CS 388R: Randomized Algorithms, Fall 2023
September 27th, 2023
Lecture 11: Fingerprinting
Prof. Eric Price Scribe: Ronak Ramachandran, Marlan McInnes-Taylor
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we explored problems in routing. Today, we'll be covering a new topic: fingerprinting. Fingerprinting is useful when you want to check whether two values X and Y are equal, but it would take too long to compute and compare the values bit-by-bit. The idea is to instead compute and compare hashes of the values, $h(X)$ and $h(Y)$. Note that $h(X) \neq h(Y) \Longrightarrow X \neq Y$ with certainty, and with the right choice of hash family, $h(X)=h(y) \Longrightarrow X=Y$ with high probability.

2 Example 1: Checking Matrix Multiplication

Consider the following problem: given $A, B, C \in \mathbb{R}^{n}$, check whether $A B=C$. One way to solve this would be to calculate $A B$ and compare it to C, but this would take $O\left(n^{\omega}\right)$ time (here, ω is the matrix multiplication exponent, currently known to be $\omega<2.373$). Can we do better?

One thing we might try is to pick a random vector $r \in\left\{0,1, \ldots, 2^{k}-1\right\}^{n}$ and see whether $A(B r)=$ $C r$. Since we only need to do 3 matrix-vector multiplications (we never actually calculate $A B$), this only takes $O\left(n^{2}\right)$ time.

Claim 1. If $A B \neq C$,

$$
\mathbb{P}[A B r=C r] \leq \frac{1}{2}
$$

Proof. $A B \neq C \Longrightarrow A B-C \neq 0$, so there exists a non-zero row v of $A B-C$. Then

$$
\mathbb{P}[v \cdot r=0] \leq \max _{r_{j} \text { s.t. } i \neq j} \mathbb{P}\left[r_{i}\left[v_{i} r_{i}+\sum_{j \neq i} v_{j} r_{j}=0 \mid r_{\neq i}\right] \leq \frac{1}{2}\right.
$$

where the last step follows because there is at most one assignment of r_{i} that results in the correct sum given some fixed values for the other elements of r.

3 Example 2: Polynomial Identity Testing

In polynomial identity testing, we given a polynomial p of degree d and we need to check whether $p=0$. If $p \neq 0$, then p has at most d roots, so we could evaluate $p(0), \ldots, p(d)$ and then check whether all $d+1$ of these evaluations are 0 . If all evaluations are 0 , we can output "YES," and if not, then we can output "NO." It's hard to say how efficient this is but we know:

1. This needs $d+1$ evaluations.
2. $p(d)$ might be big ($\approx d^{d}$, which takes d bits to store).

We can do fewer evaluations by picking a random x from $\{0, \ldots, m-1\}$. Then

$$
\mathbb{P}[p(x)=0 \mid p \neq 0] \leq \frac{d}{m} \leq \frac{1}{4},
$$

when we choose m to be $4 d$. We can reduce the storage size for evaluations of p by evaluating mod p.

Our new scheme then becomes: (1) Pick $x_{1}, \ldots, x_{k} \in[p]$ uniformly at random, and (2) return whether $p\left(x_{1}, \ldots, x_{k}\right)=0$, where here $p\left(x_{1}, \ldots, x_{k}\right):=p\left(x_{1}\right)+\cdots+p\left(x_{k}\right)$. By the Schwartz-Zippel lemma,

$$
\mathbb{P}\left[p\left(x_{1}, \ldots, x_{k}\right)=0 \mid p \neq 0\right] \leq \frac{d}{p}
$$

4 Example 3: String Matching

We shall now consider the problem of string searching. Ultimately, we desire to check whether string b is a substring of a larger string a. Imagine we have an n-bit string a and m-bit string b where $m \leq n$. A naive approach is to simply compare the m-bits of b to m-bit subpatterns of a at each of a 's n possible positions, which takes $\mathrm{O}(n m)$ time. We shall examine the string searching algorithm proposed by Karp and Rabin RK87 which utilizes hashing and randomness to offer a better bound on performing such a search.

4.1 String Hashing

First, lets consider how to compare two n-bit strings.
We desire a hash function $\mathrm{h}(\cdot)$ s.t. given arbitrary strings x, y if $x \neq y$ then $\mathrm{h}(x) \neq \mathrm{h}(y)$ with high probability.

