# Shortest Paths 

Eric Price<br>UT Austin<br>CS 331H

## Talk Outline

(1) Shortest Paths: Bellman-Ford
(2) Dijkstra's Algorithm

## Talk Outline

(1) Shortest Paths: Bellman-Ford

## (2) Dijkstra's Algorithm

## Single-Source Shortest Paths

- Problem setup:


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$
- Goal: for every $v$, compute $c^{*}(v)$, the distance of shortest $s \rightsquigarrow v$ path in $G$, and the shortest path tree.


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$
- Goal: for every $v$, compute $c^{*}(v)$, the distance of shortest $s \rightsquigarrow v$ path in $G$, and the shortest path tree.
- Output two arrays: dist() and pred().


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$
- Goal: for every $v$, compute $c^{*}(v)$, the distance of shortest $s \rightsquigarrow v$ path in $G$, and the shortest path tree.
- Output two arrays: $\operatorname{dist}()$ and $\operatorname{pred}()$.
- $\operatorname{dist}(v)=c^{*}(v)$ for all $v$


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$
- Goal: for every $v$, compute $c^{*}(v)$, the distance of shortest $s \rightsquigarrow v$ path in $G$, and the shortest path tree.
- Output two arrays: dist() and pred().
- $\operatorname{dist}(v)=c^{*}(v)$ for all $v$
- $\operatorname{pred}(s)=$ NONE


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$
- Goal: for every $v$, compute $c^{*}(v)$, the distance of shortest $s \rightsquigarrow v$ path in $G$, and the shortest path tree.
- Output two arrays: $\operatorname{dist}()$ and $\operatorname{pred}()$.
- $\operatorname{dist}(v)=c^{*}(v)$ for all $v$
$-\operatorname{pred}(s)=$ NONE
$\checkmark v \leftarrow \operatorname{pred}(v) \leftarrow \operatorname{pred}(\operatorname{pred}(v)) \leftarrow \cdots \leftarrow s$ is shortest $s \rightsquigarrow v$ path.


## Single-Source Shortest Paths

- Problem setup:
- Given a directed graph $G=(V, E)$
- Each edge $u \rightarrow v$ has distance: $w(u \rightarrow v) \in \mathbb{R}$
- Distance of path is sum of distance of edges.
- Given a source $s$
- Goal: for every $v$, compute $c^{*}(v)$, the distance of shortest $s \rightsquigarrow v$ path in $G$, and the shortest path tree.
- Output two arrays: dist() and pred().
- $\operatorname{dist}(v)=c^{*}(v)$ for all $v$
- $\operatorname{pred}(s)=$ None
- $v \leftarrow \operatorname{pred}(v) \leftarrow \operatorname{pred}(\operatorname{pred}(v)) \leftarrow \cdots \leftarrow s$ is shortest $s \rightsquigarrow v$ path.
- Question: what if $w(u \rightarrow v)=1$ for all $u \rightarrow v \in E$ ?


## Generic SSSP algorithm

- We maintain a vector dist that satisfies the invariant:

$$
\operatorname{dist}(v) \geq c^{*}(v)
$$

for all $v$ at all times.

## Generic SSSP algorithm

- We maintain a vector dist that satisfies the invariant:

$$
\operatorname{dist}(v) \geq c^{*}(v)
$$

for all $v$ at all times.

- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- pred $(v)=$ None $\forall v$
- $\operatorname{dist}(s)=0$.


## Generic SSSP algorithm

- We maintain a vector dist that satisfies the invariant:

$$
\operatorname{dist}(v) \geq c^{*}(v)
$$

for all $v$ at all times.

- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- $\operatorname{pred}(v)=$ None $\forall v$
- $\operatorname{dist}(s)=0$.
- FordSSSP(s):
- InitializeSSSP(s)
- Repeat:
$\star$ Pick an edge
夫 If it is "tense", relax it.


## Relaxing an edge

Triangle Inequality
For any edge $u \rightarrow v$,

$$
c^{*}(v) \leq c^{*}(u)+w(u \rightarrow v) .
$$

## Relaxing an edge

## Triangle Inequality

For any edge $u \rightarrow v$,

$$
c^{*}(v) \leq c^{*}(u)+w(u \rightarrow v) .
$$

- $\operatorname{Relax}(u \rightarrow v)$ :
- If $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)$ :
$\star \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)$
$\star \operatorname{pred}(v) \leftarrow u$.


