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Lecture 16: Matrix concentration and graph sparsification

Prof. Eric Price Scribe: Steven Xu, Bennett Liu

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the previous lecture, learned about online bipartite matching. This lecture, we will develop some
background required for graph sparsification. In particular, we will try to prove the Rudelson-
Vershyni theorem by using an extension of Bernstein’s inequality for symmetric matrices.

2 Bernstein Concentration Inequality

The Bernstein Concentration Inequality is a concentration inequality for the sum of bounded inde-
pendent real random variables—similar to the Chernoff bounds we use more commonly, but taking
into account the variance as well as the boundedness of our variables.

Claim 1. Bernstein Concentration Inequality. Suppose X1, . . . , Xn are independent, centered ran-
dom variables where |Xi| ≤ K for all i, and let

X =
n∑

i=1

Xi, σ2
i = Var[Xi], σ2 = Var[X] =

n∑
i=1

σ2
i .

Then

P [X ≥ t] ≤ exp

(
−1

4
min

(
t2

σ2
,
t

K

))
.

Intuitively, this inequality states that X behaves like a normal distribution around the mean and
an exponential distribution further out. This idea will be important to proving the inequality.

2.1 Proof of Bernstein’s Inequality

Author’s note: the proof was not covered in class.

First, we capture the notion of ”normal around the mean and exponential on the tail” in the idea
of a subgamma variable.

Definition 2. Subgamma Random Variable. A centered variable X is subgamma(σ2, c) with vari-
ance proxy σ2 and exponential scale c if

E[exp(λX)] ≤ exp

(
1

2
σ2λ2

)
for all |λ| ≤ 1

c
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While this definition doesn’t seem to correspond to the behavior we’re trying to model, it turns
out they are roughly equivalent.

Proposition 3. If a random variable X is subgamma(σ2, c) then

max(P[X ≥ t],P[X ≤ −t]) ≤ exp

[
−1

2
min

(
t2

σ2
,
t

c

)]
.

The converse also holds with a loss in parameters.

Proof. We’ll only prove the forward direction since we don’t actually need the converse anywhere.
For those who’ve seen a proof of the Chernoff bounds, this will be very similar. Suppose X is
subgamma(σ2, c). By Markov’s inequality, we know that for |λ| ≤ 1

c ,

P[X ≥ t] = P[exp(λX) ≤ exp(λt)] ≤ E[exp(λX)] exp(−λt) ≤ exp

(
1

2
σ2λ2 − tλ

)
.

To get the tightest inequality possible, we choose λ to minimize the convex quadratic f(λ) =
1
2σ

2λ2− tλ. We know that f achieves its minimum at λ = −(−t)/(2(σ2/2)) = tσ−2. However, that
value might be greater than 1

c , so in that case, we take λ = 1
c . Finally, our minimum value of f is

f

(
min

(
t

σ2
,
1

c

))
=

1

2
σ2

[
min

(
t

σ2
,
1

c

)]2
− tmin

(
t

σ2
,
1

c

)
=

1

2
min

(
t2

σ2
,
σ2

c2

)
−min

(
t2

σ2
,
t

c

)
=

1

2
min

(
t2

σ2
,
1

c

σ2

c

)
−min

(
t2

σ2
,
t

c

)
≤ 1

2
min

(
t2

σ2
,
t

c

)
−min

(
t2

σ2
,
t

c

)
= −1

2
min

(
t2

σ2
,
t

c

)
.

The inequality holds since if t2/σ2 ≥ σ2/c2, then t ≥ σ2/c. Finally,

P[X ≥ t] ≤ exp

(
1

2
σ2λ2 − tλ

)
≤ exp

(
−1

2
min

(
t2

σ2
,
t

c

))
.

The proof so far only bounds the positive tail of X. To bound the negative tail of X, observe that
if X is subgamma, then −X is subgamma with the same parameters.

Now we can show Bernstein’s inequality by proving that the sum X is subgamma(2σ2, 2K). To do
this, we’ll first show that each Xi is subgamma(2σ2

i , 2K), and then show that the sum of subgamma
variables is subgamma.

Proposition 4. Let X be a random variable such that |X| ≤ K, and let σ2 = Var[X]. Then X is
subgamma(2σ2, 2K).

2



Proof. Let |λ| ≤ 1/[2K]. Note that |λX| ≤ 1/2.

To help untangle the soup of upcoming equations, here’s the gist of the proof. Read this alongside
the equations.

