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1 Overview

In this lecture, we are going to talk about Markov Chains. A Markov chain is a (discrete) memory-
less stochastic process. For example, a random walk on n states, the distribution of position at
time t+ 1 depends only on time t, not further history is needed.

2 Math things

Defining the transition matrix P as follows,

Pi,j = Pr[Xt+1 = j|Xt = i] (1)

Let q(t) be the distribution of Xt,
q(t+1) = q(t) · P (2)

Π is a stationary distribution, if Π · P = Π. Markov Chain is ”ergodic” if:

• Π is unique

• ∀q(0), q(t) = q(0) · P t as t←∞

2.1 Fundamental Theorem of Markov Chains

A chain is ergodic when:

• Finite n

• Aperiodic: ∀ states, gcd(loops from that state) = 1

• Irreducible: ∃ i→ j path ∀i, j

huv: hitting time from u to v starting at u, E[time to reach V]
Cuv: commute time, expected time to go from u to v and then back to u = huv + hvu

Random walks in undirected graphs

Puv =

{
1

d(u) if(u, v) ∈ E

0 otherwise
(3)
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Connected, no-bipartite ⇒ ergodic.

Πv =
d(v)

2m
(4)

Check:
∑

v Πv =
∑

d(0)
2m = 1,

(ΠP )v =
∑

(u,v)∈E

Πu ·
1

d(u)
=

∑
(u,v)∈E

1

2m
=

d(v)

2m
= Πv ⇒ ΠP = Π⇒ Π is stationary (5)

with Πi > 0 ∀i N(i, t) := # times reach state i before time t,

lim
t→∞

N(i, t)

t
= Πi (6)

Hitting time hii =
1
Πi

and hii = E[time to return to i after leaving it]
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