## Relaxing an edge

## Triangle Inequality

For any edge $u \rightarrow v$,

$$
c^{*}(v) \leq c^{*}(u)+w(u \rightarrow v) .
$$

- $\operatorname{Relax}(u \rightarrow v)$ :
- If $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)$ :

$$
\begin{aligned}
& \star \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v) \\
& \star \operatorname{pred}(v) \leftarrow u
\end{aligned}
$$

## Lemma

If $\operatorname{dist}(v) \geq c^{*}(v)$ for all $v$, then for any edge $u \rightarrow v$,

$$
c^{*}(v) \leq \operatorname{dist}(u)+w(u \rightarrow v)
$$

Hence RElax preserves the invariant that $\operatorname{dist}(v) \geq c^{*}(v) \forall v$.

## Generic SSSP algorithm

- Invariant: $\operatorname{dist}(v) \geq c^{*}(v)$ for all $v$ at all times.


## Generic SSSP algorithm

- Invariant: $\operatorname{dist}(v) \geq c^{*}(v)$ for all $v$ at all times.
- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- pred $(v)=$ None $\forall v$
- $\operatorname{dist}(s)=0$.


## Generic SSSP algorithm

- Invariant: $\operatorname{dist}(v) \geq c^{*}(v)$ for all $v$ at all times.
- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- $\operatorname{pred}(v)=$ NONE $\forall v$
$-\operatorname{dist}(s)=0$.
- FordSSSP(s):
- InitializeSSSP(s)
- Repeat some number of times:
$\star$ Pick an edge $u \rightarrow v$ (somehow)
$\star \operatorname{Relax}(u \rightarrow v)$


## Generic SSSP algorithm

- Invariant: $\operatorname{dist}(v) \geq c^{*}(v)$ for all $v$ at all times.
- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- pred $(v)=$ None $\forall v$
$-\operatorname{dist}(s)=0$.
- FordSSSP(s):
- InitializeSSSP(s)
- Repeat some number of times:
$\star$ Pick an edge $u \rightarrow v$ (somehow)
$\star \operatorname{Relax}(u \rightarrow v)$
- Relax $(u \rightarrow v)$ :
- If $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)$ :
$\star \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)$
$\star \operatorname{pred}(v) \leftarrow u$.


## Analysis

- So far: $\operatorname{dist}(v) \geq c^{*}(v)$.
- What we need: eventually $\operatorname{dist}(v)=c^{*}(v)$.

[^0]
## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case $(k=0)$ is easy.

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case $(k=0)$ is easy... or is it?

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case ( $k=0$ ) is easy... or is it? Be careful about negative edges!

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case $(k=0)$ is easy... or is it? Be careful about negative edges!
For the inductive step, assume it holds for all paths of length $k-1$.

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case $(k=0)$ is easy... or is it? Be careful about negative edges!
For the inductive step, assume it holds for all paths of length $k-1$. So the last time $\operatorname{RELAx}\left(u_{k-1} \rightarrow u_{k}\right)$ is called, $\operatorname{dist}\left(u_{k-1}\right)=c^{*}\left(u_{k-1}\right)$.

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case $(k=0)$ is easy... or is it? Be careful about negative edges!
For the inductive step, assume it holds for all paths of length $k-1$. So the last time $\operatorname{RELAx}\left(u_{k-1} \rightarrow u_{k}\right)$ is called, $\operatorname{dist}\left(u_{k-1}\right)=c^{*}\left(u_{k-1}\right)$. Therefore after this,

$$
\operatorname{dist}\left(u_{k}\right) \leq c^{*}\left(u_{k-1}\right)+w\left(u_{k-1} \rightarrow u_{k}\right)
$$

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Proof.

Induct on $k$. Base case $(k=0)$ is easy... or is it? Be careful about negative edges!
For the inductive step, assume it holds for all paths of length $k-1$. So the last time $\operatorname{RELAx}\left(u_{k-1} \rightarrow u_{k}\right)$ is called, $\operatorname{dist}\left(u_{k-1}\right)=c^{*}\left(u_{k-1}\right)$. Therefore after this,

$$
\operatorname{dist}\left(u_{k}\right) \leq c^{*}\left(u_{k-1}\right)+w\left(u_{k-1} \rightarrow u_{k}\right) .
$$

Since $u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ is a shortest path, this RHS is $c^{*}\left(u_{k}\right)$.

## Question for you all

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

## Question for you all

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

What happens with negative edges?

