# PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Cho-Jui Hsieh

#### Department of Computer Science University of Texas at Austin

Joint work with H.-F. Yu and I. S. Dhillon

## Outline

- L2-regularized Empirical Risk Minimization
- Dual Coordinate Descent (Hsieh et al., 2008)
- Parallel Dual Coordinate Descent (on multi-core machines)
- Theoretical Analysis
- Experimental Results

## L2-regularized ERM

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}\in R^d} P(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i(\boldsymbol{w}^T \boldsymbol{x}_i)$$

- SVM with hinge loss:  $\ell_i(z_i) = C \max(1 z_i, 0)$
- SVM with squared hinge loss:  $\ell_i(z_i) = C \max (1 z_i, 0)^2$
- Logistic regression:  $\ell_i(z_i) = C \log (1 + e^{-z_i})$

## Primal and Dual Formulations

• Primal Problem

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}\in R^d} P(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i(\boldsymbol{w}^T \boldsymbol{x}_i)$$

Dual Problem

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha}\in R^n} D(\boldsymbol{\alpha}) := \frac{1}{2} \left\| \sum_{i=1}^n \alpha_i \boldsymbol{x}_i \right\|^2 + \sum_{i=1}^n \ell_i^*(-\alpha_i),$$

- $\ell_i^*(\cdot)$ : the conjugate of  $\ell_i(\cdot)$
- Primal-Dual Relationship between  $oldsymbol{w}^*$  and  $oldsymbol{lpha}^*$

$$\boldsymbol{w}^* = \boldsymbol{w}(\boldsymbol{\alpha}^*) := \sum_{i=1}^n \alpha_i^* \boldsymbol{x}_i$$

#### Coordinate Descent on the Dual Problem

Randomly select an  $i \in \{1, ..., n\}$  and update  $\alpha_i \leftarrow \alpha_i + \delta^*$ , where

$$\delta^* = rg \min_{\delta} \ D(oldsymbol lpha + \delta oldsymbol e_i)$$

#### Coordinate Descent on the Dual Problem

Randomly select an  $i \in \{1, \dots, n\}$  and update  $\alpha_i \leftarrow \alpha_i + \delta^*$ , where

$$\delta^* = \arg\min_{\delta} D(\alpha + \delta \boldsymbol{e}_i)$$
  
=  $\arg\min_{\delta} \frac{1}{2} \left( \delta + \frac{\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i\right)^T \boldsymbol{x}_i}{\|\boldsymbol{x}_i\|^2} \right)^2 + \frac{1}{\|\boldsymbol{x}_i\|^2} \ell_i^* \left( -(\alpha_i + \delta) \right)$   
=  $T_i \left( \left( \sum_{i=1}^n \alpha_i \boldsymbol{x}_i \right)^T \boldsymbol{x}_i, \alpha_i \right)$ 

• Simple univariate problem, but O(nnz) construction time

## Coordinate Descent on the Dual Problem

Randomly select an  $i \in \{1, ..., n\}$  and update  $\alpha_i \leftarrow \alpha_i + \delta^*$ , where

$$\delta^* = \arg\min_{\delta} D(\alpha + \delta \boldsymbol{e}_i)$$
  
=  $\arg\min_{\delta} \frac{1}{2} \left( \delta + \frac{\left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i\right)^T \boldsymbol{x}_i}{\|\boldsymbol{x}_i\|^2} \right)^2 + \frac{1}{\|\boldsymbol{x}_i\|^2} \ell_i^* \left( -(\alpha_i + \delta) \right)$   
=  $T_i \left( \left( \sum_{i=1}^n \alpha_i \boldsymbol{x}_i \right)^T \boldsymbol{x}_i, \alpha_i \right)$ 

• Simple univariate problem, but O(nnz) construction time  $\Rightarrow O(n_i)$ 

#### DCD: [Hsieh et al 2008]

- Maintain primal variable  $\boldsymbol{w} = \sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i$  and  $\delta^* = T_i \left( \boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i \right)$
- $O(n_i)$  construction time:  $n_i = nnz$  of  $\mathbf{x}_i$
- $O(n_i)$  maintenance cost:  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$

#### Stochastic Dual Coordinate Descent

For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- Update  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$ .

