
CS 388R: Randomized Algorithms, Fall 2023 November 16th, 2023

Lecture 24: Randomized Numerical Linear Algebra-1

Prof. Eric Price Scribe: Liangchen Liu, Ziheng Chen

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture and the following lecture, we will delve into more efficient (randomized) methods
for solving the linear equation Ax = bwhen A ∈ Rn×d for n ≫ d. The primary goal of this initial
lecture is to establish the necessary background, introduce theoretical concepts and tools that will
set the stage for the algorithm to be presented in the subsequent lecture.

2 Problem Setup

2.1 Background

We are interested in solving the linear equation Ax = b given A ∈ Rn×d and b ∈ Rn, specifically
when n ≫ d. This configuration is prevalent in various applications. For instance, in a machine
learning problem with n data points in a d-dimensional feature space, if the objective is to fit a
linear function to these data to approximate a real value function, the values of these data points
can be stored in A while the value of the target function can be stored in b. Solving for Ax = b
provides the optimal coefficients for the linear approximation

Example: (Polynomial Regression) data: (x, y) ∈ R2, y = p(x) a degree d polynomial.

y = p(x) =

d∑
i=0

aix
i

One can obtain p(x) by finding ai’s, which can be formulated as Xa = y where each row of X
represents the values of {1, x, x2, . . . , xd} for a specific values of x. And a = [a0, . . . , ad]

T .

2.2 Alternative formulation

However, when n ≫ d, the system is over-determined, making it challenging to obtain an exact
solution, or in some cases, an exact solution may not even exist. The following minimization
problem offers an appealing alternative:

x∗ = argmin
x

∥Ax− b∥2, (1)

1



where we pick the ∥·∥2 for ease of computation. Solution to Equation (1) is given by x∗ = A†b
where A† is the Moore-Penrose inverse or the pseudo inverse, which leads to:

x∗ = A†b = (ATA)−1AT b. (2)

Another perspective to derive Equation (2) is to consider minimizing the loss function:

f(x) = ∥Ax− b∥22 = (Ax− b)T (Ax− b).

By taking the gradient to be 0, we arrive at:

∇f(x∗) = 2ATAx∗ − 2AT b = 0 =⇒ x∗ = (ATA)−1AT b. (3)

This is called the normal equation for the least square problem (1).

2.3 Computation cost

Direct solve: For A ∈ Rn×d where n ≫ d, solving Equation (2) directly can be expensive:

1. compute ATA needs O(nd2), or O(nd1.38) with fancy algorithms

2. finding the inverse (ATA)−1 by Gaussian elimination requires O(d3), or O(d2.38) with fancy.

3. matrix-vector multiplication AT b needs O(nd) and (ATA)−1(AT b) needs O(d2).

Therefore the total cost is dominated by O(nd2) or O(nd1.38) which is huge for n ≫ d.

Iterative method: A better approach is to consider solving iteratively. Given the current ap-
proximate minimizer xk−1, we want to update to xk such that xk is a better minimizer. The most
common and well-known approach is the steepest descent, or gradient descend. From Equation (3),
we learn the gradient direction of the minimization function is ∇f(x) = b−Ax, therefore, gradient
descent results in the iteration:

xk = xk−1 + ηk(b−Axk−1).

ηk is the step size, or the learning rate in deep learning context. ηk can be either prescribed or
obtained through line search:

ηk =
(b−Ax)T (b−Ax)

(b−Ax)TA(b−Ax)
.

For A ∈ Rn×d, the number of steps required for an (1 + ε)-accuracy, that is,

∥Ax̂− b∥2 ≤ (1 + ε)min
x

∥Ax− b∥2

is given by

O
(
nd log(

n

ε
)κ(ATA)

)
,

where κ denotes the condition number of a matrix:

κ(B) :=
σmax(B)

σmin(B)
=⇒ κ(ATA) =

σmax(A
TA)

σmin(ATA)
=

λmax(A)

λmin(A)
,

2



and σ denotes the singular value and λ the eigenvalues.

Nonetheless, when some features are highly correlated, the feature distributions will become elon-
gated, leading to λmax ≫ λmin, an ill-conditioned system. For an example, consider for ε ≪ 1,

A =

[
1, O(ε)

O(ε), O(ε2)

]
=⇒ λmax = 1, λmin ∼ O(ε2) =⇒ κ(ATA) ∼ O(ε−2) ≫ 1.

