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1 Overview

In the last lecture, we have introduced the basic setup for least square problems in the language
of linear algebra, where we discussed the computational efficiency for direct methods (Gaussian
elimination) and iterative methods (gradient descent and conjugate gradient method). We also
showed that an ϵ-subspace embedding leads to an O (ϵ)-sub-optimal solution via the sketch and
solve method. In this lecture, we’d like to study the following questions:

1. how to find an oblivious subspace embedding S (or OSE for short)?

2. how to evaluate the matrix product SA quickly?

3. furthermore, how can an OSE be applied to derive a good pre-conditioner?

2 Recap on problem setup

For the least square problem
x∗ := argmin∥Ax− b∥2

with A ∈ Rn×d, b ∈ Rn and n ≫ d, the optimal solution has the following closed form

x∗ = A†b =
(
ATA

)−1
AT b (1)

if rankA = d. The computational cost for Eqn. 1 is O
(
nd2 + d3

)
without fast matrix multiplication

and O
(
nd1.38 + d2.38

)
with (fancy) fast matrix multiplication.

To improve the quadratic (or super-linear) dependency on d, we propose the following “sketch &
solve” algorithm:

Definition 1. A random matrix S is considered a d-dimensional (ϵ, δ)-OSE (oblivious subspace
embedding) if

∥Sx∥ = (1± ϵ) ∥x∥,∀x ∈ U

holds for for any d-dimensional U with probability 1− δ.

Algorithm 2 (Sketch & Solve). Given d and accuracy tolerance ϵ > 0, choose a (d+ 1)-dimensional
OSE (oblivious subspace embedding) S ∈ Rm×n with m = Õ

(
d/ϵ2

)
and solve

x̂ := argmin∥SAx− Sb∥2.
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Remark 3. Recall that a subspace embedding is capable of preserving the norm up to a relative
error of ϵ, for any input x from a given subspace. Here, the subspace is considered to be spanned
by the columns of (A | b), having a dimension of (d+ 1). However, we don’t want the choice of S
to rely on the coefficient matrix A, thus we introduce the notion of “oblivious” that requires (the
random matrix) S to be a subspace embedding of any matrix A, with sufficiently high probability.

In the previous lecture, we have showed that a good OSE leads to a good approximated solution
in the sense that

Proposition 4. If S is an OSE of ϵ accuracy, the sketch & solve solution is good in the sense that

∥Ax̂− b∥2 ≤ (1 +O (ϵ)) ∥Ax∗ − b∥2.

3 Distributional-JL

3.1 Yielding OSEs

OSEs are hard to construct since we need to preserve the norm of all vectors in the subspace at the
same time. Instead, we start with a weaker family that preserves each vector at a time, called the
distributional-JL (or d-JL for short) property. Then, we study the geometry of high dimensional
balls to yield a union-bound that bridges d-JL and OSE.

Definition 5. A random matrix S is considered (ϵ, δ)-d-JL if

∥Sx∥ = (1± ϵ) ∥x∥

holds for any x with probability 1− δ.

In the previous class, we have showed the existence of an ϵ1-net of the unit ball in d dimensions.

Proposition 6. Let B :=
{
x ∈ Rd : ∥x∥ ≤ 1

}
be the unit ball. Then, there exists an ϵ1-net N ⊂ B

of size |N | <
(
1 + 2

ϵ1

)d
, namely

∀x ∈ B, ∃y ∈ N s.t. ∥x− y∥ ≤ ϵ1.

Remark. We fix ϵ1 = 0.1 in the following passage which is sufficient to derive desired matrix
projection.

The following theorem connects d-JL with OSE. The intuition behind this theorem is that a d-
dimensional subspace has 2O(d) “effectively different points”.

Theorem 7. If S is (ϵ, δ)-d-JL, then for any x ∈ B, ∥Sx∥ = (1±O (ϵ)) ∥x∥ holds with probability

1− δ · |N |2. In other words, S is an
(
O (ϵ) , δ · |N |2

)
-OSE.

Proof. Without loss of generality, we scale x ∈ N properly so that it is on the unit sphere (i.e.
∥x∥ = 1). We iteratively define x0, x1, · · · ∈ Rd and r1, r2, · · · ∈ Rd by the following procedure:

1. Since N is an 1
10 -net of B, there exists x0 ∈ N s.t. ∥x− x0∥ ≤ 1

10 ; let r1 := x− x0.
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2. Similarly, since ∥10r1∥ = 10∥x− x0∥ ≤ 1, it can be approximated by x1 ∈ N s.t.

r2 := r1 −
1

10
x1 ⇒ ∥r2∥ ≤ 1

100
.

3. We iteratively define xk as the element in N that approximates 10krk and rk+1 := rk− 1
10k

xk.

We can telescope the definitions for rk and arrive at

x = x0 + r1 = x0 +
1

10
x1 + r2 = · · · =

∞∑
i=0

10−ixi.

A naive attempt to bound the magnitude of x via triangular inequality, which leads to a sub-optimal
result:

∥Sx∥ ≤
∞∑
i=0

10−i∥Sxi∥ ≤ 10

9
(1 + ϵ) ,

∥Sx∥ ≥ ∥Sx0∥ −
∞∑
i=1

10−i∥Sxi∥ ≥ 8

9
− 10

9
ϵ.