1. We do Taylor series expansion on E[exp(λX)] to get a polynomial in the moments of X.

2. With some manipulation, we turn those into moments of |X/K| ≤ 1, so we’re guaranteed
that higher moments get smaller. This allows us to replace the second moment onwards with
second moments.

3. After pulling some terms out, we bound our remaining series with a geometric series, then
bound that with a constant using the fact that |λ| ≤ 1/[2K].

4. Once the dust settles, we’re left with the first two terms of the Taylor series expansion of
exp(λ2σ2), which must be at most exp(λ2σ2) itself since every term is positive.

E[exp(λX)] ≤ E[exp(|λX|)] = E

[ ∞∑
n=0

1

n!
|λX|n

]
=

∞∑
n=0

|λ|n

n!
E[|X|n] (1)

= 1 +
∞∑
n=2

|λK|n

n!
E
[∣∣∣∣XK

∣∣∣∣n] ≤ 1 +
∞∑
n=2

|λK|n

n!
E

[∣∣∣∣XK
∣∣∣∣2
]

(2)

= 1 +
∞∑
n=2

|λK|n

n!

σ2

K2

= 1 + |λK|2 σ
2

K2

∞∑
n=0

|λK|n

(n+ 2)!
≤ 1 +

1

2
λ2σ2

∞∑
n=0

|λK|n (3)

= 1 +
1

2
λ2σ2 1

1− |λK|
≤ 1 + λ2σ2

≤ exp(λ2σ2). (4)

Thus X is subgamma(2σ2, 2K).

Now we will show that the sum of two subgamma variables is subgamma.

Proposition 5. Suppose X1, X2 are independent random variables s.t. X1 is subgamma(σ2
1, c1)

and X2 is subgamma(σ2
2, c2). Then the sum X1 +X2 must be subgamma(σ2

1 + σ2
2,max(c1, c2)).

Proof. Let λ ≤ 1/max(c1, c2). Then λ ≤ 1/c1 and λ ≤ 1/c2. Using the subgamma property of
X1, X2, we see that

E[exp(λ(X1 +X2))] = E[exp(λX1)]E[exp(λX2)]

≤ exp

(
1

2
σ2
1λ

2

)
exp

(
1

2
σ2
2λ

2

)
= exp

(
1

2
(σ2

1 + σ2
2)λ

2

)
.

Thus X1 +X2 is subgamma(σ2
1 + σ2

2,max(c1, c2)).
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Finally, we can prove Bernstein’s inequality.

Theorem 6. Bernstein Concentration Inequality. Suppose X1, . . . , Xn are independent, centered
random variables where |Xi| ≤ K for all i, and let

X =
n∑

i=1

Xi, σ2
i = Var[Xi], σ2 = Var[X] =

n∑
i=1

σ2
i .

Then

P [X ≥ t] ≤ exp

(
−1

4
min

(
t2

σ2
,
t

K

))
.

Proof. We know that Xi is subgamma(2σ2
i , 2K) and, so X must be subgamma(2

∑n
i=1 σ

2
i , 2K).

But since σ2 =
∑n

i=1 σ
2
i , X is subgamma(2σ2, 2K). Finally,

P[X ≥ t] ≤ exp

[
−1

2
min

(
t2

2σ2
,

t

2K

)]
= exp

[
−1

4
min

(
t2

σ2
,
t

K

)]
.

3 Matrix Bernstein

This section will attempt to extend Bernstein’s inequality to symmetric matrices. First, we will do
a quick review of matrix norms.

3.1 Matrix Norms

Definition 7. Spectral Norm. The spectral norm of an n by n matrix A is

∥A∥ = max
i∈[n]

σn where {σi}i∈[n] are the singular values of A

Definition 8. Operator Norm. The operator norm of an n by n matrix A is

∥A∥op = sup
v∈Rn\{0}

∥Av∥
∥v∥

.

In other words, ∥A∥op is the max factor A will increase the length of a vector will increase by.

For a symmetric matrix A, the singular values coincide with the absolute value of the eigenvalues—
if QΛQT is an eigen-decomposition of A, then ATA = A2 = (QΛQT )(QΛQT ) = QΛ2QT , so the
singular values are σ =

√
λ2 = |λ| where λ is an eigenvalue of A.
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For any matrix A, the operator norm and the spectral norm are equal. Let UΣV T be a singular
value decomposition of A. Then

∥A∥op = sup
v∈Rn\{0}

∥Av∥
∥v∥

= sup
v∈Rn\{0}

∥UΣV T v∥
∥v∥

= sup
v∈Rn\{0}

∥ΣV T v∥
∥v∥

(U preseves the norm)

= sup
v∈Rn\{0}

∥Σv∥
∥V v∥

(substitute V T v with v)

= sup
v∈Rn\{0}

∥Σv∥
∥v∥

= max
i

|Σii| = ∥A∥

3.2 Matrix Bernstein Inequality

Finally, we are ready for Matrix Bernstein.

