Lecture 18: Spectral Sparsification of Graphs

Prof. Eric Price
Scribe: Kaizhao Liang
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed the Bernstein Concentration Inequality and the Rudelson-Vershynin (RV) Lemma, which we are going to use in this lecture.

1.1 Rudelson-Vershynin (RV) Lemma

As presented as follows: $x_{1}, \ldots, x_{m} \in R^{n}$ and they are independent, $\forall i, \max _{i} \leq K,\left\|\mathbf{E}\left[x_{i} x_{i}^{T}\right]\right\| \leq 1$,

$$
\begin{equation*}
\mathbf{E}\left[\left\|\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{T}-\frac{1}{m} \sum \mathbf{E}\left[x_{i} x_{i}^{T}\right]\right\|\right] \lesssim K \sqrt{\frac{\log n}{m}} \tag{1}
\end{equation*}
$$

if $K \sqrt{\frac{\log n}{m}} \leq 1$

2 Problem Setup

Given a graph $G=(V, E)$, unweighted and un-directed graph with n vertices and m edges. The graph Laplacian G is defined by $n \times n$ matrix $L_{G}=D-A$,

- $A \in R^{n \times n}$: the graph adjacency matrix, $A(u, v)=1, \forall$ edge $(u, v) \in E$, otherwise 0
- $D \in R^{n \times n}$ is the diagonal matrix of vertex degree, i.e. $D(u, u)=\sum_{v \in V} A(u, v)$

For the ease of our discussion, we define the vertex-edge injection matrix $U \in R^{m \times n}$ as follows, the direction doesn't matter since we are dealing with an undirected graph. Given an edge $e=(u, v)$

$$
U_{i, j}= \begin{cases}1 & \text { if } \mathrm{i}=\mathrm{e}, \mathrm{j}=\mathrm{u} \tag{2}\\ -1 & \text { if } \mathrm{i}=\mathrm{e}, \mathrm{j}=\mathrm{v} \\ 0 & \text { otherwise }\end{cases}
$$

We then denote u_{e}^{T} as the row of U corresponding to e, then the Laplacian can be rewritten into

$$
\begin{equation*}
L_{G}=U^{T} U=\sum_{e \in E} \mathbf{u}_{e} \mathbf{u}_{e}^{T} \tag{3}
\end{equation*}
$$

Generalize it to a weight graph $H=(V, \tilde{E}, W), W$ is a $R^{\|\tilde{E}\| \times\|\tilde{E}\|}$ diagonal weight matrix

$$
\begin{equation*}
L_{H}=U^{T} W U=\sum_{e \in \tilde{E}} \mathbf{w}_{e} \mathbf{u}_{e} \mathbf{u}_{e}^{T} \tag{4}
\end{equation*}
$$

3 Physical intuition

An example of a resistor network G as below, with resistors $R_{1}=R_{2}=R_{3}=1 \Omega, \frac{1}{w_{e}}$ resistance and enforce voltages V_{1}, V_{2}, V_{3} on three points

3.1 Case 1: Fixed Voltages

Given voltages $\mathbf{v} \in R^{n}$, current across edge $e=(i, j)$ is

$$
\begin{equation*}
\mathbf{v}_{i}-\mathbf{v}_{j}=\mathbf{u}_{e}^{T} \mathbf{v} \tag{5}
\end{equation*}
$$

$\vec{i}=U \mathbf{v}$ is current on every edge, where $U \in R^{m \times n}$. Assuming $\mathbf{r}=\mathbf{1}$, the total power used can be written as:

$$
\begin{equation*}
\text { Power }=\mathbf{i v}=\mathbf{i}^{2} \mathbf{r}=\mathbf{i}^{2}=\mathbf{v}^{T} U^{T} U \mathbf{v}=\mathbf{v}^{T} \cdot L_{G} \cdot \mathbf{v} \tag{6}
\end{equation*}
$$

3.2 Case 2: Fixed Currents

Given $\mathbf{y} \in R^{m}$, the currents across edges,

$$
\begin{gather*}
x=U^{T} \cdot \mathbf{y} \tag{7}\\
\text { Net current into } \mathrm{v}=\mathbf{x}_{v}=\sum_{\mathrm{e} \text { out of } v} \mathbf{y}_{e}-\sum_{\mathrm{e} \text { into } v} \mathbf{y}_{e} \tag{8}
\end{gather*}
$$

Given a power source 1A into i and 1A out of j,

$$
\begin{equation*}
x=U^{T} \mathbf{y}=U^{T} U \mathbf{v}=L_{G} \mathbf{v} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
V=L_{G}^{\dagger} x+\lambda \cdot \mathbf{1} \tag{10}
\end{equation*}
$$

The effective resistance

$$
\begin{equation*}
R_{e f f}=U_{i j}^{T} \mathbf{v}=\mathbf{v}_{i}-\mathbf{v}_{j}=U_{i j}^{T} L_{G}^{\dagger} U_{i j} \tag{11}
\end{equation*}
$$

4 Graph Sparsification

Goal: Given a (dense) graph G, find (sparse, weighted) graph H, s.t. $L_{H} \approx L_{G}$.

