Homework 2

CS 331H

Due Wednesday, January 25 (before class)

1. Consider the function $\operatorname{Factorial}(n)=n$! for a nonnegative integer n.
(a) Up to constant factors, many bits does it take to write n ! down? You may use that $(n / 2)^{n / 2} \leq n!\leq n^{n}$.
(b) Consider the standard factorial implementation: $f(0)=1$, and $f(n)=n \cdot f(n-1)$ for $n \geq 1$. How many multiplications does it perform?
(c) How much time does the standard factorial implementation take, using standard multiplication? Note that standard multiplication takes $\Theta(k l)$ time to multiply a k-bit number by an l-bit number.
(d) Can you use Karatsuba multiplication to speed this up? If so, by how much?
(e) Now consider the following recursive implementation $g(n, m)$ of $\frac{n!}{(n-m)!}$, for $0 \leq m \leq n$:
$g(n, m)= \begin{cases}1 & \text { if } n=0 \text { or } m=0 \\ n & \text { if } m=1 \\ g(n,\lfloor m / 2\rfloor) \cdot g(n-\lfloor m / 2\rfloor,\lceil m / 2\rceil) & \text { otherwise }\end{cases}$
Show that $g(n, m)$ correctly computes $\frac{n!}{(n-m)!}$, and so $n!=g(n, n)$.
(f) Show that $g(n, m)$ is $\Theta(m \log n)$ bits long.
(g) Let $M(k)$ denote the time to multiply two k-bit integers. Let $T(m)$ be the maximum over all $n^{\prime} \leq n$ of the time to compute $g\left(n^{\prime}, m\right)$. Ignoring the floors and ceilings in g, show that

$$
T(m) \leq 2 T(m / 2)+M(m \log n)
$$

(h) What does this recurrence solve to, for standard and for Karatsuba multiplication? When $m=n$, so $g(n, n)=n$!, how does this compare to the standard factorial implementation?
2. There's a Jupyter Notebook linked from the class webpage. Run through it, then answer the questions at the end. Don't wait till the last day to do this: setting up the required libraries may take some time.