#### • Implemented in LIBLINEAR:

Linear SVM (Hsieh et al., 2008), multi-class SVM (Keerthi et al., 2008), Logistic regression (Yu et al., 2011).

• Analysis: (Nesterov et al., 2012; Shalev-Shwartz et al., 2013)



• Serial DCD updates:

For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(4)** Update  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$ .

• Parallel DCD updates:

Each thread repeatedly performs the following updates. For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **(3)** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(4)** Update  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$ .

• Parallel DCD updates:

Each thread repeatedly performs the following updates. For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **(3)** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(a)** Update  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$ .
  - Easy to implement using OpenMP.
  - Variables  $\alpha$  and w stored in shared memory.

• Parallel DCD updates:

Each thread repeatedly performs the following updates. For t = 1, 2, ...

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **(3)** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(4)** Update  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$ .
  - Easy to implement using OpenMP.
  - Variables  $\alpha$  and  $\pmb{w}$  stored in shared memory.
  - Distributed Dual Coordinate Descent:
    - Each machine has local copy of  ${m lpha}, {m w}$

(Yang, 2013; Jaggi et al, 2014; Lee and Roth, 2015; Ma et al., 2015).

# Parallel Dual Coordinate Descent: Two Issues for Correctness





< ∃ >

# Conflict Write

- Thread 1 and 2 write to *w* simultaneously.
- Updates to *w* can be overwritten, so the converged solution *ŵ* and *â* may be inconsistent:

$$\hat{\boldsymbol{w}}\neq\sum_{i}\hat{\alpha}_{i}\boldsymbol{x}_{i}.$$

| CPU1:       |         |     |     | CPU2:       |     |
|-------------|---------|-----|-----|-------------|-----|
| w = w + 0.2 |         |     |     | w = w + 0.5 |     |
|             | OP      | R1  | w   | OP          | R2  |
| 0           |         | 0.0 | 1.0 |             | 0.0 |
| 1           | load w  | 1.0 | 1.0 | load w      | 1.0 |
| 2           | add 0.2 | 1.2 | 1.0 | add 0.5     | 1.5 |
| 3           | save w  | 1.2 | 1.2 |             | 1.5 |
| 4           |         | 1.2 | 1.5 | save w      | 1.5 |



#### Dual Coordinate Descent in Parallel



Cho-Jui Hsieh (UT Austin)

PASSCoDe

July 7, 2015 15 / 29

## Dual Coordinate Descent in Parallel



Cho-Jui Hsieh (UT Austin)

July 7, 2015 15 / 29


Cho-Jui Hsieh (UT Austin)

PASSCoDe



Cho-Jui Hsieh (UT Austin)

PASSCoDe





Cho-Jui Hsieh (UT Austin)

PASSCoDe







Cho-Jui Hsieh (UT Austin)

PASSCoDe









Cho-Jui Hsieh (UT Austin)

PASSCoDe









Cho-Jui Hsieh (UT Austin)

PASSCoDe







Cho-Jui Hsieh (UT Austin)

PASSCoDe

# PASSCoDe-Lock

Each thread repeatedly performs the following updates. For  $t = 1, 2, \ldots$ 

- Randomly pick an index i
- **2** Lock  $\{w_j \mid (x_i)_j \neq 0\}$
- **3** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **9** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- **(a)** Update  $\boldsymbol{w} \leftarrow \boldsymbol{w} + \delta^* \boldsymbol{x}_i$ .
- **O** Unlock the variables.

