
CS 388R: Randomized Algorithms, Fall 2023 September 27th, 2023

Lecture 11: Fingerprinting

Prof. Eric Price Scribe: Ronak Ramachandran, Marlan McInnes-Taylor

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we explored problems in routing. Today, we’ll be covering a new topic: finger-
printing. Fingerprinting is useful when you want to check whether two values X and Y are equal,
but it would take too long to compute and compare the values bit-by-bit. The idea is to instead
compute and compare hashes of the values, h(X) and h(Y ). Note that h(X) ̸= h(Y ) =⇒ X ̸= Y
with certainty, and with the right choice of hash family, h(X) = h(y) =⇒ X = Y with high
probability.

2 Example 1: Checking Matrix Multiplication

Consider the following problem: given A,B,C ∈ Rn, check whether AB = C. One way to solve
this would be to calculate AB and compare it to C, but this would take O(nω) time (here, ω is the
matrix multiplication exponent, currently known to be ω < 2.373). Can we do better?

One thing we might try is to pick a random vector r ∈ {0, 1, . . . , 2k−1}n and see whether A(Br) =
Cr. Since we only need to do 3 matrix-vector multiplications (we never actually calculate AB),
this only takes O(n2) time.

Claim 1. If AB ̸= C,

P[ABr = Cr] ≤ 1

2
.

Proof. AB ̸= C =⇒ AB − C ̸= 0, so there exists a non-zero row v of AB − C. Then

P[v · r = 0] ≤ max
rj s.t. i ̸=j

P
ri

viri +∑
j ̸=i

vjrj = 0 | r̸=i

 ≤ 1

2
.

where the last step follows because there is at most one assignment of ri that results in the correct
sum given some fixed values for the other elements of r.

1



3 Example 2: Polynomial Identity Testing

In polynomial identity testing, we given a polynomial p of degree d and we need to check whether
p = 0. If p ̸= 0, then p has at most d roots, so we could evaluate p(0), . . . , p(d) and then check
whether all d+ 1 of these evaluations are 0. If all evaluations are 0, we can output “YES,” and if
not, then we can output “NO.” It’s hard to say how efficient this is but we know:

1. This needs d+ 1 evaluations.

2. p(d) might be big (≈ dd, which takes d bits to store).

We can do fewer evaluations by picking a random x from {0, . . . ,m− 1}. Then

P[p(x) = 0 | p ̸= 0] ≤ d

m
≤ 1

4
,

when we choose m to be 4d. We can reduce the storage size for evaluations of p by evaluating mod
p.

Our new scheme then becomes: (1) Pick x1, . . . , xk ∈ [p] uniformly at random, and (2) return
whether p(x1, . . . , xk) = 0, where here p(x1, . . . , xk) := p(x1) + · · ·+ p(xk). By the Schwartz-Zippel
lemma,

P[p(x1, . . . , xk) = 0 | p ̸= 0] ≤ d

p
.

4 Example 3: String Matching

We shall now consider the problem of string searching. Ultimately, we desire to check whether
string b is a substring of a larger string a. Imagine we have an n-bit string a and m-bit string b
where m ≤ n. A naive approach is to simply compare the m-bits of b to m-bit subpatterns of a at
each of a’s n possible positions, which takes O(nm) time. We shall examine the string searching
algorithm proposed by Karp and Rabin [RK87] which utilizes hashing and randomness to offer a
better bound on performing such a search.

4.1 String Hashing

First, lets consider how to compare two n-bit strings.

We desire a hash function h(·) s.t. given arbitrary strings x, y if x ̸= y then h(x) ̸= h(y) with high
probability.

Let:

h(x) = hx(c) =
n∑

i=1

ci · xi (mod p)

h(y) = hy(c) =
n∑

i=1

ci · yi (mod p)

2

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm


Where:

x, y ∈ {0, 1}n

p is a fixed prime s.t. p > 4n

c is a random value where c ∈ [p− 1]

We shall treat the xi’s and yi’s above as coefficients of a polynomial. Using this construction we
simple check if h(x)− h(y) = 0 to determine their equivalence.

