
CS 388R: Randomized Algorithms, Fall 2023 September 25, 2023

Lecture 10: Routing

Prof. Eric Price Scribe: Sam Ziegelbein, Pranav Venkatesh

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Routing Setup

Suppose we want to pass messages between nodes in a network. Let’s say that each node i wants
to send a message to some node π(i). We adopt a synchronous model of the network, i.e. at each
time-step, at most one message can pass along any given edge. Our goal is then to minimize the
total amount of time T it takes for all messages to reach their destinations. In particular, we’d like
to produce an oblivious routing, that is the i → π(i) route depends only on i and π(i) and not on
the rest of the routing.

For this lecture, we’ll consider the special case of permutation routing on the hypercube. Permuta-
tion routing means that π is guaranteed to be a permutation, so no two nodes will send a message
to the same destination. The hypercube graph consists of N = 2n nodes, each of which is labeled
by n bits. There is an edge between nodes x and y if and only if their labels differ by exactly one
bit. In particular, this means each node has degree n.

1.1 Some Lower Bounds

Observe that the diameter of the graph is a lower bound on the time needed for routing, since a
message sent between vertices at distance d requires at least d time to traverse any path between
them. The hypercube graph has diameter Θ(n), so T is Ω(n). In this lecture we will show a matching
(randomized) upper bound. That is, for any permutation π on the nodes of the hypercube, we will
show how to randomly construct a routing requiring only O(n) time with high probability.

Note also that we can try to obtain a somewhat different lower bound as follows: there are N total
nodes, and for each node i, there is a path from i to π(i) of length at most n. Thus in the worst
case, there is Θ(Nn) “work” to do, i.e. there are Θ(Nn) total edge traversals by packets. As there
are Θ(Nn) total edges, we can do at most Θ(Nn) work in a single time-step. Thus we get that T
is Ω(1), a completely useless lower bound.

2 The Bit Fixing Algorithm

One natural idea is bit fixing. To determine a route between nodes i and π(i), we find the first bit
that differs between the two and then “fix” it by routing the message along the edge corresponding
to flipping that bit. Repeating this procedure as needed gives an entire route from i to π(i), the
length of which is clearly minimal by construction.

1



Once we’ve established a route for each message, then at each time-step we can advance each
message through the next edge on its route. The only issue arises when multiple messages try to
use the same edge at any given time-step, in which case we select one arbitrarily to advance and
force the others to wait.

2.1 A Bad Case

Unfortunately, there exists a permutation π such that the bit fixing algorithm is slow. In particular,
it suffices to find a permutation that causes a single edge to be traversed by many routes, since if
an edge is traversed δ times, then we must have T ≥ δ.

Consider the permutation consisting of the following send-receive pairs

n
2
−1 bits︷︸︸︷
X 00

n
2
−1 bits︷ ︸︸ ︷

00 · · · 0 →

n
2
−1 bits︷ ︸︸ ︷

00 · · · 0 01

n
2
−1 bits︷︸︸︷
X

where X has exactly n
4 ones. The permutation can be arbitrary on the remaining nodes not of this

form. Observe that there are
(n

2
−1
n
4

)
≈ 2n/2

√
n

=
√

N
n such pairs of this form, all of which cross the

edge

n
2
−1 bits︷ ︸︸ ︷

00 · · · 0 00

n
2
−1 bits︷ ︸︸ ︷

00 · · · 0 →

n
2
−1 bits︷ ︸︸ ︷

00 · · · 0 01

n
2
−1 bits︷ ︸︸ ︷

00 · · · 0

Thus in the worst case, T is Ω

(√
N
n

)
, significantly worse than the Ω(n) lower bound we showed

earlier. In fact, it can be shown that a similarly bad lower bound exists for any deterministic,
oblivious algorithm.

3 A Randomized Algorithm

One natural next idea would be to use an approach similar to the deterministic bit fixing algorithm,
but to randomize the order in which bits are fixed. Unfortunately, this still requires 2Ω(n) time in
the worst case, which will be shown on the homework.

