
CS 388R: Randomized Algorithms, Fall 2023 November 6th, 2023

Lecture 21: Low Dimensional Computational Geometry

Prof. Eric Price Scribe: James Rayman, Jasmeet Kaur

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture, we begin discussing computational geometry. We will look at randomized solutions
to a few classic problems, namely closest pair of points, convex hull, and intersecting half spaces.

We will focus specifically on low dimension problems today. That is, we will assume that our
dimension d is constant in the analysis of our algorithms.

2 Closest Pair of Points

Definition 1. In the closest pair of points problem, we are given n points p1, p2, . . . pn and have
to find two points from that list pi and pj , i ̸= j such that ∥pi − pj∥ is minimized.

Each pair of points can be checked which takes O(n2) time.[CLRS] gives an O(n log n) time divide-
and-conquer solution to this problem, but today we will see a randomized O(n) expected time
solution.

2.1 Warm Up

Let σ∗ be the minimum distance between two points. To find pi and pj ., we can divide the space
into a grid of squares where each cell is σ∗ × σ∗ and use a hash map to quickly look up points are
in each cell.

1

σ∗

σ∗

To give an intuition, since we are looking for a pair of points σ∗ apart, we only need to check for
pairs that are in the same cell or two adjacent cells (including diagonally adjacent ones). Each cell
can have a maximum of 4 points. By using the hash map, we are able to determine, for any point
pk, the at most 35 additional points that might be within σ∗ of pk. We can find pi and pj in O(n)
time.

2.2 Full Solution

If we aren’t given σ∗, we can take a random guess σ and run the algorithm above. If our guess is
sufficiently close, then our algorithm works just fine. Otherwise, we have the following two cases :

• If σ < σ∗, then the closest pair of points might not be in adjacent cells, in which case we
can’t calculate the answer.

• If σ > σ∗, then way more than 4 points could end up in a single cell. It takes O(n2) time.
We will see in O(n) time that our guess for σ was too high and we can restart the algorithm
with σ equal to the minimum distance we have seen so far.

Modifying this idea a little, we get this algorithm:

1. Randomly shuffle all the points.

2. Set σ = ∥p1 − p2∥.

3. Initialize an empty hash map for a σ × σ grid.

4. For each pk of p1, p2, . . . , pn, add pk to the grid and calculate the distances to all points in
the same cell and each neighboring cell. If we find that pk is less than σ away from another
point, set σ to be this new minimum distance and restart the algorithm from step 3.

At the end, we know that σ = σ∗, and if we kept track of what points we used to calculate σ, we
know pi and pj .

2

Analysis : Steps 1, 2, and 3 always take O(n) time all together. For step 4, notice that adding a
point without restarting takes O(1) time, and a given point can make us restart at most one time.
Thus, restarting at the kth point takes O(k) time, so we have:

E[run time] =
n∑

k=1

(O(1) + P[restart at round k]O(k)) (1)

Now:
P[restart at round k] = P[closest pair({p1, p2, . . . pk}) contains pk]

We break ties for closest pair by the index of the second point, since that is the order that we
account for the pairs in our algorithm.

Since we shuffled the points at the beginning, if there are no ties, every point is equally likely to be
in the closest pair. There is a 2/k chance that pk is in the closest pair. If there are ties for closest
pair :

• All the closest pairs share a common point. We restart with probability 1/k.

• No point belongs to every closest pair and we never restart.

In all, we have:
P[closest pair({p1, p2, . . . pk}) contains pk] ≤ 2/k

Substituting into (1), we get that our expected run time is O(n).

3 2D Convex Hull

Definition 2. A set of points is in general position if no three points are collinear.

Definition 3. In the convex hull problem, we are given n points p1, p2, . . . pn in general position.
We have to identify a subset of those points pi1 , pi2 , . . . pik that form a convex polygon which encloses
all n points.

[CLRS] describes two algorithms for convex hull:

1. Gift wrapping : O(nk) (k is the number of points on the hull). Starting with the point with
the lowest y-coordinate (any point on that is guaranteed to be on the hull works), given any
current point, pick the next point that makes the largest angle with the current point in
counterclockwise direction. In worst case, runs in O(n2) time when all the points are on the
hull.

3

2. Graham’s scan : O(n log n). Start by sorting all the points by angle with the starting point.
This takes O(n log n). Walk around this sorted array to pick points that lie in the hull which
takes O(n). We will present a similar algorithm later in this lecture.

Today, we will look at an expected O(n log n) time algorithm.

3.1 A Simple Approach

Let’s consider the following general algorithm: Keep a list of candidate points for the hull, initially
{p1, p2, p3}. Add the rest of the points one by one, and after each addition, compute the new hull.

Each point is added once and removed at most once, so our run time is O(n) plus the time it takes
to decide which points to remove. Näıvely, we can get O(n) per point (O(n2) total), but being
more clever lets us achieve O(log n) per point (O(n log n) total).