4.1 Spectral Sparsifier

$$
\begin{gather*}
\forall x, P_{H}(x)=(1 \pm \epsilon) P_{G}(x) \tag{12}\\
\Leftrightarrow \forall x,(1-\epsilon) \cdot x^{T} L_{G} x \leq x^{T} L_{H} x \leq(1+\epsilon) x^{T} L_{G} x \tag{13}\\
\Leftrightarrow(1-\epsilon) L_{G} \preceq L_{H} \preceq(1+\epsilon) L_{G} \tag{14}
\end{gather*}
$$

4.2 Cut Sparsifier

For any s, Cut $_{H}(s)=\sum_{e \in H} w(e) \cdot \mathbf{1}_{\|e n s\|=1}$

$$
\begin{equation*}
C u t_{H}(s)=(1 \pm \epsilon) \cdot C u t_{G}(s) \tag{15}
\end{equation*}
$$

Set $x=1 \in S, 0$ otherwise then $\operatorname{Cut}_{H}(s)=x^{T} L_{H} x$

$$
\begin{equation*}
x^{T} L_{H} x=\sum_{e} w_{e} \cdot\left(u_{e}^{T} x\right)^{2}=\sum_{e=(i, j)} w_{e} \cdot\left(x_{i}-x_{j}\right)^{2} \tag{16}
\end{equation*}
$$

4.3 Randomized Sparsification

Given a weight graph, $L_{G}=\sum w_{e} u_{e} u_{e}^{T}$,

```
Algorithm 1 Randomized algorithm
Require: some probability p}\mp@subsup{p}{e}{}\mathrm{ for each edge's importance
    for i = 1, 2, .., M do
        pick e}\mp@subsup{e}{i}{}~E\mathrm{ proportional to p pei
        add }\mp@subsup{e}{i}{}\mathrm{ to }H\mathrm{ with weight }\frac{\mp@subsup{w}{\mp@subsup{e}{i}{}}{}}{M\mp@subsup{p}{\mp@subsup{e}{i}{}}{}
    end for
```

In one round $(\mathrm{M}=1)$,

$$
Z_{e}= \begin{cases}\sqrt{\frac{w_{e}}{p_{e}}} \cdot u_{e} & \text { if } e \text { is picked } \tag{17}\\ 0 & \text { otherwise }\end{cases}
$$

$L_{H}=\sum_{e} z_{e} z_{e}^{T} \Rightarrow E\left[L_{H}\right]=\sum_{e} p_{e} \cdot \frac{w_{e}}{p_{e}} u_{e} u_{e}^{T}=L_{G}$,
As $M \rightarrow \infty$, we can get L_{H} to match L_{G}, the question is "How fast?" and "What p_{e} we should pick?"

4.3.1 Warmup: Complete Graph

Suppose we have a complete graph of n vertices

$$
\begin{gather*}
L_{G}=n \cdot I_{n}-\mathbf{1 1}^{T} \tag{18}\\
x^{T} L_{G} x=x^{T}\left(n I-\mathbf{1 1}^{T}\right) x=n \cdot\|x\|^{2} \quad \text { if } x \perp \mathbf{1} \tag{19}
\end{gather*}
$$

If H is a spectral sparsifier, then

$$
\begin{gather*}
\left\|L_{H}-L_{G}\right\| \leq n \cdot \epsilon \Rightarrow x^{T} L_{H} x \leq x^{T} L_{G} x+n \cdot \epsilon\|x\|^{2} \tag{20}\\
\Rightarrow \sup \frac{x^{T}\left(L_{H}-L_{G}\right) x}{x^{T} L_{G} x}=\frac{x^{T}\left(L_{H}-L_{G}\right) x}{n \cdot\|x\|^{2}} \leq 1+\epsilon \tag{21}
\end{gather*}
$$

Now let's pick p_{e} as follows:

$$
\begin{equation*}
p_{e}=\frac{1}{\binom{n}{2}}=\frac{2}{n(n-1)} \tag{22}
\end{equation*}
$$

Define Z_{e} as follows:

$$
Z_{e}= \begin{cases}\sqrt{\frac{w_{e}}{p_{e}}} \cdot u_{e} & \text { if } e \text { is picked } \tag{23}\\ 0 & \text { otherwise }\end{cases}
$$

And then set y_{i} for $i=1, \ldots, M$

$$
\begin{equation*}
y_{i}:=\frac{1}{\sqrt{n}} \cdot \sqrt{\frac{w_{e}}{p_{e}}} \cdot u_{e_{i}} \tag{24}
\end{equation*}
$$

