Lecture 17: Concentration Inequalities Revisited

Prof. Eric Price

Scribe: Ruichen Jiang
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture, we discussed matrix concentration inequalities as a preliminary for the graph sparsification problem.

In this lecture, we continue our journey in concentration inequalities. Specifically, we show a useful technique that derives tail probability bounds from moment generating functions, introduce subgaussian and subgamma random variables, and finally discuss some applications.

2 Moment Generating Function

Recall Markov's inequality: if a random variable X is nonnegative, then we have

$$
\mathbb{P}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

One important corollary is Chebyshev's inequality. Let X be a random variable with mean μ and variance σ^{2}. By applying Markov's inequality to $(X-\mu)^{2} \geq 0$, we can obtain

$$
\mathbb{P}[X-\mu \geq t] \leq \mathbb{P}\left[(X-\mu)^{2} \geq t^{2}\right] \leq \frac{\mathbb{E}\left[(X-\mu)^{2}\right]}{t^{2}}=\frac{\sigma^{2}}{t^{2}}
$$

As a result, we can conclude that $X \leq \mu+\frac{\sigma}{\sqrt{\delta}}$ with probability at least $1-\delta$.
Is Chebyshev's inequaltiy tight enough? On the one hand, if δ is a constant, this is probably the best we can get: with a constant probability, we would expect X to deviate from the mean by σ. On the other hand, when δ tends to 0 , the upper bound $\mu+\frac{\sigma}{\sqrt{\delta}}$ grows polynoimally, which can be undesirable.

To obtain tighter concentration bounds, we will rely on the moment generating function (MGF). The MGF of a random variable X is defined as

$$
\phi_{X}(\lambda):=\mathbb{E}\left[e^{\lambda(X-\mu)}\right] .
$$

To obtain a tail bound inequality, we can use a similar argument as in the derivation of Chebyshev's inequality. Specifically, for $\lambda \geq 0$, since $x \mapsto e^{\lambda x}$ is an increasing function, we have

$$
\mathbb{P}[X-\mu \geq t]=\mathbb{P}\left[e^{\lambda(X-\mu)} \geq e^{\lambda t}\right] \leq \frac{\mathbb{E}\left[e^{\lambda(X-\mu)}\right]}{e^{\lambda t}}=\frac{\phi_{X}(\lambda)}{e^{\lambda t}}
$$

Note that this holds for any $\lambda \geq 0$. Hence, to get the best bound, we can try to minimize the right-hand side w.r.t. λ, leading to

$$
\begin{equation*}
\mathbb{P}[X-\mu \geq t] \leq \min _{\lambda \geq 0} \frac{\phi_{X}(\lambda)}{e^{\lambda t}} \tag{1}
\end{equation*}
$$

Example: Let's see what the above implies when X is a Gaussian random variable. Let $X \sim$ $N\left(\mu, \sigma^{2}\right)$. Then we can compute its MGF explicitly as follows:

$$
\begin{aligned}
\Phi_{X}(\lambda)=\mathbb{E}\left[e^{\lambda(X-\mu)}\right] & =\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} e^{\lambda t} d t \\
& =e^{\frac{\sigma^{2} \lambda^{2}}{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(t-\sigma^{2} \lambda\right)^{2}}{2 \sigma^{2}}} d t \\
& =e^{\frac{\sigma^{2} \lambda^{2}}{2}},
\end{aligned}
$$

where we used $-\frac{t^{2}}{2 \sigma^{2}}+\lambda t=-\frac{\left(t-\sigma^{2} \lambda\right)^{2}}{2 \sigma^{2}}+\frac{\sigma^{2} \lambda^{2}}{2}$ in the third equality. Hence, from (1) we further have

$$
\mathbb{P}[X-\mu \geq t] \leq \min _{\lambda \geq 0} e^{\frac{\sigma^{2} \lambda^{2}}{2}} e^{-\lambda t}=\min _{\lambda \geq 0} e^{\frac{1}{2}\left(\sigma \lambda-\frac{t}{\sigma}\right)^{2}} \cdot e^{-\frac{t^{2}}{2 \sigma^{2}}}=e^{-\frac{t^{2}}{2 \sigma^{2}}},
$$

where the minimum is achieved by $\lambda=\frac{t}{\sigma^{2}}$. In fact, following similar arguments we can also prove that

$$
\mathbb{P}[X-\mu \leq-t] \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

3 Subgaussian Random Variables

Notice that in the example above, Gaussianity is not essential: the same concentration inequalities still hold so long as $\phi_{X}(\lambda) \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}$. This motivates the definition of subgaussian random variables.

