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Lecture 18: Spectral Sparsification of Graphs

Prof. Eric Price Scribe: Kaizhao Liang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed the Bernstein Concentration Inequality and the Rudelson-Vershynin
(RV) Lemma, which we are going to use in this lecture.

1.1 Rudelson-Vershynin (RV) Lemma

As presented as follows: x1, ..., xm ∈ Rn and they are independent, ∀i, maxi ≤ K, ∥E[xix
T
i ]∥ ≤ 1,

E[∥ 1

m

m∑
i=1

xix
T
i − 1

m

∑
E[xix

T
i ]∥] ≲ K

√
log n

m
(1)

if K
√

logn
m ≤ 1

2 Problem Setup

Given a graph G = (V,E), unweighted and un-directed graph with n vertices and m edges. The
graph Laplacian G is defined by n× n matrix LG = D −A,

• A ∈ Rn×n: the graph adjacency matrix, A(u, v) = 1, ∀ edge (u, v) ∈ E, otherwise 0

• D ∈ Rn×n is the diagonal matrix of vertex degree, i.e. D(u, u) =
∑

v∈V A(u, v)

For the ease of our discussion, we define the vertex-edge injection matrix U ∈ Rm×n as follows, the
direction doesn’t matter since we are dealing with an undirected graph. Given an edge e = (u, v)

Ui,j =


1 if i = e, j = u

−1 if i = e, j = v

0 otherwise

(2)

We then denote uTe as the row of U corresponding to e, then the Laplacian can be rewritten into

LG = UTU =
∑
e∈E

ueu
T
e (3)
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Generalize it to a weight graph H = (V, Ẽ,W ), W is a R∥Ẽ∥×∥Ẽ∥ diagonal weight matrix

LH = UTWU =
∑
e∈Ẽ

weueu
T
e (4)

3 Physical intuition

An example of a resistor network G as below, with resistorsR1 = R2 = R3 = 1 Ω, 1
we

resistance
and enforce voltages V1, V2, V3 on three points

V1 V2

V3

R1

R2R3

3.1 Case 1: Fixed Voltages

Given voltages v ∈ Rn, current across edge e = (i, j) is

vi − vj = uT
e v (5)

−→
i = Uv is current on every edge, where U ∈ Rm×n. Assuming r = 1, the total power used can be
written as:

Power = iv = i2r = i2 = vTUTUv = vT · LG · v (6)

3.2 Case 2: Fixed Currents

Given y ∈ Rm, the currents across edges,

x = UT · y (7)

Net current into v = xv =
∑

e out of v

ye −
∑

e into v

ye (8)

Given a power source 1A into i and 1A out of j,

x = UTy = UTUv = LGv (9)
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V = L†
Gx+ λ · 1 (10)

The effective resistance
Reff = UT

ijv = vi − vj = UT
ijL

†
GUij (11)

4 Graph Sparsification

Goal: Given a (dense) graph G, find (sparse, weighted) graph H, s.t. LH ≈ LG.

4.1 Spectral Sparsifier

∀x, PH(x) = (1± ϵ)PG(x) (12)

⇔ ∀x, (1− ϵ) · xTLGx ≤ xTLHx ≤ (1 + ϵ)xTLGx (13)

⇔ (1− ϵ)LG ⪯ LH ⪯ (1 + ϵ)LG (14)

4.2 Cut Sparsifier

For any s, CutH(s) =
∑

e∈H w(e) · 1∥e∩s∥=1

CutH(s) = (1± ϵ) · CutG(s) (15)

Set x = 1 ∈ S, 0 otherwise then CutH(s) = xTLHx

xTLHx =
∑
e

we · (uTe x)2 =
∑

e=(i,j)

we · (xi − xj)
2 (16)

4.3 Randomized Sparsification

Given a weight graph, LG =
∑

weueu
T
e ,

Algorithm 1 Randomized algorithm

Require: some probability pe for each edge’s importance
for i = 1, 2, ..., M do

pick ei ∼ E proportional to pei
add ei to H with weight

wei
Mpei

end for

In one round (M = 1),

Ze =

{√
we
pe

· ue if e is picked

0 otherwise
(17)

LH =
∑

e zez
T
e ⇒ E[LH ] =

∑
e pe ·

we
pe
ueu

T
e = LG,

As M → ∞, we can get LH to match LG, the question is ”How fast?” and ”What pe we should
pick?”
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4.3.1 Warmup: Complete Graph

Suppose we have a complete graph of n vertices

LG = n · In − 11T (18)

xTLGx = xT (nI − 11T )x = n · ∥x∥2 if x ⊥ 1 (19)

If H is a spectral sparsifier, then

∥LH − LG∥ ≤ n · ϵ ⇒ xTLHx ≤ xTLGx+ n · ϵ∥x∥2 (20)

⇒ sup
xT (LH − LG)x

xTLGx
=

xT (LH − LG)x

n · ∥x∥2
≤ 1 + ϵ (21)

Now let’s pick pe as follows:

pe =
1(
n
2

) =
2

n(n− 1)
(22)

Define Ze as follows:

Ze =

{√
we
pe

· ue if e is picked

0 otherwise
(23)

And then set yi for i = 1, ...,M

yi :=
1√
n
·
√

we

pe
· uei (24)

As yiy
T
i = 1

n ·
∑

e ZeZ
T
e ,

E[yiy
T
i ] =

1

n
· LG (25)

∥LG∥ = n, because G is a complete graph,

∥E[yiy
T
i ]∥ =

∥LG∥
n

= 1 (26)

∥yi∥ = ∥uei∥ ·

√√√√ 1

n · 1

(n2)

=
√
2 ·

√
n− 1

2
=

√
n− 1 <

√
n (27)

1

n
LH =

1

M

M∑
i=1

yiy
T
i (28)

E[∥LH − LG∥] = n ·E[∥ 1
n
LH − 1

n
LG∥]

= n ·E[∥ 1

m

∑
yiy

T
i −E[

1

m

∑
yiy

T
i ]∥]

≲ n ·
√

n log n

m

≤ ϵ · n for m >
1

ϵ
· n log n

(29)
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4.3.2 Arbitrary Graph

Recall the previous notation, LG = UTU , where U is the vertex-edge injection matrix. Define
projection matrix onto span(u) (set of possible current induced by voltages), as

R = ULT
GU

T ∈ Rm×m (30)

and because R is a projection matrix, we have R2 = R
Then we define S ∈ Rm×m, the diagonal sampling-and-reweighting matrix, sampling M times with
replacement, each e with probability pe

See =
# times e sampled

M · pe
(31)

Notice that E[S] = I,
LH = UTSU ⇒ E[LH ] = LG (32)

Q: how to pick pe? How many samples do we need, s.t,

(1− ϵ)LG ≲ LH ≲ (1 + ϵ)LG ⇔ ∥RSR−R∥ ≤ ϵ

, and E[RSR] = R

Let yi =
1√
pei

·Rei , where Re is the eth column of R then,

1

M

M∑
i=1

yiy
T
i =

M∑
i=1

Re1 ·
1

Mpei
·RT

ei

= RSR

(33)

Using the RV Lemma,

E[∥RSR−R∥] ≲ K

√
log(m)

M
(34)

where K = max∥yi∥, hence

K ≤ max
e

∥Re∥√
pe

= max
e

√
re
pe

(35)

where re is defined as,
re = ∥Re∥2 = uTe L

†
GLGL

†
Gue = uTe L

†
Gue (36)

We can minimize K by setting pe ∝ re

pe =
re∑
e re

=
re

n− 1
(37)

Then we have K ≤
√
n− 1
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