As $y_{i} y_{i}^{T}=\frac{1}{n} \cdot \sum_{e} Z_{e} Z_{e}^{T}$,

$$
\begin{equation*}
\mathbf{E}\left[y_{i} y_{i}^{T}\right]=\frac{1}{n} \cdot L_{G} \tag{25}
\end{equation*}
$$

$\left\|L_{G}\right\|=n$, because G is a complete graph,

$$
\begin{gather*}
\left\|E\left[y_{i} y_{i}^{T}\right]\right\|=\frac{\left\|L_{G}\right\|}{n}=1 \tag{26}\\
\left\|y_{i}\right\|=\left\|u_{e_{i}}\right\| \cdot \sqrt{\frac{1}{n \cdot \frac{1}{\left(n_{2}^{n}\right)}}}=\sqrt{2} \cdot \sqrt{\frac{n-1}{2}}=\sqrt{n-1}<\sqrt{n} \tag{27}\\
\frac{1}{n} L_{H}=\frac{1}{M} \sum_{i=1}^{M} y_{i} y_{i}^{T} \tag{28}\\
\mathbf{E}\left[\left\|L_{H}-L_{G}\right\|\right]=n \cdot \mathbf{E}\left[\left\|\frac{1}{n} L_{H}-\frac{1}{n} L_{G}\right\|\right] \\
= \\
\vdots \cdot \mathbf{E}\left[\left\|\frac{1}{m} \sum y_{i} y_{i}^{T}-\mathbf{E}\left[\frac{1}{m} \sum y_{i} y_{i}^{T}\right]\right\|\right] \tag{29}\\
\leq n \cdot \sqrt{\frac{n \log n}{m}} \\
\leq \epsilon \cdot n \quad \text { for } m>\frac{1}{\epsilon} \cdot n \log n
\end{gather*}
$$

4.3.2 Arbitrary Graph

Recall the previous notation, $L_{G}=U^{T} U$, where U is the vertex-edge injection matrix. Define projection matrix onto $\operatorname{span}(u)$ (set of possible current induced by voltages), as

$$
\begin{equation*}
R=U L_{G}^{T} U^{T} \in R^{m \times m} \tag{30}
\end{equation*}
$$

and because R is a projection matrix, we have $R^{2}=R$
Then we define $S \in R^{m \times m}$, the diagonal sampling-and-reweighting matrix, sampling M times with replacement, each e with probability p_{e}

$$
\begin{equation*}
S_{e e}=\frac{\# \text { times e sampled }}{M \cdot p_{e}} \tag{31}
\end{equation*}
$$

Notice that $\mathbf{E}[S]=I$,

$$
\begin{equation*}
L_{H}=U^{T} S U \Rightarrow \mathbf{E}\left[L_{H}\right]=L_{G} \tag{32}
\end{equation*}
$$

Q: how to pick p_{e} ? How many samples do we need, s.t,

$$
(1-\epsilon) L_{G} \lesssim L_{H} \lesssim(1+\epsilon) L_{G} \Leftrightarrow\|R S R-R\| \leq \epsilon
$$

, and $\mathbf{E}[R S R]=R$
Let $y_{i}=\frac{1}{\sqrt{P_{e_{i}}}} \cdot R_{e_{i}}$, where R_{e} is the $e^{t h}$ column of R then,

$$
\begin{align*}
\frac{1}{M} \sum_{i=1}^{M} y_{i} y_{i}^{T} & =\sum_{i=1}^{M} R_{e_{1}} \cdot \frac{1}{M p_{e_{i}}} \cdot R_{e_{i}}^{T} \tag{33}\\
& =R S R
\end{align*}
$$

Using the RV Lemma,

$$
\begin{equation*}
\mathbf{E}[\|R S R-R\|] \lesssim K \sqrt{\frac{\log (m)}{M}} \tag{34}
\end{equation*}
$$

where $K=\max \left\|y_{i}\right\|$, hence

$$
\begin{equation*}
K \leq \max _{e} \frac{\left\|R_{e}\right\|}{\sqrt{p_{e}}}=\max _{e} \sqrt{\frac{r_{e}}{p_{e}}} \tag{35}
\end{equation*}
$$

where r_{e} is defined as,

$$
\begin{equation*}
r_{e}=\left\|R_{e}\right\|^{2}=u_{e}^{T} L_{G}^{\dagger} L_{G} L_{G}^{\dagger} u_{e}=u_{e}^{T} L_{G}^{\dagger} u_{e} \tag{36}
\end{equation*}
$$

We can minimize K by setting $p_{e} \propto r_{e}$

$$
\begin{equation*}
p_{e}=\frac{r_{e}}{\sum_{e} r_{e}}=\frac{r_{e}}{n-1} \tag{37}
\end{equation*}
$$

Then we have $K \leq \sqrt{n-1}$

