
Homework 1

Randomized Algorithms

Due Wednesday, August 30

1. [MR 1.8]. Consider adapting the min-cut algorithm of the first class to the problem
of finding an s–t min-cut in an undirected graph. In this problem, we are given an
undirected graph G together with two distinguished vertices s and t. An s–t min-cut
is a set of edges whose removal disconnects s from t; we seek an edge set of minimum
cardinality. As the algorithm proceeds, the vertex s may get amalgamated into a
new vertex as the result of an edge being contracted; we call this vertex the s-vertex
(initially s itself). Similarly, we have a t-vertex. As we run the contraction algorithm,
we ensure that we never contract an edge between the s-vertex and the t-vertex.

(a) Show that there are graphs (not multi-graphs) in which the probability that this
algorithm finds an s–t min-cut is exponentially small.

(b) How large can the number of different s–t min-cut solutions in an instance be?

(c) Can you derive a very different bound for the number of different global min-cuts,
as a consequence of the algorithm presented in class?

2. Suppose we have access to a source of unbiased random bits. This problem looks at
constructing biased coins or dice from this source.

(a) Show how to construct a biased coin, which is 1 with probability p and 0 other-
wise, using O(1) random bits in expectation. [Hint: First show how to construct
a biased coin using an arbitrary number of random bits. Then show that the
expected number of bits examined is small.]

(b) Show how to sample from [n], with probabilities p1, . . . , pn, using O(log n) random
bits in expectation.

(c) Show that the “in expectation” caveat is necessary: for example, one cannot
sample uniformly over {1, 2, 3} using O(1) bits in the worst case.

(d) [Optional.] Give a fast algorithm to sample from [n] with probabilities p1, . . . , pn.
That is, give an algorithm that uses in expectation O(log n) bits and O(1) time
per sample (in the word RAM model, so manipulating/indexing with O(log n)-bit
words takes O(1) time.). Your algorithm may preprocess the input, using O(n)
time and space. [Hints: (a) if all the pi came in pairs that summed to 2/n, could
you solve the problem? (b) can you break up any set of pi into 2n total pieces, so
the pieces come in pairs that sum to 1/n?]


