip was accomplished

with a team of 12 students, two staff members, and two faculty members at the

University of Texas at Austin (UT) and an ASIC design team at IBM, Austin, TX.

The UT team was responsible for a post-synthesized netlist for the chip, whereas the

IBM team provided the design libraries and was responsible for most of the physical

design and the tapeout process. The high-level architectural exploration started

in 2000 at UT with two students and ramped up to nine students in the spring

of 2003. The entire design and implementation effort for the prototype chip was

led by one professional engineer at UT from the spring of 2003, when the detailed

chip specification started, until tapeout in the summer of 2006. The specification

was progressively refined using detailed performance simulators until early 2004,

when RTL design and entry began. The team ultimately peaked in summer of

2004 with the addition of three more students. The RTL design, implementation,

and verification was completed over a period of 18 months starting from 2004 until

the end of 2005. One-fourth of the effort at UT was spent in RTL design and

implementation, two-thirds were spent in verification, and the remainder in physical

design. The whole chip was implemented with 11 different modules.

The tiled organization of the TRIPS processor enabled a hierarchical verifica-

tion strategy. Each module design team was responsible for the complete verification

85

of the logic within the module. The verification methodology involved self-checking

randomized tests to cover as many events as possible. Since the tiles are relatively

small in relation to the entire processor, this methodology yielded fast simulation

times and helped uncover a majority of the bugs. The modules were then instan-

tiated in the higher level components, namely the processor and the L2 system,

and the components were verified for functional and performance correctness using

random test vectors. At this level, the verification focused on the correct execution

of complete programs and the protocol implementation in different tiles. Finally,

the top-level chip module that instantiates the processor, L2, and various on-chip

controllers was verified for functional correctness. At this level, where the simu-

lation is quite slow, the verification effort largely focused on diagnostic tests and

correct access of all on-chip state from the host PC. Of the total verification effort,

roughly a half was spent in the module-level verification, and the remainder was

spent equally between the component-level and the chip-level verification effort.

The TRIPS board and daugthercard were jointly designed and tested by

UT and University of Southern California/Information Sciences Institute (USC/ISI

East). This effort was completed over a period of 12 months. After delivery of the

first TRIPS chips, a team of four students and one staff member at UT verified the

correct functionality of the delivered parts over a period of three months.

Concurrently with the hardware design and implementation, a team of five

students, three staff members, and two faculty members began the development

of the TRIPS software toolchain. At the time of writing this dissertation, the

toolchain is able to compile all SPEC workloads correctly, and is being ramped up

for generating high quality code.

86

4.3.2 My Contributions

The high-level architecture, microarchitecture, and the execution model for the

TRIPS architecture were jointly developed by the author and Karthikeyan Sankar-

alingam. I specified the TRIPS ISA in collaboration with Robert McDonald, Karthikeyan Sankar-

alingam, Doug Burger, and Steve Keckler. I developed the ILP techniques in the

microarchitecture, including register renaming and the block control protocols that

provide various services for performing execution. Karthikeyan Sankaralingam and

I jointly led the implementation of tsim-proc, which is the high-level, detailed per-

formance model for the TRIPS prototype processor.

I designed, implemented, and verified the GT along with Nitya Ranganathan,

who implemented the next-block predictor. I also collaborated with her in verifying

the correct functionality of the predictor. I led the performance verification of the

prototype processor, and along with Nitya Ranganathan, correlated the performance

of the RTL implementation with tsim-proc to within 4%. During the functional ver-

ification of the top-level chip module, I developed several targeted tests for verifying

the correct functionality of the processor. During the hardware bringup efforts, I

was instrumental in tracking system software bugs, whose resolution enabled the

correct and complete execution of simple workloads.

I also developed the benchmark simulation infrastructure for evaluating the

performance of the TRIPS prototype processor. I hand-optimized several bench-

marks in the TRIPS intermediate assembly language to identify opportunities for

compiler optimizations and form an evaluation suite of fully optimized benchmarks.

Finally, I developed detailed performance analysis tools, including tsim-critical,

which identifies the performance bottlenecks in the prototype ISA and the microar-

chitecture.

87

Discussion: In this section, we described the overall implementation of the TRIPS

prototype chip. In the remainder of this chapter, we describe two aspects of the

implementation in depth—block control and performance verification. Since the

prototype processor microarchitecture is our vehicle for performance evaluation,

an understanding of the block control mechanisms is crucial to understanding the

overall performance of the TRIPS architecture. Section 4.4 describes the implemen-

tation of the block control mechanisms in the TRIPS prototype processor. It first

describes the logic blocks in the GT, then describes the distributed protocols for var-

ious block operations, including fetch, flush, and commit. Section 4.5 describes the

performance verification of the prototype processor and the key microarchitecture

events whose latency and throughput affect the overall performance.

4.4 Block Control

The distributed execution of a single block involves all the tiles in the microarchi-

tecture. To execute a new block, the GT must first allocate a free frame. The ITs

then dispatch instructions to the ETs, where the instructions execute in a dataflow

fashion. Operand values trickle through the microarchitecture from tile to tile and

eventually the block outputs reach the RTs and the DTs. The GT must then de-

tect completion, commit the outputs, and deallocate the resources utilized by the

block. Such distributed execution requires solutions to two major challenges: a)

controlling the individual operations of the distributed tiles, and b) managing the

execution state of all in-flight blocks. In the TRIPS processor, the GT accomplishes

both of these functions.

The GT implements all block operations by maintaining control state on

behalf of the entire processor and using set of master-slave distributed control pro-

tocols, including fetch, flush, and commit, running over the control and data net-

works. For design simplicity and high performance, these protocols must satisfy

88

Retire Unit
Commit/Flush Ctrl

Fetch Unit
ITLB

I-cache dir.

Refill Unit
I-cache MSHRs

Exit
Predictor

Control
RegistersOPN

OCN

OPN GCN GSN

ESN

GSN

GDN/GRN

OCN: On-chip network

OPN: Operand network

GDN: Global dispatch network

GRN: Global refill network

GSN: Global status network

ESN: External status network

GCN: Global control network

Figure 4.7: High-level organization of the GT.

two key properties. First, any control state maintenance must attain a balance be-

tween centralization—for minimizing replication—and distribution—for maximizing

concurrency. Second, since transporting signals across different tiles involves high

latency, the protocols must be latency tolerant and must overlap with each other as

much possible.

4.4.1 GT Implementation

The GT implements all of its logic functions using four major sub-units: the fetch

unit, refill unit, retire unit, and the exit predictor. Figure 4.7 shows the high-level

organization of these sub-units. In the subsequent paragraphs, we describe each of

them in detail and compare them with their counterparts in conventional processors.

Fetch Unit

The fetch unit consists of a TLB (Translation-Lookaside Buffer) and a directory of

the blocks that are resident in the I-cache. In addition, it contains the program

counters (PC) for each thread and control registers that are used to configure the

execution of each block.

89

Tags for cached blocks GT
Header chunk IT0
Instruction chunk 0 IT1
Instruction chunk 1 IT2
Instruction chunk 2 IT3
Instruction chunk 3 IT4

Table 4.3: I-cache storage of a
block in the TRIPS processor.

Name Description Bit
width

V Valid block 1
L LRU information 1
PTAG Physical tag of the block’s 27

address
H Meta information for the block 40

Table 4.4: An entry in the I-cache directory.

I-cache Directory: Table 4.3 provides an overview of how the ITs stripe the

instructions of a single block. Each IT caches one chunk, which corresponds to the

instructions mapped to the same row of ETs or RTs. The I-cache directory contains

a listing of all blocks that are currently resident in the I-cache. Table 4.4 depicts

the components of each entry in the directory. The directory consists of 128 entries,

and is organized in a 2-way set-associative fashion. Each entry identifies a unique

cached block and also stores a portion of the meta information associated with the

block. The directory is virtually indexed, and entries are evicted and replaced in

a LRU fashion. This configuration supports a 2-way, set-associative caching of 128

TRIPS blocks. A larger size could not be supported due to area restrictions in the

ITs.

The I-cache directory is similar to the tag array in conventional caches. In

the TRIPS processor, the GT maintains a single array on behalf of all the ITs.

An alternate design could maintain the tag arrays within each IT. This technique

avoids centralized control for the I-cache operations. However, it requires special

hardware to keep the tag arrays consistent, as a single block is striped across all ITs,

and each IT operates independently of the others. A centralized directory provides

a consistent view of the cached blocks and avoids scenarios where portions of a

block are resident in one IT, but not in others. To evict a block from the cache,

the GT simply invalidates the corresponding entry in the I-cache directory without

notifying the ITs. The tag array in each IT can be eliminated, thus simplifying the

90

implementation in both the GT and ITs.

Instruction TLB: A set of sixteen registers provide the translations of virtual

addresses of blocks to physical addresses. Similar to the I-cache directory, imple-

menting the TLB registers inside the GT avoids redundant implementation in the

ITs. Each register defines the size and read/execute access attributes of a memory

page. The minimum size of a memory page is 64 KB and the maximum size is 1 TB.

Instruction memory pages may be marked as uncacheable in the L1. A block in

such a page will never be filled into the I-cache. A miss in the TLB or an access

protection violation will result in an exception being generated. The TRIPS system

software manages the TLB and must be designed around the expectation that TLB

misses are non-existent or infrequent. Due to the support for large physical pages,

we expect 16 TLB entries to be adequate for a majority of the applications on the

TRIPS prototype system.

Refill Unit

The refill unit maintains the status of pending I-cache fill operations. The TRIPS

processor supports outstanding fills for up to four blocks, but at most one per thread.

Table 4.5 shows the state that the GT tracks for each pending fill. The state includes

information such as the I-cache set and the way being filled, whether the fill has

completed or not, and the meta header information for the block being filled. This

pending state is similar to the I-cache MSHR (Miss Status Handling Register) state

in conventional processors. However, in the TRIPS processor it serves the purpose

of managing the distributed fill operations in the ITs.

Retire Unit

The retire unit consists of the retirement table which tracks the execution state of

all blocks in flight. It is also responsible for initiating the flush, commit, and deal-

91

Name Description Bit width

V Valid refill 1
S Set in the cache being filled 6
W Way in the set being filled 1
TID Thread corresponding to the fill 2
PTAG Physical tag of the block’s address 27
F Fill already flushed/cancelled 1
C Filled completed 1
Ca Block L1 cacheable or not 1
H Meta information for the filled block 40

Table 4.5: State tracked for each pending fill.

Name Description Bit width

V Valid block 1
O Oldest block in thread 1
Y Youngest block in thread 1

BADDR Virtual address of the block 40
PADDR Predicted address of the next block 40
RADDR Actual resolved address of the next block 40

RC Registers completed 1
SC Stores completed 1
BC Branch completed 1

RCOMM Registers committed 1
SCOMM Stores committed 1

E Exception in block 1

Table 4.6: State tracked for each block in the retirement table.

location of the blocks in flight. Table 4.6 shows the details of the state maintained

for each block. Most of this state is updated locally by the GT when it starts var-

ious block-level operations. The rest of the state is updated when the GT receives

notifications on the control networks from other tiles. Each cycle the GT monitors

the state for every block and initiates the flush, commit, or deallocation operations

as necessary. For example, it initiates a flush of a valid (V) block if the resolved

address (RADDR) for its next block does not match the predicted address (PADDR).

However, if a valid block is the oldest in a thread (O), all of its outputs have been

received (RC, SC, BC), and there are no control flow mispredictions or exceptions

(E), the GT initiates a commit for the block.

92

The retirement table is similar to the reorder buffer (ROB) in conventional

processors. However, this table does not track the status of individual instructions.

It has only one entry for each block, thus containing far fewer entries than a con-

ventional ROB.

Next-Block Predictor

The next-block predictor predicts the address of the next block to execute from

a single thread. It uses both local and global history information and employs a

tournament-style prediction similar to the Alpha 21264 predictor. The predictor

state amounts to a total of 84 Kbits and sustains competitive accuracies compared

to the Alpha 21264 predictor [126]. The predictor performs three major operations—

predict, update, and repair. Predict provides a prediction for the next block. Update

modifies the predictor tables with the information from a committing block. Repair

corrects any predictor state modified by incorrect speculation. The predict and

update operations each consume three processor cycles, while the repair consumes

two cycles. None of the operations are overlapped with any other.

Physical Implementation

The GT occupies roughly 2% of the area in each processor. It is implemented in

a 3.4mm × 0.9 mm rectangular tile. Table 4.7 provides a breakdown of the area

consumed by different units within the GT. The column labeled Cell Count shows

the number of placeable instances in each unit, which provides a relative estimate of

the complexity in each unit. The column labeled Array Bits indicates the number

of bits in the dense register and SRAM arrays in each unit. The final column shows

the fraction of the GT area occupied by each unit. As shown in the table, the next-

block predictor consumes nearly 50% of the area in the GT. The fetch and retire

sub-units consume 19% and 11% of the area respectively. The OPN router inside

93

Unit Cell Count Array bits % Area
(× 1000) (× 1000)

Fetch 10.0 8.6 19.1
Retire 12.1 0.0 11.3
Next-block predictor 9.7 84.1 48.2
OPN router 14.1 0.0 13.7
Other 7.2 0.0 7.7

Total 53.1 92.7 100.0

Table 4.7: Area breakdown for the GT.

the GT occupies 14% of the GT area. The refill unit and other miscellaneous logic

consume the rest of the area.

4.4.2 Block Operations

The GT uses the four logic blocks described in the previous section to implement

four block-level operations: a) I-cache fills, b) block fetch and dispatch, c) block

commit, and d) block flush. The subsequent paragraphs describe each of them in

detail.

I-cache Fills

The I-cache fill of a block happens in two steps – fill and update. In the fill step, the

instruction bits are fetched from the secondary cache and buffered in an auxiliary

structure in the IT called the fill buffer. In the update step, the instruction bits

are read from the fill buffer and written into the I-cache banks. The refill protocol

performs the fill operation. The fetch protocol described in the next section performs

the update operation.

Figure 4.8 depicts the different events during the execution of the refill pro-

tocol. It begins with the GT sending the physical address of the block on the GRN

interface (cycle 5). During the preceding cycles (0–2), the GT computes the address

of the block to refill. The GT performs a TLB translation, looks up the I-cache

94

Fetch

SLOT 0

Refill

Complete

Frame

allocation

…….

Stall

Refill Hit/Miss

detection

CACHE

MISS

TLB

lookup

I-cache

lookup

Predict

(Stage 2)

Address

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle X Cycle X+1

Fetch

SLOT 0

Refill

Complete

Frame

allocation

…….

Stall

Refill Hit/Miss

detection

CACHE

MISS

TLB

lookup

I-cache

lookup

Predict

(Stage 2)

Address

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle X Cycle X+1

Predict cyclePredict cycle Fetch cycleControl cycleControl cycle

Figure 4.8: Refill pipeline.

directory, and detects a miss in cycles 3 and 4. It begins the refill operation in cycle

5. Each IT subsequently receives the refill command and independently launches

several transactions with the secondary memory using the OCN to fetch its chunk

of the block. When an IT completes its fill operation, it sends a notification signal

upwards to its top neighbor using the GSN. The IT sends such a notification signal

only if it has already received a similar signal from its bottom neighbor. The top-

most IT notifies the GT. Thus the refill completion signal daisy-chains all the way

from the bottom-most IT to the GT, and the GT eventually receives one notification

that marks the completion of the entire refill operation.

The centralized I-cache tags and the refill protocol allow the GT to control

the operation of the ITs effectively. Occasionally, the GT may chose to discard a

block saved in the fill buffers without updating the I-cache. It does so by simply not

initiating an update step. An alternate design for the refill protocol might merge the

fill and update steps and eliminate the need for fill buffers. However, we observed

that branch mispredictions often produced addresses that did not correspond to any

legal block. The resulting spurious refills pollute the I-cache and evict other blocks

that are currently in the working set of the program. This problem is particularly

severe in the presence of small blocks, which fill the I-cache with NOPs and reduce

the program working set that is resident in the cache. Occasionally, branch mispre-

dictions also resulted in correct prefetching refills. However, we observed that the

95

pollution resulting from spurious refills outweigh the benefits of serendipitous refills.

This observation motivated the separation of the refill protocol into the distinct fill

and update steps.

Fixed-size header and instruction chunks help simplify the implementation

of the block refill protocol. They result in fixed offsets for the individual chunks

and a simple deterministic partitioning of a block’s instructions among the different

ITs. Variable-sized chunks would increase the complexity of the block refill protocol

considerably, as the address offset for the chunk cached by each IT is unknown

prior to the fill. They necessitate either a centralized fill operation, or redundant

fill operations at each IT that must later be synchronized. Fixed size chunks also

simplify the block fetch protocol as it results in fixed latency to fetch every block

and reduction in the I-cache tag state maintained at the GT.

Block Fetch

The GT initiates a fetch protocol to distribute the instructions from the IT banks to

the execution units. Figure 4.9 shows the different events during the fetch protocol.

Similar to the refill operation, the GT performs a TLB translation, looks up the

I-cache directory, and detects a cache hit in cycles 3 and 4. It allocates a free

frame for the block in cycle 4 and begins the fetch protocol in cycle 5 by issuing a

command on the GDN. The command includes the cache index to fetch from, the

address of the block, and the frame identifier allocated for the block. In addition,

the GT also instructs the ITs to perform the update step of a refill operation, if

the fetch resulted from a preceding refill. Since the instruction distribution for the

block from a single IT is pipelined over a total of eight cycles, the GT sends seven

more pipelined indices, in cycles 6–12, to initiate the block fetch.

Figure 4.10 shows the timing of block instruction distribution to all of the

ETs. The GDN has a 128-bit (four-instruction) wide channel that is routed from

96

Block B

Block A

Fetch

SLOT 3

Fetch

SLOT 2

Fetch

SLOT 1

Fetch

SLOT 0

Hit/Miss

detection

Frame

allocation

TLB

lookup

I-cache

lookup

Predict

(Stage 2)

Address

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Predict

(Stage 0)

Cycle 5

Predict

(Stage 1)

Cycle 6

Predict

(Stage 2)

Cycle 7

Stall

Cycle 8

Block B

Block A

Fetch

SLOT 3

Fetch

SLOT 2

Fetch

SLOT 1

Fetch

SLOT 0

Hit/Miss

detection

Frame

allocation

TLB

lookup

I-cache

lookup

Predict

(Stage 2)

Address

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Predict

(Stage 0)

Cycle 5

Predict

(Stage 1)

Cycle 6

Predict

(Stage 2)

Cycle 7

Stall

Cycle 8

Predict cyclePredict cycle Fetch cycle

Stall

Fetch

SLOT 4

Cycle 9

Fetch

SLOT 7

Fetch

SLOT 6

Fetch

SLOT 5

Address

Select

Cycle 10

TLB

lookup

I-cache

lookup

Cycle 11

Hit/Miss

detection

Frame

allocation

Cycle 12

Fetch

SLOT 0

Cycle

13

Fetch

SLOT 1

Cycle 14

Fetch

SLOT 2

Cycle 15

Fetch

SLOT 3

Cycle 16

Fetch

SLOT 4

Cycle 17

Stall

Fetch

SLOT 4

Cycle 9

Fetch

SLOT 7

Fetch

SLOT 6

Fetch

SLOT 5

Address

Select

Cycle 10

TLB

lookup

I-cache

lookup

Cycle 11

Hit/Miss

detection

Frame

allocation

Cycle 12

Fetch

SLOT 0

Cycle

13

Fetch

SLOT 1

Cycle 14

Fetch

SLOT 2

Cycle 15

Fetch

SLOT 3

Cycle 16

Fetch

SLOT 4

Cycle 17

Control cycleControl cycle

Figure 4.9: Fetch pipeline.

GT

Issues
fetch cycle x

Dispatch
cycle x+2

RT0 RT1 RT2 RT3IT0
Receives
inst. cycle
x+3

Receives
inst. cycle
x+4

Receives
inst. cycle
x+5

Receives
inst. cycle
x+6

Forwards
fetch
cycle x+1

DT0
Dispatch
cycle x+3

ET0 ET1 ET2 ET3IT1
Receives
inst. cycle
x+4

Receives
inst. cycle
x+5

Receives
inst. cycle
x+6

Receives
inst. cycle
x+7

Forwards
fetch
cycle x+2

DT1
Dispatch
cycle x+4

ET4 ET5 ET6 ET7IT2
Receives
inst. cycle
x+5

Receives
inst. cycle
x+6

Receives
inst. cycle
x+7

Receives
inst. cycle
x+8

Forwards
fetch
cycle x+3

DT2
Dispatch
cycle x+5

ET8 ET9 ET10 ET11IT3
Receives
inst. cycle
x+6

Receives
inst. cycle
x+7

Receives
inst. cycle
x+8

Receives
inst. cycle
x+9

Forwards
fetch
cycle x+4

DT3
Dispatch
cycle x+6

ET12 ET13 ET14 ET15IT4
Receives
inst. cycle
x+7

Receives
inst. cycle
x+8

Receives
inst. cycle
x+9

Receives
inst. cycle
x+10

Figure 4.10: Timing of block fetch and instruction distribution. The figure depicts
the delivery time of the first instruction at each ET/RT. Each tile continues to
receive a new instruction each cycle for the next seven cycles.

97

the ITs, through the DTs, and to the ETs. Each cycle of dispatch, the ITs send out

four instructions on the GDN, one for each ET in its row. Assuming that the block

dispatch command is issued by the GT in cycle X, the closest ET (upper-left corner)

receives its first instruction for that block in cycle X+4, and continues receiving one

instruction per cycle until it receives its last instruction for the block in cycle X+11.

The farthest ET (ET15) receives its first instruction for the block in cycle X+10,

and its last in X+17. The distribution of the read and write instructions to the

RTs in the top row proceeds in a similar fashion.

While the latency to complete a distributed fetch operation is relatively large

(18 cycles), multiple block fetches can be pipelined, so that at steady-state peak

operation, each ET receives one fetched instruction per cycle with no fetch bubbles

in between blocks. Figure 4.9 shows how the fetches for two blocks are pipelined.

The GT consumes eight cycles to initiate the fetch of the first block, starting from

cycle 5. In parallel, a prediction is made and the fetch of the next block is set up

during the cycles 5–12. The fetch of the second block starts at cycle 13 and lasts

until cycle 20. Running at peak, the machine can issue fetch commands every cycle

with no bubbles, beginning a new block fetch every eight cycles.

The distributed fetch protocol in the TRIPS processor provides significantly

higher fetch bandwidth compared to conventional processors. Each IT indepen-

dently fetches and distributes instructions for its row, which provides a peak fetch

rate of 16 instructions each cycle—4 rows × 4 instructions per row per cycle—

matching the peak execution rate of the processor. Managing the free list of frames

in the GT and propagating the allocated identifier along with every fetch reduces

the complexity of frame management in other tiles.

One downside of the implementation is the fact that it tightly couples the

predictor operations and the fetch protocol operations in one single pipeline. In

steady state, the three cycles for predict and three cycles for update can fully overlap

98

with the 8 cycles of fetch required for one block. Thus there are no bubbles in the

fetch pipeline, enabling a new block fetch every eight cycles. Occasionally, predictor

operations may cause bubbles in the fetch pipeline. For example, in Figure 4.9, a

3-cycle update operation starting in cycle 4 and a 2-cycle repair operation starting

in cycle 7 will delay the predict operation for the second block until cycle 9. The

fetch of block B will therefore not start until cycle 14, introducing a bubble in the

pipeline.

An alternate design could have completely decoupled the prediction pipeline

from the fetch pipeline using a Fetch Target Buffer [128]. That design offers two ad-

vantages. First, multiple refills can be initiated well ahead of a fetch, thus prefetching

several blocks into the I-cache. Second, stalls in the predict pipeline are less likely to

affect the fetch pipeline. It, however, incurs additional hardware complexity, which

did not appear to be worth the benefits during the implementation.

Block Flush

Because TRIPS executes blocks speculatively, a branch misprediction, a load/store

ordering violation, an exception, or an external interrupt causes pipeline flushes.

These flushes are implemented using a distributed protocol. The GT is first notified

when a mis-speculation occurs, either by detecting a branch misprediction itself or

via a GSN message which indicate exceptions and memory-ordering violations. The

GT then initiates a flush wave on the GCN that propagates to all of the ETs, DTs,

and RTs, taking one cycle per hop through the array. The flush wave includes a block

identifier mask indicating which block or blocks must be flushed. The processor must

support multi-block flushing because all speculative blocks after the one that caused

the mis-speculation must also be flushed.

The GT invalidates all the state corresponding to the flushed blocks in the

retirement table and stops pending fetches for flushed blocks. Other tiles also inval-

99

idate the state corresponding to the flushed blocks. The DTs mark pending cache

miss operations from the flushed blocks so that they can be discarded when they

complete eventually. All tiles must hold the flush command received from the GT

for two additional cycles to invalidate state for the flushed blocks cleanly. This con-

dition is required because the GCN has a shorter path to the DTs, RTs, and ETs

from the GT than the GDN, which allows a fetch wave for a flushed block to arrive

at a tile up to two cycles after the flush wave. The flush window in the DTs, RTs,

and the GTs therefore lasts three cycles (including the cycle it receives the flush)

to cancel any trailing fetch wave. The GT may issue a fetch command for a new

block three cycles after the flush. The intervening cycles are consumed by the fetch

pipeline to access the I-cache directory and TLBs before initiating the fetch.

Block Commit

Block commit is the most complex of the distributed control protocols in the TRIPS

processor, since it involves the three phases illustrated in Figure 4.11: block comple-

tion, block commit, and commit acknowledgment. In phase one, a block is complete

when it has produced all of its outputs, the number of which is determined at

compile-time and consists of up to 32 register writes, up to 32 stores, and exactly

one branch. After the RTs and DTs receive all of the register writes or stores for a

given block, they inform the GT using the Global Status Network (GSN).

Each RT counts the number of writes it receives and detects when it has

received all of the expected writes. The expected number of writes at an RT is

known at compile time, as the writes are encoded explicitly in the write instructions.

When an RT detects that all writes have arrived, it informs its west neighbor. The

RT completion message is daisy-chained westward across the RTs, until it reaches

the GT indicating that all of the register writes for that block have been received.

A branch instruction sends its result to the GT using the OPN. The GT

100

Fetch

Finish-S

Finish-R

Commit

Commit-R

Commit-S

Fetch

Finish-R

Finish-S

Commit

Commit-S

Commit-R

Fetch

Block 0 Block 1

Block 8

Finish-R – Last register completes

Finish-S – Last store completes

Commit-R – Last register commits

Commit-S – Last store commits

Ack-R – Register commit acked

Ack-S – Store commit acked

Time

Ack-S

Ack-R

Ack-R

Ack-S

Figure 4.11: Timing of block commit protocol.

detects branch completion when it receives the branch notification.

Detecting store completion is more difficult since each DT cannot know a

priori how many stores will be sent to it. To enable the DTs to detect store comple-

tion, we implemented a DT-specific network called the Data Status Network (DSN).

Each block header contains a 32-bit store mask, which indicates the memory oper-

ations in the block that are stores. This store mask is sent to all DTs upon block

dispatch. When an executed store arrives at a DT, its 5-bit LSID and frame iden-

tifier are sent to the other DTs on the DSN. Each DT then marks that store as

received, even though it does not know the store’s address or data. Thus, a load

at a DT learns when all previous stores have been received across all of the DTs.