Definition 1. A random variable X is subgaussian with variance proxy σ^{2} if

$$
\begin{equation*}
\forall \lambda: \quad \phi_{X}(\lambda) \leq e^{\frac{\sigma^{2} \lambda^{2}}{2}} . \tag{2}
\end{equation*}
$$

By following the exact same argument as in the Gaussian case, we obtain the following tail probability bounds.

Proposition 2. If X is subgaussian with variance proxy σ^{2}, then we have $\mathbb{P}[X \geq \mu+t] \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}$ and $\mathbb{P}[X \leq \mu-t] \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}$.

As a corollary of Proposition 2, we have $|X-\mu| \leq \sigma \sqrt{2 \log \frac{2}{\delta}}$ with probability at least $1-\delta$.

Figure 1: MGF of the Bernoulli random variable.

Example: Let X be a Bernoulli random variable with $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=\frac{1}{2}$. We can compute that $\phi_{X}(\lambda)=\frac{1}{2}\left(e^{\lambda}+e^{-\lambda}\right)$ As we observe in Fig. 1. the MGF of X is upper bounded by $e^{\frac{\sigma^{2} \lambda^{2}}{2}}$. Hence, by definition, X is subgaussian with $\sigma^{2}=1$. More generally, one can show that:
Lemma 3. If $X \in[-1,1]$ almost surely, then X is subgaussian with $\sigma^{2}=1$. Moreover, if $X \in$ $[-a, b]$ almost surely, then X is subgaussian with $\sigma^{2}=\left(\frac{b-a}{2}\right)^{2}$.

A particular convenient property of subgaussian random variables is the following composition rule.
Proposition 4. Suppose X_{1} and X_{2} are subgaussian with variance proxy σ_{1}^{2} and σ_{2}^{2}, respectively.

- If X_{1} and X_{2} are independent, then $X_{1}+X_{2}$ is subgaussian with variance proxy $\sigma_{1}^{2}+\sigma_{2}^{2}$.
- If X_{1} and X_{2} are not independent, then $X_{1}+X_{2}$ is subgaussian with variance proxy $\left(\sigma_{1}+\sigma_{2}\right)^{2}$.

Proof. We only prove the first result as the second one is not very useful in practice. Using independence, we can compute the MGF of $X_{1}+X_{2}$ by

$$
\mathbb{E}\left[e^{\lambda\left(X_{1}+X_{2}\right)}\right]=\mathbb{E}\left[e^{\lambda X_{1}}\right] \mathbb{E}\left[e^{\lambda X_{2}}\right] \leq e^{\frac{\lambda^{2} \sigma_{1}^{2}}{2}} e^{\frac{\lambda^{2} \sigma_{2}^{2}}{2}}=e^{\lambda^{2} \frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}}
$$

Thus, by definition, $X_{1}+X_{2}$ is subgaussian with variance proxy $\sigma_{1}^{2}+\sigma_{2}^{2}$.
With the results above, we can derive the additive Chernoff bound covered in Lecture 2.
Theorem 5. Suppose $X_{1}, \ldots, X_{n} \in[0,1]$ are independent and let $\mu=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$. Then

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq \mu+t\right] \leq e^{-\frac{2 t^{2}}{n}}
$$

Proof. Note that X_{i} is subgaussian with $\sigma_{i}^{2}=\frac{1}{4}$ by Lemma 3. Thus, by Proposition 4. $\sum_{i=1}^{n} X_{i}$ is subgaussian with $\sigma^{2}=\frac{1}{4} n$. The theorem now directly follows from Proposition 2 .