#### How to Resolve the Issues

Three PASSCoDe approaches:

• lock: acquire locks for all necessary  $w_i$  before the update

|               | inconsistent read | conflict write |
|---------------|-------------------|----------------|
| PASSCoDe-Lock | resolved          | resolved       |

Scaling (on rcv1 with 100 epochs):

| # threads | Lock            |
|-----------|-----------------|
| 2         | 98.03s / 0.27x  |
| 4         | 106.11s / 0.25x |
| 10        | 114.43s / 0.23x |

# **PASSCoDe-Atomic**

Each thread repeatedly performs the following updates. For  $t = 1, 2, \ldots$ 

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$
- For each  $j \in N(i)$
- Update  $w_j \leftarrow w_j + \delta^*(\boldsymbol{x}_i)_j$  atomically

#### How to Resolve the Issues

Three *PASSCoDe* approaches:

- lock: acquire locks for all necessary w<sub>i</sub> before the update
- **atomic**: apply atomic operation for  $w_j = w_j + \delta^* x_{ij}$

|                 | inconsistent read | conflict write |
|-----------------|-------------------|----------------|
| PASSCoDe-Lock   | resolved          | resolved       |
| PASSCoDe-Atomic | remained          | resolved       |

Scaling (on rcv1 with 100 epochs):

| # threads | Lock            | Atomic         |
|-----------|-----------------|----------------|
| 2         | 98.03s / 0.27x  | 15.28s / 1.75x |
| 4         | 106.11s / 0.25x | 8.35s / 3.20x  |
| 10        | 114.43s / 0.23x | 3.86s / 6.91x  |

- Atomic operations guarantee:
  - all updates to  $\boldsymbol{w}$  will be performed eventually
  - $\hat{\boldsymbol{w}} = \sum_{i=1}^{n} \hat{\alpha}_i \boldsymbol{x}_i$  holds for the outputted  $(\hat{\boldsymbol{w}}, \hat{\boldsymbol{\alpha}})$
- Bounded delay assumption: to handle inconsistent read of w
  - all updates of  $\boldsymbol{w}$  before  $\tau$  iterations must be performed

#### Theorem

Under certain conditions on  $\tau$ , **PASSCoDe** – **Atomic** has global linear convergence rate in expectation:

$$E\left[D(lpha^{j+1}) - D(lpha^*)
ight] \leq \eta E\left[D(lpha^j) - D(lpha^*)
ight]$$

Our analysis covers logistic regression and SVM with hinge loss (where the dual problem is not strictly convex).

# **PASSCoDe-Wild**

Each thread repeatedly performs the following updates. For  $t = 1, 2, \ldots$ 

- Randomly pick an index i
- **2** Compute  $\boldsymbol{w}^T \boldsymbol{x}_i$
- **3** Update  $\alpha_i \leftarrow \alpha_i + \delta^*$  where  $\delta^* = T_i(\boldsymbol{w}^T \boldsymbol{x}_i, \alpha_i)$

#### How to Resolve the Issues

Three PASSCoDe approaches:

- lock: acquire locks for all necessary w<sub>j</sub> before the update
- **atomic**: apply atomic operation for  $w_j = w_j + \delta^* x_{ij}$
- wild: do nothing to resolve either issue

|                 | inconsistent read | conflict write |
|-----------------|-------------------|----------------|
| PASSCoDe-Lock   | resolved          | resolved       |
| PASSCoDe-Atomic | remained          | resolved       |
| PASSCoDe-Wild   | remained          | remained       |

Scaling (on rcv1 with 100 epochs):

| $\# \ threads$ | Lock            | Atomic         | Wild           |
|----------------|-----------------|----------------|----------------|
| 2              | 98.03s / 0.27x  | 15.28s / 1.75x | 14.08s / 1.90x |
| 4              | 106.11s / 0.25x | 8.35s / 3.20x  | 7.61s / 3.50x  |
| 10             | 114.43s / 0.23x | 3.86s / 6.91×  | 3.59s / 7.43x  |

• Some updates are missing due to memory conflicts

• Which one for prediction,  $\hat{\boldsymbol{w}}$  or  $\bar{\boldsymbol{w}}$ ?