The nearest DT notifies the GT when all of the expected stores of a block have ar-

101

rived. When the GT receives the GSN signal from the closest RT and DT, and has

received one branch for the block from the OPN, the block is complete. Speculative

execution may still be occurring within the block, down paths that will eventually

be nullified by predicates, but such execution will not affect any block outputs.

During the second phase (block commit), the GT broadcasts a commit com-

mand on the GCN and updates the block predictor. The commit command informs

all RTs and DTs that they should commit their register writes and stores to ar-

chitectural state. To prevent this distributed commit from becoming a bottleneck,

we designed the logic to support pipelined commit commands. The GT can legally

send a commit command on the GCN for a block when a commit command has been

sent for all older in-flight blocks, even if the commit commands for the older blocks

are still in flight. The pipelined commits are safe because each tile is guaranteed to

receive and process them in order. The commit command on the GCN also flushes

any speculative in-flight state in the ETs and DTs for that block.

The third phase acknowledges the completion of commit. When an RT or DT

has finished committing its architectural state for a given block it signals commit

acknowledge on the GSN. A tile sends a commit acknowledge only after it commits

all architecture state it is responsible for and after it has received an acknowledge

signal from its neighbor on the GSN. When the GT has received commit completion

signals from both the RTs and DTs, it knows that the block is safe to deallocate,

because all of the block’s outputs have been written to architectural state. When the

oldest block has acknowledged commit, the GT initiates a block fetch and dispatch

sequence for that block slot.

Enforcing the condition that the same number of outputs must be produced

for every execution of the block simplifies the block completion protocol at the RTs

and the DTs. Each RT knows the exact number of tokens it must receive before

it can signal completion. Likewise, DTs use the store mask known at block fetch

102

time and the DSN to identify store completion. Without a statically deterministic

number of expected output tokens—as with early exits in hyperblocks or absence

of null writes—the completion protocol must detect when no more outputs can be

produced. This condition is complex to evaluate in the presence of predication, as

it requires the polling of all ETs to identify if the execution of an output-producing

instruction is nullified. Implicit predication exacerbates the problem as it requires

a mechanism to examine the dataflow antecedents of an instruction to determine if

it will ever execute and produce an output.

Protocol Latencies

A control signal generated at the GT incurs multiple cycles of latency to propagate

to all the tiles. Table 4.8 provides the minimum latencies for several block events.

For example, the minimum latency for executing the last instruction assigned to the

farthest ET (bottom right corner) is 20 cycles. If the result of this instruction is a

register output, that result takes a minimum of four cycles to reach an RT. Notifying

the completion of the register outputs to the GT consumes up to four additional

cycles. Combining all events for a single block, the overall lifetime of block from

start to deallocation could involve a significant delay for control signal propagation.

Hiding this delay is important for attaining high throughput.

In the TRIPS prototype implementation, all control protocols are pipelined.

Except for fetch, a new operation for other protocols can be started in every cycle.

The fetch for a second block can be initiated eight cycles after the first block. The

fetch of a new block following a flush can be started three cycles after the flush.

Such pipelining amortizes the latency of the control protocols across multiple tiles

and blocks. For example, while one tile is performing the flush of speculative blocks,

another could perform the commit of the non-speculative block, and a third tile could

simultaneously be dispatching the instructions of a new block. As we demonstrate

103

Dispatch of first instruction to nearest ET 4
Dispatch of last instruction to farthest ET 17
Execution of first instruction in nearest ET 7
Execution of last instruction in farthest ET 20
Commit in nearest RT/DT 20
Commit in farthest RT/DT 24
Deallocation 32

Table 4.8: Minimum latencies for a few block events. Latencies are measured in
processor cycles from the start of the fetch protocol in the GT.

in Chapter 6, such overlap is instrumental in reducing the overhead of distributed

block control and management.

4.4.3 Discussion

Control of the distributed hardware units and management of the common execution

state will be an important design component in future microarchitectures. The

TRIPS prototype processor implements fine-grained control using a set of simple

master-slave protocols running atop multiple control networks. The GT (master)

generates control signals and drives them, one hop per cycle, to the other tiles

(slaves) using the control networks. The protocols are latency tolerant; control

signal propagation through the microarchitecture for one operation can be fully

overlapped with another operation.

In our initial revision of the design, we implemented all of the control pro-

tocols using two shared networks. However, we observed that the contention for

the network among the different protocols wasted the execution bandwidth of the

processor. In fact, it was not possible to match the peak execution rate of the

processor. Consequently, in the final design we implemented each protocol with a

separate network at the cost of additional wiring between the tiles. Since the proto-

cols were well-defined and fairly simple, migrating to a new implementation did not

involve a significant redesign effort. The new networks—GRN and GCN—increased

104

the control signal bit widths between adjacent tiles by 49 bits from the original 216

bits in the GDN and the GSN, as shown in Figure 4.4. The tiled nature of the

microarchitecture and point-to-point interconnections enabled this design change,

even during an advanced stage of development without much complexity.

4.5 Performance Validation

The TRIPS prototype implementation included a significant pre-silicon verification

component, whose purpose was to identify and fix any bugs before tapeout. Imple-

mentation bugs may cause incorrect execution or poor performance. For example,

a bug in the branch computation logic might lead the execution on an incorrect

control path, resulting in incorrect execution. However, a bug in the branch pre-

dictor may result in unnecessary mis-speculations. It results in poor performance,

but does not cause incorrect execution. The first category of bugs is resolved by

functional validation, which verifies the correctness of computation. The second

category is resolved by performance validation, which verifies the correctness of per-

formance. This section describes the latter, as it relates to the understanding of the

performance of the TRIPS prototype processor.

4.5.1 Validation Phases

We validated the performance of the RTL implementation over two phases. Dur-

ing the first phase, we identified common microarchitectural events whose latency

or throughput is typically critical for performance. For example, the latency of an

instruction cache miss is generally on the critical path of execution and affects perfor-

mance. Any bug that manifests as increased latency for the I-cache miss will degrade

performance further. To identify such bugs, we measured the latency or throughput

for several events using specific targeted tests and compared them against the design

specification. During the second phase, we used several microbenchmarks and corre-

105

lated the overall performance of the RTL implementation with a detailed, high-level

performance model of the prototype processor. During both phases, we identified

several differences between the specification and the implementation, and addressed

as many critical ones as the project schedule would allow, or were worth the effort

to fix. We present our experience and observations in the following subsections.

Latency/Throughput Verification

We first manually verified the latency or throughput of common microarchitectural

events that are important for performance. Table 4.9 provides a subset of the more

than 100 events that we verified. We crafted several small tests in the TRIPS

assembly language to target each event and ran them using the Synopsys VCS

simulator for the processor RTL called proc-rtl. We generated event dumps from

the simulator and observed them using the Synopsys VirSim waveform viewer. By

studying the waveforms, we measured the latency for the microarchitectural event

under study. We also used various event counters built into the processor RTL to

examine the throughput of the microarchitectural event under study.

We then identified the core microarchitectural components that are likely

to have a major effect on performance and treated their performance validation

as an exercise in functional validation. These components were the dependence

predictor, the branch predictor, the instruction cache, and the data cache. The

individual tile logic designers verified these components in isolation from the rest

of the processor by applying randomly generated test vectors and comparing the

outputs on a cycle-by-cycle basis with the outputs of a high-level simulator model

for that component. Every discrepancy was treated as bug and resolved. The entire

process was repeated several times until no bugs were discovered. This exercise

uncovered a notable bug in the replacement logic for the instruction cache. The bug

caused an incorrect implementation of the LRU replacement policy, which did not

106

Event measured Observation

Latency

Network latency one cycle per hop
Start of a block fetch 3 cycles after an I-cache fill
Dispatch of first register operand 5 cycles after block fetch
Execution of first instruction 7 cycles after block fetch
Commit of a block 20 cycles after block fetch
Deallocation of a block 32 cycles after block fetch
Load-to-use latency 5 cycles for cache hits
Store completion notification 5 cycles after block fetch
Register completion notification 18 cycles after block fetch
Store commit latency 8 cycles
Register commit latency 8 cycles
Execution of dependent instructions back-to-back cycles (in same tile)
Execution of dependent instructions two cycles apart (in neighboring tiles)

Throughput

Peak block fetch rate one every eight cycles
Peak block commit rate one every eight cycles
Peak execution rate 16 instructions per cycle
Peak operand delivery rate (per tile) one operand per direction per cycle (4)
Peak load rate one per tile per cycle (4)
Peak store rate one per tile per cycle (4)
Peak register rate one read per tile per cycle (4)
Peak register rate one write per tile per cycle (4)

Table 4.9: Microarchitectural events whose latencies or throughput were verified.

violate correct functional execution, but caused unnecessary I-cache misses.

In addition to the random tests, we devised special tests to verify the in-

tended functionality of selected components such as the next-block predictor and

the dependence predictor under known conditions. For example, in the case of the

next-block predictor, we crafted tests with different correlation patterns to stress

specific internal components such as the global predictor or the local predictor. We

then ran these tests on proc-rtl and verified that the prediction accuracies were within

expected bounds. We conducted similar targeted experiments for the dependence

predictor. Neither of these exercises uncovered any additional performance bugs,

107

as the major bugs were discovered and resolved in the earlier functional verification

steps.

Execution Cycles Verification

In this phase, we correlated the overall performance of the RTL implementation

with a detailed performance model for the prototype processor. We developed two

custom tools, tsim-proc and tsim-critical, to help in the performance correlation.

The tsim-proc tool is a high-level, detailed performance simulator for the prototype

processor. The tsim-critical tool observes various microarchitectural events that

happen during the execution and computes the critical path, which is defined as

the longest path of execution through the program. It attributes every cycle spent

on the critical path to one of several types of dependences—data dependences in

the program or microarchitectural dependences such as functional unit contention,

operand routing network contention, and branch mispredictions. We describe both

of these tools in greater depth in Chapter 5.

We formed a benchmark suite consisting of small kernels, which were drawn

from the inner loops of various SPEC CPU2000 and signal processing workloads1.

We crafted the suite such that each benchmark is a complete program and would

execute within an acceptable time on proc-rtl. We ran these programs on proc-rtl

and measured the execution cycles using performance counters architected into the

processor design. We compared the cycles against the results obtained from tsim-

proc. To normalize the effects of the memory system, we outfitted both simulators

with identical, perfect secondary caches. In addition, we crafted the benchmarks

such that their instruction and data were both cache resident.

Table 4.10 presents the results of the comparison on various kernels. The

second column lists the execution cycles measured on proc-rtl. The next two columns

1Xia Chen and Robert McDonald formed this benchmark suite.

108

Benchmark Execution time % difference % difference
tsim-proc proc-rtl proc-rtl

(cycles) (before) (after)

dhry 118808 -33 -10
ammp 1 hand 118278 -17 -4
fft4 3591 -14 -5
dct8x8 48891 -11 -11
fft2 GMTI hand 101196 -11 -6
vadd hand 92812 -11 -4
matrix 1 23231 -10 -6
sieve hand 126162 -10 -1
transpose GMTI hand 71517 -10 -6
bzip2 3 107897 -9 -1
gzip 2 81340 -9 0
gzip 1 31347 -8 -7
gzip 2 hand 29753 -8 -3
sieve 94325 -8 -4
vadd hand tasl 87250 -8 -6
bzip2 1 121915 -7 1
equake 1 82872 -7 -2
fft2 GMTI 92031 -7 -6
fft4 GMTI 99547 -7 -5
parser 1 99405 -7 -13
transpose GMTI 72117 -7 -4
art 3 91544 -6 -5
bzip2 2 80967 -6 1
twolf 3 100140 -6 2
vadd 129085 -6 -6
ammp 1 48442 -5 -5
doppler GMTI 97194 -5 -8
fft4 GMTI hand 54433 -5 -4
art 2 81139 -4 2
doppler GMTI hand 86930 -4 0
twolf 3 hand 48556 -4 1
ammp 2 104848 -3 -4
matrix 1 hand 45229 -2 -9
parser 1 hand 39384 -2 0
bzip2 1 hand 70193 0 11
art 1 103762 4 5
bzip2 3 hand 71162 9 5

MEAN — -8 -4
(only under-estimates)

Table 4.10: Percentage difference in execution cycles between tsim-proc and proc-rtl.
Negative numbers indicate that proc-rtl reports worse performance than tsim-proc.

109

IT pipeline bubbles during instruction cache refills
ET pipeline bubbles during instruction decode
Longer latency for block deallocation in the GT
Longer register commit latency in the RT
Longer block flush penalty
Incorrect prioritization of branch predictor operations
Operands to local and remote targets not sent in the same cycle

Table 4.11: Performance issues found and fixed in the RTL.

present the percentage differences in the execution cycles observed with proc-rtl

and tsim-proc, before and after performance correlation. Positive numbers indicate

that proc-rtl reports better performance than tsim-proc, whereas negative numbers

indicate the opposite. As the results indicate, prior to any correlation, proc-rtl

generally exhibited a worse performance than tsim-proc. The difference amounts to

8% on average, and as much as 33% in one benchmark.

We selected every benchmark that exhibited a negative difference of more

than 5% as candidates for further examination. To identify the implementation

features that contributed to the differences, we modified tsim-critical to observe the

microarchitectural events in both tsim-proc and proc-rtl and compute the critical

execution paths for each. By examining the critical paths in a fine-grained detail,

we isolated many differences between tsim-proc and proc-rtl. Table 4.11 presents

the most significant differences, and those that were worth the design effort and

complexity to address in the implementation. After suitable design modifications,

we observed that the execution cycles from proc-rtl and tsim-proc match within

4% on average. The number of benchmarks that exhibited a negative difference of

more than 5% dropped from 25 to 12. In a few benchmarks such as bzip2 1 hand,

the differences actually increased. We attribute this behavior to the differences in

the store/load dependence prediction at the DT, which is sensitive to the precise

arrival order of the store and any conflicting load operations at the DT, especially

110

during a small window of execution cycles. We suspect that the differences in the

microarchitecture cause a different arrival order, forcing a shift in the dependence

prediction to conservative, which lowers performance, or a shift to aggressive, which

can performance.

4.5.2 Discussion

We developed the high-level performance model, tsim-proc, in conjunction with

RTL design specification, not only to evaluate the performance of the prototype

architecture, but also to drive RTL design decisions. As the design matured, suitable

changes were made in the RTL either to accommodate area and timing constraints,

or to reduce complexity. These conscious design changes and other inadvertent

changes that slipped into the design contributed to the performance differences

between tsim-proc and proc-rtl. We chose not to develop a performance model

that is 100% cycle-accurate with respect to proc-rtl. While not infeasible, such a

simulator would have been too slow for useful performance evaluation and taken a

considerable effort that pushed the project schedule beyond acceptable limits.

4.6 Summary

In this chapter, we described the implementation of the TRIPS prototype chip. We

described the heterogeneous processor tiles and the point-to-point networks that

connect them. Our design, implementation, and verification effort was consider-

ably simplified by this modular organization. We then described the control logic

implementation and the protocols that manage the distributed computation in the

processor. We showed how wires are treated as first-class constraints throughout

the implementation and how different protocols are designed to recognize and tol-

erate the latency of signal propagation through the microarchitecture. Finally, we

described the performance verification of the TRIPS prototype processor. We de-

111

scribed the verification of the latency and throughput of various microarchitectural

events in the processor and how we correlated the performance of the prototype im-

plementation with a high-level performance model. We observed that the individual

protocols to fetch a block, begin execution, and complete execution themselves incur

significant latency. But as our results in subsequent chapters show, this latency is

mostly off the execution critical path, since multiple blocks overlap their operations

with one another.

112

Chapter 5

Evaluation Methodology

The previous chapter described the ISA and the distributed microarchitecture of

the TRIPS prototype processor. We use the same processor as the platform for our

evaluation. Since the ISA and microarchitecture are quite different from conven-

tional architectures, the evaluation requires the development of an entire software

toolchain, including simulators and performance models, from the ground up, and

there is little that can be leveraged off prior work. In particular, a detailed evalua-

tion requires a suite of benchmarks, a compiler that produces aggressively optimized

code, a simulator that models the microarchitecture faithfully, and finally, a set of

analysis tools that offer insight into the performance bottlenecks in the architecture.

This chapter provides an overview of the various components required for

performance evaluation. Section 5.1 describes the various workloads that comprise

our evaluation suite. Section 5.2 and Section 5.3 describe the compilation infras-

tructure and where code quality was inadequate, the hand-optimizations that we

applied to improve the performance of a benchmark. Section 5.4 describes the per-

formance simulators that model the TRIPS architecture and our methodology for

measuring the performance of a benchmark. Finally, Section 5.5 describes a criti-

cal path-based methodology to identify the performance bottlenecks of the TRIPS

113

Microbenchmarks

dct8x8 2-D discrete cosine transform data parallel
matrix 10x10 integer matrix multiplication data parallel
sha NIST secure hash algorithm low ILP
vadd 1024-element floating-point vector addition data parallel

LL Kernels

conv Time domain implementation of a FIR filter data parallel
ct Matrix transposition data parallel
genalg Genetic algorithm solving an optimization problem control bound

EEMBC

a2time01 Angle to time conversion control bound
basefp01 Basic integer and floating point math compute bound
rspeed01 Road speed calculation control bound
tblook01 Table lookup and bilinear interpolation control bound
bezier02 Bezier curve calculation compute bound
autocor00 Finite length fixed-point autocorrelation data parallel

Table 5.1: List of hand-optimized benchmarks used for evaluation.

architecture. It describes the critical path model and the algorithms that we devel-

oped to compute the critical path of execution efficiently and measure the effect of

various microarchitectural events on performance.

5.1 Benchmarks

The TRIPS architecture is well suited for exploiting different kinds of parallelism—

ILP, DLP, and TLP. In this dissertation, we focus exclusively on ILP and the perfor-

mance of single-threaded workloads1. Accordingly, we draw workloads from a variety

of sources—EEMBC, which is an industry-standard embedded processor workload

suite [1], signal processing kernels from MIT Lincoln Labs, SPEC CPU2000 integer

and floating point workloads [71], and a few custom microbenchmarks. Table 5.1 and

Table 5.2 provide a listing of these benchmarks, their sources, and a brief description

for each.

1For a detailed evaluation of the how the TRIPS architecture exploits DLP and TLP, we refer
the reader to Sankaralingam’s dissertation [132].

114

SPEC CPU Integer

164.gzip Compression
181.mcf Combinatorial optimization
186.crafty Game playing: chess
197.parser Word processing
255.vortex Object-oriented database
256.bzip2 Compression
300.twolf Place and route simulator

SPEC CPU Floating Point

168.wupwise Physics/Quantum chromodynamics
171.swim Shallow water modeling
172.mgrid Multi-grid solver: 3D potential field
173.applu Parabolic/Elliptic differential equations
177.mesa 3-D Graphics library
179.art Image recognition / neural networks
200.sixtrack High energy nuclear physics accelerator design
301.apsi Meteorology: pollutant distribution

Table 5.2: List of SPEC benchmarks used for evaluation.

5.2 Compilation

We compile each workload using the TRIPS toolchain, which accepts C and FOR-

TRAN programs and produces binaries that will execute on the TRIPS hardware.

First, the compiler performs traditional scalar optimizations such as partial redun-

dancy elimination, sparse conditional constant propagation, dead variable elimi-

nation, and array access strength reduction. It also performs various high-level

transformations such as loop invariant code motion, loop flattening, and loop un-

rolling. It then generates TRIPS instructions and forms blocks using loop peeling,

additional unrolling, if-conversion, and tail duplication, followed by various predica-

tion optimizations. Finally, it performs register allocation, peephole optimizations,

instruction placement, and assembles the final object code.

The TRIPS development compiler currently lacks a few optimizations such

as better fanout reduction and load/store dependence elimination that are essential

for producing high quality TRIPS programs. Prior to the complete implementa-

tion of these optimizations, the performance of compiled binaries on the TRIPS

115

microarchitecture will be inadequate. To evaluate an upper-bound on achievable

performance from the compiler, we hand-optimized the important kernels in several

benchmarks2. We generated high-level TRIPS assembly called TIL (TRIPS Inter-

mediate Language [148]) using the compiler and optimized the TIL files manually.

We then fed the resultant files back into the TRIPS toolchain to perform instruction

placement and produce the TRIPS object code. All benchmarks in Table 5.1 were

hand-optimized, and unless otherwise noted, we report performance only for the

hand-optimized versions.

5.3 Hand Optimization

The optimizations applied by hand include the following: a) better instruction merg-

ing, b) fanout reduction using predicate combining and φ-merging, c) better hyper-

block formation, and d) load/store dependence elimination through better register

allocation. In general, we observed that any optimization that increased the block

size with useful instructions improved the overall performance. This result is not sur-

prising, as large blocks amortize the overheads of distributed execution in the TRIPS

microarchitecture. In this section, we highlight a few specific hand-optimizations

that improved code quality significantly.

5.3.1 Instruction Merging

Figure 5.1 shows a kernel snippet extracted from genalg, which is one of the bench-

marks in our evaluation suite. The top portion of the figure depicts the C source

code. The second portion shows the equivalent TIL instructions for one iteration of

the loop body, not including the register read and write instructions and necessary

test instructions outside the loop iteration. The annotated comments for the TIL

2The benchmarks used in this dissertation were optimized by the author, Doug Burger, and
Robert McDonald.

116

b) Instruction sequence for the loop body

lw $t4, ($t3) L[0]

fstod $t5, $t4 ; fp single to double

fsub $t6, $t0, $t5 ; rx -= *p_fitness

addi $t7, $t1, 1 ; x++

addi $t8, $t3, 4 ; p_fitness++

fgt $t9, $t6, $t100

tlt_t<$t9> $t10, $t7, $t2 ; x < pop - 1

bro_t<$t10> genalg$4 ; loop back

bro_f<$t9> genalg$5 ; loop exit

bro_f<$t10> genalg$5 ; loop exit

c) Predicate guards for live-outs

mov_f<$t9> $rx, $t6

mov_f<$t10> $rx, $t6

mov_f<$t9> $x, $t7

mov_f<$t10> $x, $t7

mov_f<$t9> $pf, $t8

mov_f<$t10> $pf, $t8

d) After disjoint instruction merging

bro_f<$t9, $t10> genalg$5

mov_f<$t9, $t10> $rx, $t6

mov_f<$t9, $t10> $x, $t7

mov_f<$t9, $t10> $pf, $t8

e) After predicate combining

movi_f<$t9, $t10> $temp, 1

bro_f<$t9, $t10> genalg$5

mov_t<$temp> $rx, $t6

mov_t<$temp> $x, $t7

mov_t<$temp> $pf, $t8

a) Loop extracted from genalg

for (x = c; rx > 0.0 && x < pop-1; x++, p_fitness++)

 rx -= *p_fitness;

; rx > 0.0

Figure 5.1: Instruction merging in genalg.

instructions represent the corresponding C statements. The test instructions (fgt

and tlt) represent the predicate-AND chain required for implementing the short-

circuiting loop condition checks. The six move instructions in Figure 5.1c represent

the definitions of three live registers x, rx, and p fitness on the two loop exit

paths.

If the loop executes for several iterations, statically unrolling it to fill an 128-

instruction block with as many iterations as possible maximizes parallelism. This

potentially high degree of unrolling exposes many opportunities for optimization.

For example, the two exiting branch instructions, bro f<$t9> and bro f<$t10>,

shown in Figure 5.1b are predicated on disjoint predicates—$t9 and $t10. At most

one of the predicates will be false at runtime. If $t9 is false, the execution of

the tlt t instruction is inhibited, and no value will be produced for $t10. Oth-

erwise, the tlt t instruction will execute and produce a true or false value for

117

$t10 depending on the test condition. Since only one, if any, of the two predi-

cates will be false at runtime, the two branch instructions can be merged into a

single branch instruction—bro f<$t9, $t10>—as shown in Figure 5.1d. This op-

timization reduces one instruction from the block and creates room in the block

for other instructions. Likewise, each pair of move instructions for the live registers

shown in Figure 5.1c can also be reduced to one instruction—an elimination of three

mov instructions overall. This optimization is typically known as instruction merg-

ing [92, 147], and is one of the optimization phases currently under development in

the TRIPS compiler.

5.3.2 Predicate Combining

The three move instructions and the branch instruction shown in Figure 5.1d are

candidates for further optimizations. Note that both of the loop exit predicates—t9

and t10—must fan out to at least four consumers, the three move instructions and

one branch. Without loss of generality, let us assume that each instruction can en-

code at most two targets. With this assumption, a total of four fanout instructions

would be needed for the fanout of the two predicates. Instead the compiler can com-

bine the two predicates with a special movi instruction as shown in Figure 5.1e and

send the resulting predicate to the register defining instructions. This optimization

reduces the fanout requirements—no fanout instructions are required for t9 and t10,

and one fanout instruction is required for temp. We call this optimization predicate

combining.

Predicate combining adds an extra instruction, but reduces the overall fanout

in the block. It also increases the dependence computation height for a few instruc-

tions, because the predicates must be combined first before they can sent to the

consumers. But this optimization creates room in the block for the inclusion of ad-

ditional unrolled iterations. In our experience, we observed that even at the expense

118

a) if-then-else construct

if (c1) {

 x = a + 1;

} else if (c2) {

 x = a + 2;

} else {

 x = a + 3;

}

b1 = x + 1;

b2 = x + 2;

b3 = x + 3;

c) After merging

mov p1, c1

tnei_f<p1> p2, c2, 0

addi_t<p1> x, a, 1

addi_t<p2> x, a, 2

addi_f<p2> x, a, 3

mov phi, x

addi b1, phi, 1

addi b2, phi, 2

addi b3, phi, 3

b) TIL instructions

mov p1, c1

tnei_f<p1> p2, c2, 0

addi_t<p1> x, a, 1

addi_t<p2> x, a, 2

addi_f<p2> x, a, 3

addi b1, x, 1

addi b2, x, 2

addi b3, x, 3

Figure 5.2: Example of φ-merging.

of dependence height extensions, predicate combining to fill a block maximally al-

most always provided performance improvements. In fact, it is the largest source of

improvement in genalg, where the hand-optimized version performs better than the

best compiled version by over 2.8×.

5.3.3 φ-merging

φ-merging is an optimization similar to predicate combining. It merges mutually

exclusive definitions with a single φ-instruction to reduce the fanout. For example,

consider the code snippet shown in Figure 5.2. The first portion shows a cascaded

if-then-else construct defining the same variable x on three mutually exclusive paths.

The second portion depicts the equivalent TIL instructions. In the absence of any

optimizations, each of the three definitions of the variable x must target all of the

consuming addi instructions, which requires separate fanout trees, although only

one value will defined at runtime. Instead, as shown in Figure 5.2c, the mutually

exclusive definitions can be combined with one φ-instruction, represented by the mov

instruction. The φ-instruction can then target all the consumers with a fanout tree.

This optimization reduces the fanout communication for values defined on

mutually exclusive paths. As before, it elongates the dependence computation

height, but reduces the overall number of instructions in the block and enables the

119

unrolling more iterations of a loop in the same block. We found this optimization

to be generally helpful in the SPECint benchmark mcf.

