Prof. Eric Price

Scribe: Kaizhao Liang
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture, we are going to talk about Markov Chains. A Markov chain is a (discrete) memoryless stochastic process. For example, a random walk on n states, the distribution of position at time $t+1$ depends only on time t, not further history is needed.

2 Math things

Defining the transition matrix P as follows,

$$
\begin{equation*}
P_{i, j}=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right] \tag{1}
\end{equation*}
$$

Let $q^{(t)}$ be the distribution of X_{t},

$$
\begin{equation*}
q^{(t+1)}=q^{(t)} \cdot P \tag{2}
\end{equation*}
$$

Π is a stationary distribution, if $\Pi \cdot P=\Pi$. Markov Chain is "ergodic" if:

- Π is unique
- $\forall q^{(0)}, q^{(t)}=q^{(0)} \cdot P^{t}$ as $t \leftarrow \infty$

2.1 Fundamental Theorem of Markov Chains

A chain is ergodic when:

- Finite n
- Aperiodic: \forall states, $\operatorname{gcd}($ loops from that state $)=1$
- Irreducible: $\exists i \rightarrow j$ path $\forall i, j$
$h_{u v}$: hitting time from u to v starting at $\mathrm{u}, \mathbf{E}[$ time to reach $V]$
$C_{u v}$: commute time, expected time to go from u to v and then back to $u=h_{u v}+h_{v u}$
Random walks in undirected graphs

$$
P_{u v}= \begin{cases}\frac{1}{d(u)} & \text { if }(u, v) \in E \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Connected, no-bipartite \Rightarrow ergodic.

$$
\begin{equation*}
\Pi_{v}=\frac{d(v)}{2 m} \tag{4}
\end{equation*}
$$

Check: $\sum_{v} \Pi_{v}=\frac{\sum d(0)}{2 m}=1$,

$$
\begin{equation*}
(\Pi P)_{v}=\sum_{(u, v) \in E} \Pi_{u} \cdot \frac{1}{d(u)}=\sum_{(u, v) \in E} \frac{1}{2 m}=\frac{d(v)}{2 m}=\Pi_{v} \Rightarrow \Pi P=\Pi \Rightarrow \Pi \text { is stationary } \tag{5}
\end{equation*}
$$

with $\Pi_{i}>0 \forall i N(i, t):=\#$ times reach state i before time t,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{N(i, t)}{t}=\Pi_{i} \tag{6}
\end{equation*}
$$

Hitting time $h_{i i}=\frac{1}{\Pi_{i}}$ and $h_{i i}=\mathbf{E}[$ time to return to i after leaving $i t]$

