CS 388R: Randomized Algorithms, Fall 2023 Oct 25th

Lecture 18: Spectral Sparsification of Graphs
Prof. Eric Price Scribe: Kaizhao Liang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed the Bernstein Concentration Inequality and the Rudelson-Vershynin
(RV) Lemma, which we are going to use in this lecture.

1.1 Rudelson-Vershynin (RV) Lemma
As presented as follows: x1, ..., 7, € R" and they are independent, Vi, max; < K, |E[z;z]]|| < 1,
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2 Problem Setup

Given a graph G = (V, E), unweighted and un-directed graph with n vertices and m edges. The
graph Laplacian G is defined by n x n matrix Lo = D — A,

e A € R™"™: the graph adjacency matrix, A(u,v) = 1,V edge (u,v) € E, otherwise 0

e D € R™™" is the diagonal matrix of vertex degree, i.e. D(u,u) = >, o A(u,v)

For the ease of our discussion, we define the vertex-edge injection matrix U € R™*" as follows, the
direction doesn’t matter since we are dealing with an undirected graph. Given an edge e = (u,v)

1 ifi=e j=u
Uj=3 -1 ifi=e j=v (2)

’

0 otherwise

We then denote ul as the row of U corresponding to e, then the Laplacian can be rewritten into

Le=U"U=> ucu] (3)
ecFE



Generalize it to a weight graph H = (V, E, W), W is a RIEIXIE] diagonal weight matrix

Ly =U"WU=> weucu/ (4)
ecE

3 Physical intuition

An example of a resistor network G as below, with resistorsR; = Ry = R3 = 1 €, w% resistance
and enforce voltages Vi, Vs, V3 on three points

Vs

‘/1  — V2

3.1 Case 1: Fixed Voltages

Given voltages v € R™, current across edge e = (i, ) is
vi—vj=ulv (5)

%
i = Uv is current on every edge, where U € R™*™. Assuming r = 1, the total power used can be

written as:
Power =iv=ir =1 =vIUTUv=vT  Lg-v (6)

3.2 Case 2: Fixed Currents

Given y € R™, the currents across edges,

r=U"T. y (7)
Net current into v =x, = Z Ve — Z Ye (8)
e out of v e into v

Given a power source 1A into ¢ and 1A out of 7,

r=Uly =UTUv = Lgv (9)



V=Lle+xr1 (10)

The effective resistance
Repy = Ulv =v; —v; = ULLLU;; (11)

4 Graph Sparsification

Goal: Given a (dense) graph G, find (sparse, weighted) graph H, s.t. Ly ~ Lg.

4.1 Spectral Sparsifier

Vo, Py(x) = (1+€)Pg(x) (12)
eVe, (1—¢ - -2"Lgr <a2'Lgx <1+ €2’ Lgx (13)
= (1 — E)LG <Ly = (1 + G)LG (14)

4.2 Cut Sparsifier

For any s, Cuty(s) = > .cqgw(e)- Ljjens|=1

Cutg(s) = (1%¢€) - Cutg(s) (15)
Set x =1 € 8,0 otherwise then Cuty(s) = 27 Lyx
2 Lyr = Zwe . (uzaz)Q = Z we - (x; — ﬂfj)2 (16)
e e=(i.5)

4.3 Randomized Sparsification

Given a weight graph, Lg = Y weucul,

Algorithm 1 Randomized algorithm
Require: some probability p. for each edge’s importance
fori=1,2, .., Mdo
pick e; ~ E proportional to p,
add e; to H with weight AZJ;;
end for

In one round (M = 1),

0 otherwise

Ye . ue if e 1s picked
zez{vpe fewr a7)

L= 2zl = E[Ly)=3_pe- %ueuz = Lg,

As M — oo, we can get Ly to match Lg, the question is "How fast?” and ”What p. we should
pick?”



4.3.1 Warmup: Complete Graph

Suppose we have a complete graph of n vertices
Le=n-1I,—117
tTLgr =2t (nl =11z =n - ||z|? ifz L1
If H is a spectral sparsifier, then

Ly — Lg|| <n-e= 2" Lyx <a' Loz 4 n - €|z

T T
T (LH — Lg){L‘ T (LH — Lg)fL‘
sup 2T Lox - ]2 <l+e
Now let’s pick p. as follows:
1 2

P T D)

P {1/;’:-% if e is picked

0 otherwise
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1
Elyyl] = o Lg

Define Z, as follows:

And then set y; fori =1,.... M

As yly;T = % : Ze ZeZZa

||Lc|| = n, because G is a complete graph,
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4.3.2 Arbitrary Graph

Recall the previous notation, Lg = UTU, where U is the vertex-edge injection matrix. Define
projection matrix onto span(u) (set of possible current induced by voltages), as

R=ULLUT ¢ Rmxm (30)

and because R is a projection matrix, we have R?> = R
Then we define S € R™*™, the diagonal sampling-and-reweighting matrix, sampling M times with
replacement, each e with probability pe

_ # times e sampled

See = 31
ce M . pe ( )
Notice that E[S] =1,
Ly =UTSU = E[Ly] = Lg (32)
Q: how to pick p.? How many samples do we need, s.t,
(1-e)Lg SLypS(l+e)Llg< ||RSR—R|| <e€
, and E[RSR] =R
Let y; = \/%Ti - R, where R, is the et column of R then,
1 & M 1
T T
_ s = R [ R .
M Z Yii Z “ Mpe, “ (33)
i=1 i=1 i
= RSR
Using the RV Lemma,
1
B RSR - R| £ K[ 25" (31)
M
where K = maz||y;||, hence
K < max IR] = max , /¢ (35)
€ \/]Te € Pe
where r. is defined as,
re = |Re|? = T L Lo Llue = ul Liu, (36)
We can minimize K by setting pe o ¢
= /r.e = re (37)

Pe Yoele n—1

Then we have K < +/n—1



