
CS 388R: Randomized Algorithms, Fall 2023 8-28-23

Lecture 3: Faster min-cut and estimating a biased coin

Prof. Eric Price Scribe: Alekhya Kuchimanchi, Kristin Sheridan

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the first lecture, we discussed Karger’s min cut algorithm, which finds a global min cut with
probability at least 1 − δ in O(n4 log 1

δ) time. This lecture, we will see a modification of this

algorithm that works in Õ(n2 log 1
δ) time and finds a min cut with probability at least 1− δ.

In the second lecture, we discussed applications of tail bounds and saw that if we make n ≥
O(p

ϵ2
· log 1

δ) tosses of a biased coin that lands on heads with probability p and output p̂, the
number of heads divided by n, we will have |p̂ − p| ≤ ϵ with probability a least 1 − δ. In this
lecture, we will show how to modify this technique such that we do not need n to depend on p. In
particular, this allows us to get around needing a bound on p in order to know when to stop.

2 A faster min cut algorithm

Review First, recall Karger’s min cut algorithm.

Algorithm 1 Karger’s min cut algorithm

Input: An unweighted graph G = (V,E), probability δ ∈ (0, 1)
Output: A global min cut of G, with probability at least 1− δ

for i = 1 to n− 2 do
Pick a random edge and contract it

Return pre-images of the two remaining vertices as a cut

Note that when we contract an edge, we retain all resulting edges between the resulting two vertices
(so we actually obtain a multi-graph as we begin contracting). As previously discussed, the above
algorithm runs in O(n2) time and succeeds with probability at least 2

n2 . Thus, with O(n2 log 1
δ)

repetitions, we can obtain a min cut with probability 1− δ and in total we take O(n4 log 1
δ) time.

Intuition Note that in our previous analysis, the highest failure probability came from the final
steps. For example, consider the following multi-graph. To obtain a min cut on this multi-graph,
we must merge a and b, but the probability of merging b and c or a and c instead is 200/301, which
is almost 2/3. Thus, even if we got lucky early on in our random choices and we made only perfect
choices up to this point, there is high probability we fail at this point. In particular, in our analysis
we showed that the probability of succeeding at the ith round given we succeeded at all previous
rounds is at least (1− 2

n−(i−1)), which is small when i is small but gets quite large as i gets large.

1

Thus, we would like to modify Karger’s algorithm so that we can retain the work from the first
steps while re-running the last steps multiple times.

100 edges 100 edges

101 edges

a b

c

New algorithm The modified version of Karger’s algorithm is the following recursive algorithm.

Algorithm 2 Modified Karger’s min cut algorithm

Input: An unweighted graph G = (V,E) of n nodes
Output: A global min cut of G, with probability at least 1/2

If n = 2, return the only cut
for t = 1 to 2 do

G′ ← G
for i = 1 to (1− 1√

2
)n do

Modify by G′ by picking a random edge and contracting it

Gt ← Algorithm 2(G′)

Return the pre-image of the vertices in G1 or G2, whichever produces the smaller cut

Runtime of Algorithm 2 If T (n) is the runtime of the algorithm on a graph of n nodes, we
have

T (n) = T

(
n√
2

)
+O(n2).

We take O(n2) steps in the upper layer of the recursion, as there are O(n) steps, each at a cost of
O(n), and the number of nodes at the next layer is n−(1− 1√

2
)n = n√

2
. Using the Master Theorem,

this implies an overall runtime of T (n) = O(n2 log n). (Note that the same amount of work is done
at each level of the recursion tree, so we can multiply by the number of layers.)