Under this circumstance, gradient descent requires a a long time to converge. One possible im-
provement is to adopt the celebrated conjugate [HS52]1, which brings down the required number
of steps to

O
(
nd log(n/ε)

√
κ(ATA)

)
,

but in general for iterative methods, there is always a dependency on the condition number κ.

3 Randomized Technique

The goal of our lectures is to get rid of the κ dependency to achieve a computation cost of

Õ
(
nd+ d3

ε2

)
. The framework to be introduce is called “Sketch&Solve”. In the final part of the

next lecture, we describe methods of preconditioning to get rid of the poly(ε)-dependency as well.

3.1 Sketch&Solve

Recall we want to find argminx∥Ax − b∥2 for A ∈ Rn×d with n ≫ d. The main idea is to pick a
“sketch” matrix S ∈ Rm×n and solve the following instead in O(md2):

argmin
x

∥SAx− Sb∥2. (4)

Note if there’s no noise in b, then for m > d a full rank system is guaranteed in general.

Intuition: the idea behind “Sketch&Solve” is that by selecting a ”good” S to sketch the important
information from A into a smaller system SA, the solution obtained from solving Equation (4),
which is a fast process, will be sufficiently accurate.

The concept of subspace embedding provides a criteria to describe what is to be a “good” S.

Definition 1 (Subspace Embedding). S is a subspace embedding for a space X if

∥Sx∥22 = (1± ε)∥x∥22 ∀x ∈ X

S is a d-dimensional oblivious subspace embedding (OSE) if for any A ∈ Rn×d

∥SAx∥22 = (1± ε)∥Ax∥22 ∀x ∈ Rd (5)

1There are various improvements available such as classical and Nestrov momentum to achieve the
√
κ rate

3



Remark: We effectively apply S on col(A) above. More generally, OSE is defined as for any
d-dimensional U:

∥Sx∥22 = (1± ε)∥x∥22 ∀x ∈ U

The main reason to consider OSE is that it is not practical to come up with a subspace embedding
S for a specific A (or col(A)), obtaining an OSE is more versatile.

Claim 2. A sufficient condition for “Sketch&Solve” to be (1 +O(ε))-accurate is that S is a subspace
embedding for Ā :=

[
A
∣∣b]. That is:

S being a subspace embedding of Ā =⇒ ∥Ax̂− b∥2 ≤ (1 + ε)min
x

∥Ax− b∥2,

where x̂ comes from solving Equation (4).

Proof. Note that Ax− b = Ā

[
x
−1

]
implies Ax− b lies in col(Ā). Let x̂ denote the solution returned

by “Sketch&Solve” and x∗ the true solution, then since S is an OSE for Ā, by definition:

∥S(Ax− b)∥22 = (1± ε)∥Ax− b∥22 ∀x.

=⇒ ∥Ax̂− b∥22 ≤
1

1− ε
∥S(Ax̂− b)∥22 ≤

1

1− ε
∥S(Ax∗ − b)∥22 ≤

1 + ε

1− ε
∥Ax∗ − b∥22,

where the middle inequality follows from the fact that x̂ is the optimal solution for SAx = b.
Therefore we can conclude:

=⇒ ∥Ax̂− b∥2 ≤ (1 + ε′)min
x

∥Ax− b∥2

Now that we have an (oblivious) subspace embedding, we can obtain an approximate solution to
Ax = b with

(
1 +O(ε)

)
-accuracy. The remaining questions to investigate are:

1. How to find such an embedding S?

2. Is SA fast to compute so that embedding does not dominate the computation cost?

These questions will be addressed in the next lecture, as a few more concepts need to be introduced
before we are able to arrive at the answer. We first introduce the notion of distributional Johnson-
Lindenstrauss, and later on demonstrate how one can obtain an OSE from it.

3.2 Distributional Johnson–Lindenstrauss

Definition 3. A random matrix S is (ε, δ)-distributional Johnson-Lindenstrauss (JL) if for any
x ∈ Rd:

∥Sx∥22 = (1± ε)∥x∥22 (6)

with probability 1− δ.

