SUPPORT VECTOR MACHINES

What is a support vector?
In seperating clouds of points from two different classes, we use the
surface

wix+b=0

Lets take two nearest points from the two classes and use the con-
struction

wlix;+b>0ford;, = +1 (1)
wlix;+b<0for d; = —1 (2)

We want to minimize the length of w. Why?

Last week we found out that the perpendicular distance from the hy-
perplane to a vector x; 1s
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Using Egs. (1) and (2) we have
+1
r =
[[wol]

Scaling

So that finally we see that we want to minimze the length of w since
the seperating distance is
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The problem statement
Given a set of training data {(x;,d;),7 = 1,..., N}, minimize
L 7
O(w = SV W

subject to the constraint that

di(wlixj+b)>1,i=1,...,N
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Looks like a job for LAGRANGE MULTIPLIERS!

1 N
J(w,b,\) = §WTW — Y Ni(di(whxi 4+ b) — 1)
i=1
So that
N
Jw =0=w — Z )\idixi (3)
i=1
and
N
Jy=0=> \d, 4)
i=1
Now for the DUAL PROBLEM

1
J(w,b,\) = 5 wlw — ZAdwxl+bZAd+Z)\

Note that from (4) third term is zero. Using Eq. (3):
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Lets enjoy the moment!



DUAL PROBLEM
N N N
max Q(\) = SN — = 33 M\ didx) x;

Subject to constraints

N >0, i=1,...,N

This is easier to solve than the original. Furthermore it only depends
on the training samples {(x;,d;),i =1,...,N}.

Once you have the \;s, get the w from
N
W = Z )\idixi
i=1

and the b from a support vector that has d; = 1,
b=1-—w'x,

Almost done ...



KERNEL FUNCTIONS

Now the big bonus occurs because all the machinery we have devel-
oped will work if we map the points x; to a higher dimensional space,
provided we observe certain conventions.

Let ¢(x;) be a function that does the mapping. So the new hyperplane
1S

N
> wigi(x) +b=0
i1

For simplicity in notation define
¢(X) = (¢O(X)7 ¢1(X)7 ¢2(X)7 I ¢m1 (X))

where m; is the new dimension size and by convention ¢g(x) = 1.

Then all the work we did with x works with ¢(x). The only issue is
that instead of x! x; we have a Kernel function, K (x;,x;) where

K (xi,%;) = ¢i(x)" ¢(x)

and Kernel functions need to have certain nice properties. : )
Examples

Polynomials

(x; x; + 1)

Radial Basis Functions

exp = xil]?
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