
CS 388R: Randomized Algorithms, Fall 2023 October 23rd, 2023
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1 Overview

In the last lecture, we discussed matrix concentration inequalities as a preliminary for the graph
sparsification problem.

In this lecture, we continue our journey in concentration inequalities. Specifically, we show a
useful technique that derives tail probability bounds from moment generating functions, introduce
subgaussian and subgamma random variables, and finally discuss some applications.

2 Moment Generating Function

Recall Markov’s inequality: if a random variable X is nonnegative, then we have

P[X ≥ t] ≤ E[X]

t
.

One important corollary is Chebyshev’s inequality. Let X be a random variable with mean µ
and variance σ2. By applying Markov’s inequality to (X − µ)2 ≥ 0, we can obtain

P[X − µ ≥ t] ≤ P[(X − µ)2 ≥ t2] ≤ E[(X − µ)2]

t2
=

σ2

t2
.

As a result, we can conclude that X ≤ µ+ σ√
δ
with probability at least 1− δ.

Is Chebyshev’s inequaltiy tight enough? On the one hand, if δ is a constant, this is probably the
best we can get: with a constant probability, we would expect X to deviate from the mean by σ.
On the other hand, when δ tends to 0, the upper bound µ+ σ√

δ
grows polynoimally, which can be

undesirable.

To obtain tighter concentration bounds, we will rely on the moment generating function
(MGF). The MGF of a random variable X is defined as

ϕX(λ) := E[eλ(X−µ)].

To obtain a tail bound inequality, we can use a similar argument as in the derivation of Chebyshev’s
inequality. Specifically, for λ ≥ 0, since x 7→ eλx is an increasing function, we have

P[X − µ ≥ t] = P[eλ(X−µ) ≥ eλt] ≤ E[eλ(X−µ)]

eλt
=

ϕX(λ)

eλt
.
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Note that this holds for any λ ≥ 0. Hence, to get the best bound, we can try to minimize the
right-hand side w.r.t. λ, leading to

P[X − µ ≥ t] ≤ min
λ≥0

ϕX(λ)

eλt
. (1)

Example: Let’s see what the above implies when X is a Gaussian random variable. Let X ∼
N(µ, σ2). Then we can compute its MGF explicitly as follows:

ΦX(λ) = E[eλ(X−µ)] =

∫ +∞

−∞

1√
2πσ2

e−
t2

2σ2 eλt dt

= e
σ2λ2

2

∫ +∞

−∞

1√
2πσ2

e−
(t−σ2λ)2

2σ2 dt

= e
σ2λ2

2 ,

where we used − t2

2σ2 +λt = − (t−σ2λ)2

2σ2 + σ2λ2

2 in the third equality. Hence, from (1) we further have

P[X − µ ≥ t] ≤ min
λ≥0

e
σ2λ2

2 e−λt = min
λ≥0

e
1
2
(σλ− t

σ
)2 · e−

t2

2σ2 = e−
t2

2σ2 ,

where the minimum is achieved by λ = t
σ2 . In fact, following similar arguments we can also prove

that

P[X − µ ≤ −t] ≤ e−
t2

2σ2 .

3 Subgaussian Random Variables

Notice that in the example above, Gaussianity is not essential: the same concentration inequalities

still hold so long as ϕX(λ) ≤ e−
t2

2σ2 . This motivates the definition of subgaussian random variables.

Definition 1. A random variable X is subgaussian with variance proxy σ2 if

∀λ : ϕX(λ) ≤ e
σ2λ2

2 . (2)

By following the exact same argument as in the Gaussian case, we obtain the following tail proba-
bility bounds.

Proposition 2. If X is subgaussian with variance proxy σ2, then we have P[X ≥ µ + t] ≤ e−
t2

2σ2

and P[X ≤ µ− t] ≤ e−
t2

2σ2 .

As a corollary of Proposition 2, we have |X − µ| ≤ σ
√

2 log 2
δ with probability at least 1− δ.
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Figure 1: MGF of the Bernoulli random variable.

Example: Let X be a Bernoulli random variable with P(X = 1) = P(X = −1) = 1
2 . We can

compute that ϕX(λ) = 1
2(e

λ + e−λ) As we observe in Fig. 1, the MGF of X is upper bounded by

e
σ2λ2

2 . Hence, by definition, X is subgaussian with σ2 = 1. More generally, one can show that:

Lemma 3. If X ∈ [−1, 1] almost surely, then X is subgaussian with σ2 = 1. Moreover, if X ∈
[−a, b] almost surely, then X is subgaussian with σ2 = ( b−a

2 )2.

A particular convenient property of subgaussian random variables is the following composition rule.

Proposition 4. Suppose X1 and X2 are subgaussian with variance proxy σ2
1 and σ2

2, respectively.

• If X1 and X2 are independent, then X1 +X2 is subgaussian with variance proxy σ2
1 + σ2

2.

• If X1 and X2 are not independent, then X1+X2 is subgaussian with variance proxy (σ1+σ2)
2.

