PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Cho-Jui Hsieh

Department of Computer Science University of Texas at Austin

Joint work with H.-F. Yu and I. S. Dhillon

Outline

- L2-regularized Empirical Risk Minimization
- Dual Coordinate Descent (Hsieh et al., 2008)
- Parallel Dual Coordinate Descent (on multi-core machines)
- Theoretical Analysis
- Experimental Results

L2-regularized ERM

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}\in R^d} P(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i(\boldsymbol{w}^T \boldsymbol{x}_i)$$

- SVM with hinge loss: $\ell_i(z_i) = C \max(1 z_i, 0)$
- SVM with squared hinge loss: $\ell_i(z_i) = C \max (1 z_i, 0)^2$
- Logistic regression: $\ell_i(z_i) = C \log (1 + e^{-z_i})$

Primal and Dual Formulations

• Primal Problem

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}\in R^d} P(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i(\boldsymbol{w}^T \boldsymbol{x}_i)$$

Dual Problem

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha}\in R^n} D(\boldsymbol{\alpha}) := \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i \boldsymbol{x}_i \right\|^2 + \sum_{i=1}^n \ell_i^*(-\alpha_i),$$

- $\ell_i^*(\cdot)$: the conjugate of $\ell_i(\cdot)$
- Primal-Dual Relationship between $oldsymbol{w}^*$ and $oldsymbol{lpha}^*$

$$\boldsymbol{w}^* = \boldsymbol{w}(\boldsymbol{\alpha}^*) := \sum_{i=1}^n \alpha_i^* \boldsymbol{x}_i$$

Coordinate Descent on the Dual Problem

Randomly select an $i \in \{1, ..., n\}$ and update $\alpha_i \leftarrow \alpha_i + \delta^*$, where

$$\delta^* = rg \min_{\delta} \ D(oldsymbol lpha + \delta oldsymbol e_i)$$

Coordinate Descent on the Dual Problem

Randomly select an $i \in \{1, \dots, n\}$ and update $\alpha_i \leftarrow \alpha_i + \delta^*$, where

$$\delta^* = \arg\min_{\delta} D(\alpha + \delta \boldsymbol{e}_i)$$

= $\arg\min_{\delta} \frac{1}{2} \left(\delta + \frac{\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i\right)^T \boldsymbol{x}_i}{\|\boldsymbol{x}_i\|^2} \right)^2 + \frac{1}{\|\boldsymbol{x}_i\|^2} \ell_i^* \left(-(\alpha_i + \delta) \right)$
= $T_i \left(\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i \right)^T \boldsymbol{x}_i, \alpha_i \right)$

• Simple univariate problem, but O(nnz) construction time

Coordinate Descent on the Dual Problem

Randomly select an $i \in \{1, ..., n\}$ and update $\alpha_i \leftarrow \alpha_i + \delta^*$, where

$$\delta^* = \arg\min_{\delta} D(\alpha + \delta \boldsymbol{e}_i)$$

= $\arg\min_{\delta} \frac{1}{2} \left(\delta + \frac{\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i\right)^T \boldsymbol{x}_i}{\|\boldsymbol{x}_i\|^2} \right)^2 + \frac{1}{\|\boldsymbol{x}_i\|^2} \ell_i^* \left(-(\alpha_i + \delta) \right)$
= $T_i \left(\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i \right)^T \boldsymbol{x}_i, \alpha_i \right)$

• Simple univariate problem, but O(nnz) construction time $\Rightarrow O(n_i)$

DCD: [Hsieh et al 2008]

- Maintain primal variable $\boldsymbol{w} = \sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i$ and $\delta^* = T_i \left(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i \right)$
- $O(n_i)$ construction time: $n_i = nnz$ of \mathbf{x}_i
- $O(n_i)$ maintenance cost: $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$

Stochastic Dual Coordinate Descent

For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$.

• Implemented in LIBLINEAR:

Linear SVM (Hsieh et al., 2008), multi-class SVM (Keerthi et al., 2008), Logistic regression (Yu et al., 2011).

• Analysis: (Nesterov et al., 2012; Shalev-Shwartz et al., 2013)

• Serial DCD updates:

For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(4)** Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$.

• Parallel DCD updates:

Each thread repeatedly performs the following updates. For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **(3)** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(4)** Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$.