5.3.4 Other Optimizations

The optimizations described in the previous sections are enabling techniques for

loop unrolling and generally provided better performance. We also applied other

optimizations for improving performance: a) better register allocation of constants

and global variables, b) re-organization of computation trees to speed up critical

paths, c) elimination of redundant load instructions, d) register allocation to re-

move store-load dependences, and e) better hyperblock formation using control flow

profiles. At the time of writing this dissertation, all of these optimization phases

are under various stages of development in the TRIPS toolchain.

5.3.5 Performance Improvements

Table 5.3 compares the performance of the hand-optimized benchmarks with their

corresponding compiled versions. We obtain these results using the TRIPS per-

formance simulator, tsim-proc, which is described in Section 5.4. As shown in the

table, hand optimizations produce improvements of up to 7× over compiled code

and 2.8× on average. Most of these improvements result from a reduction in the

block count, an attendant increase in the average block size, and a reduction in

the overall instructions executed. The reduction in block count stems from better

hyperblock formation enabled by fanout reduction optimizations. The reduction in

instruction count stems from fanout reduction and better register allocation. We

believe that a production quality compiler can automate the hand optimizations

and as it matures, obtain performance similar to aggressively hand-optimized code.

120

BENCH Inst. ratio Block ratio Block size Block size Speedup
(hand / tcc) (hand / tcc) hand (# insts) tcc (# insts) (hand / tcc)

dct8x8 0.73 0.61 86.0 72.1 1.39
matrix 0.45 0.45 71.0 72.4 2.00
vadd 1.13 0.77 74.2 50.8 1.25
conv 0.84 0.81 87.0 84.7 1.34
ct 0.38 0.23 88.3 53.8 2.48
genalg 0.21 0.14 43.9 28.9 5.61
a2time01 0.70 0.37 73.2 38.4 2.92
autocor00 0.68 0.75 55.6 61.3 1.35
basefp01 0.56 0.24 96.9 42.1 6.98
bezier02 0.82 0.27 66.6 22.1 2.72
rspeed01 0.47 0.24 51.6 25.9 4.28
tblook01 0.80 0.59 72.3 52.9 1.58

MEAN 0.65 0.46 72.2 50.5 2.83

Table 5.3: Comparison of hand-optimized benchmarks with their compiled versions.
The hand-optimized results are denoted by “hand” and the compiled versions are
denoted by “tcc”. Speedup is measured by comparing the execution cycles.

5.4 Simulators

The previous chapters and sections referred to a detailed performance model for

the TRIPS microarchitecture called tsim-proc. This section provides additional

details on the simulator and our overall methodology for simulation and performance

measurements.

5.4.1 TRIPS Simulation

The simulator tsim-proc is a cycle-level, execution-driven simulator for the TRIPS

prototype microarchitecture. It faithfully models all components of the prototype

processor depicted in Table 4.2 and Figure 4.3. It models the tiles, network links,

and the pipelines within each tile in great detail, simulates execution down mis-

speculated paths, and reports aggregate performance statistics such as execution

cycles, branch prediction accuracy, and cache miss rates. As reported in Chapter 4,

on a test suite of small microbenchmarks whose footprint mostly fit in the L1 cache,

tsim-proc is accurate to within 4% of the RTL-level processor simulator. We drive

121

Scenario Expected latency range
(min–max) in cycles

L1 hit 5–17
L2 hit 20–55
L2 miss 88–125

Table 5.4: Expected load-to-use latency for different scenarios in the TRIPS hard-
ware. Latency is measured in processor cycles and corresponds to accesses to the
memory address space hosted by TRIPS chip.

most of our evaluation in this dissertation using tsim-proc and various performance

analysis tools based on tsim-proc.

The simulator, however, uses a different memory model than the TRIPS

hardware. Table 5.4 provides the expected hardware latency from execution of a load

at an ET to the receipt of the load value at the consuming ET. For each scenario,

the table provides a range of expected latencies in the absence of contention on

the networks and tiles along the path from the ET executing the load to the ET

consuming the load. A range of latencies exist for each scenario as the relative

distances between the source ET and the DT that contains the address, the DT and

the L2 cache bank that contains the address, the L2 cache bank and the SDRAM

controller, and finally, the DT and the consuming ET can all vary. The simulator

models the latency of a L1 hit faithfully. However, it does not model the NUCA

L2 cache or the bus connection with main memory. Instead, it models a flat, 1 MB

L2 cache with a 12-cycle hit latency. This assumption corresponds to the average

expected access latency in the NUCA L2 cache and the average load-to-use latency

for a L2 hit shown in Table 5.4. Since most of our experiments measure only

the performance of the processor microarchitecture, the simulations assume perfect

caching in the L2, resulting in no L2 misses.

The simulator tsim-proc is quite slow—it simulates 1500 cycles per second

on average—and is not flexible enough for design space exploration. For this exer-

122

cise, we developed another simulator called tsim-flex, which models the prototype

processor at a much higher level of detail than tsim-proc and simulates an order of

magnitude faster. It models an identical L2 memory system as tsim-proc and a main

memory whose access latency is 150 cycles. Compared to the expected load-to-use

hardware latencies shown in Table 5.4, tsim-flex models identical L1 hit behavior,

the average case L2 hit behavior, and a higher penalty for a L2 miss. Under the

same set of assumptions used for validating tsim-proc, we validated tsim-flex to be

accurate within 12% of the RTL-level simulator.

5.4.2 Alpha Simulation

To compare the performance of the TRIPS architecture against a conventional pro-

cessor architecture, we use the Alpha EV6 (21264) processor. We use the Alpha

EV6 because it uses a microarchitecture that is tuned for aggressive ILP and fast

clock rates. In addition, it is supported by an industry-leading compiler that pro-

duces aggressively optimized code for an ISA that lends itself to efficient execution.

We compile various workloads on the Compaq workstation using the native Gem

compiler with the optimization flags “-O4 -arch ev6”. To normalize the effects of the

memory system and operating system, we measure the Alpha performance using a

detailed simulator called sim-alpha, which has been validated against real hardware

and found to be accurate within 2% on a set of microbenchmarks and 18% on a

set of SPEC CPU2000 workloads [43]. Table 5.5 shows the parameters used in the

simulations measuring Alpha performance.

5.4.3 Reducing Simulation Time

The detailed microarchitectural execution of an entire workload using a software

simulator is a time-consuming affair. It is often four to five orders of magnitude

slower than real hardware, even on the fastest desktop machines available today.

123

Issue of width of six instructions (4 integer and 2 FP)
20-entry integer issue queue and a 15-entry FP issue queue
80-entry ROB
Four integer units, two pipelined FP units

1-cycle integer ALU, 7-cycle integer multiply
4-cycle FP add/multiple/load
12-15 cycle native FP divide
18-33 cycle native FP sqrt

64KB, 2-way set associative I-cache, 64-byte cache blocks
64KB, 2-way set associative D-cache, 64-byte cache blocks
1-cycle I-cache access on correct set prediction
3-cycle D-cache access
32-entry load queue, 32-entry store queue, 8-entry MSHR

Tournament branch predictor
Two-level local predictor with 10-bit, 1024-entry L1 and 1024-entry, 3-bit L2 counters
4096-entry global predictor with 2-bit counters
4096-entry choice predictor with 2-bit counters

Perfect L2 cache, flat latency of 12 cycles

Table 5.5: Simulator parameters for Alpha 21264.

Simulating a distributed microarchitecture such as TRIPS, with its many interacting

components, compounds this slowdown further and is prohibitively expensive for

large workloads such as SPEC. To keep the simulation times tractable, we resort

to simulating only a small portion of an entire workload. The following paragraphs

describe the methodology that we used to select the portions to simulate for various

workloads.

Microbenchmarks, LL Kernels, and EEMBC

These workloads are crafted such that an inner kernel performing the desired com-

putation iterates multiple times over the same data. For each workload, we select an

input data set and an iteration count such that the kernel computation dominates

the overall execution.

124

SPEC CPU2000

We use the ref input data set for simulating these workloads. To reduce the simula-

tion time, we select one representative region in each workload using the SimPoint

methodology [144] and simulate that region. To compare identical program regions

across different compilations and architectures, we use the following methodology.

First, we select a single 100-million instruction, early SimPoint region com-

puted for the Alpha instruction set. On a few benchmarks—mcf, sixtrack, and

wupwise— where the early SimPoint regions are farther into the program, and

hence prohibitively expensive to simulate, we select one early region among mul-

tiple SimPoint regions. We use the same regions previously identified and published

by Sherwood et al. [144,145].

Next, we stretch the identified region to the boundaries of a function call or

a return. In the absence of inlining of the bounding functions, this step ensures that

any comparison between different architectures or between different compilations for

the same architecture is performed on identical program regions. Table 5.6 shows

these regions for the SPEC workloads compatible with our methodology. The table

shows the input data set used for simulation and the start and end of the simulated

region, which are specified in terms of the function call instances called or returned

from. For example, the table shows that for the benchmark mcf, the simulated

region starts at the 1631st invocation of the function refresh potential and ends

at the return from the 1702nd invocation of the same function. However, in swim

the simulated region starts at the call of the first of the invocation of calc2 and

ends at the return of the same invocation. By starting and stopping simulation at

the boundaries of a non-inlined function, we simulate identical program regions.

Discussion: The TRIPS performance simulators—tsim-proc and tsim-flex—

provide coarse-grained performance profiles such as execution cycles, cache misses,

125

Benchmark Input Arguments Start Function End Function

164.gzip input.graphic 60 fill window : 32 fill window : 44
181.mcf inp.in refresh potential : 1631 refresh potential : 1702
186.crafty crafty.in main : 1 OutputMove : 62
197.parser 2.1.dict -batch prepare to parse : 31 parse : 31
255.vortex bendian2.raw BMT QueryOn : 1040 BMT QueryOn : 1106
256.bzip2 input.program 58 generateMTFValues : 2 generateMTFValues : 2
300.twolf ref ucxx2 : 607430 ucxx2 : 631211

168.wupwise wupwise.in main : 1 dlaran : 1012001
171.swim swim.in calc2 : 1 calc2 : 1
172.mgrid mgrid.in resid : 14 resid : 14
173.applu applu.in blts : 3 blts : 3
177.mesa -frame 1000 -meshfile g1 write texture span g1 write texture span

mesa.in -ppmfile : 4769641 : 4832551
179.art mesa.ppm -scanfile match : 1 match : 2

c756hel.in -trainfile1
a10.img -trainfile2
hc.img -stride 2
-startx 110 -starty 200
-endx 160 -endy 200
-objects 10

200.sixtrack inp.in umlauf : 1012 umlauf : 1037
301.apsi apsi.in dftdx : 2 dtfdx : 27

Table 5.6: SimPoint regions for SPEC CPU2000 workloads. The number next to
“:” indicates the particular instance of the function call.

and prediction accuracies. While they are good indicators of performance, they

are not adequate for a more fine-grained evaluation of the bottlenecks in the ar-

chitecture. The active instruction window in the TRIPS processor could feature

thousands of microarchitectural events, some of which occur on concurrent paths,

while others are dependent on each other. Naturally, some events affect the over-

all execution time more than others. Understanding the interactions among these

events can help a designer overcome various bottlenecks and improve performance.

In the remainder of this chapter, we describe our methodology for analyzing the

bottlenecks in the TRIPS architecture.

126

5.5 Critical Path Analysis

Critical path analysis has been proven as an effective technique for understanding

the bottlenecks of an architecture [53]. This analysis abstracts the execution of a

program with a directed acyclic graph constructed using a simulator or a runtime

profiler. Nodes in the graph represent microarchitectural events that occur during

the lifetime of the program, while edges represent the dependence constraints among

the events. These constraints include both data dependences among the instructions

and machine constraints specific to the architecture. Different insights can be gained

by analyzing the dependence graph. For example, one can identify if long execution

times are a result of poor instruction-level parallelism (ILP) in a program. If the

critical path—defined as the longest path in the graph—consists of a large fraction

of data dependence edges in the program, then it is because of low available ILP.

A different composition of the critical path may indicate other constraints. An

architect can thus obtain the relative critical path contribution of each type of

dependence constraint and identify the potential bottlenecks among them.

The complexity of computing the critical path depends on the instruction

window size of the processor. The TRIPS prototype processor with its 16-wide

issue, 1024-entry instruction window, and distributed microarchitecture increases

the complexity considerably. The complexity also depends on the number of different

types of dependence constraints and the granularities at which they are tracked by

the graph. In the simplest form, only aggregate critical path contributions of a

constraint may need to be tracked, for example, the number of data cache miss

cycles that appear on the critical path. However, for a better bottleneck analysis

one may need to track these constraints at a finer-grained level, for example, which

data cache bank, which program block, or which load instruction contributed the

most cache miss cycles on the critical path. These different levels of granularity

have a multiplicative effect on the amount of in-flight state required for analysis and

127

increase the complexity accordingly.

In this section, we describe our extensions to the simulation-based critical

path framework—previously developed for conventional processors—to analyze the

performance of the TRIPS architecture [107]. We develop an algorithm to manage

the large in-flight state required for critical path analysis efficiently. The algorithm

trades off the simulator memory required for maintaining the dependence graph with

the cost of traversing the graph. We show how a careful tradeoff can reduce the

complexity of computing the critical path significantly. This section presents details

of the TRIPS critical path framework and describes the algorithms for computing

the critical path. It also presents experimental results that demonstrate how differ-

ent algorithms perform with respect to the computation time required for critical

path analysis. The next chapter presents results obtained using the framework and

identifies the performance bottlenecks in the TRIPS architecture.

5.5.1 Prior Critical Path Models

The notion of critical path models for processor architectures is not new. Prior

research has focused on one of the following: identifying criticality of specific classes

of instructions, critical path modeling, critical path prediction and optimizations to

improve performance. Early research on critical path analysis has generally focused

on understanding the performance of load instructions. Srinivasan et al. quantify

a measure of load criticality called latency tolerance [155]. In subsequent work,

Srinivasan et al. propose a heuristics-based hardware predictor of critical loads and

quantitatively compare criticality-based prefetching techniques with locality-based

techniques [154]. Other researchers have also proposed hardware estimators of crit-

ical loads and provided techniques to improve cache performance of critical loads

at the expense of non-critical ones [58, 124]. All of these approaches are specific to

load instructions and cannot be easily extended to other instructions or microarchi-

128

tectural resources.

Our work is closest to the dependence graph-based models of the critical

path developed by Fields et al. [53] and Tune et al. [171]. As explained before, these

models abstract the execution of a program with a dependence graph. By manipu-

lating the graph in different ways, they show how different measures of criticality—

slack [52], tautness [171] and interaction costs [54]—can be computed efficiently with

a simulator. They use these models to develop runtime critical path predictors. In

a later work, Fields et al. show how the model can be used to gain insights about

secondary critical paths [54]. Our research extends these models for the TRIPS

architecture.

Researchers also developed techniques to predict the criticality of all types

of instructions [28, 53, 138, 170]. These techniques provide critical path measures

to varying degrees of accuracy and have been applied to improve value prediction

performance, clustered architecture scheduling, and power consumption.

5.5.2 TRIPS Critical Path Model

The critical path model for the TRIPS architecture is derived from the dependence-

graph model previously developed for superscalar architectures [53]. The model

represents various microarchitectural events as nodes in a directed acyclic graph.

Edges between the nodes represent dependence constraints among the events. Fig-

ure 5.3 shows a typical dependence graph constructed for a slice of four blocks seen

during the program execution. In addition to representing the usual constraints such

as data dependences, branch mispredictions, and finite instruction window sizes, the

TRIPS critical path model also represents constraints imposed by block-atomic ex-

ecution and operand routing.

Each node in the graph maintains the following information.

• Type of the event: block fetch, operand communication, register read, etc.

129

BC

BD

BC

BD

BC

BD

I0: read t0, R0
I1: read t1, R1
I2: sw t0, (t1)
I3: movi t2, 0
I4: bro block1
I5: write R2, t2

I0: read t1, R1
I1: read t2, R2

I4: bro block2
I5: write R5, t5
I6: write R3, t3

I2: load t5, (t1)
I3: load t3, (t2)

I0: bro block3 I0: bro block4

dynamic: 2 cycles

block: Block0
type: OP
source: et0
dest: dt2
static: 3 cycles

BC

BD

IF2

IE

OP

BF

IF0 IF1IF0 IF1 IF3 IF4 IF3 IF4IF2

RR RR IE IE IE IE IE

LD

OP OP OP OP OP OP

RF

OP

SF

OP OP

BF

OP

IF2

IE

OP

BF

IF2

IE

OP

BF

RR

Active window

Block 0 Block 1 Block 2 Block 3

OP

at a node
Typical information maintained

Block Instructions

Figure 5.3: Critical path model for the TRIPS architecture. The example shows
the dependence graph for four blocks and a machine window size of two blocks. Bold
arrows depict inter-block dependences.

• Static delay: statically determinable cycles consumed by an event, e.g., latency

of a integer multiply.

• Dynamic delay: latencies introduced by dynamic events, e.g., execution stall

cycles due to contention for the issue slot.

• Information about the block and/or instruction associated with the event.

• Information about the tile or network link where the event occurs.

Edges in the graph do not maintain any special information. Instead they

represent various constraints of the execution model. The block-atomic execution

model relies on a few global tasks that are performed on behalf of an entire block.

These tasks introduce dependence constraints for operations not only within the

130

Name Events Dependences Dependence
Edge

BF Fetch of a block In-order block fetches BFi−1 → BFi

Recovery from control misprediction OP → BF

Finite window BDi−w → BFi

IF Instruction Fetch Must follow block fetch BF → IF

RR Read of a register Must follow read instruction fetch IF → RR

IE Instruction execute Must follow instruction fetch IF → IE

Can execute only after operands OP → IE

have been received

OP Operand Can communicate result only after IE → OP

communication execution has completed
Can communicate register values RR → OP

after register read

BC Block execution Block completes after all outputs OP → BC

completion have been produced

BD Block commit Block commits after it completes BC → BD

Blocks must begin their commit BDi−1 → BDi

operations in-order

RF Register forward Register forwarded after OP → RF

value is produced
Register forwarded after IF → RF

read instruction is fetched

LD Load reply Load reply happens after OP → LD

address is fetched LD → OP

SF Store forward Forward happens after OP → SF

value is received SF → OP

Table 5.7: Dependences for the TRIPS critical path model.

block and but also in other blocks. We summarize these constraints in the following

paragraphs and in Table 5.7.

Intra-Block Fetch Dependences: The control logic at the GT determines the

address of the next block to fetch. This event is represented by the graph node BF

and denotes the availability of the block’s instructions in the cache and the start of

the fetch process. The GT takes at least eight cycles to initiate the fetch for the

entire block. These eight cycles are recorded as the static latency of the BF event.

Any additional latency, for example, due to cache misses, is recorded as the dynamic

latency of the event.

131

The delivery of instructions from the I-cache banks to the respective ETs

is represented by the IF nodes. The distributed nature of the fetch is represented

by the independent IF nodes that are all only dependent on the global block fetch

event (BF → IF). Each IF event has a statically determinable latency based on

the location of the tile to which the instruction is dispatched.

Intra-Block Execution Dependences: An instruction executes when all of its

operands are ready. Some of these operands may be block inputs that are read

from the register banks and delivered on the operand network to the execution

tiles. The register read event (RR) represents the read of a block input value

from the register bank. It is dependent on the fetch of the corresponding read

instruction (IF → RR). The operand transfer event (OP) represents routing of

the value to the tile containing the consumer instruction. The latency for operand

routing includes both statically determinable cycles computed from the number of

routing hops and additional cycles resulting from contention for the intermediate

network links. The event IE represents the execution of an instruction. After

execution, the instruction may route the result to a dependent instruction in the

same block. Such data dependences manifest as edges from the execution events of

producers to the execution events of consumers via operand communication events

(IE → OP → IE).

Intra-Block Commit Dependences: A block completes its execution when all

of its outputs—registers, stores and branch target—have been computed. Edges

from instruction execution events to the block completion event (BC) via operand

communication events represent this dependence (IE → OP → BC). Once a block

is known to have completed, the outputs can be committed. This constraint is

denoted by the dependence BC → BD.

132

Inter-Block Dependences: The fetch of a block can proceed only after the fetch

for the previous block has started. This in-order block fetch dependence is repre-

sented by the (BFi−1 → BFi) edges. Similarly, blocks can complete their commit

operations only in order. This constraint is represented by BDi−1 → BDi edges.

Instructions across different blocks could have data dependences through registers.

The hardware has the capability to forward register values from producer instruc-

tions in a block to consumers in another block, without waiting for the previous

block to commit. This forwarding event is represented by the graph node RF ,

and associated intra-block fetch dependence IF → RF and inter-block dependence

OP → RF .

The hardware supports the execution of up to eight blocks in flight. The fetch

of a block can thus proceed only after the deallocation of the eighth block preceding

the current one. This dependence is represented by the BDi−w → BFi edges, where

w denotes the window size in blocks. Figure 5.3 depicts a window size of 2 blocks.

Finally, branch misprediction in a block constrains the fetch of the successor block.

Once the branch instruction is executed and the target communicated to the GT, the

fetch process can be initiated. The sequence of dependence edges IE → OP → BF

represents this constraint.

Store-Load Dependences: Load instructions compute the effective addresses at

an execution tile and sends them on the network to data tiles. Data tiles read

the value for loads from the cache and route them back to consumer instructions.

The cache access is represented by the event LD. Hit latencies appear as static

delays and miss latencies appear as dynamic delays. The associated dependences

for this sequence of events are represented by the edges IE → OP , OP → LD, and

LD → OP . Occasionally, a prior store in the same block or preceding block may

have the same address as the load. The load can obtain the correct value only after

the store has been received at the data tile. Once the store arrives, the load-store

133

queues at the data tile can forward the value from the store to the matching load.

This forwarding event is represented by the node SF .

Analyzing the Dependence Graph

The dependence graph of a program’s execution can offer key insights into the

various bottlenecks for performance. By analyzing the graph in various ways, we

can compute different performance metrics and determine the degree to which a

certain architectural constraint or hardware resource affects performance.

Critical Path: The longest path in the dependence graph—measured by summing

the weights of the nodes in the path—- from the BF event in the first block to the

BD event in the last block provides the critical path of execution through the

program. By examining the composition of the nodes along the path, one can

summarize the contributions of each type of event, each tile or network link in the

processor, each program block, or even each instruction in the program to the overall

execution of the program. For example, one can determine that a significant fraction

of the critical path cycles results from issue slot contention stalls at the tile ET0

while trying to execute the instruction at address 0xbadf00d0. Such information

can then be fed back to the compiler so that it can find a better placement for

the instruction, perhaps by moving it to a different execution tile to eliminate the

contention stall cycles. We note that there may be multiple paths from the first

event to the last event in the program’s dependence graph. If there are multiple

candidates for the critical path, we pick only one of the paths.

Cost: The cost of an event is the reduction in the program’s execution cycles if

that event was idealized. The idealization of the event can be modeled by either

eliminating its causal dependences or reducing its latency in the program dependence

graph, as appropriate. A subsequent re-computation of the critical path provides

134

the cost of the event. For example, the cost of branch misprediction events can be

computed by removing all edges corresponding to branch mispredictions from the

dependence graph and recomputing the critical path. The cost of load misses in the

primary cache can be evaluated by modifying the latency of load reply event to that

of the primary cache latency. The difference in the critical path lengths between the

unmodified and modified dependence graph is the cost of the event.

The cost of an event indicates the degree to which secondary critical paths

and concurrent events affect performance. For example, consider a certain event

that contributes 50% of the execution cycles to the critical path. While the event is

certainly a bottleneck for performance, completely idealizing it may not provide a

corresponding two-fold increase in performance. Other paths that were previously

secondary may become critical and reveal additional bottlenecks. The next section

describes our framework and the algorithms to compute the critical path composition

and costs.

5.5.3 Critical Path Framework

The critical path framework for the TRIPS prototype processor consists of two

major components: a) tsim-proc and b) a dependence graph constructor and critical

path analyzer. We simulate programs compiled for the TRIPS architecture using

tsim-proc. We use traces generated by the simulator to construct the dependence

graph of execution. The critical path analyzer then traverses the dependence graph

and outputs the critical path information at the desired level of granularity.

The critical path can be computed at different granularities.

• An event-level summary provides the number of cycles spent for each type of

event on the critical path.

• A block-level summary provides the number of cycles for each event type in

each program block executed on the critical path.

135

• A tile-level summary provides the contributions of each hardware tile and an

instruction-level summary provides the contributions of each program instruc-

tion executed on the critical path.

We modified tsim-proc to output a trace of the various microarchitectural events

that happened during the execution of a program. The trace contains details of

each event such as the cycle when it occurred and information about the block or

instruction(s) associated with it. We construct the dependence graph using the trace

and compute critical paths using the algorithms described in the following sections.

Critical path analysis requires an effective management of the large depen-

dence graph state. Three factors determine the complexity of the algorithm that

computes the critical path: a) the size of the graph saved for analysis, b) the num-

ber of graph nodes visited during the analysis, and c) the granularity at which the

critical path composition is computed. The first factor determines the memory re-

quirements, while the other two determine the computational requirements of the

algorithm. In this section, we review two traditional approaches that have opposing

requirements on memory and computation. We then present a new algorithm that

exploits certain properties of the dependence graph, lowers the requirements on both

computation and memory, and delivers the best performance.

Backward-Pass Algorithm

This algorithm starts at the BD node for the last block. At each step of the algo-

rithm, it visits another node by proceeding to the latest parent node that satisfied

the current node’s constraints. It terminates at the BF node for the first block.

The sequence of the nodes visited is the critical path of execution and by aggre-

gating various information at each of these nodes one can obtain the critical path

summaries at different levels of granularity. The advantage of the algorithm is that

it does not visit any node that is not on the critical path. However, it requires the

136

entire graph to be constructed and saved before the critical path can be computed.

This requirement is clearly intractable for large programs.

Forward-Pass Algorithm

Prior work on critical path analysis used a simple forward-pass algorithm and saved

only a portion of the graph at any given time [53, 171]. The key property of the

graph exploited by this algorithm is the fact that no dependence constraint can

span more blocks beyond that allowed by the maximum window size of the machine.

Consequently, this algorithm maintains only the sub-graph of events for a window

of w + 1 blocks at any given time, where w is the maximum window size. However,

each node must maintain summaries of the critical path in reaching that node.

The critical path summary at each node contains the number of cycles spent

for every type of microarchitectural event on the critical path leading to that node.

Consequently, the cost of copying the summary from one node to another is propor-

tional to the number of different types of events tracked by the tool. The granularity

of the critical path composition determines the cost of computing the summaries. If

a block-level granularity is desired, the summaries should include the number of crit-

ical path cycles for every event in every block. Consequently, the copying costs are

proportional to the product of both the number of different blocks executed in the

program and the number of different types of events. A tile-level or a instruction-

level breakdown has a similar multiplicative effect on the cost of computing the

critical path summaries.

The algorithm starts by constructing the graph for the first w + 1 blocks.

For every node in the first block, it visits all of its successors. During each visit, it

propagates all critical path information tracked thus far at a node to the successor.

The successor updates its information only if the parent satisfied its constraints the

latest. It then adds a new block (w + 2, in sequence) to the graph, removes the

137

sub-graph corresponding to the first, and repeats the process for the second block.