Claim 9. Bernstein Concentration Inequality for Matrices. Suppose X1, . . . , Xm are independent,
symmetric random n by n matrices s.t. for all i,

E[Xi] = 0, ∥Xi∥ ≤ K,

and let

X =
m∑
i=1

Xi, σ2 =
∥∥E[X2]

∥∥
Then

P [∥X∥ ≥ t] ≤ 2n exp

(
−1

4
min

(
t2

σ2
,
t

K

))
.

We will not prove this, but we will attempt to build a bit of intuition for this claim. Author’s
note: We didn’t go over the stuff below in class and it might be completely wrong. Take it with a
grain of salt.

3.2.1 Change of Basis

Let QDQT be an orthonormal eigen-decomposition of X. This means that vi = Qi∗ are the
eigenvectors of X and λi = Dii are their respective eigenvalues. To get everything to be well-
defined as random variables, we’ll choose the ordering of eigenvectors uniform randomly. Note that
this requires the eigenvalues to be unique, but we’ll ignore that detail.

Now we will change basis using Q. Let Yi = QTXiQ and Y = QTXQ = D. Our first leap of faith
will be to pretend that Q is independent from pairs of Xi. Q is a unitary transformation (rotation
and reflection) resulting from the sum X, and the set of unitary transformations is compact, so the
hope is that it can’t leak too much information.
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If we take the leap, we have that Y1, . . . , Ym are independent and symmetric, Y =
∑

i Yi, and

E[Yi] = E[QTXiQ] = E[QT ]E[Xi]E[Q] = 0, ∥Yi∥ = ∥Xi∥ ≤ K∥∥E[Y 2]
∥∥ =

∥∥∥∑
i,j

E[QTXiXjQ]
∥∥∥ =

∥∥∥E[QT ]
[∑

i,j

E[Xi]E[Xj ]
]
E[Q]

∥∥∥ = σ2.

We also have that the eigenvectors of Y are e1, . . . , en and their respective eigenvalues are λ1, . . . , λn,
so we have ∥Y ∥ = maxi |λi| = ∥X∥. [Notation: ei is the vector where the ith entry is 1 and the
others are 0.] Since we ordered the eigenvalues randomly, the distribution of all the λi should be
the same.

P[∥Y ∥ ≥ t] = P[max
i∈[n]

|λi| ≥ t] ≤
n∑

i=1

P[|λi| ≥ t] = nP[|λ1| ≥ t].

3.2.2 Bounding P[|λ1| ≥ t]

Now we will attempt to bound P[|λ1| ≥ t]. We know that
∑

i Yie1 = λ1e1, so
∑

i(Yi)11 = λ1. But
the spectral norm is equivalent to the operator norm for symmetric matrices, so

|(Yi)11| ≤ ∥Yie1∥ ≤ ∥Y ∥∥e1∥ = ∥Y ∥ ≤ K.

Also, since the eigenvectors of Y and Y 2 are the same,

σ2 =
∥∥E[Y 2]

∥∥ = max
i∈[n]

∥∥E[Y 2]ei
∥∥ = max

i∈[n]

∥∥E[λ2
i ]ei

∥∥
= max

i∈[n]
E[λ2

i ] = E[λ2
1] = Var[λ1].

Next, we will take our second leap of faith by assuming that (Y1)11, . . . , (Ym)11 are independent.
Roughly speaking, what our change of basis did is eliminate the off-diagonal entries of X so Y is di-
agonal. Then while we have an obvious dependency between the off-diagonal entries of Y1, . . . , Ym,
no such thing exists for the diagonal entries. The hope is then that since X1, . . . , Xm are indepen-
dent, the diagonal entries are as well.

We have now satisfied all the requirements to use the regular Bernstein Inequality on λ1 =
∑

i(Yi)11.
To summarize, we know that:

{(Yi)11}i are independent, E[(Yi)11] = 0, |(Yi)11| ≤ K, Var[λ1] ≤ σ2.