This has a false positive rate of n
p which is the greatest chance that a random choice for c ∈ [p− 1]

is chosen as one of the n roots of
∑

ci · xi or
∑

ci · yi.

4.2 Rabin-Karp Algorithm [RK87]

We shall now extend the approach above to perform pattern matching where strings are of different
lengths. We will first partition a into length m substrings, and hash these substrings along with
string b using the the approach outlined in Section 4.1. We then compare the hashed string b to
the hashed substrings of a as above. If we find a match, output YES, else output NO.

Let:

ha1(c) =

m∑
i=1

cm−i · ai (mod p)

hb(c) =

m∑
i=1

ci · bi (mod p)

Where:

a ∈ {0, 1}n

b ∈ {0, 1}m

m ≤ n

Then, to quickly compute the next substring hash:

ha2(c) =
m+1∑
i=2

cm−i+1 · ai = am+1 + c · ha1(c)− a1c
m−1

For each partition of a we check if hai −hb = 0. Computing the next hash takes constant time, thus
the overall algorithm takes O(n+m) time. Using the union bound over all length m substrings of
a, the expected number of false positives is at most n · m

p .

5 Primality Testing

How do we find a prime within some range of integers? One option is to repeatedly pick a random
number and then test whether it’s prime - in expectation, this will require O(log p) tries before

3



success. How do we quickly check whether an integer is prime? Naively, we might check every
possible factor of p - this will take O(

√
p) time, which is O(2n/2) for an n-bit prime. We will now

examine two more sophisticated techniques.

5.1 Fermat

A better option is Fermat’s Primality Test, which uses Fermat’s Little Theorem.

Theorem 2. (Fermat’s Little Theorem) If p is prime, then ap−1 ≡ 1(mod p) for all a ̸= 0(mod p).

The idea is given p, we pick a random a ∈ {1, . . . , p − 1}, and if ap−1 ̸= 1(mod p), we output
NO, otherwise, “probably YES.” We say probably YES, because ∃a s.t. ap−1 ≡ 1(mod p) even
if p is not prime. In fact for a special set of composite numbers called the Carmichael numbers,
ap−1 ≡ 1(mod p) for all a ̸= p. The number of Carmichael numbers less than x is known to be
≥ x0.33 = o(x).

5.2 Miller-Rabin [M75] [R80]

Similar to Fermat’s Primality Test, the Miller-Rabin Primality Test checks if a given number n
demonstrates particular properties which hold for prime numbers. A deterministic version of this
test was first proposed by Miller [M75], with a probabilistic version later introduced by Rabin [R80].
We will focus on the probabilistic version.

Let:

n = 2k + 1; k ∈ Z+ (if n were even we’d need only check if n = 2)

a ∈ Z+; ‘a base’ coprime to n

Construct:

n− 1 = 2qm; where q,m ∈ Z+ and m is odd

Consider the sequence an−1 = a2
qm, a2

q−1m, ..., a2
m

(mod n). If n is prime then the sequence begins
with 1 and every subsequent member is 1, or the first member of the sequence ̸= 1 is instead = −1.
If a sequence for some n fails both of these conditions, then n is not prime.

The probability for any composite number (including Carmichael numbers) to pass this test is ≤ 1
4 .

Therefore repeating the test multiple times using different values for a can reduce the probability
of a false positive, where for k repetitions the resulting time complexity is O(k log n).

References

[RK87] Karp, Richard M. and Rabin, Michael O. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249-260, 1987.

[M75] Miller, Gary L. Riemann’s Hypothesis and Tests for Primality. Proceedings of the Seventh
Annual ACM Symposium on Theory of Computing, pp.234-239, 1975.

4

https://en.wikipedia.org/wiki/Fermat_primality_test
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test


[R80] Rabin, Michael O. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128-138, 1980.

5


	Overview
	Example 1: Checking Matrix Multiplication
	Example 2: Polynomial Identity Testing
	Example 3: String Matching
	String Hashing
	Rabin-Karp Algorithm rabin-karp

	Primality Testing
	Fermat
	Miller-Rabin miller-75 rabin-80