This algorithm reduces the memory requirements dramatically. However it

visits every node in the program’s overall graph. In addition, during each visit, a

node must copy the complete critical path breakdowns to its successor. Depending

on the required granularity of the breakdowns, these copying costs grow proportion-

ately and for large programs can be prohibitively expensive.

Mixed Algorithm

The backward-pass algorithm requires copies only along the critical path, but its

memory requirements are intractable. By contrast, the forward-pass algorithm keeps

only a small sub-graph in memory, but since it visits every node, its copy require-

ments can be intractable. A desirable algorithm is one that does not require the

entire graph and at the same time does not visit every node to compute the critical

path.

A key property of the dependence graph is that for the sub-graph corre-

sponding to an arbitrary window of contiguous blocks, the number of edges from

nodes within the window to those outside can always be bounded. This property

applies to the dependence graphs for both conventional superscalar and TRIPS ar-

chitectures. For the TRIPS architecture, these out-going edges can source only a

few “output” nodes: a) one BF node, enforcing in-order block fetch start events, b)

one BD node, enforcing in-order block commit events, c) one branch communication

node for any branch mispredictions, d) one or more register output communication

nodes, and e) one or more store communication nodes. The latter two set of nodes

can be bounded as they can only belong to the most recently seen eight blocks, each

of which can have only up to 32 register writes and 32 stores as permitted by the

ISA. We exploit this property in composing an algorithm that uses a combination

of both backward and forward passes. One can extend the algorithm fairly easily

138

for a conventional superscalar architecture.

The algorithm maintains the sub-graph of events for a sliding window of r+8

blocks, where r is a large number such that the graph can be feasibly accommodated

in memory. The algorithm starts by constructing the graph for the first r+8 blocks.

It then does a backward pass starting from each “output” node (in blocks r − 7 to

r) and collects the critical path information at these nodes. For each output node,

it then propagates the critical path information to all its successors similar to the

forward pass algorithm. It then removes the top r blocks and adds the next r blocks

to the graph. The whole process continues until the critical path information is

collected at the commit node for the last block.

Depending on the value for r, the algorithm reduces the number of graph

nodes visited and consequently, the number of times the critical path information

is copied from one node to another. A large value for r imposes a greater memory

requirement for maintaining the in-flight graph state compared to the forward-pass

algorithm. But it amortizes that cost by visiting only those nodes that are on the

critical path leading to an output node. In our experiments, we found that best

setting for r was one that consumed most of the available memory. Note that if r

is set to 1, the algorithm is similar to the forward-pass algorithm described above

and if set to ∞, it defaults to the backward-pass algorithm.

Computing Costs

The algorithms described in the previous sections compute the composition of the

critical path at the desired level of granularity. All of them can be easily extended

to compute the cost of a specific event.

Forward Pass: Recall that each step in the forward pass algorithm involves a

propagation phase, in which it aggregates the delays of two nodes. To compute the

cost of an event, the algorithm discards the delay of that event. In addition, if nec-

139

essary, it avoids propagating the accumulated delays along the edges corresponding

to the event. In our implementation, the algorithm disregards only the edges repre-

senting branch mispredictions and finite window stall events. For all other events, it

propagates the delays along their causal dependence edges, but sets their latencies

to zero.

Backward Pass: To compute the cost of an event, the backward pass algorithm

first creates a new copy of the entire dependence graph. It then removes from the

new graph the edges corresponding to the event, if necessary, and sets the delay for

the event’s node to zero. Finally, it performs a backward pass on the new graph to

measure its critical path length. The difference in the critical path lengths between

the unmodified and the modified dependence graphs provides the cost of the event.

Mixed: The mixed pass algorithm creates a new copy of the in-memory sub-graph

and modifies it suitably. It performs a backward pass starting at each output node

and computes the cost. It then propagates the costs from the output node of the

current sub-graph to the input nodes of the next sub-graph similar to the forward

pass algorithm.

5.5.4 Results

This section shows the results of the critical path analysis on a select set of bench-

marks. Our primary goal in this section is to illustrate the runtime complexity of

the different algorithms for critical path computation and not to demonstrate the

performance bottlenecks in the architecture. Consequently we limit ourselves to

a set of five benchmarks from Table 5.1—a2time01, bezier02, dct8x8, sha, matrix.

These benchmarks are iterative, repetitive, and have a small enough working set

that fit in the level one caches. Table 5.8 provides a listing of the benchmarks along

with the number of blocks and instructions encountered during dynamic execution

140

Name Block counts Instruction counts Execution Time (cycles)

a2time01 16880 112402 477212
bezier02 461694 3807281 2984977
dct8x8 40194 3614106 196342
matrix 25624 1355074 230833
sha 15576 1252784 582178

Table 5.8: Benchmark set used for evaluating critical path algorithms.

and the observed execution time of these programs during the evaluation.

5.5.5 Algorithm Performance

We first demonstrate the performance of the mixed forward-backward pass algo-

rithm. Figure 5.4 shows the speed of the critical path framework for different region

sizes—the parameter r that determines the number of blocks for which the tool

maintains the graph in memory. The x-axis varies the region size and the y-axis

shows the analysis time measured in seconds. For these results, the tool computes

the critical path at a block-level granularity. For each sample point in the graph,

we perform a number of experiments on a dedicated desktop machine and report

the average analysis time. The labels next to the points for the benchmark sha in

the bottom graph represent the peak memory consumed during the critical path

analysis.

Across all benchmarks, the analysis times improve dramatically as we in-

crease the region sizes from 8 blocks to 64 blocks, at which point the benefits of

further increases begin to taper off. At smaller region sizes, the cost of maintaining

the graph in memory is insignificant compared to the cost of copying the critical path

summaries across different nodes. Higher region sizes increase the memory require-

ments, but decrease the copying costs. We observe minor improvements for region

sizes up to 512 blocks (256 for the benchmark sha). Beyond this size, the memory

requirements of the algorithm exceed the capacity of the host machine (1 GB) and

141

102451225612864321682 4

Region size (r) (measured in number of blocks)

0

1000

2000

3000

A
na

ly
si

s
ti

m
e

(s
ec

on
ds

)

matrix
dct8x8

dct8x8 - 12442, matrix - 26016

102451225612864321682 4

Region size (r) (measured in number of blocks)

0

10000

20000

30000

A
na

ly
si

s
ti

m
e

(s
ec

on
ds

)

a2time01
sha

1147M

763M543M441M
380M

350M

Figure 5.4: Sensitivity of analysis time to region sizes.

the resultant disk swap activity causes a precipitous slowdown in the speed of anal-

ysis. For example, in sha the memory requirements gradually increase up to 763 MB

for a region size of 256. For higher region sizes, the memory requirements increase

to 1147 MB, which exceeds the capacity of the host machine and affects the analysis

time negatively.

Different benchmarks exhibit different speedups in analysis time. This is

because the cost of block-level breakdowns in the critical path summaries is propor-

tional to the number of different program blocks encountered during the execution.

Benchmarks matrix and dct8x8 contain fewer blocks than benchmarks a2time01 and

sha. Consequently they exhibit relatively modest improvements of (2×-3×) when

varying the region sizes from 8 to 512. On the other hand, the benchmark a2time01

exhibits nearly 30× improvement over the same range.

These results show that when computing rich critical path information, the

142

Granularity a2time01 bezier02 dct8x8 matrix sha

event-level 2.27 1.87 3.30 3.73 3.80
block-level 4.02 3.67 4.63 5.11 10.93
tile-level 2.75 2.51 4.22 4.71 7.33
instruction-level 2.90 2.01 8.65 9.56 8.77

tsim-proc 1359 1494 1258 1149 1420
speed (cycles/s)

Table 5.9: Relative slowdown of analysis at varying levels of granularity.

mixed algorithm can deliver orders of magnitude improvements in performance with

favorable region sizes. The best performing algorithm is one that just saturates the

memory capacity of the host machine.

5.5.6 Speed of the Critical Path Framework

The speed of the overall critical path framework depends on three components: a)

the speed of the cycle-level simulator, b) the granularity of the computed critical

summaries, and c) the speed of algorithm computing the critical path. Table 5.9

compares the overhead of computing the critical path composition at different gran-

ularities with the baseline cycle-level simulator—tsim-proc. For every benchmark, it

shows the simulation speed measured in simulated cycles per seconds for tsim-proc

and the relative slowdown of the critical path analysis at four levels of granularity.

For this study, we used the mixed forward-backward pass algorithm with a region

size of 256.

Computing event-level breakdowns causes the baseline cycle-level simulation

to slow down by a factor of 1.8×–3.8× across different benchmarks. Adding block-

level breakdowns to the analysis causes additional slowdowns of 1.4×–3.8×. The

differences in the benchmarks arise from the number of different blocks simulated

during the execution. Computing the tile-level breakdowns, however, causes a fairly

uniform slowdown of about 20%–30% compared to event-level breakdowns. This

result is because during the backward pass, the constant number of tiles cause a

143

Event BC BD BF IE IF LD OP RR RF

% cycles 1.6 4.6 7.0 24.6 8.1 2.6 38.0 6.4 7.2

Table 5.10: Critical path breakdown for matrix. Numbers indicate the percentage
cycles on the critical path.

uniform amount of state to be copied from one node to another. The last row shows

the cost of computing the contributions of each individual instruction in the most

critical program block. The analysis is faster compared to the the block-level analysis

for benchmarks a2time01 and bezier01. This result is because these benchmarks

have more program blocks than they have instructions in the most critical block,

whereas the opposite is true for benchmarks dct8x8 and matrix. The instruction-

level analysis tracks only instructions of a single block and hence, proceeds faster

than the block-level analysis.

As shown in Table 5.9, the speed of critical path analysis can be reduced

dramatically depending on the desired granularity of the computation. To keep the

analysis tractable, a designer ought to perform critical path analysis, starting with

an event-level view and progressively add finer granularities for select portions of

the program or hardware resources. For example, if a designer can identify the most

critical blocks, s/he can obtain additional information just for that set of blocks

with a different simulation.

5.5.7 Discussion

The critical path information for a program can be used in a number of ways de-

scribed below.

Bottleneck Analysis: An event-level breakdown can provide the bottlenecks for

performance. For example, consider the critical path breakdown for the execution

of the benchmark matrix shown in Table 5.10. It shows that nearly 38% of the

144

Block Name (Static, Dynamic) Total Delay

 (cycles)

matrix_mult$2 (74352, 56216) 130568

matrix_check$1 (26047, 31440) 57487

matrix_mult$1 (23969, 13785) 37754

main$4 (1812, 236) 2048

matrix_check (1802, 239) 2041

Instruction (Static, Dynamic) Total Delay

addi (3496, 4428) 7924

mul (3285, 1965) 5250

mul (2380, 1777) 4157

add (1985, 777) 2762

tlti_f (1552, 886) 2438

a) Block-level breakdown for the program matrix

b) Instruction-level breakdown for block matrix_mult$2 in matrix

Figure 5.5: Detailed critical path breakdown for matrix.

execution time is spent in operand communication. The static component of the

operand communication latency corresponds to the number of hops. The dynamic

component results from network link contention. Each of these components can

be reduced with improved placements for the critical instructions. By obtaining a

block-level or instruction-level breakdown for the critical path, one can identify the

program blocks and instructions contributing to the critical latencies and focus the

scheduling policies towards them. Figure 5.5 shows an example of these breakdowns

for the benchmark matrix. It shows that the most critical block in the program

is matrix mult$2, followed by matrix check$1, and the most critical instruction

within the block matrix mult$2 is the addi instruction. We present the results

obtained using the analysis for other benchmarks in Chapter 6.

Performance Validation: As described in Chapter 4, we used critical path

breakdowns to correlate the performance of tsim-proc with the RTL implementa-

tion. We applied the critical path analysis on the microarchitectural events observed

with both simulators and computed the critical path breakdowns. By computing

145

the breakdowns at different granularities, we pin-pointed the discrepancies to spe-

cific tiles, program blocks, or program instructions. This ability eased the effort in

performance correlation considerably.

Instruction Scheduling: The TRIPS toolchain has used critical path analysis to

improve instruction scheduling [38]. One of the instruction scheduling algorithms in

the compiler is simulated annealing, which attempts to arrive at an optimal schedule

by randomly perturbing the schedule during each step. It is predominantly used for

computing a performance upper-bound for evaluating the quality of the compiler-

generated schedules. Instead of using random perturbations during each annealing

step, a guided annealer focuses on the critical instructions. This optimization results

in faster converge times, offering a two-fold speedup in some cases [38].

Hand Optimization: Finally, we have used critical path analysis in directing

hand-optimizations towards critical program regions. In Appendix B, we describe

one case study of hand-optimization using the guidance from the critical path anal-

ysis.

5.6 Summary

In this chapter, we presented the overall methodology for evaluating various features

of the TRIPS architecture. We described the suite of benchmarks, the compilation

infrastructure, and the set of hand-optimizations applied to produce benchmark

code of high quality. We showed that the hand-optimizations out-perform the best-

compiled versions of various benchmarks by a factor of 2.8 on average. We described

the details of the performance simulators that model the TRIPS architecture in

detail. Finally, we described in depth the critical path framework used for identifying

various performance bottlenecks in the architecture. We described the algorithms

146

for determining the critical path and showed experimental results that demonstrate

that an efficient management of simulation state can provide an order of magnitude

improvement in the simulation time required for a detailed critical path analysis.

147

Chapter 6

Experimental Results

The previous chapter laid the experimental framework for evaluating the TRIPS

architecture. This chapter presents the results of our evaluation. The goals for the

evaluation are multi-fold: (a) measure the performance of the TRIPS architecture

and compare it to other architectures, (b) measure the potential for performance im-

provements, (c) identify architectural and microarchitectural bottlenecks that con-

strain performance, and (d) investigate techniques that mitigate the effect of various

bottlenecks and improve performance.

We organize this chapter as follows. Section 6.1 reports the performance

of the TRIPS prototype architecture and a comparison with the Alpha 21264 ar-

chitecture. Section 6.2 examines the parallelism that exists in various workloads

and shows how constraints such as L2 cache misses, limited issue width, and lim-

ited instruction window capacity affect performance. The remainder of the chapter

presents the results of a detailed critical path analysis. We identify performance

bottlenecks in instruction supply, data supply, distributed microarchitecture, and

the dataflow ISA. We also outline architectural and microarchitectural techniques

that can potentially alleviate the effect of a few bottlenecks.

148

Benchmark Performance speedup

conv 2.22
ct 2.27
dct8x8 2.68
matrix 3.63
sha 0.92
vadd 1.83
a2time01 4.50
autocor00 2.18
bezier02 4.63
rspeed01 4.92

MEAN 2.98

Table 6.1: Performance speedup of the TRIPS hardware over Alpha 21264. Results
were obtained using hardware performance counters for TRIPS and sim-alpha for
the Alpha 21264.

6.1 Performance of the TRIPS Architecture

This section reports the raw performance of the TRIPS architecture and compares

it with the Alpha 21264 architecture. We first run several workloads on the TRIPS

prototype hardware and measure their performance using hardware performance

counters. While these counters report aggregate performance of the hardware, they

do not monitor performance at a fine-grained instruction-level granularity. Therefore

we turn to various tools derived from tsim-proc to understand the performance of

the TRIPS architecture in greater detail—in terms of its instruction throughput and

the degree to which it exploits a large instruction window for parallelism.

6.1.1 TRIPS Hardware Results

Table 6.1 presents the speedup of the TRIPS hardware over the Alpha 21264 mi-

croarchitecture. We use hardware performance counters to measure the performance

of the TRIPS hardware and sim-alpha to measure the performance of the Alpha

21264 microarchitecture. For a fair comparison between a hardware platform and

149

a simulator for another microarchitecture, we normalize as many features as possi-

ble, and where impossible, use simulation parameters that favor the Alpha 21264.

Specifically, we normalize system call effects so that neither the TRIPS hardware

nor the Alpha 21264 counts the execution time spent in servicing system calls in a

program. In addition, we normalize the memory system by configuring sim-alpha to

use a perfect secondary cache. The TRIPS hardware, however, incurs the latencies

of misses in the secondary cache and accesses to main memory, as depicted in Ta-

ble 5.4. We leave the rest of the microarchitectural parameters in sim-alpha identical

to the Alpha 21264 hardware as presented in Table 5.5 in the previous chapter.

Table 6.1 illustrates that the TRIPS hardware obtains significant speedup

over the Alpha 21264 microarchitecture. The speedup is measured by computing

the ratios of the execution cycles observed on each platform. In these measurements,

we assume that both the platforms can be clocked at equivalent frequencies1. This

speedup ranges from 0.9× to 4.9×, and averages 3× on the set of hand-optimized

benchmarks in our evaluation suite. We omit three benchmarks—genalg, basefp, and

tblook—from the TRIPS hardware measurements, as their hand-optimizations con-

tain fdiv instructions, which are not supported by the TRIPS hardware. Generally,

the speedups obtained by TRIPS are due to its higher execution bandwidth and a

larger window of instructions from which the microarchitecture exploits parallelism.

TRIPS also possesses exactly twice the data cache bandwidth as the Alpha 21264.

The higher bandwidth yields nearly double the speedup in vadd, whose performance

is predominantly dictated by the available memory bandwidth. The benchmark sha

exhibits a slowdown in TRIPS, because it is dominated by a few long dependent

chains. The available parallelism is mined effectively by the Alpha, whereas the

TRIPS processor incurs overheads of distributed execution, which inhibits exploita-

tion of the low available parallelism in sha.

1Such an assumption is not unrealistic as a custom design of the TRIPS chip can support high
clock rates competitive with the Alpha at equivalent process technologies.

150

BENCH Alpha-21264 TRIPS Instruction ratio
IPC IPC (TRIPS / Alpha)

dct8x8 1.69 4.87 1.01
matrix 1.68 4.60 0.71
sha 2.28 2.10 1.00
vadd 3.03 6.51 1.11

conv 2.08 6.01 1.11
ct 2.31 5.17 0.59
genalg 1.05 1.55 1.13

a2time01 0.94 4.18 0.96
autocor00 1.96 3.81 0.87
basefp01 0.84 3.96 0.54
bezier02 1.06 4.18 0.94
rspeed01 1.03 3.31 0.79
tblook01 1.30 1.77 1.70

MEAN 1.63 4.00 0.95

Table 6.2: Comparison of instruction throughput with the Alpha 21264. Results
were obtained by simulation—tsim-proc for TRIPS and sim-alpha for the Alpha
21264.

6.1.2 Instruction Throughput

Table 6.2 compares the instruction throughputs observed on Alpha 21264 and TRIPS.

We obtained these results using simulation for both Alpha and TRIPS, as the TRIPS

hardware does not count the instructions executed in the program. The second col-

umn shows the IPC obtained by a Alpha 21264 core, as measured using sim-alpha.

The third column shows the IPC measured using tsim-proc. The last column shows

the ratio of the instructions executed by the two architectures. We count only the

actual instructions that are executed at run-time to compute the IPC. NOP in-

structions and instructions that receive non-matching predicates are not counted.

To compare the capabilities of the microarchitectures directly, we configure both

simulators to use identical secondary memory systems—perfect 1 MB L2 cache with

a flat latency of 12 cycles.

As shown in the table, the Alpha and the TRIPS architectures use different

number of instructions to complete the execution of a workload. In basefp, TRIPS

allocates a lot of constant data to registers, whereas Alpha loads the constants

151

Benchmark Alpha 21264 TRIPS Instruction ratio TRIPS
IPC IPC (TRIPS / Alpha) speedup

SPECint

164.gzip 1.42 1.60 1.79 0.63
181.mcf 0.54 0.69 0.84 1.53
186.crafty 1.17 1.27 2.08 0.52
197.parser 1.18 1.13 1.38 0.70
255.vortex 1.21 0.73 2.64 0.23
256.bzip2 1.40 1.34 2.38 0.40
300.twolf 1.00 1.24 1.79 0.69

SPECfp

168.wupwise 1.40 1.22 1.82 0.48
171.swim 2.29 6.79 1.59 1.85
172.mgrid 1.33 4.07 1.71 1.78
173.applu 0.89 2.99 6.64 0.50
177.mesa 1.10 1.81 1.96 0.84
179.art 0.95 2.35 3.05 0.81
200.sixtrack 1.37 1.35 2.32 0.42
301.apsi 1.26 3.40 2.65 1.02

MEAN 1.23 2.13 2.31 0.83

Table 6.3: Performance of SPEC workloads. Results were obtained by simulation—
tsim-proc for TRIPS and sim-alpha for the Alpha 21264.

from memory. This optimization yields nearly 50% reduction in the number of

instructions executed by the TRIPS processor. In tblook, the speculatively hoisted,

but eventually nullified instructions contribute to more than 70% increase in the

instructions executed. However, in many cases, TRIPS uses fewer instructions and

yet, sustains greater IPC than the Alpha 21264. The IPCs obtained by the TRIPS

processor range from 1.5 to 6.5 and average 4.0 on the hand-optimized suite of

benchmarks. Comparatively, the Alpha 21264 sustains IPCs in the range 0.83 to 3.0

on the same set of benchmarks. These results are illustrative of both the availability

of parallelism in the workloads and the ability of the TRIPS architecture to exploit

greater parallelism.

152

Performance of SPEC Workloads

Table 6.3 compares the performance of the SPEC workloads running the ref input

set on the TRIPS architecture and the Alpha 21264. We compiled the workloads

using the best available compilers for both architectures and obtained these results

using simulation. Once again, we configure the simulators for both architectures

to use a perfect L2 cache with a 12-cycle access latency. We reduce simulation

time by simulating only SimPoint regions as described in Chapter 5. The second

and third columns depict the IPCs on the two architectures. The fourth column

depicts the ratio of the number instructions to execute the same program region in

the two architectures. The last column depicts the speedup obtained by the TRIPS

architecture. These results indicate that except on four benchmarks—mcf, swim,

mgrid, and apsi—the TRIPS architecture exhibits significant performance slowdown

when compared to the Alpha 21264 architecture. On average its performance is 17%

worse than the Alpha 21264. In general, the instruction throughputs (IPCs) are

higher than Alpha, but TRIPS also executes far more instructions. For example,

in the benchmark applu, TRIPS executes nearly 6.6× more instructions than the

Alpha.

These results depict the TRIPS architecture unfavorably in comparison to

Alpha. Much of the slowdown in performance stems from the increased instruction

count in the TRIPS workloads. The additional instructions in TRIPS come from

four sources: a) fanout instructions due to the restricted target encoding the ISA,

b) sign extension instructions due to the lack of adequate instructions in the ISA for

signed arithmetic, c) hoisted instructions on falsely predicated paths, and d) unnec-

essary load and store instructions generated by the TRIPS compiler. While some

of the inefficiencies are artifacts of the ISA, others are artifacts of an unoptimized

compiler. For example, most of the additional instructions in the benchmark applu

arise from fanout instructions that can be optimized in the compiler and additional

153

State Description

Wasted

mis-speculated no correct block is mapped to this slot,
no program is being executed

nop NOP instruction mapped to this slot

mispredicated valid instruction mapped to this slot,
but execution cancelled by non-matching predicate,
or implicit predication

Useful

committed mapped block has completed execution,
block waiting to be committed

slotted block is mapped to this slot,
but no instruction mapped yet

retired instruction in slot completed execution,
waiting for block to commit

waiting valid instruction mapped to this slot,
instruction waiting for an operand

Table 6.4: Different states of occupancy for an instruction window slot.

load/store instructions that can be eliminated using better register allocation or

reuse of previously loaded values. We note that the TRIPS compiler is still under

active development and as described in Chapter 5, several optimizations have not

been implemented in the compiler completely. As the compiler matures, we expect

the TRIPS results to improve and exhibit better performance.

6.1.3 Instruction Window Utilization

The TRIPS processor has a much larger instruction window than conventional su-

perscalar processors to exploit parallelism. We now examine the degree to which

the processor exploits this resource in practice. We use tsim-proc to track execution

on a cycle-level basis and examine the occupancy of each slot in the instruction win-

dow every cycle. In any given cycle, a slot can be any of the following seven states:

waiting, retired, slotted, committed, mispredicated, nop, or mis-speculated. Table 6.4

describes each of these states in detail.

A large instruction window is only as useful as the processor’s ability to fill

154

it with useful instructions. Ideally, the TRIPS processor would fill its entire window

with only useful instructions. This scenario requires all speculation to be correct

and every block to both contain and execute all of its 128 instructions. In practice,

control/data mis-speculations and instruction cache misses cause periods of poor

occupancy in the instruction window. These factors contribute to the mis-speculated

state described in Table 6.4. Furthermore, a block may waste some instruction

window slots due to NOP instructions. The hardware allocates exactly 128 slots for

executing every block, even if it has fewer than 128 instructions. The unused slots

are padded with NOP instructions either statically by the compiler or dynamically

by the hardware. These instructions contribute to the nop state represented in

Table 6.4. Finally, instructions whose execution is inhibited because of predication

also waste their slots. Recall from Chapter 3 that an instruction’s execution may

be inhibited directly by the receipt of a non-matching predicate or implicitly by the

non-arrival of an operand. These conditions contribute to the mispredicated state.

All three effects described in this paragraph reduce the effective occupancy of the

instruction window and limit the scope of exploiting parallelism.

In addition to filling an instruction window with useful instructions, the

hardware must also ensure that the window is not occupied by any block for an

extended period of time. Extended occupancy by any single block eventually stalls

the hardware from fetching and executing new blocks. In conventional processors,

instruction window stalls are a common consequence of long latency to service data

cache misses. Such stalls are common to the TRIPS processor as well. In addition,

distributed execution results in additional cycles of occupancy. For example, even

if the block has no register or store outputs, the block commit protocol must incur

a minimum latency of eight cycles, which forces the block to occupy the window for

the duration of that period. This state of occupancy, represented by committed, is

unique to distributed execution. Similarly, the block fetch protocol must reserve a

155

Type Description Benchmark Block size Prediction
dynamic insts accuracy

LB GP large blocks, good control prediction basefp01 96.9 99.7
SB GP small blocks, good control prediction rspeed01 51.6 97.4
LB PP large blocks, poor control prediction dct8x8 86.0 88.6
SB PP small blocks, poor control prediction genalg 44.6 82.0

Table 6.5: Benchmark categories for evaluating window utilization.

slot for the block even before any instruction has been dispatched to the reservation

stations. This state of occupancy, represented by slotted is also unique to distributed

execution.

The remaining two states—waiting and retired—have analogies to conven-

tional superscalar execution. The retired state is equivalent to a younger instruction

completing execution and waiting for older instructions to commit. Similarly, the

waiting state corresponds to instructions waiting to be woken by producer instruc-

tions. However, in contrast to a conventional processor, the TRIPS processor ex-

tends the duration of both these states due to the latency of operand communication

and the distributed protocol for detecting the completion of block execution.