## Question for you all

## Lemma

Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path. After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.

What happens with negative edges?

What happens with negative cycles?

## Back to the algorithm

- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- $\operatorname{pred}(v)=$ None $\forall v$
$-\operatorname{dist}(s)=0$.
- FordSSSP(s):
- InitializeSSSP(s)
- Repeat some number of times:
$\star$ Pick an edge $u \rightarrow v$ (somehow)
$\star \operatorname{Relax}(u \rightarrow v)$
- RELax $(u \rightarrow v)$ :
- If $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)$ :
$\star \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)$
$\star \operatorname{pred}(v) \leftarrow u$.


## Back to the algorithm

- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- pred $(v)=$ None $\forall v$
$-\operatorname{dist}(s)=0$.
- FordSSSP(s):
- InitializeSSSP(s)
- Repeat some number of times:
$\star$ Pick an edge $u \rightarrow v$ (somehow)
$\star \operatorname{Relax}(u \rightarrow v)$
- RELax $(u \rightarrow v)$ :
- If $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)$ :
$\star \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)$
$\star \operatorname{pred}(v) \leftarrow u$.


## Back to the algorithm

- InitializeSSSP(s):
- $\operatorname{dist}(v)=\infty \quad \forall v$
- $\operatorname{pred}(v)=$ None $\forall v$
$-\operatorname{dist}(s)=0$.
- FordSSSP(s):
- InitializeSSSP(s)
- Repeat some number of times:
$\star$ Pick an edge $u \rightarrow v$ (somehow)
$\star \operatorname{Relax}(u \rightarrow v)$
- Relax $(u \rightarrow v)$ :
- If $\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)$ :
$\star \operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)$
$\star \operatorname{pred}(v) \leftarrow u$.
- Lemma states: need to call Relax in order for every shortest path.


## Bellman-Ford Algorithm

- Lemma states: need to call RELAX in order for every shortest path.


## Bellman-Ford Algorithm

- Lemma states: need to call Relax in order for every shortest path.
- Every shortest path has length at most $V-1$.


## Bellman-Ford Algorithm

- Lemma states: need to call Relax in order for every shortest path.
- Every shortest path has length at most $V-1$.
- If we relax every edge, we'll surely relax the first edge of the path.


## Bellman-Ford Algorithm

- Lemma states: need to call Relax in order for every shortest path.
- Every shortest path has length at most $V-1$.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.


## Bellman-Ford Algorithm

- Lemma states: need to call Relax in order for every shortest path.
- Every shortest path has length at most $V-1$.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.
- Do this $V-1$ times.


## Bellman-Ford Algorithm

- Lemma states: need to call Relax in order for every shortest path.
- Every shortest path has length at most $V-1$.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.
- Do this $V-1$ times.
- BellmanFord(s):
- InitializeSSSP(s)
- Repeat $V-1$ times:
$\star$ For every edge $u \rightarrow v$ in $E$ :
$\operatorname{RELAx}(u \rightarrow v)$


## Bellman-Ford Algorithm

- Lemma states: need to call Relax in order for every shortest path.
- Every shortest path has length at most $V-1$.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.
- Do this $V-1$ times.
- BellmanFord(s):
- InitializeSSSP(s)
- Repeat $V-1$ times:
$\star$ For every edge $u \rightarrow v$ in $E$ :
$\operatorname{RELAx}(u \rightarrow v)$
- $O(E V)$ time for SSSP.


## Bellman-Ford Algorithm

- Bellman-Ford solves SSSP in $O(E V)$ time.
- It works with negative edges.
- It's the fastest known algorithm in general!
- Can use to find negative cycles:
- Repeat one more time. If no negative cycles, no edge should change in the $V$ th iteration.
- Follow the predecessor chain to find a negative cycle.
- Can go faster if edge lengths nonnegative: Dijkstra's algorithm.


## Talk Outline

## (1) Shortest Paths: Bellman-Ford

(2) Dijkstra's Algorithm

## Dijkstra's Algorithm

- Dijkstra(s):
- InitializeSSSP(s)
- Repeat $V$ times:
$\star$ Find the unvisited vertex $u$ of minimal $\operatorname{dist}(u)$.
$\star$ For every edge $u \rightarrow v$ out from $u$ : $\operatorname{Relax}(u \rightarrow v)$
- Alternative view: WhateverFirstSearch that visits the nearest vertex to s.
- Another alternative view: a small variant on Prim's algorithm.