Finally, we mention some other characterizations of subgaussian random variables. Up to constant factors, the following statements are equivalent:

- (MGF bound) X is subgaussian with variance proxy σ^{2}, i.e., $\phi_{X}(\lambda) \leq e^{\frac{\sigma^{2} \lambda^{2}}{2}}$;
- (Tail probability bound) $\mathbb{P}[|X-\mu| \geq t] \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}$;
- (Moment bound) $\mathbb{E}\left[|X-\mu|^{k}\right] \leq \sigma^{k} k^{k / 2}$ for any positive integer k.

4 Subgamma Random Variables

Not all random variables are subgaussian. As a motivating example, let $X \sim N(0,1)$ and consider the random variable X^{2}. Note that $\mathbb{E}\left[X^{2}\right]=1$, and we can also compute its MGF explicitly by

$$
\begin{aligned}
\phi_{X^{2}}(\lambda)=\mathbb{E}\left[e^{\lambda\left(X^{2}-1\right)}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\lambda\left(x^{2}-1\right)} e^{-\frac{x^{2}}{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\lambda} \int_{-\infty}^{+\infty} e^{(\lambda-1 / 2) x^{2}} d x \\
& =\frac{e^{-\lambda}}{\sqrt{1-2 \lambda}}
\end{aligned}
$$

Notice that $\phi_{X^{2}}(\lambda) \rightarrow \infty$ when $\lambda \rightarrow 1 / 2$, and hence it cannot satisfy the condition in (2). On the other hand, around the origin 0 , the MGF does not grow too fast. In fact, we can numerically observe that

$$
\phi_{X^{2}}(\lambda)=\frac{e^{-\lambda}}{\sqrt{1-2 \lambda}} \leq e^{4 \cdot \frac{\lambda^{2}}{2}} \quad \forall|\lambda|<\frac{1}{3} .
$$

To generalize this observation, we introduce the definition of subgamma random variables.
Definition 6. A random variable X is subgamma with parameters $\left(\sigma^{2}, c\right)$ if

$$
\forall|\lambda| \leq \frac{1}{c}: \quad \phi_{X}(\lambda) \leq e^{\frac{\sigma^{2} \lambda^{2}}{2}} .
$$

Some examples:

- X^{2} where $X \sim N(0,1)$ is (4,3)-subgamma;
- σ^{2}-subgaussian is $\left(\sigma^{2}, 0\right)$-subgamma.

Similar to Proposition 2, we can derive the following concentration result for subgamma random variables.

Proposition 7. If the random variable X is $\left(\sigma^{2}, c\right)$-subgamma, then we have

$$
\mathbb{P}[X-\mu \geq t] \leq \max \left\{e^{-\frac{t^{2}}{2 \sigma^{2}}}, e^{-\frac{t}{2 c}}\right\} \quad \text { and } \quad \mathbb{P}[X-\mu \leq-t] \leq \max \left\{e^{-\frac{t^{2}}{2 \sigma^{2}}}, e^{-\frac{t}{2 c}}\right\}
$$

Proof. We use the similar MGF trick. For any $\lambda \in(0,1 / c)$, we can bound

$$
\mathbb{P}[X-\mu \geq t] \leq \frac{\mathbb{E}\left[e^{\lambda(t-\mu)}\right]}{e^{\lambda t}} \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}-\lambda t}=e^{\frac{1}{2}\left(\lambda \sigma-\frac{t}{\sigma}\right)^{2}} e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

If there were no constraints on λ, then the bound above would be minimized by $\lambda=t / \sigma^{2}$. However, we need to ensure that $0 \leq \lambda \leq 1 / c$. To this end, we consider two cases:

1. If $t / \sigma^{2} \leq 1 / c$, then we can set $\lambda=t / \sigma^{2}$ and obtain $\mathbb{P}[X-\mu \geq t] \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}$.
2. Otherwise, if $t / \sigma^{2}>1 / c$, then we set $\lambda=1 / c$. By using $\sigma^{2} / c^{2}<t / c$, we get

$$
\mathbb{P}[X-\mu \geq t] \leq e^{\frac{\sigma^{2}}{2 c^{2}}-\frac{t}{c}} \leq e^{-\frac{t}{2 c}}
$$

Hence, we obtain the desired result by combining both cases. The other tail probability bound follows similarly.