We illustrate the occupancy of the instruction window with four examples,

one for each of the four categories described in Table 6.5. The categories are or-

ganized based on the average number of instructions executed in each block and

the control flow prediction accuracy. The prefixes LB and SB denote large blocks

and small blocks respectively, whereas the suffixes GP and PP denote good and poor

control flow prediction. For example, the category labeled SB PP denote benchmarks

with both small blocks and poor control flow prediction. Figures 6.1– 6.4 depict the

occupancy for the four categories over the course of execution. The x-axis represents

different samples, each of which corresponds to a 1000-cycle or 10000-cycle execution

period, as appropriate. For each sample, the y-axis charts the average occupancy of

the instruction window during that period and shows a breakdown for the different

states of occupancy. We configure tsim-proc as described in the Section 5.4, outfit

156

Wasted

Useful

Figure 6.1: Window utilization for basefp01, LB GP.

it with a perfect L2 cache as described in the previous sections, and monitor the

window occupancy. We describe our observations in the following paragraphs.

LB GP: As expected, this category yields the best occupancy. The near-perfect

control predictor in basefp manages to fill the instruction window with eight blocks

for a majority of the cycles. The eight 128-instruction blocks almost fill the 1024-

entry instruction window. The occasional misprediction does result in periods of

occupancy by mis-speculated blocks, which contribute to the small white section

in the chart. The top two shades of gray correspond to NOP instructions and mis-

predicated instructions. From Table 6.5 we observe that blocks in basefp have 97

executed instructions on average. These instructions summed across all in-flight

blocks provide an effective window utilization of more than 75%, as illustrated by

the bottom four categories.

157

Wasted

Useful

Figure 6.2: Window utilization for rspeed01, SB GP.

SB GP: The good control prediction accuracy in rspeed provides a window that

is full with eight blocks most of the time. However, most blocks in rspeed are

small—on average each block executes only 51 instructions. The majority of the

instructions are NOPs and mispredicated instructions. These features reduce the

effective window utilization to only 40% on average an shown in Figure 6.2. The

fact that NOP instructions—depicted by the second section from the top—are more

than half of all instructions in the window illustrates that the benchmark can benefit

from the inclusion of more basic blocks within a single block.

LB PP: In benchmark dct8x8, nearly 30% of the window is wasted by control

mis-speculations, as illustrated by the white sections in Figure 6.3. This result is

expected because the benchmark has a relatively high misprediction rate of 12%.

The benchmark also contains several NOP instructions and suffers from fetch band-

width limitations, which reduce the effective window utilization further.

158

Wasted

Useful

Figure 6.3: Window utilization for dct8x8, LB PP.

Wasted

Useful

Figure 6.4: Window utilization for genalg, SB PP.

159

SB PP: This case yields the worst instruction window utilization. The benchmark

genalg has a misprediction rate of 18%, and executes only 44 instructions on average.

The low block size is a consequence of both predication and NOPs, as illustrated by

the relative heights of the top two sections in Figure 6.4. Poor control prediction

and I-cache misses, especially during the first trimester of execution, also contribute

significantly to the poor utilization of the instruction window.

Summary

Across all workloads, the waiting and retired states account for most of the slot occu-

pancy among the executed instructions. The next two states—slotted and committed,

which represent the occupancy resulting from the distributed fetch and commit pro-

tocols are not nearly as prominent, indicating that they do not affect performance

significantly. We re-visit these protocols in Section 6.3 and show quantitatively that

it is indeed the case.

6.1.4 Discussion

The results from this section show that the TRIPS processor manages to utilize

around 75% of the instruction window in the best case, and less than 30% in the

worst case. However, this net utilization is larger than the maximum supported

window size in conventional superscalar processors. Comparatively, among the con-

ventional superscalar processors, POWER4 supports a maximum size of around

200 in-flight instructions. As our results in this section and subsequent sections

illustrate, the TRIPS processor exploits this large window size and large execution

bandwidth to sustain greater parallelism and performance than current processors.

160

6.2 TRIPS ILP Extraction

The TRIPS prototype processor is designed for a maximum execution rate of 16

instructions per cycle, yet it sustains much less in practice. The reasons for the less-

than-ideal instruction throughput could be manifold, one of which is the availability

of parallelism in the workloads. The hardware can mine the parallelism only if it

exists in the application. Therefore, we must first evaluate the extent of available ILP

in various workloads and compare it to the achieved ILP in the TRIPS processor. In

this section, we present the results of that evaluation. We also measure the effect of a

few common microarchitectural constraints such as issue width, instruction window

capacities, and memory hierarchies on ILP exploited by the TRIPS processor.

6.2.1 Dataflow Limit

Prior research studies have explored the amount of ILP that exists in typical pro-

grams [13, 110, 129, 151, 166, 173]. There is no consensus on the exact ILP that is

available in workloads. However, there is sufficient evidence to show that more

ILP exists than can be harvested by a machine bounded by various constraints. In

this evaluation, we compute an approximate bound for the amount of the avail-

able parallelism in each workload. We assume an ideal machine that has perfect

caches, zero-cycle data communication latencies, infinite execution resources, and

identical functional unit latencies as the baseline TRIPS processor. Furthermore,

we assume that the machine obeys only the true data dependences that exist in

the program. However, we do not eliminate any program stack dependences, and

to keep our evaluation tractable we assume a finite, but large instruction window

of 128 contiguous program blocks (up to 16K instructions) and a machine issue

width of 64. We call the resulting instruction throughput the ideal ILP in the pro-

gram. The true dataflow limit ILP will be higher if false dependences that exists

among stack and data memory accesses can be removed, or if parallelism exists in

161

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

basefp01

rspeed01

tblook01

bezier02

autocor00

SPECINT

SPECFP

0

10

20

30

40

50

60

70
P

er
fo

rm
an

ce
 (

IP
C

)

trips
perfect-L2
perfect-All
ideal

Figure 6.5: Available and observed ILP under various machine constraints. Results
were obtained by simulation using tsim-flex.

far-flung program regions [13]. In the latter case, the available parallelism can be ex-

ploited by a machine with a very large instruction window—hundreds of thousands

or millions of instructions deep—and issue width, or a machine that exploits ILP

from non-contiguous program regions [15, 152]. Nevertheless, the ideal ILP metric

is illustrative of the extent of available parallelism in a program and useful for com-

paring against the baseline TRIPS processor which also issues widely from a large

contiguous program window.

Figure 6.5 presents the ILP that exists in different workloads and compares

it with the obtained ILP under various conditions. These results were obtained

using simulation with tsim-flex, which offers the ability to simulate perfect operating

conditions for various microarchitectural features. For every benchmark, we depict

four bars representing the obtained IPC at various conditions. The white bars,

which represent the ideal IPC, indicate that benchmarks exhibit a wide range of

parallelism, ranging from 4 to 64 instructions per cycle. Some benchmarks such as

162

dct8x8 and matrix are highly parallel attaining an ideal IPC of nearly 64, which

is equal to the issue width of the ideal machine. However, as shown by the dark

bars, the sustained IPC in the baseline TRIPS processor is significantly less. With

the exception of sha, which is fundamentally limited due to the presence a small

number of long dependence chains, the baseline processor harvests less than half the

available ILP in all benchmarks, and often much less, averaging only 16% across the

suite of benchmarks.

Implications: A considerable difference exists between available ILP and har-

vested ILP. The TRIPS processor possesses an instruction window that is 16×

smaller and an issue width that is 4× smaller than the ideal machine. These capac-

ity constraints affect the amount of parallelism extracted by the hardware. Incorrect

speculation and imperfect caches also inhibit parallelism. In the following sections,

we progressively add a few realistic constraints to the ideal machine and examine

how they affect performance.

6.2.2 Effect of L2 misses

We measure the effect of misses in the L2 cache by idealizing its behavior. We assume

that all L2 accesses hit in the cache and incur a hit latency of 12 cycles as described

in Section 5.4. The second bar for every benchmark in Figure 6.5 presents the

resulting performance. The results indicate that most hand-optimized benchmarks

exhibit only minor improvements in performance, as their working sets largely fit

in the cache. A notable exception is ct, which operates on streaming data and

exhibits poor temporal locality. We observed that many SPECint benchmarks did

not benefit significantly from a perfect L2 cache. The only exceptions are mcf, which

exhibited more than a two-fold increase in performance, parser, which exhibited a

20% increase in performance, and vortex, which exhibited nearly 40% increase in

performance. Many SPECfp benchmarks, however, exhibited marked increases in

163

performance due to perfect L2 caches. Averaged across the SPECfp suite, the

improvements are 37%.

Implications: Memory latency affects the performance of certain benchmarks

significantly. Across the suite of benchmarks, we observe a performance difference

of nearly 18% between realistic and perfect L2 cache assumptions. However, even

with perfect L2 assumptions, the obtained IPC is more than 80% lower than the

ideal IPC on average. This performance gap must arise from other constraints such

a imperfect control flow prediction, constraints on issue width, and finite instruction

window sizes.

6.2.3 Effect of Other Constraints

The third bar for every benchmark in Figure 6.5 depicts the obtained IPC when

all the processors constraints, except for the issue width and the window size are

made ideal. We assume perfect control flow prediction, zero-cycle communication

latencies between any two tiles in the processor, and perfect primary caches with

infinite bandwidth. Averaged across the suite, the benchmarks exhibit a three-fold

increase in performance. In the subsequent section, we explore these constraints in

greater detail and provide the relative importance of each.

The difference in performance between the last two bars in Figure 6.5 result

from the finite issue width and instruction window size constraints. Issue width

constraints impede a machine’s ability to exploit available ILP, and high issue widths

are necessary to fully exploit the available parallelism in many workloads. Similarly,

the size of the instruction window determines the number of instructions from which

a machine can discover and exploit parallelism. The results from Figure 6.5 indicate

that the restricted issue width and instruction window size together reduce IPC to

as low as 15% of the ideal in tblook and 48% on average. However, we note that

in the presence of other bottlenecks, these constraints may not be as significant

164

for performance. For example, a larger window size is only useful if the control

flow predictor is highly accurate. Similarly, a high issue width is only useful if the

instruction window does not stall.

6.2.4 Discussion

In this section, we evaluated the extent of available parallelism in various work-

loads. We observed that benchmarks exhibited copious parallelism, of which only

16% is exploited by the baseline TRIPS processor. We observed that a perfect

L2 cache improves the performance of the baseline TRIPS processor 18% on the

average. When other processor constraints such the control flow speculation and

operand communication are idealized, we observed that the performance improves

by nearly three-fold. Some of these constraints such as control flow mis-speculations

and instruction cache misses are common to all processors, whereas others such as

the communication latency of a distributed substrate are specific to the TRIPS

microarchitecture. A detailed evaluation of these constraints is the subject of the

discussion in the next section.

6.3 Where Do Execution Cycles Go?

A number of architectural and microarchitectural constraints inhibit the parallelism

achieved by the TRIPS processor. These constraints include branch mispredictions,

store/load dependence violations, and structural resource constraints. In Chapter 5,

we described how these constraints cause dependences and delays during the exe-

cution. This section quantitatively explores the degree to which they affect overall

performance. We use critical path analysis to measure the cycles spent by the pro-

cessor in resolving various dependence constraints. We then identify the constraints

that are intrinsic to the design and those that can be mitigated with suitable modifi-

cations to the architecture and microarchitecture. The following subsections present

165

Category Event

Instruction supply instruction cache miss, branch misprediction,
store/load dependence violation

Data supply register file access, data cache misses,
load deferrals due to conservative store/load ordering

ALU execution functional unit contention and latency

Operand communication network hops and network contention

Result commit register commit and store latency

Distributed control protocols instruction distribution, completion detection,
block commit

Table 6.6: Categorization of various microarchitecture events into different critical
path components.

our observations and conclusions.

We organize this section as follows. We first present an overall summary of

the major critical path components for various benchmarks. We then present a finer

breakdown for each major component on the critical path. Since the contribution to

the critical path is not always a true indicator of the effect of certain sub-component

on overall performance, we measure its cost using the methodology presented in

Chapter 5. We discuss the implications of various results and present some archi-

tectural and microarchitectural techniques to alleviate each sub-component’s effect.

We use tsim critical for all the experiments presented in this section. We configure

it with a perfect secondary cache to isolate the bottlenecks in the processor mi-

croarchitecture. We report the results for every hand-optimized benchmark and the

average results for the compiled SPECint and SPECfp benchmarks.

6.3.1 Critical Path Components

Recall from Chapter 5 that the microarchitectural execution of a program is a se-

quence of dependence resolutions and the longest dependence path through the

program is the critical path of execution. Using tsim-critical, we compute the crit-

ical path of execution in the baseline TRIPS processor and attribute every cycle

on the path to one of six components—instruction supply, data supply, ALU exe-

166

BENCH Instruction Data ALU Operand Commit Block
supply supply execution communication protocols

dct8x8 44.3 6.7 14.2 22.3 3.1 9.3
matrix 7.2 16.3 19.1 44.7 1.6 11.1
sha 8.8 7.3 57.8 24.2 0.4 1.5
vadd 10.5 4.0 27.9 31.4 5.7 20.4
conv 15.0 9.1 16.5 48.7 2.8 7.9
ct 24.8 13.9 12.5 31.1 5.5 12.2
genalg 25.0 5.9 42.1 21.6 0.3 5.1
a2time01 4.5 16.2 40.0 23.9 2.2 13.3
bezier02 7.5 7.6 52.1 21.0 1.2 10.7
basefp01 2.2 2.0 65.9 15.7 3.4 10.8
rspeed01 6.6 9.9 33.9 47.5 0.2 2.0
tblook01 5.6 29.9 27.0 32.8 0.2 4.4
autocor00 5.5 6.5 22.9 53.5 1.6 10.0
SPECint 20.8 26.9 18.2 29.1 0.4 4.7
SPECfp 16.3 33.6 20.5 18.1 2.4 9.2

MEAN 15.6 21.0 26.1 27.3 1.8 8.1

Table 6.7: Major components of critical path.

cution, operand communication, result commit, and distributed control protocols.

Table 6.6 describes these components and the specific architectural and microarchi-

tectural constraints that comprise these components.

Table 6.7 presents a summary of the cycles attributed to each component as

fractions of the overall execution cycles. We make the following observations from

the table. First, instruction and data supply together account for nearly a third of

the critical path cycles in the hand-optimized benchmarks and nearly half of the

cycles in the SPEC benchmarks on average. These cycles include the overhead of

misses in the primary caches, incorrect control and data speculation, and latencies

of traversing the respective microarchitecture pipelines. Second, ALU execution ac-

counts for about 30% of the critical path cycles. This component arises from the

latencies of executing not only necessary instructions, but also overhead instructions

such as fanout and contention for the shared ALU resources. Third, operand com-

munication contributes a significant fraction of the execution cycles, ranging from

15% in basefp to as much as 53% in autocor. These overheads include the latency

167

of both sending an operand over multiple hops and the contention encountered at

the network routers along the way. Finally, the distributed control protocols present

relatively low overheads for execution, ranging from 1–20% and less than 10% on

average.

Implications: Except for commit, which is shown in the sixth column of Ta-

ble 6.7 and represents the event of committing architecture state to register files

and data cache banks, every component causes non-trivial overheads for execution.

It is therefore imperative to craft suitable mechanisms to reduce the overheads of

each component. The overheads of instruction supply and data supply are common

to all architectures, not just the TRIPS architecture. Techniques such as instruc-

tion and data prefetching which have been shown to improve cache performance in

other architectures can be adapted for the TRIPS architecture. The overheads of

operand communication and distributed block protocols, however, are unavoidable

for distributed architectures. As our results show, the distributed block protocols,

despite incurring multi-cycle overheads for distributing instructions to the execution

units, committing the execution of a block, and flushing incorrect speculation, can

be largely overlapped with useful execution in other blocks. However, distributed

execution necessitates operand transport between various units and the latencies of

such a transport network can inhibit performance significantly. It is necessary to

not only minimize the instances of operand transport, but also minimize the latency,

whenever it is inevitable.

We now examine each critical path component in depth and discuss various

alternatives that can mitigate their effect on performance.

6.3.2 Instruction Supply

Table 6.8 presents the critical path breakdown for the various events that comprise

instruction supply in the TRIPS processor. These events include L1 instruction

168

BENCH Instruction Branch Load dependence Fetch Total
cache miss misprediction violation pipeline

dct8x8 3.8 0.2 0.1 40.2 44.3
matrix 1.3 0.2 0.0 5.8 7.3
sha 4.0 0.0 0.1 4.8 8.9
vadd 0.9 0.1 0.0 9.6 10.6
conv 8.0 0.1 0.2 6.7 15
ct 12.5 0.2 0.4 11.8 24.9
genalg 14.6 0.3 0.3 9.9 25.1
a2time01 0.8 0.0 0.2 3.4 4.4
bezier02 1.2 0.1 0.1 6 7.4
basefp01 0.6 0.0 0.0 1.5 2.1
rspeed01 2.0 0.1 0.0 4.4 6.5
tblook01 0.8 0.2 0.2 4.4 5.6
autocor00 0.9 0.1 0.0 4.4 5.4
SPECint 8.5 0.3 0.6 11.3 20.7
SPECfp 5.9 0.1 0.7 9.5 16.2

MEAN 5.6 0.1 0.4 9.5 15.6

Table 6.8: Components of instruction supply on the critical path as a percentage of
program execution time.

cache misses, branch mispredictions, store/load dependence violations, and the la-

tency to initiate a block fetch at the global control tile. Note that these events

merely constitute the constraints for initiating a useful fetch operation in the pro-

cessor. The actual event of distributing the instructions from the instruction cache

banks to the execution units is attributed to the block control protocols. Table 6.8

shows the contribution of each event as a percentage of the overall program execution

time.

These results show that in at least one benchmark—dct8x8—a large propor-

tion of the instruction supply cycles is consumed in initiating the block fetch at

the GT. A portion of these cycles arise from the fetch bandwidth limitation in the

TRIPS processor. Recall from Chapter 4 that a new block fetch can be initiated

only every eight cycles. This bandwidth corresponds to a fetch of one 32-bit instruc-

tion for each of the 16 execution units every cycle. Consequently, even if a successor

block is otherwise ready to be fetched and executed, its fetch must be stalled until

169

eight cycles have elapsed since the fetch of the previous block. Other fetch pipeline

cycles are due to dynamic stalls resulting from interlocks between the fetch and

the prediction pipeline in the GT. The stall cycles from both of these components

inhibit the fetch and execution of future blocks and reduce overall performance.

Primary instruction cache misses also contribute to the critical instruction

supply latencies significantly, especially in benchmarks such as conv, ct, and genalg,

and the SPEC workloads. Benchmarks ct and genalg are short and incur most of

the misses in the initial warmup phases. The effect of these misses will reduce if

the benchmarks run longer. Other benchmarks incur capacity misses in the cache.

Branch mispredictions do not appear prominently appear on the critical path. How-

ever, as described in Chapter 5, a correct branch prediction has the effect of breaking

dependence chains. A broken dependence alters the critical path significantly, often

reducing a previously long path to several smaller ones, resulting in marked im-

provements in performance. Consequently, the true effect of branch mispredictions

will be higher than the results depicted in this table. In Appendix C, we present

the raw branch misprediction and I-cache miss rates for the various benchmarks.

Load dependence violations are also not critical as the benchmarks rarely

mispredict memory dependences. In addition, the first misprediction of a store-

load dependence often forces subsequent instances of the same load instruction to

execute conservatively, mitigating further mispredictions. We revisit this issue in

Section 6.3.3 and show that the conservative execution delays loads unnecessarily

and affects performance significantly.

To measure the true effect of various constraints on performance, we per-

formed a cost analysis using the methodology described in Chapter 5. Figure 6.6

presents the results of the analysis. Every benchmark contains two bars represent-

ing the percentage speedup obtained if the microarchitecture were able to cache

all instructions perfectly, or speculate control dependences perfectly, but not both.

170

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

10

20

30
P

er
ce

nt
ag

e
S

pe
ed

up

perfect i-cache
perfect prediction

Figure 6.6: Speedup from a perfect front end.

The results are normalized to the execution in the baseline TRIPS processor. They

show that an optimized front-end can improve performance significantly in sev-

eral workloads. Perfect caching improves performance by 6%, whereas perfect pre-

diction improves performance by 9%, on average. The SPEC workloads exhibit

greater speedups with perfect caching as they have larger working sets than the

hand-optimized benchmarks. Improvements in branch prediction also show good

speedups, especially in the SPECint workloads, and in kernels with poor prediction

accuracy—genalg and tblook01.

Implications: SPECint workloads and a few hand-optimized kernels such as ct,

dct8x8, and genalg spend more than 25% of the critical path cycles in the instruction

supply. Some of the latencies arise from the fetch bandwidth limitations, whereas

others are caused by instruction cache misses and poor branch prediction. The front-

end is therefore a critical design element in the overall processor microarchitecture

and must be enhanced to improve performance.

171

Enhancing the Instruction Front-end

Improving I-cache performance: To produce fixed-size blocks, the compiler

pads each under-full block with NOP instructions. Unless compressed, NOPs re-

duce utilization at every level of the memory hierarchy resulting in wasteful fills and

refills. The variable-sized blocks of the TRIPS prototype architecture offer a rudi-

mentary technique for the compression of small blocks. Using this feature, blocks

stay compressed in the secondary cache, but are fully expanded at higher levels.

This technique, however, does not improve the primary cache performance. VLIW

architectures have faced similar issues and several NOP compression techniques have

been examined in prior research [36]. The proposed techniques present the tradeoff

of improved cache occupancy, which reduces the number of misses and improves

performance, or stretching the fetch pipeline, which degrades performance. Fur-

ther research is required to explore the suitability of such techniques in the TRIPS

architecture.

Alternately, the I-cache performance can be improved by using prefetching

techniques. The prediction and fetch pipeline can be fully decoupled using an or-

ganization similar to the fetch target buffer [128]. Such an organization will enable

the next-block predictor to run ahead of the fetch pipeline and set up a queue of

block addresses to fetch. A separate prefetch engine can use these addresses to fill

any missing instruction cache lines just in time for the fetch pipeline. However,

the efficacy of the prefetch engine will depend on the quality of the branch predic-

tion. The TRIPS prototype processor did not implement this mechanism due to the

complexity of managing the prefetch queue and additional support required in the

next-block predictor. Further research is necessary into the design of low-complexity

prefetch techniques.

172

Improving fetch bandwidth: The fixed eight-cycle latency between consecutive

blocks can be reduced by increasing the fetch bandwidth. This approach, however,

requires multi-ported structures in many tiles, which will either stretch cycle time

or force deeper pipelining, both of which may adversely affect overall performance.

Alternately, a technique called instruction re-vitalization can be used to reduce the

inter-block fetch stalls [133]. With instruction re-vitalization, each ET could fill its

needed instructions at once, by using its instruction buffers as a L0 cache instead

of waiting for the ITs to fill them over eight consecutive cycles. The GT can detect

if the same static block must be executed immediately again. If so, it can send a

single cycle command to all the tiles and instruct them to replenish the instructions

from the previous instance of the same block. Such a mechanism would effectively

enable the fetch of a new block in successive cycles, if the same set of static blocks

(up to eight) execute in a tight loop. Our recent experiments exploring the temporal

locality of dynamically executed blocks indicate significant reuse among the recently

executed blocks.

6.3.3 Data Supply

Data supply consists of two components—supply of data values from the register

file and supply of data values from the memory. Figure 6.7 shows the relative con-

tributions of each component to the program critical path. Register supply includes

the microarchitecture latencies to forward values dynamically from producer blocks

to consumer blocks, and reading the register file. However, it does not include any

operand routing latencies to and from the RTs. Memory supply includes the la-

tency of loads that miss in the primary cache and the latencies incurred by deferred

loads, which must wait for all prior stores to complete execution before the data tile

can satisfy their request. Figure 6.7 shows that both register supply and memory

supply contribute in equal measure to the critical path delay in the hand-optimized

173

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

10

20

30
P

er
ce

nt
ag

e
of

 c
yc

le
s

on
 c

rit
ic

al
 p

at
h

memory
register

Figure 6.7: Components of data supply on the critical path.

benchmarks. The SPEC workloads, however, are dominated by memory supply.

The register supply latency is dominated by the latency to forward values

from producer blocks to consumer blocks. A register value from a producer can be

consumed potentially by up to two consumers in each of the successor blocks. There-

fore a given register value may be forwarded to potentially up to 14 consumers—two

consumers in seven successor blocks. Each RT can satisfy only one consumer every

cycle. To forward a register, an RT must first select the register among several can-

didate registers and then select a consumer. The bandwidth constraint at the RT

and the latency of selecting a critical consumer contribute to much of the latency

for register supply.

Figure 6.8 presents the constituents of memory supply. Of the three hand-

optimized benchmarks where memory supply is critical for performance, ct is limited

by cache misses, whereas a2time and tblook are limited by the latencies for deferred

loads. SPECint workloads are mostly limited by cache misses, whereas SPECfp

workloads are limited by deferred loads. Each DT in the TRIPS processor includes

174

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

5

10

15

20

25
P

er
ce

nt
ag

e
of

 c
yc

le
s

on
 c

rit
ic

al
 p

at
h

other
d-cache misses
deferred loads

Figure 6.8: Components of data supply from memory on the critical path.

a simple 1-bit dependence predictor [105] that dynamically predicts the dependence

between a load instruction and a prior, unresolved store instruction [140]. It de-

fers a load instruction if the predictor indicates that its address will alias with an

earlier store instruction. If the prediction is correct, the execution proceeds and

exhibits improved performance; otherwise it degrades performance without affect-

ing functional execution. However, if the dependence predictor incorrectly predicts

that a load address does not conflict with a preceding store, the execution is func-

tionally incorrect and will result in a dependence violation. The mis-speculation

recovery caused by dependence violations and the latencies of deferred loads both

affect performance. However, in our experiments, the 1-bit dependence predictor

generally caused more deferrals than violations and degraded performance worse

than violations.

Implications: For large working sets, memory supply will dominate the latency of

all data supply. This fact is evident from the SPEC workloads, where memory sup-

ply constitutes more than 20% of the overall critical path in the SPEC workloads.

175

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
ag

e
of

 c
yc

le
s

on
 c

rit
ic

al
 p

at
h

ALU contention
FU latency

Figure 6.9: Components of ALU execution on the critical path.

As our results indicate, both data cache performance and dependence prediction

are important for improving overall performance. Prefetching, which was not im-

plemented in the TRIPS processor, will improve the data cache performance. A

better dependence predictor, such as a 2-bit hysteresis predictor, or the store sets

predictor [34] will likely reduce the number of deferred loads and improve depen-

dence prediction.

6.3.4 ALU Execution

In the absence of any data value speculation, the execution of a program will be

limited only by the longest data dependence chain and the ALU latencies for the

instructions on that chain. The ALU execution latency in the TRIPS processor

consists of two components—Functional Unit (FU) latency and contention. The FU

latency denotes the latency of an operation at a functional unit. For example, in the

TRIPS processor an integer add operation consumes exactly one cycle, where as an

integer divide operation consumes 24 cycles. Contention corresponds to the number

176

of cycles an instruction must stall before issue to ensure that the functional unit is

available for executing that instruction. Figure 6.9 presents the effect of these two

components on the critical path of execution.

Implications: Ideally FU latencies would constitute the bulk of the program

critical path cycles. The results from Figure 6.9 illustrate that 25% of the overall

execution cycles are spent in FU latencies. Any reduction must stem from reducing

the number of instructions on the critical path. A smaller portion of the execution

(7%) is spent in stalls due to ALU contention. Since the hardware does not dy-

namically re-assign instructions to ETs at runtime, an overload of instructions at

one ET while another is free reduces the net execution rate of the processor and

increases the program critical path. Figure 6.10 presents the percentage speedup in

performance that can result from completely eliminating runtime ALU contention.