4



Remark: Distributional JL is the subspace embedding applied on the whole space Rd. It also
describes that the random matrix S has a high probability to be orthogonal. Later on we will see
a connection from distributional JL to OSE for a certain subspace.

Example: S with i.i.d. Gaussian entries ∼ N (0, 1
m) and m = O

(
1
ε2

log(1δ )
)
rows is distributional

JL. A rough intuition is that ∥Sx∥22 can be thought as a sum of [N (0, 1)]2 ∼ χ2, where the χ2

distribution is sub-exponential, therefore ∥Sx∥22 is sub-Gamma so it concentrates.

Corollary 4. If S is (ε, δ)-distributional JL, then ∀x, y ∈ Rd, with probability 1− 2δ:

⟨Sx, Sy⟩ = ⟨x, y⟩ ± ε∥x∥2∥y∥2.

Proof. By expanding the inner product:

⟨S(x+ y), S(x+ y)⟩ − ⟨S(x− y), S(x− y)⟩ = 4 ⟨Sx, Sy⟩ .

On the other hand, by definition of (ε, δ)-distributional JL:

⟨S(x+ y), S(x+ y)⟩ − ⟨S(x− y), S(x− y)⟩
= ⟨x+ y, x+ y⟩ − ⟨x− y, x− y⟩ ± ε∥x+ y∥2 ± ε∥x− y∥2

=4 ⟨x, y⟩ ± ε(2∥x∥22 + 2∥y∥22).

Equating the two we have

⟨Sx, Sy⟩ = ⟨x, y⟩ ± ε(∥x∥22/2 + ∥y∥22/2).

By scaling x, y to have norm 1:

⟨Sx, Sy⟩ = ⟨x, y⟩±ε =⇒
〈
S

x̃

∥x̃∥2
, S

ỹ

∥ỹ∥2

〉
=

〈
x̃

∥x̃∥2
,

ỹ

∥ỹ∥2

〉
±ε =⇒ ⟨Sx̃, Sỹ⟩ = ⟨x̃, ỹ⟩±ε∥x̃∥2∥ỹ∥2,

holds for any general x̃, ỹ ∈ Rd.

Remark: The distributional JL works effectively only on a countable number of points. To
extend its applicability to the entire subspace, it is essential to demonstrate that a finite number
of points can provide good coverage of the underlying subspace. This motivates the introduction
of the concept of ε-Net.

3.3 Net (cover)

Definition 5 (ε-net). Let X be a set (e.g. Sd−1 = {x ∈ Rd
∣∣ ∥x∥2 = 1}), N is an ε-net for X if:

∀x ∈ X : ∃y ∈ N, ∥x− y∥ ≤ ε.

Lemma 6. ∃ε-net N for Sd−1 of size ≤
(
1 + 2

ε

)d
.

5



Proof. Consider a greedy approach by constantly adding points to N (that is, go through all the
points x ∈ S, if x is not ε-close to any y ∈ N , add x to N). Let there be n points in N :
N = {x1, x2, . . . , xn}; by definition:

∥xi − xj∥ ≥ ε ∀ i, j =⇒ B
(
xi,

ε

2

)
are disjoint,

where B
(
xi,

ε
2

)
are balls centered at xi with radius ε

2 . Then, since xi are all from Sd−1:

N × V ol
(
B
(
0,

ε

2

))
= V ol

(⋃
i

B
(
xi,

ε

2

))
≤ V ol

(
B
(
0, 1 +

ε

2

))
.

Since V ol(Br) ∼ rdV ol(B1), we can conclude that:

N ≤ (1 + ε/2)d

(ε/2)d
=

(
1 +

2

ε

)d

Remark: By choosing ε not so small above, the size of the net is roughly 2O(d). In fact, morally
one can show any d-dimensional subspace “has 2O(d) points”. Therefore, if S is

(
ε, δ2−O(d)

)
-

distributional JL, using a union bound, S will be an OSE with probability 1− δ. This is how one
can connect distributional JL to OSE, hence obtain a reasonably good approximate solution. We
will show this in a more precised manner in the next lecture (Theorem 7).

References

[HS52] Magnus R Hestenes, Eduard Stiefel. Methods of conjugate gradients for solving linear
systems Journal of Research of the National Bureau of Standards, 49(6):409-436, 1952.

6


