Homework 7

Randomized Algorithms

Due Wednesday, October 25

1. Consider the example given in class for how online bipartite matching using random edges achieves a competitive ratio of $R=1 / 2$: each arriving vertex x_{i} has an edge to y_{i} as well as all of $y_{n / 2}, \ldots, y_{n}$. Show that the algorithm that the algorithm given in class, which randomly ranks the right vertices y_{i}, has $R \leq 3 / 4+o(1)$ on this example.
2. Suppose that you have a giant (i.e., infinite) bag of coins. You know that 90% of the coins are highly biased, and come up heads 90% of the time. The other 10% of coins are unbiased, and come up heads 50% of the time. You do not know which coins are which, and you would like to find one of the biased coins.

You are allowed to flip coins n times - each coin you flip can be either a fresh random coin from the bag, or a coin that you have flipped before. At the end of n coin flips, you must output a coin. You succeed if the coin is biased, and fail if the coin is unbiased. What is the minimum probability of failure, and how can you achieve this?
(a) Show that the failure probability must be at least $\exp (-O(n))$.
(b) Suppose that the biased coins were actually 100% biased. Show how to achieve $\exp (-\Omega(n))$ failure probability.
(c) Show how to achieve $\exp (-\Omega(n))$ failure probability in the setting described, where the biased coins are 90% biased.
Hint (rot13): Gur nytbevguz vf fvzvyne gb gur bar sbe ebohfg ovanel frnepu ba ubzrjbex 2. Lbh fubhyq pbafgehpg n enaqbz jnyx ba fbzr tencu fhpu gung obgu ovnfrq naq haovnfrq pbvaf jvyy hfhnyyl zbir lbh va gur "pbeerpg" querpgvba: gbjneq erwrpgvat na haovnfrq pbva, naq npprcgvat n ovnfrq pbva. Gura ng gur raq, lbh jvyy fubj gung vs lbh unir zbirq va n pbeerpg qverpgvba zber guna va na vapbeerpg qverpgvba, lbh pna anzr n ovnfrq pbva.

