
CS 388R: Randomized Algorithms, Fall 2023 10/4/2023

Lecture 13: Sampling and Median Finding

Prof. Eric Price Scribe: Gary Wang, Trung Nguyen

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

We consider the idea of random sampling and show an application for median finding.

2 Sampling Example

Goal: Estimate π by inscribing a circle inside a square of side length 2 and sampling random
points.

Pr[in circle] = π
4 , O(1

ϵ2
log 2

δ) samples needed to estimate to ϵ precision with 1− δ confidence.

Can be extended to any polytope/polyhedron, but if the object is small with respect to the bounding
box/cube, we need to take a number of samples until we have seen at least some number of points
inside the object. The number of samples needed remains linear with respect to the object’s
area/volume.

3 Median Finding

Goal: Given x1 to xn array of n unsorted real numbers, return the median number.
More general problem: return the rth smallest element.
Some algorithms that can be used:

3.1 Quicksort

We sort the list and return return the median. The runtime is O(n log n).

3.2 Quickselect

We use quickselect with one recursive call on the same side as the median. The expected runtime
is O(n), and is O(n logn

log logn) whp.

Proof. We show that Quickselect is O(n) expected, O(n logn
log logn) whp.

Expected:

1

Similar to quicksort analysis,the pivot can shave off 1
4 of the elements with 1

2 probability. Therefore
it takes O(1) time for an array to go from size n to size 3

4n. From a geometric sum with common
ratio 3

4 , the expected runtime is indeed O(n).
With High Probability:
We note that in this problem, the probability of all of the first k choices for a pivot lie before n

k is
at least 1/kk.
If this case happens, then k pivots has reduced our array to size n(1− 1/k)k ≈ n/e.
Therefore, there’s a 1/kk chance of taking Ω(kn) time and thus a 1/n chance of taking Ω(n logn

log logn)
time.
As such, we cannot show that Quickselect is O(n) with high probability but rather Ω(n logn

log logn) with
high probability, which is not much better than sorting the array.

3.3 Median-of-Medians

There exists a determinisic algorithm that is O(n) worst case. Ref CLRS.
Overall method:
Split array elements into groups of 5 and take median of each group, take recursive median of the
medians use that as pivot.
T (n) = O(n) + T (n5) + T (7

10n) =⇒ O(n) Master Thm.
Today: Show 1.5n+ o(n)

4 Median By Sampling

Let S be the subset of X obtained by sampling each element in X independently with probability
p. Using Chernoff bound, |S| = Θ(np) w.h.p. in n.
What is the rank of median of X in S?
Denote the rank of median of X in S by rankS(med(X)) Let Zi be the indicator of the event that
element i of S is at most median of X.
So rankS(med(X)) =

∑|S|
i=1 Zi.

We have P[Zi = 1] = 0.5, so E[rankS(med(X))] = |S|/2.
Applying additive Chernoff bound, we have

P[rankS(med(X)) >
|S|
2

+ t] ≤ e−2t2/|S|

P[rankS(med(X)) <
|S|
2

− t] ≤ e−2t2/|S|

Choose t =
√
|S| lnn, so |S|

2 − t ≤ rankS(med(X)) ≤ |S|
2 + t w.p at least 1−O(1/n2).

Let two elements whose ranks in S are |S|
2 − t, |S|2 + t be slr, shr respectively. With at most 2n

time and expected 1.5n time, we partition X into three subsets: Xl: less than slr, Xh: more than
shr, and Xb: between slr and shr (For each element in X, we randomly choose which of slr, shr to
compare first).
For any rank-αn element in X, its rank in S is α|S| ±

√
|S| lnn w.h.p. So choose α such that

α|S| +
√

|S| lnn = |S|/2 −
√
|S| lnn ⇒ α = .5 − 2

√
lnn
|S| , then the (αn) − th-ranked element in X

2

is in Xl w.h.p. Similarly, for α′ = .5 + 2
√

lnn
|S| , the (α′n)− th-ranked element in X is in Xl w.h.p.

So Xb has at most 4n
√
lnn√
|S|

elements w.h.p. Choose p is constant, so |Xb| = Θ(
√
lnn) whp. We can

figure out the median by sorting Xb since we know the size of Xl and Xh.

References

3