2

Success probability of Algorithm 2 Let p(n) be the probability that Algorithm 2 succeeds
on an input graph of n nodes. Then we have

p(n) = 1− (probability one branch fails)2

= 1− (1− probability one branch succeeds)2

≥ 1− (1− 1

2
p(

n√
2
))2,

where (probability one branch fails) is the probability that Gt does not produce a min cut for some
choice of t. The first equality is because both cuts must not be min in order for the algorithm
to fail. The second is because a branch succeeds if and only if it does not fail. Finally, we need
only show that the probability one branch succeeds is at least 1

2p(
n√
2
) in order to obtain the above

inequality. We proceed via a similar method to that we saw in the previous lecture, but with early
termination. In particular, as discussed last time, the probability that we succeed in round i given
we succeeded in all previous rounds is at least 1− 2

n−(i−1) =
n−(i+1)
n−(i−1) . We can write the probability

of success as follows, where Ai is the event that we find success on round i (i.e. the probability that
we select an edge to collapse such that both end points are in the same side of the optimum min cut,
for some optimum min cut we select). From the analysis last time, we have P[Ai|∩j<iAj] ≥ n−(i+1)

n−(i−1)

P[a branch succeeds] = P[A1] · P[A2|A1] · P[A3|A2 ∩A1] · · ·
· · ·P[A(1− 2√

2
)n| ∩j<(1− 2√

2
)n Aj] · P[recursive call succeeds| ∩j≤(1− 2√

2
)n Aj]

≥ n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · ·

n− (n− n√
2
+ 1)

n− (n− n√
2
− 1)

· p
(

n√
2

)

=
n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · ·

n√
2
− 1

n√
2
+ 1
· p

(
n√
2

)
=

1

n
· 1

n− 1
·
(

n√
2
− 2

)
·
(

n√
2
− 1

)
· p

(
n√
2

)

≥

(
n√
2
− 2

)2

n2
· p

(
n√
2

)
≈ 1

2
· p

(
n√
2

)

where the last inequality holds when n ≥ 16/
√
2 (i.e. for sufficiently large n).

Consider solving the recursion

p(n) ≥ 1− (1− 1

4
p(n/
√
2))2

=
1

2
· p

(
n√
2

)
− 1

16
· p

(
n√
2

)2

.

3

Let Xi := p(
√
2
i
). Note that if i ≥ 1/2, then Xi ≥ 1/i. In particular, we get that 1

i+1 ≥
4i−1
4i2

if

and only if 4i2 ≤ (4i − 1)(i + 1). At the lowest level (base case), i = 2 and at the highest level
i = log√2 n, so overall we get that the probability p(n) ≥ 1

log√2 n
= 1

Θ(logn) .

Thus, we can repeat O(log n log 1
δ) times and take the best result, and we will get a min cut with

probability 1− δ. Total runtime is O(n2 log n) ·O(log n log 1
δ) = Õ(n2 log 1

δ). (Recall that Õ mean
we are hiding poly-log factors.)

3 Estimating a biased coin

Consider a biased coin that is heads with unknown probability p. Last class, we considered methods
to approximate p. In particular, let Xi be 1 if coin toss i is heads and 0 otherwise. Then we let
X =

∑n
i=1Xi and output p̂ :=

∑n
i=1Xi/n (the empirical average). We saw that there exists

a constant c such that for any ϵ, δ > 0 if n ≥ c · p
ϵ2
log 1

δ , then with probability at least 1 − δ,
|p− p̂| ≤ ϵ.

However, a major issue with the above analysis is that the number of coin tosses we need to examine
depends on p. If we know nothing about p, we won’t know when to stop. In this lecture, we will see
how to modify this method so that we can decide when to stop without knowing anything about p.

Modified algorithm: Toss the biased coin and let Xi be 1 if and only if the result is heads on
round i. Let n be the number of coins tossed so far. If

∑n
i=1Xi ≥ 2c · 1

ϵ2
log 2

δ , stop and output∑n
i=1Xi/n.

Note that we are now stopping when the number of heads seen exceeds a particular value, rather
than when the number of coins tossed exceeds a specific value. We will analyze the number of
samples we expect to take and the probability we are within a given range.