Proof. We only prove the first result as the second one is not very useful in practice. Using
independence, we can compute the MGF of X1 +X2 by

E[eλ(X1+X2)] = E[eλX1 ]E[eλX2 ] ≤ e
λ2σ2

1
2 e

λ2σ2
2

2 = eλ
2 σ2

1+σ2
2

2 .

Thus, by definition, X1 +X2 is subgaussian with variance proxy σ2
1 + σ2

2.

With the results above, we can derive the additive Chernoff bound covered in Lecture 2.

Theorem 5. Suppose X1, . . . , Xn ∈ [0, 1] are independent and let µ =
∑n

i=1 E[Xi]. Then

P

[
n∑

i=1

Xi ≥ µ+ t

]
≤ e−

2t2

n .

Proof. Note that Xi is subgaussian with σ2
i = 1

4 by Lemma 3. Thus, by Proposition 4,
∑n

i=1Xi is
subgaussian with σ2 = 1

4n. The theorem now directly follows from Proposition 2.

3



Finally, we mention some other characterizations of subgaussian random variables. Up to constant
factors, the following statements are equivalent:

• (MGF bound) X is subgaussian with variance proxy σ2, i.e., ϕX(λ) ≤ e
σ2λ2

2 ;

• (Tail probability bound) P[|X − µ| ≥ t] ≤ e−
t2

2σ2 ;

• (Moment bound) E[|X − µ|k] ≤ σkkk/2 for any positive integer k.

4 Subgamma Random Variables

Not all random variables are subgaussian. As a motivating example, let X ∼ N(0, 1) and consider
the random variable X2. Note that E[X2] = 1, and we can also compute its MGF explicitly by

ϕX2(λ) = E[eλ(X
2−1)] =

1√
2π

∫ +∞

−∞
eλ(x

2−1)e−
x2

2 dx

=
1√
2π

e−λ

∫ +∞

−∞
e(λ−1/2)x2

dx

=
e−λ

√
1− 2λ

.

Notice that ϕX2(λ) → ∞ when λ → 1/2, and hence it cannot satisfy the condition in (2). On the
other hand, around the origin 0, the MGF does not grow too fast. In fact, we can numerically
observe that

ϕX2(λ) =
e−λ

√
1− 2λ

≤ e4·
λ2

2 ∀|λ| < 1

3
.

To generalize this observation, we introduce the definition of subgamma random variables.

Definition 6. A random variable X is subgamma with parameters (σ2, c) if

∀|λ| ≤ 1

c
: ϕX(λ) ≤ e

σ2λ2

2 .

Some examples:

• X2 where X ∼ N(0, 1) is (4, 3)-subgamma;

• σ2-subgaussian is (σ2, 0)-subgamma.

Similar to Proposition 2, we can derive the following concentration result for subgamma random
variables.

Proposition 7. If the random variable X is (σ2, c)-subgamma, then we have

P[X − µ ≥ t] ≤ max

{
e−

t2

2σ2 , e−
t
2c

}
and P[X − µ ≤ −t] ≤ max

{
e−

t2

2σ2 , e−
t
2c

}
.
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Proof. We use the similar MGF trick. For any λ ∈ (0, 1/c), we can bound

P[X − µ ≥ t] ≤ E[eλ(t−µ)]

eλt
≤ e

λ2σ2

2
−λt = e

1
2
(λσ− t

σ
)2e−

t2

2σ2 .

If there were no constraints on λ, then the bound above would be minimized by λ = t/σ2. However,
we need to ensure that 0 ≤ λ ≤ 1/c. To this end, we consider two cases:

1. If t/σ2 ≤ 1/c, then we can set λ = t/σ2 and obtain P[X − µ ≥ t] ≤ e−
t2

2σ2 .

2. Otherwise, if t/σ2 > 1/c, then we set λ = 1/c. By using σ2/c2 < t/c, we get

P[X − µ ≥ t] ≤ e
σ2

2c2
− t

c ≤ e−
t
2c .

Hence, we obtain the desired result by combining both cases. The other tail probability bound
follows similarly.

As a corollary of Proposition 7, we have X ≤ µ+σ
√
2 log 1

δ + c log 1
δ with probability at least 1− δ.

The term σ
√
2 log 1

δ corresponds to the Gaussian tail, while the term c log 1
δ corresponds to the

exponential tail. When δ is sufficiently small, the second term is the dominant term.

Next, we turn to the composition rule for subgamma random variables.

Proposition 8. Suppose X1 and X2 are independent subgamma random variables with parameter
(σ2

1, c1) and (σ2
2, c2), respectively. Then X1 +X2 is (σ2

1 + σ2
2,max(c1, c2)).

Using this result, we can derive one of the multiplicative Chernoff bounds covered in Lecture 2.
But before that, we first need to introduce the following lemma.

Lemma 9 (Bernstein). If |X − µ| ≤ M almost surely, then X is (2Var(X), 2M)-subgamma.

