CS 388R: Randomized Algorithms, Fall 2023 November 8th, 2023

Lecture 22: Nearest Neighbor Search
Prof. Eric Price Scribe: Aaryan Prakash, Sameer Gupta

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Nearest Neighbor Search

Given some set of points pi,...,p, € X, we want to construct a data structure to find a nearby
point to a given query point q. An approximation is fine, so we want to find p such that ||p — ¢|| <
(1 + €) miny||p — ¢g||. Today, we will cover X = {0,1}%, and the distance is Hamming distance.

One strategy would be to just try every point, which requires O(nd) time and space. We could

create a lookup table for all 2¢ inputs, so we have O(d) lookup with 2¢ - d space required. Using
logn
62

the JL lemma, we can compress the dimensions to get that we need O() dimensions to get

an e-approximation. Now, we need approximately n©(/ € space and de% log n lookup time. This
guarantee doesn’t work if our queries are not independent since we can adverserially learn A and

construct a ¢ that does not work against it.

2 Locality Sensitive Hashing

Instead, if we use locality sensitive hashing, then we can solve this in O(n?d) time and O(n'*?)
space, where p = 1/C and C = 1 + ¢. If we want to use the L2 norm, then we can use p = 1/C?.

In this lecture, we will be solving approximate near neighbor. Given r € R and query gq, if
min,|[p — ¢|| <7, we want to find some p such that ||p — ¢|| < Cr. If we have the nearest neighbor,
then we can solve r-near neighbor by just returning the output from that. For the other direction,
we can pick some initial distance r and then test (1 4 €)*r for different non-negative values of k.
We only need to try log;,.(r) different costs until we find one that works.

Intuitively, we just want to hash our values, which allows us to check equality. If any elements are
within r of each other, they should hash to the same value, but they should hash to different values
if they are far away.

In the plot for the probability, the probability of a collision is high at a distance of r, but the
probability should be low after C'r.

Definition 1. h is a (p1,p2) LSH if and only if V||x —y|| < r, then P[h(xz) = h(y)] > p1. Addi-
tionally, V|z —y|| > Cr, Plh(z) = h(y)] < p2.

Definition 2. A (p1,p2) LSH has efficiency

log(1/p1)
=_=1""7 =] .
log(1/ps) — o2t

If some hash family H is p-efficient, then define H? to be (h(x), h(z')) for h,h' € H. For g ~ H?,

then

g~H? g h~H

If we evaluate the probabilities, we get H? is (p%, p%) LSH while still being p-efficient. Thus, we can
take any algorithm with lower probabilties and amplify the individual probabilities by repeating
the algorithm.

3 Using a Locality Sensitive Hash Function

Suppose we have a p-efficient hash function H such that p, = % and p; = n—lp. The obvious approach
is to just build a hash table using this hash function. For the gth query, the probability of a false
positive collision is at most npy in expectation, and at least a p; chance of a true positive. In O(1)
time, there is a % chance of success. The output of the hash function will be very large, but we
can store the values of the non-zero cells in a regular hash table, so we only need linear space. To
increase our probability of success, we just repeat this O(n”log(1/d)) times. This gives us O(n”)

time, O(n'*?) space, and 1 — § success probability.

4 Constructing a Locality Sensitive Hash Family

Define hash family H to be the set of hash functions {h;(z) = x; | i € [d]}, i.e. we always look at a
random single coordinate. The number of positions where x and y are the same each increase the

lz—yll,
T -

probability of a match, so the probability of a hash collision is 1 —

r

Ifwehaveplzl—aandpgzl—%,then

_ log(1/p)
log(1/p2)

_ log(1 —r/d)
log(1 — Cr/d)

N —r/d

- —Cr/d
1

ok

Now, we can amplify the probabilities while keeping the same efficiency. We set G = HF for

k =~ log,, %, With this, our probability of failure is amplified to % The number of steps required is

approximately 169;% = dlgf " since % is the probability of failure.

5 Other Locality Sensentive Hash Functions

Suppose now that z € [A]?, where our distance is measured by L1 norm. We can represent
a coordinate = as a sequence of x 1s and A — x 0s. In this representation, the difference is the
Hamming distance. Thus, we can transform the problem into a LSH on {0, 1}*¢. Our hash function
performance does not have large dependence on the dimension, so this is fine.

We can also let the ith coordinate of the hash function be | *_% |, where s; is some random shift.

This transforms the problem from [A]¢ to [%]d. We can show that we get p = & + O(r/w), so
picking a large w gives us an efficiency close to % We can then pick a similar k£ as above to get a
% probability of failure.

For an L2 norm, we could let h(x) = sign((v, z)) for some random vector v. This gives p = &. For
another algorithm, we can pick ug,...,ur € S9! uniformly. Then, h(z) = argmin,||x — u;]|. In
other words, we hash each point to the closest point on the sphere. This has p = é +op(1).

	Nearest Neighbor Search
	Locality Sensitive Hashing
	Using a Locality Sensitive Hash Function
	Constructing a Locality Sensitive Hash Family
	Other Locality Sensentive Hash Functions

