
CS 388R: Randomized Algorithms, Fall 2023 November 8th, 2023

Lecture 22: Nearest Neighbor Search

Prof. Eric Price Scribe: Aaryan Prakash, Sameer Gupta

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Nearest Neighbor Search

Given some set of points p1, . . . , pn ∈ X, we want to construct a data structure to find a nearby
point to a given query point q. An approximation is fine, so we want to find p̂ such that ∥p̂− q∥ ≤
(1 + ϵ)minp∥p− q∥. Today, we will cover X = {0, 1}d, and the distance is Hamming distance.

One strategy would be to just try every point, which requires O(nd) time and space. We could
create a lookup table for all 2d inputs, so we have O(d) lookup with 2d · d space required. Using

the JL lemma, we can compress the dimensions to get that we need O
(
logn
ϵ2

)
dimensions to get

an ϵ-approximation. Now, we need approximately nO(1/ϵ2) space and d 1
ϵ2
log n lookup time. This

guarantee doesn’t work if our queries are not independent since we can adverserially learn A and
construct a q that does not work against it.

2 Locality Sensitive Hashing

Instead, if we use locality sensitive hashing, then we can solve this in O(nρd) time and O(n1+ρ)
space, where ρ = 1/C and C = 1 + ϵ. If we want to use the L2 norm, then we can use ρ = 1/C2.

In this lecture, we will be solving approximate near neighbor. Given r ∈ R and query q, if
minp∥p− q∥ ≤ r, we want to find some p such that ∥p− q∥ ≤ Cr. If we have the nearest neighbor,
then we can solve r-near neighbor by just returning the output from that. For the other direction,
we can pick some initial distance r and then test (1 + ϵ)kr for different non-negative values of k.
We only need to try log1+ϵ(r) different costs until we find one that works.

Intuitively, we just want to hash our values, which allows us to check equality. If any elements are
within r of each other, they should hash to the same value, but they should hash to different values
if they are far away.

In the plot for the probability, the probability of a collision is high at a distance of r, but the
probability should be low after Cr.

Definition 1. h is a (p1, p2) LSH if and only if ∀∥x− y∥ < r, then P[h(x) = h(y)] ≥ p1. Addi-
tionally, ∀∥x− y∥ > Cr, P[h(x) = h(y)] ≤ p2.

Definition 2. A (p1, p2) LSH has efficiency

ρ =
log(1/p1)

log(1/p2)
= logp2 p1.

If some hash family H is ρ-efficient, then define H2 to be (h(x), h(x′)) for h, h′ ∈ H. For g ∼ H2,

1



then
P

g∼H2
[g(x) = g(y)] = P

h∼H
[h(x) = h(y)]2.

If we evaluate the probabilities, we get H2 is (p21, p
2
2) LSH while still being ρ-efficient. Thus, we can

take any algorithm with lower probabilties and amplify the individual probabilities by repeating
the algorithm.

3 Using a Locality Sensitive Hash Function

Suppose we have a ρ-efficient hash function H such that p2 =
1
n and p1 =

1
nρ . The obvious approach

is to just build a hash table using this hash function. For the qth query, the probability of a false
positive collision is at most np2 in expectation, and at least a p1 chance of a true positive. In O(1)
time, there is a 1

nρ chance of success. The output of the hash function will be very large, but we
can store the values of the non-zero cells in a regular hash table, so we only need linear space. To
increase our probability of success, we just repeat this O(nρ log(1/δ)) times. This gives us O(nρ)
time, O(n1+ρ) space, and 1− δ success probability.

4 Constructing a Locality Sensitive Hash Family

Define hash family H to be the set of hash functions {hi(x) = xi | i ∈ [d]}, i.e. we always look at a
random single coordinate. The number of positions where x and y are the same each increase the

probability of a match, so the probability of a hash collision is 1− ∥x−y∥1
d .

If we have p1 = 1− r
d and p2 = 1− Cr

d , then

ρ =
log(1/p1)

log(1/p2)

=
log(1− r/d)

log(1− Cr/d)

≈ −r/d

−Cr/d

=
1

C
.

Now, we can amplify the probabilities while keeping the same efficiency. We set G = Hk for
k ≈ logp2

1
n , With this, our probability of failure is amplified to 1

n . The number of steps required is

approximately logn
Cr/d = d logn

Cr since Cr
d is the probability of failure.

5 Other Locality Sensentive Hash Functions

Suppose now that x ∈ [∆]d, where our distance is measured by L1 norm. We can represent
a coordinate x as a sequence of x 1s and ∆ − x 0s. In this representation, the difference is the
Hamming distance. Thus, we can transform the problem into a LSH on {0, 1}∆d. Our hash function
performance does not have large dependence on the dimension, so this is fine.

2



We can also let the ith coordinate of the hash function be ⌊xi−si
w ⌋, where si is some random shift.

This transforms the problem from [∆]d to
[
∆
w

]d
. We can show that we get ρ = 1

C + O(r/w), so
picking a large w gives us an efficiency close to 1

C . We can then pick a similar k as above to get a
1
n probability of failure.

For an L2 norm, we could let h(x) = sign(⟨v, x⟩) for some random vector v. This gives ρ = 1
C . For

another algorithm, we can pick u1, . . . , uT ∈ Sd−1 uniformly. Then, h(x) = argmini∥x− ui∥. In
other words, we hash each point to the closest point on the sphere. This has ρ = 1

C2 + oT (1).

3


	Nearest Neighbor Search
	Locality Sensitive Hashing
	Using a Locality Sensitive Hash Function
	Constructing a Locality Sensitive Hash Family
	Other Locality Sensentive Hash Functions