These results, which show an average 6% improvement, demonstrate the utility of

optimizing for ALU contention.

Improving ALU Execution

The FU latencies on the critical path can be minimized by reducing the number of

instructions required to perform an operation or reducing the heights of computation

trees. The TRIPS compiler, in fact, includes these optimizations: unnecessary sign

extension elimination, efficient memory address generation using offsets, and forming

balanced computation trees for associative operations. Operand fanout also presents

opportunities for reducing the number of instructions on the critical path. These

opportunities are discussed further in Section 6.3.7.

The TRIPS compiler must balance the opposing needs of reducing the la-

tency of communication between instructions at different ETs and minimizing the

contention at each ET. It does so by modeling the contention for an ET among in-

structions of not only the same block, but also across multiple blocks. Occasionally,

177

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

5

10

15

P
er

ce
nt

ag
e

S
pe

ed
up

Figure 6.10: Performance effect of ALU contention.

it also prioritizes contention over latency [38]. Various experiments with the sched-

uler shows that the contention heuristics improve performance significantly over a

baseline scheduler that does not consider any contention [38, 108]. Despite using

these heuristics in the scheduler, runtime contention is inevitable. Any further im-

provements must come from increasing the execution bandwidth in each ET. The

performance speedups depicted in Figure 6.10 range from 1%–10%, indicating that

the scheduler is effective in reducing contention in most cases.

6.3.5 Operand Communication

Section 6.3.1 presented operand communication as a critical bottleneck for perfor-

mance. In this section, we examine the constituents of operand communication and

the latencies that affect performance. Recall that the operand network transports

different types of data in the TRIPS processor. It transports register values from

RTs to ETs, temporary results values between producer and consumer instructions

in different ETs, load addresses and data between ETs and DTs, and finally output

178

BENCH Temporary Register inputs Register outputs Load Branch Store

dct8x8 12.3 1.0 1.8 2.4 1.2 3.7
matrix 24.3 1.1 3.0 14.4 0.7 1.2
sha 19.2 0.2 4.0 0.7 0.1 0.0
vadd 19.5 1.0 0.8 7.9 0.5 1.7
conv 9.3 16.9 16.0 3.5 0.5 2.5
ct 16.9 1.8 2.1 2.7 1.1 6.5
genalg 12.3 2.0 3.7 1.6 1.8 0.0
a2time01 17.7 0.3 1.4 3.1 0.0 1.4
bezier02 14.7 1.3 3.3 0.8 0.6 0.3
basefp01 9.9 0.0 0.0 3.4 0.0 2.4
rspeed01 22.3 11.9 12.2 0.5 0.5 0.1
tblook01 20.3 0.9 2.5 7.0 1.9 0.3
autocor00 31.3 0.4 5.2 16.0 0.6 0.0
SPECint 13.0 0.8 4.2 9.3 1.4 0.5
SPECfp 7.4 1.5 2.4 4.1 0.3 2.3

MEAN 13.6 2.1 3.7 5.7 0.8 1.6

Table 6.9: Types of operand communication. Numbers represent the contributions
of each type of operand communication to the overall critical path of the program.

values—registers, stores, and branches—from ETs to their respective destinations.

Table 6.9 provides a breakdown of these types of communication that occur during

execution.

Not surprisingly, the principal components of operand communication are

temporary result values, load addresses and data, and register outputs. In general,

temporaries contribute less to the overall communication in the SPEC workloads.

This result is not surprising, since the compiled SPEC benchmarks typically have

fewer instructions in each block, resulting in less computation and communication

among instructions of the same block. Register outputs are critical because typi-

cally outputs from one block are inputs to another, thus forcing the register output

communication on the overall critical path of the program. Branch communication

is rarely critical, unless the corresponding branch resolves a misprediction. Com-

munication of stores is also not critical because stores rarely forward their data to

other loads within the window of execution [141]. However, if the window becomes

full, deallocation of the oldest block becomes critical, which places the store commu-

179

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
ag

e
of

 c
yc

le
s

on
 c

rit
ic

al
 p

at
h

contention
hops

Figure 6.11: Components of operand communication latencies on the critical path.

nication and the subsequent completion and commit protocols for the oldest block

on the critical path.

There are two components to the communication latency on the operand

network. The first component is the number of hops between the producer and a

consumer. Since each hop takes at least one cycle, the proximity of a producer to

its consumer directly affects the latency of communication. The second component

is the contention in the network. When multiple communication packets simultane-

ously attempt to use the same network link, the router controlling that link must

arbitrate and select one packet, which increases the latency for other packets. Con-

tention also stems from the port constraints at the input and output interfaces of

the producer and consumer tiles on the operand network. For example, if an ET

cannot accept more than one operand from the network each cycle, the router must

arbitrate among multiple incoming packets for delivery to the ET. Figure 6.11 pro-

vides the contribution of both the hop counts and contention to the overall critical

path.

180

Implications: Communication latencies are a downside for distributed architec-

tures and unless mitigated, can affect performance significantly. From Figure 6.11,

we observe that in the absence of contention the communication latency is strictly

determined by the number of hops between the producer and the consumer and ac-

counts for nearly 20% of the cycles on the critical path on average. Contention is also

critical for performance as evident in a few benchmarks such as matrix and autocor.

Reducing both components of operand communication is essential for improving the

performance of distributed execution.

Improving Operand Communication

The number of hops for communication can be reduced by keeping producers and

consumers of a communicating pair in close proximity. This optimization is the pri-

mary objective of the TRIPS instruction scheduler. Similar to ALU contention, the

scheduler also models network link contention to reduce dynamic link contention.

But unless the entire critical dependence path is scheduled on the same ET, commu-

nication latencies are inevitable. Even so, instructions need to communicate with

RTs and DTs to read and write architectural state. Unless these tiles are integrated

into the ET, communication latencies cannot be hidden from the critical path.

Further improvements in operand communication may have to come from al-

ternative network topologies and routing protocols. A higher connectivity network

can reduce the number of hops. A higher bandwidth network or a network with an

adaptive routing protocol can reduce contention for the network links. The number

of input and output ports on the interfaces with network must also be increased

at each tile to reduce the contention for incoming or outgoing packets. Figure 6.12

presents the potential speedup that can be obtained if the different components of

operand communication can be completely hidden by other execution. While not

realistically attainable in practice, these results present an upper bound for all opti-

181

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

10

20

30

40

50

60
P

er
ce

nt
ag

e
S

pe
ed

up

contention
hops
all

Figure 6.12: Speedup from perfect operand communication.

mizations that address operand communication. Most of the performance speedups

arise from reducing the number of hops. SPECint benchmarks show the most im-

provement from fewer hops compared to contention, as the blocks are relatively

small, causing fewer performance losses from contention.

6.3.6 Distributed Protocols

Section 6.3.1 presented the contribution of the distributed control protocols to the

critical path of execution. In this section, we provide a finer breakdown of the

block control protocols and discuss their effect on overall performance. Figure 6.13

provides the relative contribution of three block control protocols to the critical

path. The bottom bar for each benchmark depicts the proportion of overall cycles

spent in distributing instructions from the ITs to the ETs. The middle and top bars

represent the cycles spent in detecting when a block has completed execution and

when a block has committed its execution results respectively. The actual latency

of committing architectural state within each RT or DT is measured by the column

182

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

5

10

15

20

25
P

er
ce

nt
ag

e
of

 c
yc

le
s

on
 c

rit
ic

al
 p

at
h

block commit
block complete
inst distribution

Figure 6.13: Components of block control protocols on the critical path.

titled Commit in Table 6.7. Figure 6.13 measures just the protocol latency of sending

control signals back and forth with the GT.

Implications: Taken together the distributed control protocols account for less

than 10% of the overall execution cycles, indicating that these protocols can be

overlapped with useful execution frequently. Of the three protocols, instruction

distribution is typically the most critical and accounts for nearly 5% of the cycles.

Block commit protocol is generally more critical than block completion. This result

is because commit involves both a request and an acknowledgement that together

require at least eight cycles for completion. On the other hand, block completion

notification can happen even in a single cycle, if the closest RT or the DT receives

the last of the block outputs and notifies the GT that the block has completed

execution.

183

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

5

10

15

20
P

er
ce

nt
ag

e
S

pe
ed

up

block complete
block commit
inst distribution
all

Figure 6.14: Speedup from perfect distributed protocols.

Improving block control protocols

Mis-speculations and instruction window stalls typically expose the block control

protocols on the critical path. For example, the correct fetch following a mis-

speculation recovery exposes instruction distribution on the critical path. Similarly

instruction window stalls expose distributed completion and commit for the oldest

block and instruction distribution for its replacement block on the critical path.

Any technique that reduces mis-speculations and instruction window stalls reduces

the effect of the block control protocols.

Figure 6.14 provides the effect of each protocol on overall performance. If

the latencies of all protocols were completely overlapped with useful execution, per-

formance would improve by 8% on the average. Most of these improvements result

from the perfect overlap of instruction distribution and block commit protocols with

useful execution. Data intensive benchmarks such as vadd and ct exhibit greater

speedups, as the limited store bandwidth in the microarchitecture frequently causes

frequent instruction window stalls. Therefore hiding the latency of the distributed

184

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

5

10

15

20

25
P

er
ce

nt
ag

e
of

 c
yc

le
s

on
 c

rit
ic

al
 p

at
h

communication
execution

Figure 6.15: Components of operand fanout on the critical path.

commit and fetch protocols improves performance in these benchmarks significantly.

6.3.7 Operand Fanout

Section 6.3.5 and Section 6.3.4 described the combined effect of all ALU operations

and all data communication on performance. In this section, we separate operand

fanout from other components on the critical path and present its effect on per-

formance. The distribution of a single result value to many consumers requires a

software tree of move instructions. These move instructions utilize ALU resources

during execution and network resources during communication. Figure 6.15 presents

the contribution of these two components to the critical path of execution. The top

portion represents the critical path latency of communicating data operands to and

from the fanout tree, while the bottom portion represents the critical path latency

of executing the fanout tree. In general, the execution of fanout instructions has a

greater effect on performance than the communication of values through the fanout

tree.

185

dct8x8

m
atrix

sha
vadd

conv
ct genalg

a2tim
e01

bezier02

basefp01

rspeed01

tblook01

autocor00

SPECINT

SPECFP

0

5

10

15

20

25
P

er
ce

nt
ag

e
S

pe
ed

up

no fanout tree
ideal fanout

Figure 6.16: Speedup from a perfect fanout.

Execution of fanout instructions can be completely eliminated if all con-

sumers can be represented with the same producer instruction. Communication of

fanout values can be eliminated if the following conditions are satisfied: a) all con-

sumers encoded with the producer instruction, b) all consumers scheduled at the

same node as the producer, and c) the ET supports a full bypass of the result value

from the producer to all consumers. While these assumptions are optimistic, they

are useful for computing an expectation for performance improvements with various

fanout optimizations. Figure 6.16 presents the percentage speedup that can be ob-

tained if the fanout operations were completely off the critical path. The bar labeled

no fanout tree represents the speedup obtained if no fanout instructions were exe-

cuted. The bar labeled ideal fanout represents the speedup obtained, if in addition

to the execution of fanout instructions, communication overheads of fanout values

were removed. As shown in the figure, eliminating all fanout overheads improves

performance by as much as 16% in autocor, 15% in SPECint, and about 11% on

the average. Eliminating just the execution of the fanout instructions, on the other

186

hand, improves performance by 6% on the average.

Implications: Fanout is an essential overhead of dataflow ISAs. In a few

SPECint workloads, we observed that eliminating fanout can improve performance

by more than 20%. Fanout also has an indirect effect on performance. Fanout

instructions occupy resources within a single block preventing more useful instruc-

tions from filling the block. Therefore, they cause an increase in the number of static

blocks, which increases the instruction cache pressure. Therefore, the net effect of

fanout is likely to be closer to or greater than the results depicted in Figure 6.16.

Optimizing Fanout

Fanout in the TRIPS architecture can be reduced in the following ways:

ISA optimizations: Certain types of operands typically require a greater fanout

than others. For example, predicates, base addresses for loads and stores, and

constants such as 0 or 1, typically need fanout to several consumers. Selective op-

timization of these cases can reduce the number of fanout instructions. One such

optimization is the use of new predicate-defining instructions that accept a special

data operand to specify additional targets. For example, consider a new instruc-

tion: teqz pred, val, target. This instruction can implicitly compare an input

operand with zero and send the resulting predicate to several consumers specified

in the target operand. Using the target encoding format specified in Figure 4.1,

a single 64-bit operand can specify up to seven additional consumers. Combined

with the target specifiers within the instruction, this approach has the potential to

significantly reduce the height of the fanout tree.

The target encoding format can also be revised to specify more consumers.

Most targets in the prototype TRIPS ISA are specified with their complete coordi-

nates in the execution window. Instead, the target specifier could combine location

187

information of the producer to compute the coordinates of the target instruction

implicitly. For example, instead of using two 9-bit specifiers to represent two tar-

gets, the ISA can use a 16-bit mask to specify which of the equivalent operand slots

in other tiles are consumers of the same result. This approach reduces the size of

the fanout tree. In fact, mid-way during the development of the TRIPS prototype

we added two special instructions, mov3 and mov4, which implicitly specify three

and four targets respectively. Figure 4.1 presented the encoding formats for these

two instructions, which enforce certain restrictions on the target locations, but spec-

ify additional targets. The bit-mask target encoding is a logical extension of this

approach.

Network optimizations: Efficient encoding of targets reduces the number of

instructions required for fanout. However, it does not reduce the number of dy-

namic network packets required for distributing a value from a single producer to

all consumers. The network essentially performs a multicast operation as multiple

point-to-point communication operations. This approach not only stalls a producer

tile until the multicast is complete, but also increases contention in the network. An

alternative approach can implement multicast operations efficiently in the network

itself. The network router at the producer can accept a value to be multicast and

a specifier that encodes the consumers of the value. Subsequently, the network can

dynamically replicate packets as needed and send the value to all the consumers.

This approaches reduces stalls at the producer and the total number of packets in

the network, both of which reduce contention and improve performance. However,

this benefit must be balanced against the increased complexity of the router.

Instruction optimizations: Peephole optimizations can reduce the number of

instructions needed for fanout. In Chapter 5, we described two techniques to reduce

the fanout of data and predicate operands—predicate combining and φ-merging.

188

These techniques combine common operands to produce a single fanout tree instead

of separate fanout trees for each operand. A reduction in fanout not only reduces

the overhead of dataflow encoding, but also improves performance by allowing the

formation of larger TRIPS blocks.

6.3.8 Discussion

The results from this section show that several microarchitectural constraints play

significant roles in determining the performance of a program. Like most architec-

tures, improved instruction supply and data supply in the form of better branch

prediction and caches can improve performance. In addition, future improvements

in the TRIPS architecture must come from reducing the overheads of distributed

execution, specifically operand communication, and dataflow execution, specifically

fanout of data values.

6.4 Summary

We began this chapter by establishing the performance of the TRIPS architecture

in relation to a conventional superscalar architecture. We presented the results from

the TRIPS hardware and examined its ability to exploit a wide execution bandwidth

and a large instruction window. We observed that on a set of hand-optimized bench-

marks, the TRIPS hardware sustains average speedups of 3× over the Alpha 21264

architecture. However, on the compiled SPEC benchmarks the TRIPS architecture

exhibits slowdowns in most benchmarks and improves performance only in three of

the benchmarks—mcf, mgrid, and swim.

We then explored the potential for exploiting parallelism in various workloads

and compared it with the instruction throughputs obtained in practice. We observed

that the TRIPS processor attains only 16% of the available parallelism on average.

We observed that issue width and instruction window constraints together reduce

189

achievable parallelism by nearly 50%. Of the remaining constraints, we observed

that instruction supply, data supply, operand communication, and operand fanout

all play significant roles in determining the performance of a program. The latency of

distributed execution degrades performance significantly. Operand communication

in the distributed substrate contributes 15%–53% of the critical path cycles. The

block control protocols, however, can be overlapped with block execution in many

cases and contribute to less than 10% of the critical execution cycles on average. We

also presented a few solutions to alleviate the effect of these constraints and improve

overall performance in the TRIPS processor.

190

Chapter 7

Conclusions

The microprocessor industry is at an interesting inflection point. While the under-

lying devices continue to become smaller, constraints such as power, reliability, and

on-chip wire latency are changing the design parameters of modern microproces-

sors. Recent years have seen the demise of clock frequency growth primarily due

to its taxation on power consumption. This trend has forced architects to focus on

concurrency exclusively to meet the ever-growing performance needs of various ap-

plications. At the same time, growing wire-delays coupled with increased power and

design complexity have limited the scalability of conventional superscalar processors

to wider instruction issue, resulting in the virtual abandonment of single-thread con-

currency in favor of exploiting multi-thread and data-level concurrency. While this

approach pays dividends in the short term, Amdahl’s law and the lack of single-

thread performance will ultimately inhibit its ability to increase performance. To

address this problem, we undertook the challenge of designing a scalable, wide-issue,

large-window processor that mitigates complexity, reduces power overheads, and ex-

ploits ILP at future wire-delay dominated technologies. This dissertation examines

the design and evaluation of such a processor.

191

7.1 Dissertation Contributions

This dissertation presented the TRIPS architecture for improving single-threaded

performance at future wire-delay dominated technologies. It is an Explicit Data

Graph Execution (EDGE) architecture, which expresses dependences explicitly in

the ISA. The ISA organizes program computation into large groups of instructions

called blocks. Each block encodes the dataflow graph of its computation and ex-

ecutes atomically in the hardware. The encoding uses dataflow arcs, instead of

register names, which enables the hardware to enforce intra-block data dependences

using direct producer-consumer communication. This technique eliminates several

per-instruction overheads of register renaming, dynamic scheduling, and complex

operand bypass.

The microarchitecture partitions all of the traditionally-centralized struc-

tures and connects the partitions with point-to-point networks. It consists of a

two-dimensional array of replicated tiles that each implement one of the following

functions—ALU execution, register storage, data caching, or instruction caching.

The tiles exchange information using multiple interconnection networks, and to-

gether implement the functionality of one larger, powerful uniprocessor. Such an

organization provides a scalability path to larger processor architectures. The ad-

dition of more functional units or cache banks only involve the replication of the

desired functionality and an extension of the interconnection networks to additional

nodes, without major design rework of the entire microarchitecture.

This dissertation presented the details of a hardware prototype of the TRIPS

architecture, and in particular, the author’s contribution to its implementation—

global control functions and performance validation. The prototype hardware im-

plements all major control functions such as fetch, commit, and flush using a set of

simple master-slave protocols. A centralized control logic tracks the execution state

on behalf of the entire processor and initiates various control protocols by sending

192

signals on a set of simple point-to-point networks. The rest of the microarchitecture

tiles respond to the signals by performing the desired functionality locally. The

slave tiles operate independently of each other, and the protocols avoid any global

synchronization. Furthermore, the protocol operations are overlapped with each

other and across multiple blocks, which reduces their effect on the overall execution

critical path.

The TRIPS prototype chip was implemented in a 130 nm ASIC technology,

and it consists of more than 170 million transistors. It contains two TRIPS pro-

cessors with each capable of executing 16 out-of-order operations from an in-flight

window of 1024 instructions. We described the methodology of verifying the per-

formance of the prototype implementation, and in particular, the latency of various

critical microarchitecture events. We also described the correlation of the imple-

mentation with a high-level performance model and showed how the two models

match within 4% on a large set of microbenchmarks. At the time of writing this

dissertation in May, 2007, the TRIPS chip had taped out and the first manufactured

silicon parts are fully operational, executing several single-threaded workloads and

MPI-based multi-threaded workloads, at a peak clock frequency of 366 MHz and a

peak power consumption of 45 Watts.

We then described a detailed performance evaluation of the TRIPS architec-

ture. We described our evaluation methodology and in particular, the development

of various hand-optimizations to produce high-quality programs. We also described

the development of critical path models to identify the fine-grained bottlenecks of

distributed execution in the microarchitecture. We described the complexity of

evaluating the interactions among a large set of concurrent events and described

the algorithms that offer orders of magnitude speedups in evaluation time. We

then measured the raw performance of the TRIPS hardware and observed that it

provides good speedups over conventional architectures on a set of highly hand-

193

optimized benchmarks. Finally, we evaluated the potential for high parallelism in

the TRIPS architecture, the overheads that inhibit parallelism, and suggested suit-

able optimizations for enhancing performance.

7.2 Performance of the TRIPS Architecture

The TRIPS processor exploits its wide execution bandwidth and large instruction

window to sustain significant parallelism. On a set of hand-optimized benchmarks,

the TRIPS hardware sustains speedups in the range 0.9×–4.9×, and 3× on average

when compared to the Alpha 21264 microarchitecture. On the same workloads,

the TRIPS processor sustains sustains average IPCs of 4.0 and more than 6.0 in

a few benchmarks. The large window of instructions, wide dynamic issue, and

higher bandwidth to memory contribute to the performance benefits of the TRIPS

architecture.

On the compiled workloads the results of the TRIPS architecture are less im-

pressive. In fact, the TRIPS architecture exhibits an average 17% slowdown and as

low as 77% slowdown across the SPEC workloads compiled by the TRIPS toolchain.

It improves performance significantly in only three benchmarks—mcf, mgrid, and

swim—where the speedup exceeds 50%. The poor performance in the compiled

workloads is largely due to the increased number of instructions executed by the

TRIPS processor. As the TRIPS compiler matures and implements all necessary

optimizations, including those described in Chapter 5, we expect the performance

of the compiled workloads to improve significantly.

The benchmarks in our evaluation suite exhibit abundant parallelism. Some

of them are embarrassingly parallel and limited only by the execution resources avail-

able in the machine. In general, issue width and instruction window size restrictions

together inhibit parallelism by nearly 50% on the average. Compared to an ideal

processor that has a 1024-entry instruction window and 16-wide OOO issue, the

194

TRIPS processor obtains only a third of the available parallelism. The remainder

of the parallelism is lost due to various constraints in the microarchitecture.

We evaluated the effect of various microarchitectural constraints on perfor-

mance using a detailed critical path analysis. As in other architectures, the instruc-

tion front-end performance, including branch prediction accuracy and instruction

cache hit rates, affects performance significantly. Data cache performance also af-

fects performance significantly in a few benchmarks. Together, the front-end and

data cache performance account for a third of the cycles spent during execution in

the hand-optimized benchmarks and nearly half the cycles in the SPEC benchmarks.

To a large extent, the distributed control protocols for fetch, completion detection,

and commit do not present serious bottlenecks for performance, contributing to

10% of the critical path cycles on average. The large instruction window enables

the TRIPS processor to amortize these overheads and overlap useful execution with

the latencies for protocol communication. However, operand communication, which

is a necessity for distributed execution, significantly affects performance and ac-

counts for a third of the cycles spent during execution on average. Both the number

of communication hops and contention in the network contribute to the latencies for

operand communication. Finally, fanout of operands due to limited target encoding

space in the ISA present non-trivial overheads for performance. The performance

losses due to fanout amount to 11% on average across the benchmark suite, and

more than 20% in a few SPECint benchmarks.

7.3 Improving the TRIPS architecture

Further performance improvements in the TRIPS architecture must come from al-

leviating several overheads. As in other architectures, better branch prediction and

prefetching can improve the performance of the front-end microarchitecture and the

data cache and improve the overall performance. With respect to the instruction

195

front-end, future implementations should focus on improving the utilization of the

cache and also overcoming the fetch bandwidth limitations. Additional improve-

ments should come from solutions for reducing the operand fanout and reducing the

latency of operand communication. However, there is no single bottleneck that—if

addressed adequately—will improve performance of the TRIPS architecture dra-

matically. Future performance improvements will require a concerted effort in the

architecture, microarchitecture, and the compiler. Based on the results presented in

this dissertation and drawing from design experience, we present several revisions

for future generations of the architecture and microarchitecture.

The next revision of the TRIPS microarchitecture should address the following:

• De-coupled front-end: The front-end architecture should decouple the pre-

diction and the block fetch pipelines. This approach will enable aggressive

instruction prefetching [128] and help tolerate the penalty of I-cache misses.

• Dependence predictor: The current 1-bit dependence predictor, although sim-

ple to implement in hardware, conservatively predicts a conflict too often, even

if none exists. The dependence predictor should be enhanced in simple ways

to include hysteresis or re-designed to implement more advanced techniques

such as store-sets [34].

• Fetch bandwidth: Although not a serious bottleneck in many benchmarks, the

fetch rate of one block every eight cycles constrains the performance occasion-

ally. In addition, since TRIPS blocks are never 100% full, the effective fetch

rate in the TRIPS prototype processor lags behind the execution rate offered

by the microarchitecture. Instruction re-vitalization should be considered to

enhance the fetch rate of blocks belonging to tight loops.

Subsequent generations of the TRIPS architecture and microarchitecture should

196

address the following:

• Instruction cache compression: The primary instruction cache should be mod-

ified to retain compressed block encodings. Compression improves the cache

utilization, but increases the latency of instruction fetch and complicates the

overall distributed cache management. Future designs should develop efficient

solutions that balance these opposing requirements.

• ISA enhancements: The ISA should include more instruction formats to pro-

vide a better encoding of targets. We make two recommendations: a) encoding

targets in data operands, and b) new target formats to represent more than

four targets. The operand routers should change suitably to accommodate

these enhancements. Other ISA enhancements such as specialized immediate-

forms and additional support for signed arithmetic can help reduce the number

of instructions executed in the TRIPS processor.

• Operand routing: Multicast support should be considered to reduce the fanout

overhead in the network. In addition, adaptive routing protocols with deadlock

avoidance or deadlock detection should be considered to reduce the contention.

• Contention: Both ALU and operand network contention present some over-

heads for performance. Although, their effect is not as pronounced as other

constraints, reducing contention has the potential to offer more than 20% im-

provement in performance in a few benchmarks. Future implementations may

consider increasing both the operand network bandwidth and the execution

bandwidth. However, this decision should be weighed against the increased

power and area complexity.

Looking further, the biggest challenge for the TRIPS architecture, and distributed

microarchitectures in general, will be operand communication hops. Future orga-

197

nizations should attempt to create and exploit locality of communication by dis-

tributing dependent instruction chains to only a small neighborhood of execution

tiles. The microarchitecture should consider migrating other communicating entities

closer together. This optimization includes the migration of cache banks and regis-

ter file banks closer to the execution units. It has the potential to reduce the latency

to caches and register files and increase bandwidth, but introduces new challenges.

For example, data partitioning not just among the cache banks, but also among the

register banks will determine the data supply latencies. Suitable algorithms should

be developed to isolate dependence chains and co-locate instructions with the data

they access. Pure hardware techniques that dynamically migrate data closer to the

accessing instructions may not be viable due to the complexity of maintaining coher-

ence and dynamically locating data among a large set of cache banks. In addition,

they necessitate efficient mechanisms to enforce the correct program order for loads

and stores [141].

The co-location of data caches and register files with each execution unit,

or even among a set of execution units also increases the latency of communication

between dependent instructions on different execution units. It results in either

physically larger tiles, which increase per-hop latencies, or physically farther tiles,

which result in additional hops. Further research is necessary to explore the tradeoff

of increased latency among the functional units and reduced latency to the caches

and register files.

