Homework 2

CS 331

Due Thursday, February 1

1. [Book exercise 2.3] An addition chain for an integer n is an increasing sequence of integers that starts with 1 and ends with n, such that each entry after the first is the sum of two earlier entries. More formally, the integer sequence $x_{0}<x_{1}<x_{2}<\cdots<x_{\ell}$ is an addition chain for n if and only if:

- $x_{0}=1$
- $x_{\ell}=n$
- For every index $k>0$, there are indices $i \leq j<k$ such that $x_{k}=x_{i}+x_{j}$.

The length of an addition chain is the number of elements minus 1 ; we don't bother to count the first entry. For example,

$$
(1,2,3,5,10,20,23,46,92,184,187,374)
$$

is an addition chain for 374 of length 11 .
(a) Describe a recursive backtracking algorithm to compute a minimumlength addition chain for a given positive integer n. Show correctness, but don't analyze or optimize your algorithm's running time except to satisfy your own curiosity. A correct algorithm whose running time is exponential in n is sufficient for full credit.
(b) (Optional) Describe a recursive backtracking algorithm to compute a minimum-length addition chain for a given positive integer n in time that is sub-exponential in n. [Hint: it doesn't have to be polynomial. How long is the answer?]
2. There's a Jupyter Notebook linked from the class webpage. Run through it, then answer the questions at the end. Don't wait till the last day to do this: setting up the required libraries may take some time.