As a corollary of Proposition 7, we have $X \leq \mu+\sigma \sqrt{2 \log \frac{1}{\delta}}+c \log \frac{1}{\delta}$ with probability at least $1-\delta$. The term $\sigma \sqrt{2 \log \frac{1}{\delta}}$ corresponds to the Gaussian tail, while the term $c \log \frac{1}{\delta}$ corresponds to the exponential tail. When δ is sufficiently small, the second term is the dominant term.

Next, we turn to the composition rule for subgamma random variables.
Proposition 8. Suppose X_{1} and X_{2} are independent subgamma random variables with parameter $\left(\sigma_{1}^{2}, c_{1}\right)$ and $\left(\sigma_{2}^{2}, c_{2}\right)$, respectively. Then $X_{1}+X_{2}$ is $\left(\sigma_{1}^{2}+\sigma_{2}^{2}, \max \left(c_{1}, c_{2}\right)\right)$.

Using this result, we can derive one of the multiplicative Chernoff bounds covered in Lecture 2. But before that, we first need to introduce the following lemma.

Lemma 9 (Bernstein). If $|X-\mu| \leq M$ almost surely, then X is $(2 \operatorname{Var}(X), 2 M)$-subgamma.

It is interesting to contrast Lemma 9 with Lemma 3. At first glance, it might appear that Lemma 9 is strictly weaker: the tail probability of a subgamma random variable decays at a rate of e^{-t}, whereas the tail probability of a subgaussian random variable decays at a faster rate of $e^{-t^{2}}$. The catch is that the parameter σ^{2} in Lemma 9 depends on the actual variance of the random variable X, while the parameter σ^{2} in Lemma 3 is given by the range of X, regardless of its distribution. In particular, if the distribution is skewed (i.e., has a low variance), then probability bounds derived from Lemma 9 could potentially lead to a tighter result.

Now we prove a version of the multiplicative Chernoff bound using Proposition 8 and Lemma 9 .
Theorem 10. Suppose $X_{1}, \ldots, X_{n} \in[0,1]$ are independent and let $\mu=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$. Then

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i} \geq(1+\epsilon) \mu\right] \leq e^{-\frac{\mu}{4} \min \left\{\epsilon, \epsilon^{2}\right\}}
$$

Proof. Let $p_{i}=\mathbb{E}\left[X_{i}\right]$. Since $X_{i} \in[0,1]$, we also have $\operatorname{Var}\left[X_{i}\right] \leq \mathbb{E}\left[X_{i}^{2}\right] \leq \mathbb{E}\left[X_{i}\right]=p_{i}$. Thus, by Lemma 9, the random variable X_{i} is ($2 p_{i}, 2$-subgamma. Since X_{1}, \ldots, X_{n} are independent, we
obtain from Proposition 8 that $\sum_{i=1}^{n} X_{i}$ is $\left(2 \sum_{i=1}^{n} p_{i}=2 \mu, 2\right)$-subgamma. Using Proposition 7 , we conclude that

$$
\mathbb{P}[X \geq \mu+t] \leq \max \left\{e^{-\frac{t^{2}}{4 \mu}}, e^{-\frac{t}{4}}\right\}
$$

By taking $t=\epsilon \mu$, we obtain

$$
\mathbb{P}[X \geq(1+\epsilon) \mu] \leq e^{-\frac{\mu}{4} \min \left\{\epsilon, \epsilon^{2}\right\}}
$$

5 Application: Johnson-Lindenstrauss Transform

Suppose that we are given n points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ in a space of large dimension d. Sometimes, we would like to to reduce the dimension by projecting these points to a smaller subspace, while preserving the relative positions between any two points. The celebrated JL lemma shows that this can be achieved by projecting the points to a random subspace of dimension $m=\mathcal{O}(\log n)$.