## Dijkstra's Algorithm

1: function DiJkstra(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, $s$, None $)])$
$\triangleright$ dist, vertex, pred
4: $\quad$ while $q$ do
5: $\quad$ d, $u$, parent $\leftarrow$ q.pop ()
6:
7:
8:
9:
10 :
11: if $u \in$ pred then continue
pred $[u] \leftarrow$ parent $\operatorname{dist}[u] \leftarrow \mathrm{d}$ for $u \rightarrow v \in E$ do $q . \operatorname{push}((\operatorname{dist}[u]+w(u \rightarrow v), v, u))$
12: return dist, pred

## Dijkstra's Prim's Algorithm

1: function $\operatorname{Prim}(s)$
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, $s$, None $)])$
$\triangleright$ dist, vertex, pred
4: $\quad$ while $q$ do
5: $\quad \mathrm{d}, u$, parent $\leftarrow$ q.pop ()
6:
7:
8: $\quad$ pred $[u] \leftarrow$ parent
9:
10
11:
if $u \in$ pred then
continue
$\operatorname{dist}[u] \leftarrow d$
0: $\quad$ for $u \rightarrow v \in E$ do

$$
q . \operatorname{push}((\operatorname{dist}[u]+w(u \rightarrow v), v, u))
$$

12: return dist, pred

## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.


## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
- Time from $E$ pushes/pops, for $O(E \log V)$ with binary heap.


## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
- Time from $E$ pushes/pops, for $O(E \log V)$ with binary heap.
- Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E+V \log V)$.


## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
- Time from $E$ pushes/pops, for $O(E \log V)$ with binary heap.
- Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E+V \log V)$.
- Tricky part: correctness.


## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
- Time from $E$ pushes/pops, for $O(E \log V)$ with binary heap.
- Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E+V \log V)$.
- Tricky part: correctness.
- Need to argue: if edge weights nonnegative, for any shortest path, will visit the vertices in order.


## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
- Time from $E$ pushes/pops, for $O(E \log V)$ with binary heap.
- Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E+V \log V)$.
- Tricky part: correctness.
- Need to argue: if edge weights nonnegative, for any shortest path, will visit the vertices in order.
- Bellman-Ford relaxes each edge $V$ times.


## Dijkstra's Algorithm

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
- Time from $E$ pushes/pops, for $O(E \log V)$ with binary heap.
- Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E+V \log V)$.
- Tricky part: correctness.
- Need to argue: if edge weights nonnegative, for any shortest path, will visit the vertices in order.
- Bellman-Ford relaxes each edge $V$ times.
- Dijkstra only relaxes each edge once, so it better happen at the right time.


## Dijkstra's Algorithm: Correctness

- The distances $d$ popped from the queue are nondecreasing.


## Dijkstra's Algorithm: Correctness

- The distances $d$ popped from the queue are nondecreasing.
- At each step, values pushed aren't smaller than the one just popped.


## Dijkstra's Algorithm: Correctness

- The distances $d$ popped from the queue are nondecreasing.
- At each step, values pushed aren't smaller than the one just popped.


## Lemma

For any (not necessarily shortest) path $s=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{j}$ of length $L_{j}$, then $\operatorname{dist}\left[v_{j}\right]$ is at most $L_{j}$ when it is set.

## Dijkstra's Algorithm: Correctness

- The distances $d$ popped from the queue are nondecreasing.
- At each step, values pushed aren't smaller than the one just popped.


## Lemma

For any (not necessarily shortest) path $s=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{j}$ of length $L_{j}$, then $\operatorname{dist}\left[v_{j}\right]$ is at most $L_{j}$ when it is set.

## Proof.

Induct on $j$. For $j=0$, trivially true.
If true for $j-1$, then $\operatorname{dist}\left[v_{j-1}\right] \leq L_{j-1}$. So when $v_{j-1}$ is visited, we will push $\left(d, v_{j}, v_{j-1}\right)$ for

$$
d=\operatorname{dist}\left[v_{j-1}\right]+w\left(v_{j-1}, v_{j}\right) \leq L_{j-1}+w\left(v_{j-1}, v_{j}\right)=L_{j}
$$

onto the queue. At some point this gets popped from the queue. Since the distances popped are nondecreasing, the first time we pop $v_{j}$ from the queue it must also be with a distance at most $L_{j}$.

## Dijkstra's Algorithm: Conclusion

- Takes $O(E+V \log V)$ time.