• Parallel DCD updates:

Each thread repeatedly performs the following updates. For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **(3)** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(a)** Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$.
 - Easy to implement using OpenMP.
 - Variables α and w stored in shared memory.

• Parallel DCD updates:

Each thread repeatedly performs the following updates. For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **(3)** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(4)** Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$.
 - Easy to implement using OpenMP.
 - Variables α and \pmb{w} stored in shared memory.
 - Distributed Dual Coordinate Descent:
 - Each machine has local copy of ${m lpha}, {m w}$

(Yang, 2013; Jaggi et al, 2014; Lee and Roth, 2015; Ma et al., 2015).

Parallel Dual Coordinate Descent: Two Issues for Correctness

< ∃ >

Conflict Write

- Thread 1 and 2 write to *w* simultaneously.
- Updates to *w* can be overwritten, so the converged solution *ŵ* and *â* may be inconsistent:

$$\hat{\boldsymbol{w}}\neq\sum_{i}\hat{\alpha}_{i}\boldsymbol{x}_{i}.$$

CPU1:				CPU2:	
w = w + 0.2				w = w + 0.5	
	OP	R1	w	OP	R2
0		0.0	1.0		0.0
1	load w	1.0	1.0	load w	1.0
2	add 0.2	1.2	1.0	add 0.5	1.5
3	save w	1.2	1.2		1.5
4		1.2	1.5	save w	1.5

Dual Coordinate Descent in Parallel

Cho-Jui Hsieh (UT Austin)

PASSCoDe

July 7, 2015 15 / 29

Dual Coordinate Descent in Parallel

Cho-Jui Hsieh (UT Austin)

July 7, 2015 15 / 29

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

Cho-Jui Hsieh (UT Austin)

PASSCoDe

PASSCoDe-Lock

Each thread repeatedly performs the following updates. For $t = 1, 2, \ldots$

- Randomly pick an index i
- **2** Lock $\{w_j \mid (x_i)_j \neq 0\}$
- **3** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **9** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(a)** Update $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$.
- **O** Unlock the variables.

How to Resolve the Issues

Three PASSCoDe approaches:

• lock: acquire locks for all necessary w_i before the update

	inconsistent read	conflict write
PASSCoDe-Lock	resolved	resolved

Scaling (on rcv1 with 100 epochs):

# threads	Lock
2	98.03s / 0.27x
4	106.11s / 0.25x
10	114.43s / 0.23x

PASSCoDe-Atomic

Each thread repeatedly performs the following updates. For $t = 1, 2, \ldots$

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- For each $j \in N(i)$
- Update $w_j \leftarrow w_j + \delta^*(\boldsymbol{x}_i)_j$ atomically

How to Resolve the Issues

Three *PASSCoDe* approaches:

- lock: acquire locks for all necessary w_i before the update
- **atomic**: apply atomic operation for $w_j = w_j + \delta^* x_{ij}$

	inconsistent read	conflict write
PASSCoDe-Lock	resolved	resolved
PASSCoDe-Atomic	remained	resolved

Scaling (on rcv1 with 100 epochs):

# threads	Lock	Atomic
2	98.03s / 0.27x	15.28s / 1.75x
4	106.11s / 0.25x	8.35s / 3.20x
10	114.43s / 0.23x	3.86s / 6.91x

- Atomic operations guarantee:
 - all updates to \boldsymbol{w} will be performed eventually
 - $\hat{\boldsymbol{w}} = \sum_{i=1}^{n} \hat{\alpha}_i \boldsymbol{x}_i$ holds for the outputted $(\hat{\boldsymbol{w}}, \hat{\boldsymbol{\alpha}})$
- Bounded delay assumption: to handle inconsistent read of w
 - all updates of \boldsymbol{w} before τ iterations must be performed

Theorem

Under certain conditions on τ , **PASSCoDe** – **Atomic** has global linear convergence rate in expectation:

$$E\left[D(lpha^{j+1}) - D(lpha^*)
ight] \leq \eta E\left[D(lpha^j) - D(lpha^*)
ight]$$

Our analysis covers logistic regression and SVM with hinge loss (where the dual problem is not strictly convex).