Number of samples: If we toss coins until we see k heads, we expect to toss k/p coins (Pascal
RV/extension of geometric RV). Thus, we expect to stop after 4 · 1

pϵ2
log 2

δ samples.

Correctness: We now analyze the probability that we output the correct answer. In particular,
we would like to show that with probability at least 1− δ, p̂ ∈ [(1− ϵ)p, (1 + ϵ)p].

Analysis from last lecture: Consider P[|
∑n

i=1Xi − pn| ≥ ϵpn] for any choice of n coin tosses.
In particular, by applying Chernoff bounds we get the following

P[|
n∑

i=1

Xi − pn| ≥ ϵpn] ≤ 2e−ϵ2pn/3

≤ δ,

where the first inequality is by standard Chernoff bounds and last inequality holds when n ≥
3
ϵ2p

log 2
δ . We can view the whole process as a function that randomly goes up by 1 or stays the

4

same (with probability p and 1 − p, respectively). We wanted to know the probability that the
function value is close to its expectation at the time when we first cross a horizontal line, as in the
following figure. Now, we want to show that the function value is likely close to its expectation at
the time when we first cross particular vertical line.

New analysis: Fix a target T and let n be the expected time that we reach target T - i.e. T/p.
Consider values nlo := T

p(1+ϵ) and nhi :=
T

p(1−ϵ) . We show that if n < nlo, then it is unlikely that

we have reached the target X =
∑n

i=1Xi value and if n > nhi, we have probably exceeded this
target value. Thus, we are most likely to cross this target threshold at some time between nlo and
nhi and we are most likely to get a total of pn = T heads sometime in this range.

If we stop at time nlo or later, we approximate p̂ as at most T/nlo = Tp(1 + ϵ)/T = p(1 + ϵ). If we
stop at time nhi or earlier, we approximate p̂ at at least T/nhi = Tp(1− ϵ)/T = p(1− ϵ). Thus, if
we successfully reach this target T for the first time at some time between nlo and nhi coin tosses,
our estimated probability is within ϵ of the correct probability.

Now we must select the target T such that we have a high probability of this target first be-
ing reached between nlo and nhi tosses. In particular, we will set P[

∑nhi
i=1Xi ≤ T] ≤ δ/2 and

P[
∑nlo

i=1Xi ≥ T] ≤ δ/2, which by the union bound implies that with probability at least δ we
reach T heads after time nlo and before nhi. Note that µ := E[

∑nhi
i=1Xi] = pnhi = T/(1 − ϵ), so

T = (1− ϵ)µ

P[
nhi∑
i=1

Xi ≤ T] = P[
nhi∑
i=1

Xi ≤ (1− ϵ)µ]

≤ e−ϵ2µ/3

= e−ϵ2T/(3(1−ϵ)).

Setting this to be at most δ/2 and solving for T , we get that this holds for T ≥ 3(1−ϵ)
ϵ2
· ln 2

δ . Since
ϵ > 0, it is sufficient to pick T ≥ 3

ϵ2
· ln 2

δ .

Similarly, we get µ := E[
∑nlo

i=1Xi] = pnhi = T/(1 + ϵ), so T = (1 + ϵ)µ and since ϵ < 1 (or else the
problem is trivial), we get

5

P[
nlo∑
i=1

Xi ≥ T] = P[
nlo∑
i=1

Xi ≥ (1 + ϵ)µ]

≤ e−ϵ2µ/2

= e−ϵ2T/(2(1+ϵ)).

This is at most δ/2 if T ≥ 2(1+ϵ)
ϵ2
· ln 2

δ . It is sufficient to pick T ≥ 4
ϵ2
· ln 2

δ by our bound on ϵ.

Thus, if we pick T ≥ 4
ϵ2
· ln 2

δ , we get that with probability at least 1 − δ, we reach the target

threshold T at some point between T
p(1+ϵ) and T

p(1−ϵ) , and thus our estimate p̂ ∈ [(1− ϵ)p, (1+ ϵ)p],
as desired

6