It is interesting to contrast Lemma 9 with Lemma 3. At first glance, it might appear that Lemma 9
is strictly weaker: the tail probability of a subgamma random variable decays at a rate of e−t,
whereas the tail probability of a subgaussian random variable decays at a faster rate of e−t2 . The
catch is that the parameter σ2 in Lemma 9 depends on the actual variance of the random variable
X, while the parameter σ2 in Lemma 3 is given by the range of X, regardless of its distribution. In
particular, if the distribution is skewed (i.e., has a low variance), then probability bounds derived
from Lemma 9 could potentially lead to a tighter result.

Now we prove a version of the multiplicative Chernoff bound using Proposition 8 and Lemma 9.

Theorem 10. Suppose X1, . . . , Xn ∈ [0, 1] are independent and let µ =
∑n

i=1 E[Xi]. Then

P

[
n∑

i=1

Xi ≥ (1 + ϵ)µ

]
≤ e−

µ
4
min{ϵ,ϵ2}.

Proof. Let pi = E[Xi]. Since Xi ∈ [0, 1], we also have Var[Xi] ≤ E[X2
i ] ≤ E[Xi] = pi. Thus, by

Lemma 9, the random variable Xi is (2pi, 2)-subgamma. Since X1, . . . , Xn are independent, we
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obtain from Proposition 8 that
∑n

i=1Xi is (2
∑n

i=1 pi = 2µ, 2)-subgamma. Using Proposition 7, we
conclude that

P[X ≥ µ+ t] ≤ max

{
e
− t2

4µ , e−
t
4

}
.

By taking t = ϵµ, we obtain
P[X ≥ (1 + ϵ)µ] ≤ e−

µ
4
min{ϵ,ϵ2}.

5 Application: Johnson-Lindenstrauss Transform

Suppose that we are given n points x1, . . . ,xn in a space of large dimension d. Sometimes, we would
like to to reduce the dimension by projecting these points to a smaller subspace, while preserving
the relative positions between any two points. The celebrated JL lemma shows that this can be
achieved by projecting the points to a random subspace of dimension m = O(log n).

Lemma 11 (JL Lemma). Let x1, . . . ,xn be arbitrary n points in Rd. For any ϵ ∈ (0, 1), there
exists y1, . . . ,yn ∈ Rm with m = O( 1

ϵ2
log n) such that

∥yi − yj∥2 = (1± ϵ)∥xi − xj∥2, ∀i, j. (3)

Proof. Let A ∈ Rm×d be a matrix with entries drawn i.i.d. from N(0, 1
m), and we will show that

choosing yi = Axi for i = 1, . . . , n satisfies the condition in (3). To begin with, we will show that,
for any z ∈ Rd,

P(∥Az∥2 ≥ (1 + ϵ)∥z∥2) ≤ exp

(
−ϵ2m

8

)
. (4)

Note that when z is fixed, we have Az ∼ N(0, ∥z∥2√
m
Im) and E[∥Az∥2] = ∥z∥22. Thus, by rescaling,

it is sufficient to consider a Gaussian random variable X ∼ N(0, Im) and prove that

P
[
∥X∥22 ≥ (1 + ϵ)E[∥X∥22]

]
≤ exp

(
−ϵ2m

8

)
.

Note that ∥X∥22 =
∑m

i=1X
2
i and E[∥X∥2] = m, where Xi ∼ N(0, 1). Since X2

i is (4, 3)-subgamma,
by Proposition 8 we can obtain that ∥X∥22 is (4m, 3)-subgamma. Hence, it follows from Proposi-
tion 7 that

P[∥X∥22 ≥ m+ t], P[∥X∥22 ≤ m− t] ≤ exp

{
−min

(
t2

8m
,
t

6

)}
⇒ P[∥X∥22 ≥ (1 + ϵ)m], P[∥X∥22 ≤ (1− ϵ)m] ≤ exp

{
−min

(
ϵ2m

8
,
ϵm

6

)}
= exp

(
−ϵ2m

8

)
.

Now note that (3) is equivalent to ∥A(xi − xj)∥ = (1± ϵ)∥xi − xj∥ for all 1 ≤ i, j ≤ n. Since the
total number of (i, j)-pairs is n2, we can use the union bound to get

P(∥yi − yj∥2 = (1± ϵ)∥xi − xj∥2) ≥ 1− 2n2 exp

(
−ϵ2m

8

)
.
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By choosing m = 8
ϵ2
log 2n2

δ , we obtain that ∥yi − yj∥2 = (1± ϵ)∥xi − xj∥2 holds with probability
at least 1 − δ. There is a minor detail: in (3) we have the unsquared Euclidean norm, but in the
above inequality we have the squared Euclidean norm. But they are equivalent up to a constant,
since ∥yi − yj∥2 ≤ (1 + ϵ)∥xi − xj∥2 ⇒ ∥yi − yj∥ ≤

√
1 + ϵ∥xi − xj∥ ≤ (1 + 1

2ϵ)∥xi − xj∥.
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