3.2 A Fast Deterministic Approach

First, take p0 to be any point on the interior of the hull ((p1 + p2 + p3)/3 suffices) and sort the
remaining points by angle θ relative to p0.

p0

4

Now when we add a point pi, we need to find what edge pip0 intersects, if any. We can do this by
binary searching on θ, comparing to points on the current hull. Since we are adding and removing
points to the hull, we will need to store the hull as a binary search tree. This gives us the O(log n)
time per point we mentioned above.

3.3 A Fast Randomized Approach

Instead of sorting, we instead store pointers from each point pi to the edge that p0pi intersects (if
there is no intersection point, we can remove pi). Every round, edges could be removed and added,
so we need to update some edge pointers. If we randomly pick which point to add in each round,
we can show that our expected run time is O(n log n).

p0 p0

3.3.1 Analysis

Since we can keep a list of backpointers on each edge and at most two edges are added each round,
determining which edges pointers to update and what to update them to is O(1) per edge pointer
update. Determining which edges to remove is also fast since we always remove a contiguous subset
of edges. Thus, our run time is proportional to the total number of edge pointer updates.

3.3.1.1 A Wrong Approach

We might hope for an inequality like this:

On round i, P[the pointer for pj updates] ≲
1

i

However, this is not true in all cases, as demonstrated by the following counterexample:

5

p0

Here, no matter which point we choose to add, we will have to remove two edges and update all
the edge pointers, so this approach doesn’t work.

3.3.1.2 Backwards Analysis

Instead, let’s try working backwards. Suppose we are given S, the set of i points that our current
hull encloses after i−3 rounds. If we remove a random element of S (i.e. step one round backwards
in the algorithm), what is the number of edges pointers we need to update? Well:

E[number of pointer updates] ≤ nP[the pointer for pj updates]

The edge pointed to pj only has two endpoints, and we only update the pointer if one of those
points is removed, so:

P[the pointer for pj updates] =
2

|S|
=

2

i

Combining these two results and summing over all rounds, we get:

E[total number of pointer updates] ≤ n
n∑

i=4

2

i
≲ n log n

Thus, the expected running time is O(n log n). This isn’t any better than Graham’s scan, which is
deterministic, but our algorithm has the benefit that it can generalize to higher dimensions.

4 Intersecting Half Spaces in R3

Definition 4. A half space in R3 is a plane together with every point on one side of that plane.

If the intersection of a set of half spaces is bounded and has positive volume, then this intersection
is a polyhedron.

Definition 5. A set of half spaces is in general position if its intersection is a polyhedron where
every vertex is incident to 3 edges.

Definition 6. In the intersecting half spaces problem, we are given n half spaces in general position
and have to find the polyhedron that defines the intersection.

6

Using Euler’s characteristic formula (V −E + F = 2) and the fact that 2E = 3V from the general
position constraint, we get that the resulting polyhedron has O(n) edges and O(n) vertices.

To solve this, we can employ a similar algorithm to 2D convex hull: Add the half spaces to the
intersection one by one, and for each half space we haven’t added, keep a pointer to a vertex that
is not in the half space. After each addition, we will need to update vertex pointers, and our total
time is proportional to the number of vertex pointer updates.

4.1 Backwards Analysis

The analysis is very similar to that of convex hull. Suppose our current set of considered half spaces
is S and we step backwards in the algorithm, removing a half space from S. Since each vertex is
incident to only 3 half spaces, there is at most a 3/|S| chance that a given vertex pointer updates.
The rest of the analysis is almost the same as for convex hull, and we again get a O(n log n) expected
time bound.

4.2 Duality

Definition 7. A point p and a line l are dual to each other with respect to the origin O if l is

perpendicular to
←→
pO and the distance from l to O is 1/pO.

p

l

O

r

1/r

This notion of duality extends to any dimension (replacing l with a plane or hyperplane), and many
properties are preserved by taking the dual. For example a set of points is in general position if
and only if the dual of the set is in general position. Another important property is that the dual
of convex hull is intersecting half spaces, so we can use the algorithm we just described to compute
3D convex hull.

4.3 Delaunay Triangulation

One application of 3D convex hull is computing the 2D Delaunay triangulation of a set of points.

Definition 8. The Delaunay triangulation of a set of points p1, p2, . . . , pn in general position is the
triangulation T of the set of points that maximizes the minimum angle of any triangle in T .

To calculate the Delaunay triangulation of p1, p2, . . . , pn, we can map each pi = (xi, yi) to (xi, yi, x
2
i+

y2i), compute the 3D convex full of the resulting set of points, and project the bottom of the hull
back to R2.

7

5 Closing Remarks

Notice that in all the algorithms we discussed today, the run time is exponential in the dimension
d. In closest pair, we need to check a neighborhood of 3d cells for every point. For intersecting
half-spaces (and convex hull), the number of vertices in the resulting polytope is nO(d). This is fine
for spatial applications where the dimension is 2 or 3, but for other applications, such as reverse
image search, d could be in the thousands or millions.

Next lecture, we will discuss the nearest neighbor search problem in high dimensions, which has
reverse image search as an application.

References

[CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009.
Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.

8