## Dijkstra's Algorithm: Conclusion

- Takes $O(E+V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.


## Dijkstra's Algorithm: Conclusion

- Takes $O(E+V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:


## Dijkstra's Algorithm: Conclusion

- Takes $O(E+V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:
- Outputs the correct answer always.


## Dijkstra's Algorithm: Conclusion

- Takes $O(E+V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:
- Outputs the correct answer always.
- Takes $O(E+V \log V)$ time if all edge weights nonnegative.


## Dijkstra's Algorithm: Conclusion

- Takes $O(E+V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:
- Outputs the correct answer always.
- Takes $O(E+V \log V)$ time if all edge weights nonnegative.
- Exponential time in general.


## Alternative Dijkstra: correct but slow with negative weights

1: function DiJkstra(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, s, None)])
$\triangleright$ dist, vertex, pred
4: $\quad$ while $q$ do
d, $u$, parent $\leftarrow$ q.pop()
if $u \in$ pred then
continue
pred $[u] \leftarrow$ parent
$\operatorname{dist}[u] \leftarrow \mathrm{d}$ for $u \rightarrow v \in E$ do $q . \operatorname{push}((\operatorname{dist}[u]+w(u \rightarrow v), v, u))$
12: return dist, pred

## Alternative Dijkstra: correct but slow with negative weights

1: function DiJkstra(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, s, None)])
$\triangleright$ dist, vertex, pred
4: $\quad$ while $q$ do
5: $\quad$ d, $u$, parent $\leftarrow$ q.pop ()
6:
7:
8:
9:
10 :
11:
if $d \geq \operatorname{dist}[u]$ then
continue
pred $[u] \leftarrow$ parent
$\operatorname{dist}[u] \leftarrow \mathrm{d}$ for $u \rightarrow v \in E$ do $q$.push $((\operatorname{dist}[u]+w(u \rightarrow v), v, u))$
12: return dist, pred

## Summary of shortest paths

- DAGs: DP for $O(E)$ time.


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: $O(E V)$ time


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: O(EV) time
- Works with negative edge weights


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: O(EV) time
- Works with negative edge weights
- Can detect cycles


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: O(EV) time
- Works with negative edge weights
- Can detect cycles
- Dijkstra: $O(E+V \log V)$ time


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: $O(E V)$ time
- Works with negative edge weights
- Can detect cycles
- Dijkstra: $O(E+V \log V)$ time
- but only with nonnegative edge weights


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: $O(E V)$ time
- Works with negative edge weights
- Can detect cycles
- Dijkstra: $O(E+V \log V)$ time
- but only with nonnegative edge weights
- either wrong or exponential time with negative edges


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: $O(E V)$ time
- Works with negative edge weights
- Can detect cycles
- Dijkstra: $O(E+V \log V)$ time
- but only with nonnegative edge weights
- either wrong or exponential time with negative edges
- Next class:


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: $O(E V)$ time
- Works with negative edge weights
- Can detect cycles
- Dijkstra: $O(E+V \log V)$ time
- but only with nonnegative edge weights
- either wrong or exponential time with negative edges
- Next class:
- $A^{*}$ search: Dijkstra with a twist


## Summary of shortest paths

- DAGs: DP for $O(E)$ time.
- Unweighted graphs: BFS for $O(E)$ time.
- Bellman-Ford: $O(E V)$ time
- Works with negative edge weights
- Can detect cycles
- Dijkstra: $O(E+V \log V)$ time
- but only with nonnegative edge weights
- either wrong or exponential time with negative edges
- Next class:
- $A^{*}$ search: Dijkstra with a twist
- Exercises


[^0]:    Lemma
    Let $s=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}$ be a shortest $s \rightsquigarrow u_{k}$ path.
    After Relax has been called on every edge of this path in order- $u_{0} \rightarrow u_{1}$, then $u_{1} \rightarrow u_{2}$, until $u_{k-1} \rightarrow u_{k}$, with arbitrarily many other calls interleaved-then $\operatorname{dist}\left(u_{k}\right)=c^{*}\left(u_{k}\right)$.
    Moreover, $u_{k} \leftarrow \operatorname{pred}\left(u_{k}\right) \leftarrow \operatorname{pred}\left(\operatorname{pred}\left(u_{k}\right)\right) \leftarrow \cdots \leftarrow s$ is a shortest $s \rightsquigarrow u_{k}$ path.