Lemma 11 (JL Lemma). Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ be arbitrary n points in \mathbb{R}^{d}. For any $\epsilon \in(0,1)$, there exists $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n} \in \mathbb{R}^{m}$ with $m=\mathcal{O}\left(\frac{1}{\epsilon^{2}} \log n\right)$ such that

$$
\begin{equation*}
\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}=(1 \pm \epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}, \quad \forall i, j \tag{3}
\end{equation*}
$$

Proof. Let $\mathbf{A} \in \mathbb{R}^{m \times d}$ be a matrix with entries drawn i.i.d. from $N\left(0, \frac{1}{m}\right)$, and we will show that choosing $\boldsymbol{y}_{i}=\mathbf{A} \boldsymbol{x}_{i}$ for $i=1, \ldots, n$ satisfies the condition in (3). To begin with, we will show that, for any $\boldsymbol{z} \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\mathbb{P}\left(\|\mathbf{A} \boldsymbol{z}\|^{2} \geq(1+\epsilon)\|\boldsymbol{z}\|^{2}\right) \leq \exp \left(-\frac{\epsilon^{2} m}{8}\right) \tag{4}
\end{equation*}
$$

Note that when \boldsymbol{z} is fixed, we have $\mathbf{A} \boldsymbol{z} \sim N\left(0, \frac{\|\boldsymbol{z}\|_{2}}{\sqrt{m}} \mathbf{I}_{m}\right)$ and $\mathbb{E}\left[\|\mathbf{A} \boldsymbol{z}\|^{2}\right]=\|\boldsymbol{z}\|_{2}^{2}$. Thus, by rescaling, it is sufficient to consider a Gaussian random variable $X \sim N\left(0, \mathbf{I}_{m}\right)$ and prove that

$$
\mathbb{P}\left[\|\boldsymbol{X}\|_{2}^{2} \geq(1+\epsilon) \mathbb{E}\left[\|\boldsymbol{X}\|_{2}^{2}\right]\right] \leq \exp \left(-\frac{\epsilon^{2} m}{8}\right)
$$

Note that $\|\boldsymbol{X}\|_{2}^{2}=\sum_{i=1}^{m} X_{i}^{2}$ and $\mathbb{E}\left[\|\boldsymbol{X}\|^{2}\right]=m$, where $X_{i} \sim N(0,1)$. Since X_{i}^{2} is (4,3)-subgamma, by Proposition 8 we can obtain that $\|\boldsymbol{X}\|_{2}^{2}$ is $(4 m, 3)$-subgamma. Hence, it follows from Proposition 7 that

$$
\begin{gathered}
\mathbb{P}\left[\|\boldsymbol{X}\|_{2}^{2} \geq m+t\right], \mathbb{P}\left[\|\boldsymbol{X}\|_{2}^{2} \leq m-t\right] \leq \exp \left\{-\min \left(\frac{t^{2}}{8 m}, \frac{t}{6}\right)\right\} \\
\Rightarrow \quad \mathbb{P}\left[\|\boldsymbol{X}\|_{2}^{2} \geq(1+\epsilon) m\right], \mathbb{P}\left[\|\boldsymbol{X}\|_{2}^{2} \leq(1-\epsilon) m\right] \leq \exp \left\{-\min \left(\frac{\epsilon^{2} m}{8}, \frac{\epsilon m}{6}\right)\right\}=\exp \left(-\frac{\epsilon^{2} m}{8}\right)
\end{gathered}
$$

Now note that (3) is equivalent to $\left\|\mathbf{A}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\right\|=(1 \pm \epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|$ for all $1 \leq i, j \leq n$. Since the total number of (i, j)-pairs is n^{2}, we can use the union bound to get

$$
\mathbb{P}\left(\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2}=(1 \pm \epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}\right) \geq 1-2 n^{2} \exp \left(-\frac{\epsilon^{2} m}{8}\right)
$$

By choosing $m=\frac{8}{\epsilon^{2}} \log \frac{2 n^{2}}{\delta}$, we obtain that $\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2}=(1 \pm \epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}$ holds with probability at least $1-\delta$. There is a minor detail: in (3) we have the unsquared Euclidean norm, but in the above inequality we have the squared Euclidean norm. But they are equivalent up to a constant, since $\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2} \leq(1+\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} \Rightarrow\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\| \leq \sqrt{1+\epsilon}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\| \leq\left(1+\frac{1}{2} \epsilon\right)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|$.