An important observation is that while the time taken in the worst case is quite bad, it’s possible
that the algorithm performs better on average. Our new idea is to first send each message i to a
uniformly random vertex xi, and then to send xi to π(i), while still using bit fixing to determine
the route i → xi → π(i).

3.1 A Loose Analysis

To analyze the behavior of this approach, suppose we sample uniformly random intermediate ver-
tices x1, . . . , xN with replacement. Let L(e) denote the number of i → xi paths using a particular

2



edge e, where we treat the edge e as directed. By symmetry, we have that E[L(e)] is the same for
all edges e, so

E

[∑
e∈E

L(e)

]
=

∑
e∈E

E[L(e)] = (Nn)E[L(e)]

We also have that

E

[∑
e∈E

L(e)

]
= E[total length of all paths] = N · E[length of i → xi path] = N · n

2

Using the two equations above, we see that (Nn)E[L(e)] = Nn
2 , so E[L(e)] = 1

2 . Thus the average
load on a given edge is small in expectation. Next we’d like to show that this load is also small
with high probability.

We define additional indicator variables Hi,e, where Hi,e = 1 if the i → xi path uses edge e. Observe
that Hi,e is independent of Hj,e′ if i ̸= j. It follows that L(e) =

∑
i∈[n]Hi,e. We have from above

that E[L(e)] = 1
2 , so applying a Chernoff bound we have

P
[
L(e) ≥ (1 + ϵ)

1

2

]
≤ exp

(
ϵ2

2 + ϵ
· 1
2

)
Plugging in ϵ = 10n, we get that

P[L(e) ≥ 6n] ≤ P
[
L(e) ≥ (1 + 10n)

1

2

]
≤ exp

(
100n2

2 + 10n
· 1
2

)
≈ e−5n < e−4n < N−4

so with probability at least 1−N−4, L(e) ≤ 6n.

In fact, there is a slightly nicer version of a Chernoff bound that says if X is the sum of independent
{0, 1} random variables, then P[X ≥ t] ≤ 2−t for t > 2eE[X]. Applying that bound here gives us
that

P[L(e) ≥ 5n] ≤ 2−5n = N−5

Union bounding over all the edges gives us that

P[max
e

L(e) ≥ 5n] ≤ (Nn) ·N−5 < N−3

so with probability at least 1−N−3, the wait time is at most 5n for every edge. Thus any single
path is delayed for at most 5n time steps on each of the at most n edges it traverses, giving an
upper bound of 5n2 time for the routing of every path.

Notice that this approach requires only O(n2) time, which is an exponential improvement over the
deterministic version. However, it still seems as though the analysis is a bit loose. In particular,

3



we wouldn’t expect to spend Ω(n) time waiting at most edges along a given path, since once we
wait on a message once and it gets “ahead”, we shouldn’t have to wait on it again. In the next
section we’ll see how to formalize this analysis to show the above approach actually does achieve
O(n) time.

3.2 Tighter Analysis

We may improve the average case to O(n) by instead considering the number of paths that intersect
with a path as opposed to the load on each path. Let us define the set of paths which intersect
some path Pi as

Si = {j | Pj ∩ Pi ̸= ∅}.

We briefly touched on the following lemma in class. Refer to the 2019 iteration of this course for
a more detailed proof. The aforementioned proof analyzes the relationship between “lags” and
messages on a common path.

Lemma 1. Let Ti be the time for packet i to traverse path Pi. We have Ti ≤ n+ |Si|.

We may use the preceding lemma to bound |Si|. Suppose path Pi = {e1, e2, ..., el}.

E[|Si|] ≤ E[total # of edges on paths intersecting Pi]

≤ E

[
l∑

i=1

L(ei)

]

=
l

2
≤ n

2

Using a form of the Chernoff bound, we may obtain

P[|Si| ≥ t] ≤ 2−t,∀t ≥ en.

P[|Si| ≥ 4n] ≤ 1

N4

Applying Lemma 1, we have

P[Ti ≥ 5n] ≤ 1

N4

and after taking a union bound

P[maxTi ≥ 5n] ≤ 1

N3

Therefore, we have shown routing a message may be done in O(n) with high probability.

4