Finally, applying regular Bernstein, we get

P[|λ1| ≥ t] ≤ 2 exp

(
−1

4
min

(
t2

σ2
,
t

K

))
P[∥X∥ ≥ t] = P[∥Y ∥ ≥ t] ≤ nP[|λ1| ≥ t]

≤ 2n exp

(
−1

4
min

(
t2

σ2
,
t

K

))
.
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4 Rudelson-Vershynin

Rudelson-Vershynin is a concentration inequality for the covariance matrix of a set of vectors xi,
which is defined as 1

m

∑m
i=1 xix

T
i . We will prove this inequality using Matrix Bernstein.

Theorem 10. Rudelson-Vershynin [RV05].

Let K ≥ 1, x1, . . . , xm ∈ Rn be independent random vectors s.t. for all i,

max
i∈[m]

∥xi∥ ≤ K,
∥∥E[xixTi ]∥∥ ≤ 1.

Then there exists some C s.t. if CK
√

1
m log n ≤ 1,

E

[∥∥∥∥∥ 1

m

m∑
i=1

xix
T
i − 1

m
E

[
m∑
i=1

xix
T
i

]∥∥∥∥∥
]
≲ CK

√
1

m
log n.

Proof. Let Yi = xix
T
i − E[xixTi ]. Then E[Yi] = 0 and

∥Yi∥ ≤ ∥xixTi ∥+ ∥E[xixTi ]∥ ≤ K2 + 1 ≤ 2K2.

Also, ∥∥∥∥∥
m∑
i=1

E[Y 2
i ]

∥∥∥∥∥ ≤
m∑
i=1

∥∥E[Y 2
i ]
∥∥ =

m∑
i=1

∥∥E[(xixTi − E[xixTi ])2]
∥∥

=
m∑
i=1

∥∥E[xixTi xixTi ]− 2E[E[xixTi ]xixTi ] + E[xixTi ]2
∥∥

=
m∑
i=1

∥∥∥xi∥2 E[xixTi ]− E[xixTi ]2
∥∥

≤
m∑
i=1

(
∥xi∥2∥E[xixTi ]∥+ E[xixTi ]2

)
≤

m∑
i=1

(K2 + 1) = m(K2 + 1) ≤ 2mK2.

Now let E =
∥∥ 1
mYi

∥∥. Applying Matrix Bernstein to
∑m

i=1 Yi, we get that

P [E ≥ t] = P

[∥∥∥∥∥
m∑
i=1

Yi

∥∥∥∥∥ ≥ mt

]

≤ 2n exp

(
−1

4
min

(
(mt)2

2mK2
,
mt

2K2

))
= 2n exp

(
−1

4
min

(
mt2

2K2
,
mt

2K2

))
= 2n exp

(
− m

8K2
min(t2, t)

)
= f(t).
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To bound our expectation, we know that

E[E] =

∫ ∞

0
P[E ≥ t]dt ≤

∫ ∞

0
min(1, f(t))dt.

We will evaluate this integral in pieces. First, we need to find at what point f(t) ≤ 1:

f(t) ≤ 1, exp
(
− m

8K2
min(t2, t)

)
≤ 1

2n
, min(t2, t) ≥ 8K2

m
ln 2n.

Now let s2 = 8K2/m · ln 2n, and suppose s ≤ 1. Then∫ ∞

0
min(1, f(t))dt = s+

∫ ∞

s
f(t)dt

= s+

∫ 1

s
2n exp

(
− m

8K2
t2
)
dt+

∫ ∞

1
2n exp

(
− m

8K2
t
)
dt

= s+A+B

For the first part1,

A =

∫ 1

s
2n exp

(
− m

8K2
t2
)
dt = 2n

√
8K2

m

∫ 1

ln 2n
e−u2

du

≤ 2ns√
ln 2n

∫ ∞

ln 2n
e−u2

du =
2ns√
ln 2n

[
Θ(e−u2

z−1)
]
u=ln 2n

= Θ
(
s(ln 2n)−3/2(2n)1−ln 2n

)
= O(s)

For the second part,

B =

∫ ∞

1
2n exp

(
− m

8K2
t
)
dt = 2n

8K2

m
exp

(
− m

8K2

)
= 2n

s2

ln 2n
exp

(
− ln 2n

s2

)
= s2(ln 2n)−1(2n)1−s−2

= O(s2) = O(s).

Thus E[E] ≤ s+A+B = s+O(s) +O(s) = O(s).

However, s = K
√

8
m ln 2n ≤ CK

√
1
m lnn for some C, so we have that

if CK

√
1

m
lnn ≤ 1, then E[E] ≲ CK

√
1

m
lnn.
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