CS 388R: Randomized Algorithms, Fall 2023

Lecture 13: Sampling and Median Finding
Prof. Eric Price
Scribe: Gary Wang, Trung Nguyen
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

We consider the idea of random sampling and show an application for median finding.

2 Sampling Example

Goal: Estimate π by inscribing a circle inside a square of side length 2 and sampling random points.
$\operatorname{Pr}[$ in circle $]=\frac{\pi}{4}, O\left(\frac{1}{\epsilon^{2}} \log \frac{2}{\delta}\right)$ samples needed to estimate to ϵ precision with $1-\delta$ confidence.

Can be extended to any polytope/polyhedron, but if the object is small with respect to the bounding box/cube, we need to take a number of samples until we have seen at least some number of points inside the object. The number of samples needed remains linear with respect to the object's area/volume.

3 Median Finding

Goal: Given x_{1} to x_{n} array of n unsorted real numbers, return the median number.
More general problem: return the $r^{\text {th }}$ smallest element.
Some algorithms that can be used:

3.1 Quicksort

We sort the list and return return the median. The runtime is $O(n \log n)$.

3.2 Quickselect

We use quickselect with one recursive call on the same side as the median. The expected runtime is $O(n)$, and is $O\left(n \frac{\log n}{\log \log n}\right)$ whp.

Proof. We show that Quickselect is $O(n)$ expected, $O\left(n \frac{\log n}{\log \log n}\right)$ whp. Expected:

Similar to quicksort analysis, the pivot can shave off $\frac{1}{4}$ of the elements with $\frac{1}{2}$ probability. Therefore it takes $O(1)$ time for an array to go from size n to size $\frac{3}{4} n$. From a geometric sum with common ratio $\frac{3}{4}$, the expected runtime is indeed $O(n)$.
With High Probability:
We note that in this problem, the probability of all of the first k choices for a pivot lie before $\frac{n}{k}$ is at least $1 / k^{k}$.
If this case happens, then k pivots has reduced our array to size $n(1-1 / k)^{k} \approx n / e$.
Therefore, there's a $1 / k^{k}$ chance of taking $\Omega(k n)$ time and thus a $1 / n$ chance of taking $\Omega\left(\frac{n \log n}{\log \log n}\right)$ time.
As such, we cannot show that Quickselect is $O(n)$ with high probability but rather $\Omega\left(\frac{n \log n}{\log \log n}\right)$ with high probability, which is not much better than sorting the array.

3.3 Median-of-Medians

There exists a determinisic algorithm that is $O(n)$ worst case. Ref CLRS.
Overall method:
Split array elements into groups of 5 and take median of each group, take recursive median of the medians use that as pivot.
$T(n)=O(n)+T\left(\frac{n}{5}\right)+T\left(\frac{7}{10} n\right) \Longrightarrow O(n)$ Master Thm.
Today: Show $1.5 n+o(n)$

4 Median By Sampling

Let S be the subset of X obtained by sampling each element in X independently with probability p. Using Chernoff bound, $|S|=\Theta(n p)$ w.h.p. in n.
What is the rank of median of X in S ?
Denote the rank of median of X in S by $\operatorname{rank} k_{S}(\operatorname{med}(X))$ Let Z_{i} be the indicator of the event that element i of S is at most median of X.
So $\operatorname{rank}_{S}(\operatorname{med}(X))=\sum_{i=1}^{|S|} Z_{i}$.
We have $\mathbb{P}\left[Z_{i}=1\right]=0.5$, so $\mathbb{E}\left[\operatorname{rank}_{S}(\operatorname{med}(X))\right]=|S| / 2$.
Applying additive Chernoff bound, we have

$$
\begin{aligned}
& \mathbb{P}\left[\operatorname{rank}_{S}(\operatorname{med}(X))>\frac{|S|}{2}+t\right] \leq e^{-2 t^{2} /|S|} \\
& \mathbb{P}\left[\operatorname{rank}_{S}(\operatorname{med}(X))<\frac{|S|}{2}-t\right] \leq e^{-2 t^{2} /|S|}
\end{aligned}
$$

Choose $t=\sqrt{|S| \ln n}$, so $\frac{|S|}{2}-t \leq \operatorname{rank}_{S}(\operatorname{med}(X)) \leq \frac{|S|}{2}+t$ w.p at least $1-O\left(1 / n^{2}\right)$.
Let two elements whose ranks in S are $\frac{|S|}{2}-t, \frac{|S|}{2}+t$ be $s_{l r}, s_{h r}$ respectively. With at most $2 n$ time and expected $1.5 n$ time, we partition X into three subsets: X_{l} : less than $s_{l r}, X_{h}$: more than $s_{h r}$, and X_{b} : between $s_{l r}$ and $s_{h r}$ (For each element in X, we randomly choose which of $s_{l r}, s_{h r}$ to compare first).
For any rank- αn element in X, its rank in S is $\alpha|S| \pm \sqrt{|S| \ln n}$ w.h.p. So choose α such that $\alpha|S|+\sqrt{|S| \ln n}=|S| / 2-\sqrt{|S| \ln n} \Rightarrow \alpha=.5-2 \sqrt{\frac{\ln n}{|S|}}$, then the $(\alpha n)-t h$-ranked element in X
is in X_{l} w.h.p. Similarly, for $\alpha^{\prime}=.5+2 \sqrt{\frac{\ln n}{|S|}}$, the $\left(\alpha^{\prime} n\right)-t h$-ranked element in X is in X_{l} w.h.p. So X_{b} has at most $\frac{4 n \sqrt{\ln n}}{\sqrt{|S|}}$ elements w.h.p. Choose p is constant, so $\left|X_{b}\right|=\Theta(\sqrt{\ln n})$ whp. We can figure out the median by sorting X_{b} since we know the size of X_{l} and X_{h}.

References