| • for the final $(\hat{\pmb{w}}, \hat{\pmb{lpha}})$ :                                                                                                      |         |                      | Prediction Accuracy (%) by |      |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|----------------------------|------|-----------|--|
| n                                                                                                                                                          |         | $\# \ {\sf threads}$ | ŵ                          | Ŵ    | LIBLINEAR |  |
| $\hat{\boldsymbol{w}} \neq \sum_{i=1}^{n} \hat{\alpha}_i \boldsymbol{x}_i$                                                                                 | nowc20  | 4                    | 97.1                       | 96.1 | 07.1      |  |
| $\sum_{i=1}^{\infty} \alpha_i \alpha_i$                                                                                                                    | news20  | 8                    | 97.2                       | 93.3 | 97.1      |  |
| • construct $\bar{\boldsymbol{w}}$ from the final $\hat{\boldsymbol{\alpha}}$ :<br>$\bar{\boldsymbol{w}} = \sum_{i=1}^{n} \hat{\alpha}_i \boldsymbol{x}_i$ | coutupo | 4                    | 67.8                       | 38.0 | 66.3      |  |
|                                                                                                                                                            | covtype | 8                    | 67.6                       | 38.0 | 00.5      |  |
|                                                                                                                                                            | rcv1    | 4                    | 97.7                       | 97.5 | 07 7      |  |
|                                                                                                                                                            |         | 8                    | 97.7                       | 97.4 | 51.1      |  |
|                                                                                                                                                            | webspam | 4                    | 99.1                       | 93.1 | 00.1      |  |
|                                                                                                                                                            |         | 8                    | 99.1                       | 88.4 | 99.1      |  |
|                                                                                                                                                            | kddb    | 4                    | 88.8                       | 79.7 | 88.8      |  |
|                                                                                                                                                            |         | 8                    | 88.8                       | 87.7 | 00.0      |  |

Question: why  $\hat{\boldsymbol{w}}$  is better than  $\bar{\boldsymbol{w}}$ ?

## Backward Analysis for PASSCoDe-Wild

Recall the primal problem

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} P(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i \left( \boldsymbol{w}^T \boldsymbol{x}_i \right)$$

#### Theorem

Let  $\epsilon$  be the error caused by the memory conflicts.

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \hat{P}(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w} + \boldsymbol{\epsilon}\|^2 + \sum_{i=1}^n \ell_i (\boldsymbol{w}^T \boldsymbol{x}_i)$$
$$\bar{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \bar{P}(\boldsymbol{w}) := \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n \ell_i \left( (\boldsymbol{w} - \boldsymbol{\epsilon})^T \boldsymbol{x}_i \right)$$

\$\heta(w)\$ is the problem with the perturbation on the regularization term
\$\bar{P}(w)\$ is the problem with the perturbation on the prediction term

#### Datasets.

|         | п          | ñ       | d          | ā      | С |
|---------|------------|---------|------------|--------|---|
| news20  | 16,000     | 3,996   | 1,355,191  | 455.5  | 2 |
| rcv1    | 677,399    | 20,242  | 47,236     | 73.2   | 1 |
| webspam | 280,000    | 70,000  | 16,609,143 | 3727.7 | 1 |
| kddb    | 19,264,097 | 748,401 | 29,890,095 | 29.4   | 1 |

#### Compared Implementation.

- LIBLINEAR: serial baseline
- PASSCoDe-Wild and PASSCoDe-Atomic: our methods
- CoCoA: a multi-core version of [Jaggi et al, 2014]
- AsySCD: [Liu & Wright, 2014]

Machine: Intel Multi-core machine with 256 GB Memory

## Convergence in terms of Walltime



26 / 29
## Accuracy



## Speedup



Cho-Jui Hsieh (UT Austin)

PASSCoDe

July 7, 2015 28 / 29

- *PASSCoDe*: an simple but effective asynchronous dual coordinate descent
- Analysis three variants
  - PASSCoDe-Lock
  - PASSCoDe-Atomic: established global linear convergence
  - PASSCoDe-Wild: backward analysis
- Future work: extend the analysis to L1-regularized problems
  - LASSO
  - L1-regularized Logistic Regression