Let:

$$
\begin{aligned}
& \mathrm{h}(x)=\mathrm{h}_{x}(c)=\sum_{i=1}^{n} c^{i} \cdot x_{i} \quad(\bmod p) \\
& \mathrm{h}(y)=\mathrm{h}_{y}(c)=\sum_{i=1}^{n} c^{i} \cdot y_{i} \quad(\bmod p)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& x, y \in\{0,1\}^{n} \\
& p \text { is a fixed prime s.t. } p>4 n \\
& c \text { is a random value where } c \in[p-1]
\end{aligned}
$$

We shall treat the x_{i} 's and y_{i} 's above as coefficients of a polynomial. Using this construction we simple check if $h(x)-h(y)=0$ to determine their equivalence.
This has a false positive rate of $\frac{n}{p}$ which is the greatest chance that a random choice for $c \in[p-1]$ is chosen as one of the n roots of $\sum c^{i} \cdot x_{i}$ or $\sum c^{i} \cdot y_{i}$.

4.2 Rabin-Karp Algorithm [RK87]

We shall now extend the approach above to perform pattern matching where strings are of different lengths. We will first partition a into length m substrings, and hash these substrings along with string b using the the approach outlined in Section 4.1. We then compare the hashed string b to the hashed substrings of a as above. If we find a match, output YES, else output NO.

Let:

$$
\begin{aligned}
& \mathrm{h}_{a_{1}}(c)=\sum_{i=1}^{m} c^{m-i} \cdot a_{i} \quad(\bmod p) \\
& \mathrm{h}_{b}(c)=\sum_{i=1}^{m} c^{i} \cdot b_{i} \quad(\bmod p)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& a \in\{0,1\}^{n} \\
& b \in\{0,1\}^{m} \\
& m \leq n
\end{aligned}
$$

Then, to quickly compute the next substring hash:

$$
\mathrm{h}_{a_{2}}(c)=\sum_{i=2}^{m+1} c^{m-i+1} \cdot a_{i}=a_{m+1}+c \cdot h_{a_{1}}(c)-a_{1} c^{m-1}
$$

For each partition of a we check if $h_{a_{i}}-h_{b}=0$. Computing the next hash takes constant time, thus the overall algorithm takes $O(n+m)$ time. Using the union bound over all length m substrings of a, the expected number of false positives is at most $n \cdot \frac{m}{p}$.

5 Primality Testing

How do we find a prime within some range of integers? One option is to repeatedly pick a random number and then test whether it's prime - in expectation, this will require $O(\log p)$ tries before
success. How do we quickly check whether an integer is prime? Naively, we might check every possible factor of p - this will take $O(\sqrt{p})$ time, which is $O\left(2^{n / 2}\right)$ for an n-bit prime. We will now examine two more sophisticated techniques.

5.1 Fermat

A better option is Fermat's Primality Test, which uses Fermat's Little Theorem.
Theorem 2. (Fermat's Little Theorem) If p is prime, then $a^{p-1} \equiv 1(\bmod p)$ for all $a \neq 0(\bmod p)$.
The idea is given p, we pick a random $a \in\{1, \ldots, p-1\}$, and if $a^{p-1} \neq 1(\bmod p)$, we output NO, otherwise, "probably YES." We say probably YES, because $\exists a$ s.t. $a^{p-1} \equiv 1(\bmod p)$ even if p is not prime. In fact for a special set of composite numbers called the Carmichael numbers, $a^{p-1} \equiv 1(\bmod p)$ for all $a \neq p$. The number of Carmichael numbers less than x is known to be $\geq x^{0.33}=o(x)$.

5.2 Miller-Rabin [M75] R80]

Similar to Fermat's Primality Test, the Miller-Rabin Primality Test checks if a given number n demonstrates particular properties which hold for prime numbers. A deterministic version of this test was first proposed by Miller M75, with a probabilistic version later introduced by Rabin R80. We will focus on the probabilistic version.

Let:

$$
\begin{aligned}
& n=2 k+1 ; k \in \mathbb{Z}^{+} \text {(if } n \text { were even we'd need only check if } n=2 \text {) } \\
& a \in \mathbb{Z}^{+} ; \text {'a base' coprime to } n
\end{aligned}
$$

Construct:

$$
n-1=2^{q} m ; \text { where } q, m \in \mathbb{Z}^{+} \text {and } m \text { is odd }
$$

Consider the sequence $a^{n-1}=a^{2^{q} m}, a^{2^{q-1} m}, \ldots, a^{2^{m}}(\bmod n)$. If n is prime then the sequence begins with 1 and every subsequent member is 1 , or the first member of the sequence $\neq 1$ is instead $=-1$. If a sequence for some n fails both of these conditions, then n is not prime.

The probability for any composite number (including Carmichael numbers) to pass this test is $\leq \frac{1}{4}$. Therefore repeating the test multiple times using different values for a can reduce the probability of a false positive, where for k repetitions the resulting time complexity is $O(k \log n)$.

References

[RK87] Karp, Richard M. and Rabin, Michael O. Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development, 31(2):249-260, 1987.
[M75] Miller, Gary L. Riemann's Hypothesis and Tests for Primality. Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, pp.234-239, 1975.
[R80] Rabin, Michael O. Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1):128-138, 1980.

