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SUPPORT VECTOR MACHINES

What is a support vector?
In seperating clouds of points from two different classes, we use the
surface

wTx + b = 0

Lets take two nearest points from the two classes and use the con-
struction

wTxi + b ≥ 0 for di = +1 (1)
wTxi + b < 0 for di = −1 (2)

We want to minimize the length of w. Why?
Last week we found out that the perpendicular distance from the hy-
perplane to a vector xs is

r =
g(xs)

||wo||

Using Eqs. (1) and (2) we have

r =
±1

||wo||

Scaling

So that finally we see that we want to minimze the length of w since
the seperating distance is

2

||wo||
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The problem statement
Given a set of training data {(xi, di), i = 1, . . . , N}, minimize

Φ(w =
1

2
wTw

subject to the constraint that

di(w
Txi + b) ≥ 1, i = 1, . . . , N
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The problem statement
Given a set of training data {(xi, di), i = 1, . . . , N}, minimize

Φ(w =
1

2
wTw

subject to the constraint that

di(w
Txi + b) ≥ 1, i = 1, . . . , N

Looks like a job for LAGRANGE MULTIPLIERS!

J(w, b, λ) =
1

2
wTw −

N∑
i=1

λi(di(w
Txi + b)− 1)

So that

Jw = 0 = w −
N∑

i=1
λidixi (3)

and

Jb = 0 =
N∑

i=1
λidi (4)

Now for the DUAL PROBLEM

J(w, b, λ) =
1

2
wTw −

N∑
i=1

λidiw
Txi + b

N∑
i=1

λidi +
N∑

i=1
λi

Note that from (4) third term is zero. Using Eq. (3):

Q(λ) =
N∑

i=1
λi −

1

2

N∑
i=1

N∑
j=1

λiλjdidjx
T
i xj

Lets enjoy the moment!
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DUAL PROBLEM

maxQ(λ) =
N∑

i=1
λi −

1

2

N∑
i=1

N∑
j=1

λiλjdidjx
T
i xj

Subject to constraints

N∑
i=1

λidi = 0

λi ≥ 0, i = 1, . . . , N

This is easier to solve than the original. Furthermore it only depends
on the training samples {(xi, di), i = 1, . . . , N}.

Once you have the λis, get the w from

w =
N∑

i=1
λidixi

and the b from a support vector that has di = 1,

b = 1−wTxs

Almost done ...
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KERNEL FUNCTIONS
Now the big bonus occurs because all the machinery we have devel-
oped will work if we map the points xi to a higher dimensional space,
provided we observe certain conventions.

Let φ(xi) be a function that does the mapping. So the new hyperplane
is

N∑
i=1

wiφi(x) + b = 0

For simplicity in notation define

φ(x) = (φ0(x), φ1(x), φ2(x), . . . , φm1
(x))

where m1 is the new dimension size and by convention φ0(x) = 1.

Then all the work we did with x works with φ(x). The only issue is
that instead of xT

i xj we have a Kernel function, K(xi,xj) where

K(xi,xj) = φi(x)Tφj(x)

and Kernel functions need to have certain nice properties. : )

Examples

Polynomials

(xT
i xj + 1)p

Radial Basis Functions

exp

−||xi − xi||2

2σ2