7.4 Concluding Thoughts

The TRIPS prototype processor is a functional, physical embodiment of an EDGE

architecture. Its successful development is a testament to the fact that a microar-

chitecture in which distributed communicating components cooperate to execute a

single thread of application is a feasible approach for exploiting concurrency. This

198

dissertation has shown that on a handful of aggressively hand-optimized benchmarks

the performance of the TRIPS processor is superior when compared to a best-of-

breed ILP architecture. It has also demonstrated that except for data communi-

cation, which is a necessity for any distributed architecture, distributed execution

does not present significant overheads for performance.

Before it can gain acceptance in the mainstream microprocessor world, the

TRIPS architecture must overcome a few technical challenges. An open question

is whether the performance of compiled code will measure up to hand-optimized

code. The availability of functional TRIPS hardware will undoubtedly reduce the

development-optimization loop in the compiler. However, history has shown that

the maturation of any compiler technology typically occurs only after several years

of concerted development. It is quite likely that the TRIPS compiler will follow that

path.

A second open question is the power efficiency of the TRIPS architecture.

In this dissertation, we argued that the architecture offers several benefits—reduced

per-instruction overheads and elimination of dynamic dependence check hardware—

for reducing power consumption. However, we have not evaluated these benefits

quantitatively. Current hardware measurements indicate a peak power consumption

of 45 W at a clock frequency of 366 MHz for the entire TRIPS chip. Most of this

power is spent in the clock distribution network and idle dynamic power. On the

one hand, higher clock frequencies will certainly increase the power consumption

to greater than 45 W. On the other hand, the adoption of a power-aware design

methodology, including clock gating and less leaky devices, will reduce the power

consumption. The compiler algorithms for predication and hyperblock formation

also present tradeoffs for power and performance. A comprehensive evaluation is

necessary for understanding the various components of power consumption in the

TRIPS processor.

199

An interesting dimension to this power-performance tradeoff is the adapt-

ability of the architecture to available parallelism in the program. Our results

indicated a wide variance in parallelism among different programs. Even within a

single program, different execution phases exhibit a wide variance in available paral-

lelism [144]. The hardware can exploit this phenomenon to improve power-efficiency

by dynamically adjusting resource utilization depending on the availability or the

need for parallelism. For example, instead of using 16 ETs to perform a serial de-

pendence computation, the hardware can utilize just one or two to perform the same

computation, thus achieving the same performance at reduced power consumption.

In a different phase of the same program, the hardware can switch to utilizing all 16

ETs for improving parallelism. The precise mechanisms and policies for adjusting

resource utilization are subjects of future research.

Finally, object-code compatibility will also affect the adoption of TRIPS tech-

nologies for general-purpose computing. Programs compiled for one generation of

the TRIPS architecture must be supported by subsequent generations. VLIW/EPIC

architectures faced similar issues and several software and hardware techniques have

been proposed [37,48,60,98,127]. Unlike VLIW, the TRIPS architecture determines

only the placement of the instructions and not the execution order, which makes

retargeting pre-compiled TRIPS object code for new TRIPS hardware a relatively

simpler problem. One simple solution may choose to compile for a generic microar-

chitecture organization and remap the instruction placements for different organi-

zations dynamically in the hardware. For example, the 3-D coordinates for a slot in

the 128-entry instruction window can be re-interpreted to accommodate a 4×4×8

organization, 2×2×32 organization, or a 8×8×2 organization. Alternate organiza-

tions may, however, require techniques such as dynamic recompilation to support

backward compatibility [48].

Ultimately, improvements in single-thread performance must come from co-

200

operative solutions at all layers of the application execution stack. Exclusive solu-

tions at any single layer are likely to be unsuccessful. For example, pure programmer-

managed concurrency requires unconventional programming models, and compli-

cates the development and maintenance of software, which is already a problem of

leviathan proportions. Pure hardware solutions will suffer from inefficiency as they

must expend power to discover concurrency patterns in the program. Successful

solutions are likely to employ mechanisms at all levels—program annotations, com-

piler hints, and hardware techniques—without disrupting programmer productivity.

This dissertation presented the TRIPS architecture that uses both the compiler and

the hardware to enhance the scope of parallelism among a contiguous stream of

instructions. Future architectures must look beyond a contiguous window, perhaps

using programmer hints, and adapt to changing granularities of concurrency to not

only improve performance, but also attain power-efficient execution.

201

Appendices

202

Appendix A

Comparing tsim-proc and the

TRIPS Hardware

In Chapter 4, we reported the results of performance correlation between tsim-proc

and proc-rtl, which is the RTL-level simulator. We reported that after normalizing

the L2 memory system, the performance results from tsim-proc and proc-rtl match

within 4% on a large number of microbenchmarks. In this section, we examine the

errors in performance estimation in tsim-proc when compared to the hardware.

Table A.1 presents our results. Positive differences indicate over-estimation

by tsim-proc, whereas negative differences indicate under-estimation. In many work-

loads, tsim-proc overestimates performance by less than 5%. In the benchmark ct,

the simulator overestimates performance by nearly 67%. We attribute this difference

to the inaccuracies in the memory system model in tsim-proc, which does not sim-

ulate the contention in the L2 cache banks and the on-chip network connecting the

banks. In rspeed, the simulator underestimates performance by 19%. We attribute

this difference to the inaccuracies in memory dependence prediction. The simulator

encounters a pathological case where it observes a dependence violation for a load

and therefore issues all subsequent instances of the same load conservatively, causing

203

Benchmark % difference

conv 11
ct 66
dct8x8 5
matrix 4
sha 0
vadd 5
a2time01 0
autocor00 4
bezier02 18
rspeed01 -19

MEAN* 13

Table A.1: Percentage difference in execution cycles between the TRIPS hardware
and tsim-proc. MEAN measures the average absolute difference in performance
measurement.

a degradation in performance.

204

Appendix B

Improving Performance Using

Critical Path Analysis

In this section, we show the utility of critical path analysis described in Chapter 5 for

improving the performance of an application. We use the program memset for this

exercise. This program is a C library routine that sets a range of bytes in memory

to a given value. We start with a previously hand-tuned version of memset. The

optimizations performed by hand include aggressive hyperblock formation using loop

unrolling and predication, and hand placement of instructions. These optimizations

improve the performance of memset by over 8× compared to automatically compiled

code. The rest of this section describes how the information from critical path

analysis can improve the performance of memset further1.

Table B.1 shows the breakdown of the critical path cycles for two versions of

memset. We observe that nearly 70% of the critical path cycles in the baseline pro-

gram were consumed by operand communication and instruction execution events.

We further observe that a large fraction of these cycles are dynamic delays, which

indicate contention stall cycles in the operand network links and the execution tile

1Doug Burger performed the various hand-optimizations for memset.

205

Event Baseline Optimized
SD DD TD SD DD TD

BF 2728 12533 15261 4896 13144 18040
BC 0 181 181 0 1967 1967
BD 408 507 915 3968 5262 9230
OP 18730 17777 36507 9249 5839 15088
IE 9712 15554 25266 3871 1826 5697
RR 92 23 115 528 14314 14842
SF 0 0 0 0 0 0
RF 7678 79 7757 2 0 2
IF 2521 0 2521 5351 0 5351
LD 246 542 788 244 542 786

Total 42115 47196 89311 28109 42894 71003

Table B.1: Overall critical path breakdown for two versions of memset. Baseline
refers to the original hand-optimized version. Optimized refers to the version after
applying the optimizations guided by critical path analysis. The label SD denotes
the static delay, DD denotes the dynamic delay, and TD denotes the total delay
for an event. We refer the reader to Table 5.7 for a description of the critical path
events.

issue slots. To identify the specific program block causing these contention cycles,

we re-performed the analysis to track the critical path composition on a per-block

basis. We observed that nearly 70% of the critical path cycles resulted from events

in one program block memset test$6. Table B.2 shows these results. Nearly 90%

of all operand communication and instruction execution latencies in the program’s

overall critical path result from this block.

Instructions in the block memset test$6 belong to one of four categories:

store instructions, move instructions to distribute the base address for the stores,

move instructions to distribute the data for the stores, and loop induction instruc-

tions. To identify specific instructions that cause bottlenecks, we re-ran the analysis

to obtain critical path breakdowns for each instruction in the block memset test$6.

Table B.3 shows the contribution of the top five instructions in that block to the

critical operand communication and instruction execution latencies. We observe

that nearly 50% of these cycles resulted from just one single instruction. Examining

the tile placements in the schedule, we observed that this instruction, a store, was

206

Event Baseline Optimized
SD DD TD SD DD TD

OP 15650 17276 32926 5755 4310 10065
IE 7733 15209 22942 2120 1181 3301
RF 7548 0 7548 0 0 0
RR 0 0 0 400 12355 12755
SF 0 0 0 0 0 0
IF 114 0 114 2312 0 2312
LD 0 0 0 0 0 0
BF 264 61 325 2432 580 3012
BC 0 129 129 0 1485 1485
BD 312 429 741 3200 4400 7600

Total 31621 33104 64725 16219 24311 40530
(cycles)

Table B.2: Critical path composition for the block memset test$6 in the program
memset.

obtaining its base address from a move instruction placed at a different execution

tile. In fact, all the consuming stores of this move instruction were placed at a

different tile than the move. This artifact introduced one cycle of operand commu-

nication latency between the issue of the move and the target store instructions. To

remove this latency, we re-adjusted the schedules by placing the move instruction

and all of its target stores at the same tile.

The results for the optimized version of memset test$6 are shown in Ta-

bles B.1, B.2, and B.3 under the label Optimized. We observe that the overall

performance improved by nearly 11%. As expected, we observe a significant re-

Baseline Optimized
SD DD TD SD DD TD

7506 25288 32794 1172 631 1803
7484 819 8303 879 101 980
95 304 399 424 473 897
93 156 249 289 578 867
128 85 213 586 71 657

Table B.3: Operand communication and instruction execution cycles on the critical
path for the top five instructions in the block memset test$6 in the program memset.

207

duction in operand communication and instruction execution latencies on the pro-

gram’s overall critical path. The critical path contribution of the top-most block,

still memset test$6, decreased by a greater fraction than the overall execution time.

This behavior occurs because portions of the execution paths through this block are

no longer critical compared to concurrent paths through other blocks. Table B.1 also

shows significant increases in the contributions of the block fetch, block completion,

and block commit operations. The block memset test$6 also exhibits similar sharp

increases in contributions of other events. Reducing the effect of operand commu-

nication and instruction execution bottlenecks exposes these new bottlenecks which

are candidates for future optimizations.

208

Appendix C

Front-End Performance in the

TRIPS Architecture

In Chapter 6, we reported the effect of the front-end architecture on the overall

execution critical path in various benchmarks. In this section, we report the raw

performance data for the I-cache miss rates and control flow prediction accuracy in

various benchmarks. Tables C.1 and C.2 report these data obtained using simula-

tion. The second column shows the miss rates in the primary instruction cache. It

measures the percentage of committed blocks that were filled from the L2 before

they could be fetched and executed in the processor. The third column shows the

control flow misprediction rate. It shows the percentage of committed blocks whose

addresses were incorrectly predicted by the next-block predictor.

209

Benchmark I-cache Control prediction
miss rate (%) miss rate (%)

dct8x8 3.05 11.37
matrix 1.17 10.20
sha 7.15 3.84
vadd 1.00 1.24
a2time01 0.56 0.23
basefp01 0.71 0.32
rspeed01 0.54 2.59
tblook01 0.92 10.58
bezier02 0.55 1.55
autocor00 0.54 2.01
conv 5.76 4.33
ct 9.47 7.65
genalg 13.76 17.97

Table C.1: Front-end performance for hand-optimized benchmarks. Results were
obtained using tsim-proc simulation.

Benchmark I-cache Control prediction
miss rate (%) miss rate (%)

164.gzip 0.08 5.85
181.mcf 0.12 11.03
186.crafty 31.34 11.24
197.parser 2.61 6.04
255.vortex 22.37 6.31
256.bzip2 0.00 8.51
300.twolf 22.35 10.45
253.perlbmk 14.60 12.47

168.wupwise 0.04 0.04
171.swim 0.00 0.08
172.mgrid 0.06 0.49
173.applu 0.00 0.13
177.mesa 20.03 8.90
179.art 0.04 0.10
200.sixtrack 14.10 15.58
301.apsi 16.92 2.66

Table C.2: Front-end performance for SPEC benchmarks. Results were obtained
using tsim-proc simulation.

210

Bibliography

[1] EEMBC: The embedded microprocessor benchmark consortium.

http://www.eembc.org.

[2] International technology roadmap for semiconductors 2006 update: Process

integration, devices, and structures. http://www.itrs.net.

[3] Scale: A scalable compiler for a moving target.

http://www-ali.cs.umass.edu/Scale.

[4] Trimaran : An infrastructure for research in instruction-level parallelism.

http://www.trimaran.org.

[5] Carmelo Acosta, Sriram Vajapeyam, Alex Ramirez, and Mateo Valero. CDE:

A Compiler-driven, Dependence-Centric, Eager-executing Architecture for the

Billion Transistors Era. In Proceedings of the 2003 International Workshop

on Complexity-Effective Design, June 2003.

[6] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock

rate versus IPC: The end of the road for conventional microarchitectures. In

Proceedings of the 27th Annual International Symposium on Computer Archi-

tecture, pages 248–259, June 2000.

[7] H. Akkary, R. Rajwar, and S.T. Srinivasan. Checkpoint processing and recov-

ery: Towards scalable large instruction window processors. In Proceedings of

211

http://www.eembc.org
http://www.itrs.net
http://www-ali.cs.umass.edu/Scale

the 36th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 423–434, December 2003.

[8] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren. Conversion of

control dependence to data dependence. In Proceedings of the 10th Annual

Symposium on Principles of Programming Languages, pages 177–189, January

1983.

[9] Donald Alpert and Dror Avnon. Architecture of the Pentium microprocessor.

IEEE Micro, 13(3):11–21, 1993.

[10] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. The IBM System/360

Model 91: Machine philosophy and instruction handling. IBM Journal of

Research and Development, 11(1):8–24, January 1967.

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester

Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The

Landscape of Parallel Computing Research: A View from Berkeley. Technical

Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, December 2006.

[12] Tom Asprey, Gregory S. Averill, Eric DeLano, Russ Mason, Bill Weiner, and

Jeff Yetter. Performance Features of the PA7100 Microprocessor. IEEE Micro,

13(3):22–35, 1993.

[13] Todd M. Austin and Gurindar S. Sohi. Dynamic dependency analysis of or-

dinary programs. In Proceedings of the 19th Annual International Symposium

on Computer Architecture, pages 342–351, May 1992.

[14] R. Iris Bahar and Srilatha Manne. Power and energy reduction via pipeline

212

balancing. In Proceedings of the 28th Annual International Symposium on

Computer Architecture, pages 218–229, June 2001.

[15] Saisanthosh Balakrishnan and Gurindar S. Sohi. Program demultiplexing:

Data-flow based speculative parallelization of methods in sequential programs.

In Proceedings of the 33th Annual International Symposium on Computer Ar-

chitecture, pages 302–313, June 2006.

[16] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Dy-

namically allocating processor resources between nearby and distant ILP. In

Proceedings of the 28th Annual International Symposium on Computer Archi-

tecture, pages 26–37, June 2001.

[17] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Re-

ducing the complexity of the register file in dynamic superscalar processors.

In Proceedings of the 34th Annual ACM/IEEE International Symposium on

Microarchitecture, pages 237–248, December 2001.

[18] Max Baron. Low-Key Intel 80-Core Intro: The Tip of the Iceberg. Micropro-

cessor Report, April 2007.

[19] Eric Borch, Srilatha Manne, Joel Emer, and Eric Tune. Loose loops sink chips.

In Proceedings of the Eighth International Symposium on High Performance

Computer Architecture, pages 299–310, February 2002.

[20] Edward Brekelbaum, Jeff Rupley, Chris Wilkerson, and Bryan Black. Hier-

archical scheduling windows. In Proceedings of the 35th Annual ACM/IEEE

International Symposium on Microarchitecture, pages 27–36, November 2002.

[21] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework

for architectural-level power analysis and optimizations. In Proceedings of

213

the 27th Annual International Symposium on Computer Architecture, pages

83–94, June 2000.

[22] Mary D. Brown, Jared Stark, and Yale N. Patt. Select-free instruction schedul-

ing logic. In Proceedings of the 34th Annual ACM/IEEE International Sym-

posium on Microarchitecture, pages 204–213, December 2001.

[23] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. Dataflow: A

complement to superscalar. In Proceedings of the 2005 IEEE International

Symposium on Performance Analysis of Systems and Software, pages 177–

187, March 2005.

[24] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Gold-

stein. Spatial computation. In Proceedings of the 11th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 14–26, October 2004.

[25] J. Adam Butts and Gurindar S. Sohi. Use-based register caching with decou-

pled indexing. In Proceedings of the 31st Annual International Symposium on

Computer Architecture, pages 302–313, June 2004.

[26] Alper Buyuktosunoglu, David H. Albonesi, Pradip Bose, Peter W. Cook, and

Stanley E. Schuster. Tradeoffs in power-efficient issue queue design. In Pro-

ceedings of the 2002 International Symposium on Low Power Electronics and

Design, pages 184–189, August 2002.

[27] Harold W. Cain and Mikko H. Lipasti. Memory ordering: A value-based

approach. In Proceedings of the 31st Annual International Symposium on

Computer Architecture, pages 90–101, June 2004.

[28] Brad Calder, Glenn Reinman, and Dean M. Tullsen. Selective value predic-

214

tion. In Proceedings of the 26th Annual International Symposium on Computer

architecture, pages 64–74, May 1999.

[29] Ramon Canal and Antonio Gonzalez. A low-complexity issue logic. In Proceed-

ings of the 14th International Conference on Supercomputing, pages 327–335,

May 2000.

[30] Ramon Canal and Antonio Gonzalez. Reducing the complexity of the issue

logic. In Proceedings of the 15th International Conference on Supercomputing,

pages 312–320, June 2001.

[31] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,

Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The ATOMOS trans-

actional programming language. In Proceedings of the 2006 Conference on

Programming Language Design and Implementation, pages 1–13, June 2006.

[32] Shailender Chaudhry, Paul Caprioli, Sherman Yip, and Marc Tremblay. High-

performance throughput computing. IEEE Micro, 25(3):32–45, 2005.

[33] David Chinnery and Kurt Keutzer. Closing the Gap Between ASIC & Custom

Tools and Techniques for High-Performance ASIC Design. Kluwer Academic

Publishers, 2002.

[34] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using

store sets. In Proceedings of the 25th Annual International Symposium on

Computer Architecture, pages 142–153, June 1998.

[35] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and John P. Shen. Dynamic

speculative precomputation. In Proceedings of the 34th Annual ACM/IEEE

International Symposium on Microarchitecture, pages 306–317, December

2001.

215

[36] Thomas M. Conte, Sanjeev Banerjia, Sergei Y. Larin, Kishore N. Menezes, and

Sumedh W. Sathaye. Instruction fetch mechanisms for VLIW architectures

with compressed encodings. In Proceedings of the 29th Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, pages 201–211, December 1996.

[37] Thomas M. Conte and Sumedh W. Sathaye. Dynamic rescheduling: A tech-

nique for object code compatibility in VLIW architectures. In Proceedings of

the 28th Annual International Symposium on Microarchitecture, pages 208–

218, 1995.

[38] Katherine E. Coons, Xia Chen, Sundeep K. Kushwaha, Doug Burger, and

Kathryn S. McKinley. A spatial path scheduling algorithm for EDGE archi-

tectures. In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 129–140,

October 2006.

[39] Adrian Cristal, Daniel Ortega, Josep Llosa, and Mateo Valero. Out-of-order

commit processors. In Proceedings of the Tenth International Symposium on

High Performance Computer Architecture, pages 48–59, February 2004.

[40] Jose-Lorenzo Cruz, Antonio Gonzalez, Mateo Valero, and Nigel P. Topham.

Multiple-banked register file architectures. In Proceedings of the 27th An-

nual International Symposium on Computer Architecture, pages 316–325, June

2000.

[41] William J. Dally and Brian Towles. Route Packets, Not Wires: On-Chip In-

terconnection Networks. In Proceedings of the 38th Design Automation Con-

ference, pages 684–689, June 2001.

[42] J. Dennis and D. Misunas. A preliminary architecture for a basic data-flow

216

processor. In Proceedings of the 2nd Annual International Symposium on

Computer Architecture, pages 126–132, January 1975.

[43] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Measuring

experimental error in microprocessor simulation. In Proceedings of the 28th

Annual International Symposium on Computer Architecture, pages 266–277,

June 2001.

[44] Keith Diefendorff. Compaq Chooses SMT for Alpha. Microprocessor Report,

13(16), December 1999.

[45] Keith Diefendorff. Power4 focuses on memory bandwidth. Microprocessor

Report, 13(13), October 1999.

[46] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales.

Altivec extension to PowerPC accelerates media processing. IEEE Micro,

20(2):85–95, March 2000.

[47] James Dundas and Trevor Mudge. Improving data cache performance by

pre-executing instructions under a cache miss. In Proceedings of the 11th

International Conference on Supercomputing, pages 68–75, June 1997.

[48] Kemal Ebcioglu and Erik R. Altman. DAISY: Dynamic compilation for 100%

architectural compatibility. In Proceedings of the 24th Annual International

Symposium on Computer Archtecture, pages 26–37, June 1997.

[49] Dan Ernst, Andrew Hamel, and Todd Austin. Cyclone: A broadcast-free

dynamic instruction scheduler with selective replay. In Proceedings of the 30th

Annual International Symposium on Computer Architecture, pages 253–263,

June 2003.

[50] Alexandre Farcy, Olivier Temam, Roger Espasa, and Toni Juan. Dataflow

analysis of branch mispredictions and its application to early resolution of

217

branch outcomes. In Proceedings of the 31st Annual ACM/IEEE International

Symposium on Microarchitecture, pages 59–68, December 1998.

[51] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multicluster

architecture: Reducing cycle time through partitioning. In Proceedings of

the 30th Annual ACM/IEEE International Symposium on Microarchitecture,

pages 149–159, December 1997.

[52] Brian Fields, Rastislav Bodik, and Mark D. Hill. Slack: Maximizing per-

formance under technological constraints. In Proceedings of the 29th Annual

International Symposium on Computer Architecture, pages 47–58, June 2002.

[53] Brian Fields, Shai Rubin, and Rastislav Bodik. Focusing processor policies

via critical-path prediction. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 74–85, July 2001.

[54] Brian A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J. Newburn. Using

interaction costs for microarchitectural bottleneck analysis. In Proceedings of

the 36th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 228–239, December 2003.

[55] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-

paction. IEEE Transactions on Computers, 30(7):478–490, 1981.

[56] Joseph A. Fisher. Very long instruction word architectures and the ELI-

512. In Proceedings of the 10th Annual International Symposium on Computer

Architecture, pages 140–150, June 1983.

[57] Joseph A. Fisher and B.R. Rau. Instruction-level parallel processing. Science,

253(5025):1233–1241, 1991.

[58] Brian R. Fisk and R. Iris Bahar. The non-critical buffer: Using load latency

218

tolerance to improve data cache efficiency. In Proceedings of the 1999 IEEE

International Conference on Computer Design, pages 538–545, October 1999.

[59] Daniele Folegnani and Antonio Gonzalez. Energy-effective issue logic. In

Proceedings of the 28th Annual International Symposium on Computer Archi-

tecture, pages 230–239, June 2001.

[60] Manoj Franklin and Mark Smotherman. A fill-unit approach to multiple in-

struction issue. In Proceedings of the 27th Annual International Symposium

on Microarchitecture, pages 162–171, November 1994.

[61] Alok Garg, M. Wasiur Rashid, and Michael Huang. Slackened memory de-

pendence enforcement: Combining opportunistic forwarding with decoupled

verification. In Proceedings of the 33th Annual International Symposium on

Computer Architecture, pages 142–154, June 2006.

[62] Maria Jesus Garzaran, Milos Prvulovic, Jose Maria Llaberia, Victor Vinals,

Lawrence Rauchwerger, and Josep Torrellas. Tradeoffs in buffering memory

state for thread-level speculation in multiprocessors. In Proceedings of the

Ninth International Symposium on High Performance Computer Architecture,

pages 191–202, February 2003.

[63] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning cache.

In Proceedings of the Fourth International Symposium on High Performance

Computer Architecture, pages 195–206, January 1998.

[64] Masahiro Goshima, Kengo Nishino, Toshiaki Kitamura, Yasuhiko Nakashima,

Shinji Tomita, and Shin-Ichiro Mori. A high-speed dynamic instruction

scheduling scheme for superscalar processors. In Proceedings of the 34th An-

nual ACM/IEEE International Symposium on Microarchitecture, pages 225–

236, December 2001.

219

[65] Paul Gratz, Changkyu Kim, Robert McDonald, Stephen W. Keckler, and

Doug Burger. Implementation and Evaluation of On-Chip Network Architec-

tures. In Proceedings of the 2006 IEEE International Conference on Computer

Design, October 2006.

[66] Paul Gratz, Karthikeyan Sankaralingam, Heather Hanson, Premkishore Shiv-

akumar, Robert McDonald, Stephen W. Keckler, and Doug Burger. Implemen-

tation and Evaluation of Dynamically Routed Processor Operand Network. In

To Appear in the 1st ACM/IEEE International Symposium on Networks-on-

Chip, May 2007.

[67] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation sup-

port for a chip multiprocessor. In Proceedings of the 8th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 58–69, October 1998.

[68] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.

Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos

Kozyrakis, and Kunle Olukotun. Transactional memory coherence and consis-

tency. In Proceedings of the 31st Annual International Symposium on Com-

puter Architecture, pages 102–113, June 2004.

[69] Allan Hartstein and Thomas R. Puzak. Optimum power/performance pipeline

depth. In Proceedings of the 36th Annual ACM/IEEE International Sympo-

sium on Microarchitecture, pages 117–128, December 2003.

[70] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers Inc., fourth edition, 2006.

[71] John L. Henning. SPEC CPU2000: Measuring CPU Performance in the New

Millennium. IEEE Computer, 33(7):28–35, July 2000.

220

[72] Dana S. Henry, Bradley C. Kuszmaul, Gabriel H. Loh, and Rahul Sami. Cir-

cuits for wide-window superscalar processors. In Proceedings of the 27th An-

nual International Symposium on Computer Architecture, pages 236–247, June

2000.

[73] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel. The microarchitecture of the Pentium 4 processor.

Intel Technology Journal, 1, February 2001.

[74] M.S. Hrishikesh, Keith Farkas, Norman P. Jouppi, Doug Burger, Stephen W.

Keckler, and Premkishore Sivakumar. The optimal logic depth per pipeline

stage is 6 to 8 FO4 inverter delays. In Proceedings of the 29th Annual Inter-

national Symposium on Computer Architecture, pages 14–24, May 2002.

[75] Michael Huang, Jose Renau, and Josep Torrellas. Energy-efficient hybrid

wakeup logic. In Proceedings of the 2002 International Symposium on Low

Power Electronics and Design, pages 196–201, August 2002.