PASSCoDe-Wild

Each thread repeatedly performs the following updates. For $t = 1, 2, \ldots$

- Randomly pick an index i
- **2** Compute $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update $\alpha_i \leftarrow \alpha_i + \delta^*$ where $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$

How to Resolve the Issues

Three PASSCoDe approaches:

- lock: acquire locks for all necessary w_j before the update
- **atomic**: apply atomic operation for $w_j = w_j + \delta^* x_{ij}$
- wild: do nothing to resolve either issue

	inconsistent read	conflict write
PASSCoDe-Lock	resolved	resolved
PASSCoDe-Atomic	remained	resolved
PASSCoDe-Wild	remained	remained

Scaling (on rcv1 with 100 epochs):

$\# \ threads$	Lock	Atomic	Wild
2	98.03s / 0.27x	15.28s / 1.75x	14.08s / 1.90x
4	106.11s / 0.25x	8.35s / 3.20x	7.61s / 3.50x
10	114.43s / 0.23x	3.86s / 6.91×	3.59s / 7.43x

• Some updates are missing due to memory conflicts

• Which one for prediction, $\hat{\boldsymbol{w}}$ or $\bar{\boldsymbol{w}}$?

• for the final $(\hat{\pmb{w}}, \hat{\pmb{lpha}})$:			Prediction Accuracy (%) by			
n		$\# \ {\sf threads}$	ŵ	Ŵ	LIBLINEAR	
$\hat{\boldsymbol{w}} \neq \sum_{i=1}^{n} \hat{\alpha}_i \boldsymbol{x}_i$	nowc20	4	97.1	96.1	07.1	
$\sum_{i=1}^{\infty} \alpha_i \alpha_i$	news20	8	97.2	93.3	97.1	
• construct $\bar{\boldsymbol{w}}$ from the final $\hat{\boldsymbol{\alpha}}$: $\bar{\boldsymbol{w}} = \sum_{i=1}^{n} \hat{\alpha}_i \boldsymbol{x}_i$	coutupo	4	67.8	38.0	66.3	
	covtype	8	67.6	38.0	00.5	
	rcv1	4	97.7	97.5	07 7	
		8	97.7	97.4	51.1	
	webspam	4	99.1	93.1	00.1	
		8	99.1	88.4	99.1	
	kddb	4	88.8	79.7	88.8	
		8	88.8	87.7	00.0	

Question: why $\hat{\boldsymbol{w}}$ is better than $\bar{\boldsymbol{w}}$?

Backward Analysis for PASSCoDe-Wild

Recall the primal problem

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} P(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i \left(\boldsymbol{w}^T \boldsymbol{x}_i \right)$$

Theorem

Let ϵ be the error caused by the memory conflicts.

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \hat{P}(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w} + \boldsymbol{\epsilon}\|^2 + \sum_{i=1}^n \ell_i (\boldsymbol{w}^T \boldsymbol{x}_i)$$
$$\bar{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \bar{P}(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i \left((\boldsymbol{w} - \boldsymbol{\epsilon})^T \boldsymbol{x}_i \right)$$

\$\heta(w)\$ is the problem with the perturbation on the regularization term
\$\bar{P}(w)\$ is the problem with the perturbation on the prediction term

Datasets.

	п	ñ	d	ā	С
news20	16,000	3,996	1,355,191	455.5	2
rcv1	677,399	20,242	47,236	73.2	1
webspam	280,000	70,000	16,609,143	3727.7	1
kddb	19,264,097	748,401	29,890,095	29.4	1

Compared Implementation.

- LIBLINEAR: serial baseline
- PASSCoDe-Wild and PASSCoDe-Atomic: our methods
- CoCoA: a multi-core version of [Jaggi et al, 2014]
- AsySCD: [Liu & Wright, 2014]

Machine: Intel Multi-core machine with 256 GB Memory

Convergence in terms of Walltime

26 / 29
Accuracy

Speedup

Cho-Jui Hsieh (UT Austin)

PASSCoDe

July 7, 2015 28 / 29

- *PASSCoDe*: an simple but effective asynchronous dual coordinate descent
- Analysis three variants
 - PASSCoDe-Lock
 - PASSCoDe-Atomic: established global linear convergence
 - PASSCoDe-Wild: backward analysis
- Future work: extend the analysis to L1-regularized problems
 - LASSO
 - L1-regularized Logistic Regression