Although one can require N to be an ϵ-net instead of a 1
10 -net, the extra cost is eventually added

to m = O
(
d
ϵ2
log 1

ϵ

)
which is not optimal. To circumvent this issue, one should bound the norm

via inner product. Let yi :=
xi

10i
, then

∥Sx∥22 =

〈 ∞∑
i=0

Syi,
∞∑
i=0

Syi

〉
=

∞∑
i=0

∥Syi∥22 +
∑
i<j

2 ⟨Syi, Syj⟩ .

Due to polarization identity

⟨z, w⟩ = 1

4

(
∥z + w∥2 − ∥z − w∥2

)
,

once S preserves all yi and yi ± yj with probability 1− δ · |N |2, we have

∥Sx∥22 =
∞∑
i=0

∥yi∥22 ± ϵ

∞∑
i=0

∥yi∥22 +
∑
i<j

2 ⟨yi, yj⟩ ±
∑
i<j

2ϵ∥yi∥∥yj∥

=

 ∞∑
i=0

∥yi∥22 +
∑
i<j

2 ⟨yi, yj⟩

± ϵ

 ∞∑
i=0

∥yi∥22 +
∑
i<j

2∥yi∥∥yj∥


= ∥x∥22 ± ϵ

( ∞∑
i=0

∥yi∥2

)2

= 1± 1.3ϵ.

Example 8. In the last class, we mentioned that with m = O
(
ϵ−2 log δ−1

)
and S ∈ Rm×n having

i.i.d. entries from N
(
0, 1

m

)
, S is (ϵ, δ)-d-JL. Thus, increasing m to O

(
dϵ−2 log δ−1

)
gives an (ϵ, δ)-

OSE family.
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3.2 Fast d-JL

We introduce a few state-of-art techniques.

Definition 9. A random matrix B ∈ Rm×n is called an ϵ-RIP (restricted identity property) matrix
with order k if

∥Bx∥ = (1± ϵ) ∥x∥

for any k-sparse x (i.e. x has less than k non-zero entries).

Theorem 10 ([KW11] Thm 3.1). If B ∈ Rm×n is an ϵ-RIP matrix with order k and D is a
diagonal random matrix with Dii ∈ {−1, 1} uniformly, then BD is

(
O (ϵ) , 2−Ω(k)

)
-d-JL.

Let us consider the Fourier transform matrix F ∈ Rn×n with entries

Fij := e2π
√
−1 ij/n.

We now sub-sample m rows from F to form matrix F̃ , then

Proposition 11 ([KW11] Sec 4.1). If m = O
(
dϵ−2 log δ−1 · log4 d

)
, then F̃ is

(
d log δ−1, ϵ

)
-RIP.

Thus, FD is
(
O (ϵ) , δ2−Ω(d)

)
-d-JL and (O (ϵ) , δ)-OSE.

4 OSE as pre-conditioner

The sketch & solve algorithm is able to produce an ϵ-approximation solution with a cost of
Õ
(
nd+ d3ϵ−2

)
, while the conjugate gradient method requires O

(
nd log n

ϵ κ (A)
)
. To combine

the advantages of both methods, one can derive a pre-conditioner from the sketch & solve method
that reduces the condition number κ (A). Furthermore, since the OSE preserves the norm so well,
the conjugate gradient method is no longer needed and a simple gradient descent suffices.

We first introduce the basics of pre-conditioning. For a fixed, invertible matrix R ∈ Rd×d, we solve

y∗ = argmin∥ARy − b∥2

that recovers x∗ by Ry∗. If we manage to find a good R s.t. κ (AR) is small (say 1.1), then the
overall computational cost is lowered.

In the most ideal case, we perform an SVD decomposition to A:

A = UΣV T

where U ∈ Rn×n, V ∈ Rd×d are orthogonal matrices and Σ ∈ Rn×d has diagonal entries only. Then,
picking R := V Σ−1 leads to

AR = U ⇒ κ (AR) = 1.

However, an SVD factorization takes O
(
nd2
)
time which defeats the purpose of adopting sketching

in the first place.

The alternative approach is to pick an OSE S and perform SVD on SA. The overall computational
time is the sum of computing SA and a smaller scale decomposition, namely

total time = O (n log nd) +O
(
md2

)
= Õ

(
nd+ d3

)
.
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Then, for any y ∈ Rd with unit norm, we have

(1− ϵ) ∥ARy∥ ≥ ∥SARy∥ ≥ (1 + ϵ) ∥ARy∥

where ∥SARy∥ = 1, so AR is an approximately orthogonal matrix, leading to

κ (AR) = 1 +O (ϵ) ≤ 2.

Eventually, conjugate gradient takes O
(
nd log n

ϵ2

)
time to achieve an ϵ2-accurate solution.

In fact, AR is so close to being orthogonal that there is no need to adopt conjugate gradient method.
Since

∥RTATAR− I∥ ≤ O (ϵ) ,

intuitively we have
y ≈ RTATARy ≈ RTAT b.

One can show that the following iterative scheme

y(1) := RTAT b,

y(2) := y(1) +RTAT
(
b−ARy(1)

)
,

. . .

converges to y∗ fast!
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