[76] Jerry Huck, Dale Morris, Jonathan Ross, Allan Knies, Hans Mulder, and

Rumi Zahir. Introducing the IA-64 architecture. IEEE Micro, 20(5):12–23,

September/October 2000.

[77] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,

Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank,

Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The

superblock: An effective technique for VLIW and superscalar compilation.

Journal of Supercomputing, 7(1-2):229–248, 1993.

[78] Daniel A. Jimenez, Stephen W. Keckler, and Calvin Lin. The impact of de-

lay on the design of branch predictors. In Proceedings of the 33rd annual

221

ACM/IEEE International Symposium on Microarchitecture, pages 67–76, De-

cember 2000.

[79] R.E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36,

March/April 1999.

[80] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-

uniform cache structure for wire-delay dominated on-chip caches. In Proceed-

ings of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 211–222, October 2002.

[81] Ilhyun Kim and Mikko H. Lipasti. Half-price architecture. In Proceedings of

the 30th Annual International Symposium on Computer Architecture, pages

28–38, June 2003.

[82] Nam Sung Kim and Trevor Mudge. Reducing register ports using delayed

write-back queues and operand pre-fetch. In Proceedings of the 17th Annual

International Conference on Supercomputing, pages 172–182, June 2003.

[83] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian

Pharris, Jared Casper, and Krste Asanovic. The vector-thread architecture.

In Proceedings of the 31st Annual International Symposium on Computer Ar-

chitecture, pages 52–63, June 2004.

[84] Kevin Krewell. Sun’s Niagara pours on the cores. Microprocessor Report,

18(9):11–13, September 2004.

[85] Kevin Krewell. Intel looks to Core for success. Microprocessor Report, March

2006.

[86] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor architec-

ture with speculative multithreading. IEEE Transactions on Computers,

48(9):866–880, 1999.

222

[87] Gurhan Kucuk, Kanad Ghose, Dimitry V. Ponomarev, and Peter M. Kogge.

Energy-efficient instruction dispatch buffer design for superscalar processors.

In Proceedings of the 2001 International Symposium on Low Power Electronics

and Design, pages 237–242, August 2001.

[88] Alvin R. Lebeck, Jinson Koppanalil, Tong Li, Jaidev Patwardhan, and Eric

Rotenberg. A large, fast instruction window for tolerating cache misses. In

Proceedings of the 29th Annual International Symposium on Computer Archi-

tecture, pages 59–70, June 2002.

[89] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna,

Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe. Space-time schedul-

ing of instruction-level parallelism on a RAW machine. In Proceedings of the

8th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 46–57, October 1998.

[90] Chi-Keung Luk. Tolerating memory latency through software-controlled pre-

execution on simultaneous multithreading processors. In Proceedings of the

28th Annual International Symposium on Computer Architecture, pages 40–

51, June 2001.

[91] Bertrand A. Maher, Aaron Smith, Doug Burger, and Kathryn S. McKinley.

Merging head and tail duplication for convergent hyperblock formation. In

Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 65–76, December 2006.

[92] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and

Roger A. Bringmann. Effective compiler support for predicated execution

using the hyperblock. In Proceedings of the 25th Annual International Sym-

posium on Microarchitecture, pages 45–54, December 1992.

223

[93] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark

Horowitz. Smart Memories: A modular reconfigurable architecture. In Pro-

ceedings of the 27th Annual International Symposium on Computer Architec-

ture, pages 161–171, June 2000.

[94] Jose F. Martinez, Jose Renau, Michael C. Huang, Milos Prvulovic, and Josep

Torrellas. Cherry: Checkpointed early resource recycling in out-of-order mi-

croprocessors. In Proceedings of the 35th Annual ACM/IEEE International

Symposium on Microarchitecture, pages 3–14, November 2002.

[95] R. McDonald, Doug Burger, Stephen W. Keckler, K. Sankaralingam, and

R. Nagarajan. TRIPS Processor Reference Manual. Technical report, De-

partment of Computer Sciences, The University of Texas at Austin, 2005.

http://www.cs.utexas.edu/∼trips.

[96] Cameron McNairy and Don Soltis. Itanium 2 processor microarchitecture.

IEEE Micro, 23(2):44–55, March/April 2003.

[97] Stephen Melvin and Yale Patt. Enhancing instruction scheduling with a block-

structured ISA. International Journal of Parallel Programming, 23(3):221–

243, 1995.

[98] Stephen W. Melvin, Michael Shebanow, and Yale N. Patt. Hardware support

for large atomic units in dynamically scheduled machines. In Proceedings of

the 21st Annual Workshop and Symposium on Microprogramming and Mi-

croarchitecture, pages 60–63, November 1988.

[99] Pierre Michaud and Andre Seznec. Data-flow prescheduling for large instruc-

tion windows in out-of-order processors. In Proceedings of the Seventh In-

ternational Symposium on High Performance Computer Architecture, pages

27–36, January 2001.

224

http://www.cs.utexas.edu/~trips

[100] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,

Mihai Budiu, and Seth C. Goldstein. Tartan: Evaluating spatial computation

for whole program execution. In Proceedings of the 12th International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 163–174, October 2006.

[101] Teresa Monreal, Antonio Gonzalez, Mateo Valero, Jose Gonzalez, and Victor

Vinals. Delaying physical register allocation through virtual-physical registers.

In Proceedings of the 32nd Annual ACM/IEEE International Symposium on

Microarchitecture, pages 186–192, November 1999.

[102] Charles Moore. Keynote Talk: Managing the Transition from Complexity

to Elegance, 2003 International Workshop on Complexity-Effective Design.

http://www.ece.rochester.edu/∼albonesi/wced03/slides/moore.pdf.

[103] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8):114–117, April 1965.

[104] Enric Morancho, Jose Maria Llaberia, and Angel Olive. Recovery mechanism

for latency misprediction. In Proceedings of the 10th International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 118–128,

September 2001.

[105] Andreas Moshovos, Scott E. Breach, T. N. Vijaykumar, and Gurindar S. Sohi.

Dynamic speculation and synchronization of data dependences. In Proceedings

of the 24th Annual International Symposium on Computer Architecture, pages

181–193, June 1997.

[106] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead

execution: An alternative to very large instruction windows for out-of-order

225

http://www.ece.rochester.edu/~albonesi/wced03/slides/moore.pdf

processors. In Proceedings of the Ninth International Symposium on High

Performance Computer Architecture, pages 129–140, February 2003.

[107] Ramadass Nagarajan, Xia Chen, Robert G. McDonald, Doug Burger, and

Stephen W. Keckler. Critical path analysis of the TRIPS architecture. In Pro-

ceedings of the 2006 IEEE International Symposium on Performance Analysis

of Systems and Software, pages 37–47, March 2006.

[108] Ramadass Nagarajan, Sundeep K. Kushwaha, Doug Burger, Kathryn S.

McKinley, Calvin Lin, and Stephen W. Keckler. Static Placement, Dynamic Is-

sue (SPDI) Scheduling for EDGE Architectures. In Proceedings of the 13th In-

ternational Conference on Parallel Architecture and Compilation Techniques,

pages 74–84, October 2004.

[109] Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and

Stephen W. Keckler. A design space evaluation of grid processor architectures.

In Proceedings of the 34th Annual ACM/IEEE International Symposium on

Microarchitecture, pages 40–51, December 2001.

[110] A. Nicolau and J. Fisher. Measuring the parallelism available for very

long word architectures. IEEE Transactions on Computers, 33(11):968–974,

November 1984.

[111] John Oliver, Ravishankar Rao, Paul Sultana, Jedidiah R. Crandall, Erik Cz-

ernikowski, Leslie W. Jones IV, Diana Franklin, Venkatesh Akella, and Fred-

eric T. Chong. Synchroscalar: A multiple clock domain, power-aware, tile-

based embedded processor. In Proceedings of the 31st Annual International

Symposium on Computer Architecture, pages 150–161, June 2004.

[112] S. Onder and R. Gupta. Superscalar execution with direct data forwarding.

226

In Proceedings of the 1998 International Conference on Parallel Architectures

and Compilation Techniques, pages 130–135, October 1998.

[113] Chong-Liang Ooi, Seon Wook Kim, Il Park, Rudolf Eigenmann, Babak Falsafi,

and T. N. Vijaykumar. Multiplex: Unifying conventional and speculative

thread-level parallelism on a chip multiprocessor. In Proceedings of the 15th

International Conference on Supercomputing, pages 368–380, June 2001.

[114] Jeffrey T. Oplinger, David L. Heine, and Monica S. Lam. In search of specu-

lative thread-level parallelism. In Proceedings of the 1999 International Con-

ference on Parallel Architectures and Compilation Techniques, pages 303–312,

October 1999.

[115] Subbarao Palacharla. Complexity-Effective Superscalar Processors. PhD the-

sis, Department of Computer Sciences, University Of Wisconsin Madison,

1998.

[116] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Complexity-

effective superscalar processors. In Proceedings of the 24th Annual Interna-

tional Symposium on Computer Archtecture, pages 206–218, June 1997.

[117] David B. Papworth. Tuning the Pentium Pro microarchitecture. IEEE Micro,

16(2):8–15, 1996.

[118] Il Park, Michael D. Powell, and T. N. Vijaykumar. Reducing register ports for

higher speed and lower energy. In Proceedings of the 35th Annual ACM/IEEE

International Symposium on Microarchitecture, pages 171–182, November

2002.

[119] Alex Peleg and Uri Weiser. MMX Technology Extension to the Intel Archi-

tecture. IEEE Micro, 16(4):42–50, 1996.

227

[120] Andrew Petersen, Andrew Putnam, Martha Mercaldi, Andrew Schwerin, Su-

san Eggers, Steve Swanson, and Mark Oskin. Reducing control overhead in

dataflow architectures. In Proceedings of the 15th International Conference on

Parallel Architectures and Compilation Techniques, pages 182–191, September

2006.

[121] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,

M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki,

and K. Yazawa. The design and implementation of a first-generation CELL

processor. In International Solid-State Circuits Conference, pages 184–185,

February 2005.

[122] Zachary Purser, Karthik Sundaramoorthy, and Eric Rotenberg. A study of

slipstream processors. In Proceedings of the 33rd Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, pages 269–280, December 2000.

[123] Steven E. Raasch, Nathan L. Binkert, and Steven K. Reinhardt. A scalable

instruction queue design using dependence chains. In Proceedings of the 29th

Annual International Symposium on Computer Architecture, pages 318–329,

May 2002.

[124] Ryan Rakvic, Bryan Black, Deepak Limaye, and John Paul Shen. Non-vital

loads. In Proceedings of the Eighth International Symposium on High Perfor-

mance Computer Architecture, pages 165–174, February 2002.

[125] Nitya Ranganathan. Control flow speculation for distributed architectures,

Ph.D proposal, April 2007.

[126] Nitya Ranganathan, Ramadass Nagarajan, Daniel A. Jimenez, Doug Burger,

Stephen W. Keckler, and Calvin Lin. Combining hyperblocks and exit predic-

228

tion to increase front-end bandwidth and performance. Technical Report TR-

02-41, Department of Computer Sciences, The University of Texas at Austin,

September 2002.

[127] B. Ramakrishna Rau. Dynamically scheduled VLIW processors. In Proceed-

ings of the 26th Annual International Symposium on Microarchitecture, pages

80–92, November 1993.

[128] Glenn Reinman, Todd M. Austin, and Brad Calder. A scalable front-end

architecture for fast instruction delivery. In Proceedings of 26th Annual Inter-

national Symposium on Computer Architecture, pages 234–245, May 1999.

[129] E.M. Riseman and C.C. Foster. The inhibition of potential parallelism by

conditional jumps. IEEE Transactions on Computers, 21(12):1405–1411, De-

cember 1972.

[130] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors.

In Proceedings of the 30th Annual ACM/IEEE International Symposium on

Microarchitecture, pages 138–148, December 1997.

[131] Amir Roth and Gurindar S. Sohi. Speculative data-driven multithreading.

In Proceedings of the Seventh International Symposium on High Performance

Computer Architecture, pages 37–50, January 2001.

[132] Karthikeyan Sankaralingam. Polymorphous Architectures: A Unified Ap-

proach for Extracting Concurrency of Different Granularities. PhD thesis,

The University of Texas at Austin, Department of Computer Sciences, Octo-

ber 2006.

[133] Karthikeyan Sankaralingam, Stephen W. Keckler, William R. Mark, and Doug

Burger. Universal mechanisms for data-parallel architectures. In Proceedings

229

of the 36th Annual International Symposium on Microarchitecture, pages 303–

314, December 2003.

[134] Karthikeyan Sankaralingam, Ramadass Nagarajan, Doug Burger, and

Stephen W. Keckler. A technology-scalable architecture for fast clocks and

high ILP. In Gyungho Lee and Pen-Chung Yew, editors, Interaction between

Compilers and Computer Architectures, volume 619 of The International Se-

ries in Engineering and Computer Science, pages 117–139. Kluwer Academic

Publishers, 2001.

[135] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu

Kim, Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore.

Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.

In Proceedings of the 30th Annual International Symposium on Computer Ar-

chitecture, pages 422–433, June 2003.

[136] Karthikeyan Sankaralingam, Ramadass Nagarajan, Robert McDonald, Ra-

jagopalan Desikan, Saurabh Drolia, M.S. Govindan, Paul Gratz, Divya Gulati,

Heather Hanson, Changkyu Kim, Haiming Liu, Nitya Ranganathan, Simha

Sethumadhavan, Sadia Sharif, Premkishore Shivakumar, Stephen W. Keckler,

and Doug Burger. Distributed microarchitectural protocols in the TRIPS pro-

totype processor. In Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 480–491, December 2006.

[137] Karthikeyan Sankaralingam, Vincent Ajay Singh, Stephen W. Keckler, and

Doug Burger. Routed inter-ALU networks for ILP scalability and performance.

In Proceedings of the 2003 IEEE International Conference on Computer De-

sign, pages 170–179, October 2003.

[138] John S. Seng, Eric S. Tune, and Dean M. Tullsen. Reducing power with dy-

namic critical path information. In Proceedings of the 34th Annual ACM/IEEE

230

International Symposium on Microarchitecture, pages 114–123, December

2001.

[139] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.

Moore, and Stephen W. Keckler. Scalable memory disambiguation for high

ILP processors. In Proceedings of the 36th Annual ACM/IEEE International

Symposium on Microarchitecture, pages 399–410, December 2003.

[140] Simha Sethumadhavan, Robert McDonald Rajagopalan Desikan, Doug

Burger, and Stephen W. Keckler. Design and implementation of the TRIPS

primary memory system. In Proceedings of the 2006 IEEE International Con-

ference on Computer Design, 2006.

[141] Simha Sethumadhavan, Franziska Roesner, Doug Burger, Stephen W. Keckler,

and Joel Emer. Late-binding: Enabling unordered load-store queues. In To

Appear in the 34th International Symposium on Computer Architecture, June

2007.

[142] Andre Seznec, Eric Toullec, and Olivier Rochecouste. Register write special-

ization register read specialization: A path to complexity-effective wide-issue

superscalar processors. In Proceedings of the 35th Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, pages 383–394, November 2002.

[143] Tingting Sha, Milo M. K. Martin, and Amir Roth. Scalable store-load forward-

ing via store queue index prediction. In Proceedings of the 38th Annual Inter-

national Symposium on Microarchitecture, pages 159–170, November 2005.

[144] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution

analysis to find periodic behavior and simulation points in applications. In

Proceedings of the 10th International Conference on Parallel Architectures and

Compilation Techniques, pages 3–14, September 2001.

231

[145] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Au-

tomatically characterizing large scale program behavior. In Proceedings of

the 10th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 45–57, October 2002.

[146] Vincent Ajay Singh, Karthikeyan Sankaralingam, Stephen W. Keckler, and

Doug Burger. Design and Analysis of Routed Inter-ALU Networks for ILP

Scalability and Performance. Technical Report TR2003-17, Department of

Computer Sciences, The University of Texas at Austin, July 2003.

[147] Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Maher, Nick Nethercote, Bill

Yoder, Doug Burger, and Kathryn S. McKinley. Compiling for EDGE archi-

tectures. In Fourth International ACM/IEEE Symposium on Code Generation

and Optimization (CGO), pages 185–195, March 2006.

[148] Aaron Smith, Jon Gibson, Jim Burrill, Robert McDonald, Doug Burger,

Stephen W. Keckler, and Kathryn S. McKinley. TRIPS intermediate lan-

guage (TIL) manual. Technical Report TR-05-20, Department of Computer

Sciences, The University of Texas at Austin, March 2005.

[149] Aaron Smith, Ramadass Nagarajan, Karthikeyan Sankaralingam, Robert

McDonald, Doug Burger, Stephen W. Keckler, and Kathryn S. McKinley.

Dataflow predication. In Proceedings of the 39th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 89–100, December 2006.

[150] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors.

Proceedings of the IEEE, 83(12):1609–1624, December 1995.

[151] G. Sohi and S. Vajapeyam. Instruction issue logic for high-performance, inter-

ruptible pipelined processors. In Proceedings of the 14th Annual International

Symposium on Computer Architecture, pages 27–34, June 1987.

232

[152] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar pro-

cessors. In Proceedings of the 22nd Annual International Symposium on Com-

puter Architecture, pages 414–425, June 1995.

[153] Gurindar S. Sohi and Amir Roth. Speculative multithreaded processors. Com-

puter, 34(4):66–73, 2001.

[154] Srikanth T. Srinivasan, Roy Dz ching Ju, Alvin R. Lebeck, and Chris Wilker-

son. Locality vs. criticality. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 132–143, July 2001.

[155] Srikanth T. Srinivasan and Alvin R. Lebeck. Load latency tolerance in dynam-

ically scheduled processors. In Proceedings of the 31st Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, pages 148–159, November 1998.

[156] Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, and

Mike Upton. Continual flow pipelines. In Proceedings of the 11th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems, pages 107–119, October 2004.

[157] Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose, Victor

Zyuban, Philip N. Strenski, and Philip G. Emma. Optimizing pipelines for

power and performance. In Proceedings of the 35th Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, pages 333–344, November 2002.

[158] Jared Stark, Mary D. Brown, and Yale N. Patt. On pipelining dynamic in-

struction scheduling logic. In Proceedings of the 33rd Annual ACM/IEEE

International Symposium on Microarchitecture, pages 57–66, December 2000.

[159] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C.

Mowry. A scalable approach to thread-level speculation. In Proceedings of the

233

27th Annual International Symposium on Computer Architecture, pages 1–12,

June 2000.

[160] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry.

The STAMPede approach to thread-level speculation. ACM Transactions on

Computer Systems, 23(3):253–300, 2005.

[161] Samantika Subramaniam and Gabriel H. Loh. Fire-and-forget: Load/store

scheduling with no store queue at all. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 273–284,

December 2006.

[162] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Pro-

ceedings of the 36th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 291–302, December 2003.

[163] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Gho-

drat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Wal-

ter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker

Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. The RAW

microprocessor: A computational fabric for software circuits and general-

purpose programs. IEEE Micro, 22(2):25–35, 2002.

[164] Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agar-

wal. Scalar operand networks: On-chip interconnect for ILP in partitioned

architectures. In Proceedings of the Ninth International Symposium on High

Performance Computer Architecture, pages 341–353, February 2003.

[165] J. E. Thornton. Parallel Operation in the Control Data 6600. In AFIPS

Conference Proceedings, 1964 Fall Joint Computer Conference, pages 33–41,

1964.

234

[166] G.S. Tjaden and M.J. Flynn. Detection and parallel execution of indepen-

dent instructions. IEEE Transactions on Computers, 19(10):889–895, October

1970.

[167] Marc Tremblay. Multithreaded multicores, an update from Sun. General-

Purpose GPU Computing: Practice And Experience, Supercomputing 2006

Workshop. http://www.gpgpu.org/sc2006/workshop/presentations/

Tremblay SC06.pdf.

[168] Jessica H. Tseng and Krste Asanovic. Banked multiported register files for

high-frequency superscalar microprocessors. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, pages 62–71, June 2003.

[169] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:

Maximizing on-chip parallelism. In Proceedings of the 22nd Annual Interna-

tional Symposium on Computer Architecture, pages 392–403, June 1995.

[170] Eric Tune, Dongning Liang, Dean M. Tullsen, and Brad Calder. Dynamic

prediction of critical path instructions. In Proceedings of the Seventh In-

ternational Symposium on High Performance Computer Architecture, pages

185–195, January 2001.

[171] Eric Tune, Dean M. Tullsen, and Brad Calder. Quantifying instruction criti-

cality. In Proceedings of the 11th International Conference on Parallel Archi-

tectures and Compilation Techniques, pages 104–113, September 2002.

[172] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-

ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to

software: RAW machines. IEEE Computer, 30(9):86–93, September 1997.

235

[173] David W. Wall. Limits of instruction-level parallelism. In Proceedings of

the 4th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 176–188, April 1991.

[174] Steven Wallace and Nader Bagherzadeh. A scalable register file architecture for

dynamically scheduled processors. In Proceedings of the 1996 Conference on

Parallel Architectures and Compilation Techniques, pages 179–185, October

1996.

[175] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch prediction.

In Proceedings of the 25th Annual International Symposium on Microarchitec-

ture, pages 51–61, 1991.

[176] Robert Yung and Neil C. Wilhelm. Caching processor general registers. In

Proceedings of the 1995 IEEE International Conference on Computer Design,

pages 307–312, October 1995.

[177] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative paral-

lelization of partially-parallel loops in DSM multiprocessors. In Proceedings of

the Fifth International Symposium on High Performance Computer Architec-

ture, pages 135–141, January 1999.

[178] Huiyang Zhou. Dual-core execution: Building a highly scalable single-thread

instruction window. In Proceedings of the 14th International Conference on

Parallel Architectures and Compilation Techniques, pages 231–242, October

2005.

[179] Craig Zilles and Gurindar Sohi. Execution-based prediction using specula-

tive slices. In Proceedings of the 28th Annual International Symposium on

Computer Architecture, pages 2–13, June 2001.

236

[180] Craig Zilles and Gurindar Sohi. Master/slave speculative parallelization. In

Proceedings of the 34th Annual ACM/IEEE International Symposium on Mi-

croarchitecture, pages 85–96, December 2001.

237

Vita

Ramadass Nagarajan was born in Neyveli, India, on October 9, 1977, the son of N.

Jayam and V. Nagarajan. He graduated from the Jawahar Higher Secondary School

in 1995 and subsequently enrolled at the Indian Institute of Technology, Madras,

where he earned the Bachelor of Technology in Computer Sciences and Engineering.

In the fall of 1999, he joined the doctoral program at the Department of Computer

Sciences at the University of Texas at Austin. While pursuing his Ph.D degree, he

obtained the degree of Master of Science in Computer Sciences in December, 2001.

Permanent Address: Flat G-2, Subasri Athreya,

55, Bhuvaneshwari Nagar, Chromepet,

Chennai - 600044, India.

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

238

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Exploiting Concurrency
	1.2 TRIPS: An EDGE Architecture
	1.3 Thesis Statement
	1.4 Dissertation Contributions
	1.5 Dissertation Layout

	Chapter 2 Related Work
	2.1 Extending Superscalar Scalability
	2.1.1 Issue Logic
	2.1.2 Register File
	2.1.3 Load-Store Queues
	2.1.4 Bypass Networks
	2.1.5 Other Scaling Techniques
	2.1.6 Discussion

	2.2 Static Scheduling of ILP
	2.3 ILP from Chip Multiprocessors
	2.3.1 Thread-Level Speculation
	2.3.2 Pre-computation
	2.3.3 Discussion

	2.4 Extracting Concurrency through Tiling
	2.4.1 The RAW Architecture
	2.4.2 WaveScalar
	2.4.3 Spatial Computation
	2.4.4 Other Tiled Architectures
	2.4.5 Discussion

	2.5 Summary

	Chapter 3 TRIPS: An EDGE Architecture
	3.1 EDGE Architectures
	3.1.1 Advantages of EDGE Architectures:
	3.1.2 Discussion
	3.1.3 Implementation Choices

	3.2 The TRIPS Architecture
	3.2.1 TRIPS ISA
	3.2.2 Distributed Microarchitecture
	3.2.3 Discussion

	3.3 Compiling for TRIPS
	3.3.1 Scale Framework
	3.3.2 Hyperblock Formation
	3.3.3 Predication
	3.3.4 Register Allocation
	3.3.5 Instruction Scheduling

	3.4 Design Alternatives
	3.4.1 What to Distribute
	3.4.2 How to Distribute
	3.4.3 How to Connect
	3.4.4 Design Parameters

	3.5 Summary

	Chapter 4 The TRIPS Prototype Implementation
	4.1 The TRIPS Prototype ISA
	4.2 TRIPS Prototype Microarchitecture
	4.2.1 Processor Tiles and Networks
	4.2.2 Secondary Memory System
	4.2.3 On-Chip Controllers
	4.2.4 TRIPS Chip Implementation

	4.3 Development Effort
	4.3.1 Overall Effort
	4.3.2 My Contributions

	4.4 Block Control
	4.4.1 GT Implementation
	4.4.2 Block Operations
	4.4.3 Discussion

	4.5 Performance Validation
	4.5.1 Validation Phases
	4.5.2 Discussion

	4.6 Summary

	Chapter 5 Evaluation Methodology
	5.1 Benchmarks
	5.2 Compilation
	5.3 Hand Optimization
	5.3.1 Instruction Merging
	5.3.2 Predicate Combining
	5.3.3 -merging
	5.3.4 Other Optimizations
	5.3.5 Performance Improvements

	5.4 Simulators
	5.4.1 TRIPS Simulation
	5.4.2 Alpha Simulation
	5.4.3 Reducing Simulation Time

	5.5 Critical Path Analysis
	5.5.1 Prior Critical Path Models
	5.5.2 TRIPS Critical Path Model
	5.5.3 Critical Path Framework
	5.5.4 Results
	5.5.5 Algorithm Performance
	5.5.6 Speed of the Critical Path Framework
	5.5.7 Discussion

	5.6 Summary

	Chapter 6 Experimental Results
	6.1 Performance of the TRIPS Architecture
	6.1.1 TRIPS Hardware Results
	6.1.2 Instruction Throughput
	6.1.3 Instruction Window Utilization
	6.1.4 Discussion

	6.2 TRIPS ILP Extraction
	6.2.1 Dataflow Limit
	6.2.2 Effect of L2 misses
	6.2.3 Effect of Other Constraints
	6.2.4 Discussion

	6.3 Where Do Execution Cycles Go?
	6.3.1 Critical Path Components
	6.3.2 Instruction Supply
	6.3.3 Data Supply
	6.3.4 ALU Execution
	6.3.5 Operand Communication
	6.3.6 Distributed Protocols
	6.3.7 Operand Fanout
	6.3.8 Discussion

	6.4 Summary

	Chapter 7 Conclusions
	7.1 Dissertation Contributions
	7.2 Performance of the TRIPS Architecture
	7.3 Improving the TRIPS architecture
	7.4 Concluding Thoughts

	Appendix A Comparing tsim-proc and the TRIPS Hardware
	Appendix B Improving Performance Using Critical Path Analysis
	Appendix C Front-End Performance in the TRIPS Architecture
	Bibliography
	Vita

