
CS 388R: Randomized Algorithms, Fall 2023 8-30-23

Lecture 4: Game tree evaluation and randomized complexity theory

Prof. Eric Price Scribe: Daniel Kuddes, Kristin Sheridan

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture, we showed how to quickly determine if a player in a two player game has the ability
to force a win. In particular, consider a game in which player 1 can make one of two choices, then
Player 2 makes one of two choices, and so on until a particular number of rounds has passed. We
will show how to decide with high probability whether there is a strategy for Player 1 such that no
matter the moves made by Player 2, Player 1 will win.

Additionally, we briefly discussed how problems with randomized algorithms are characterized in
complexity theory, including discussing the classes ZPP, RP, coRP, PP, and BPP, and their relative
relationships.

2 Game tree evaluation

Consider a two-player game such that in each round, a player makes one of two choices (alternating
which player makes the choice). After k rounds, the game terminates and one of the two players is
declared a winner (no ties). We say that player 1 can “force a win” if there is a strategy for player
1 such that no matter the decisions made by player 2, player 1 wins the game. To analyze this
possibility, consider the following tree construction:

• The root of the tree is labeled with the starting state of the game

• If node is not labeled with an end state of the game, it gets two children, each labeled with a
state that is reachable by the decision of the player whose turn it is. (The player whose turn
it is may form part of the game state.)

• If a node is labeled with an end state of the game, it is a leaf and is colored green (1) if Player
1 wins in that end state and red (0) if Player 2 wins in that end state

• If both children of a node have been assigned a color, the color of this node is assigned to be
the NAND of the children’s colors (where green is 1 and red is 0)

Note that the color of a node labeled with a particular state is green if the player whose turn it is
in that state can force a win from that point. This clearly holds at the bottom (leaf) level. If the
player in the next turn can force a win, no matter which choice the player at this level makes at
this moment (i.e. both children are green), then obviously the player at this level cannot force a
win (i.e. it should be red). Otherwise, if there is a child that is colored red, that child must have

1

two children that are colored green (or else be an end state that is colored red). In the latter case,
the player at this level is able to force a win by making the choice to enter the game state where
the other player loses. In the earlier case, no matter the choice the player makes at the next round,
this player can force a win on the previous round (by induction as we go up the tree).

N leaves

k layers

Consider methods of evaluating the marking (red/green or 0/1) at the root when there are N leaves
and k + 1 layers, depending on the model of computation used.

2.1 Deterministic

The straightforward deterministic algorithm for evaluating the marking at the root of the tree
evaluates the root at every node in the tree.

Algorithm 1 Deterministic algorithm for deciding the marking of a given node x

Input: Node x
Output: The marking of x

if x is a leaf then
Return 1 if the player whose turn it is wins the end state and 0 otherwise

if Algorithm 1(x.left)=0 then
Return 1

else if Algorithm 1(x.right)=0 then
Return 1

else
Return 0

This algorithm is clearly correct since it is exactly computing the NAND of the two children of x,
so we need only analyze the runtime. This algorithm additionally runs in O(N) time by standard
implementations, and it can be shown that there exist implementations on which it takes Ω(N)
time. In fact, it can be shown that any deterministic algorithm for game tree evaluation takes
Ω(N) time.

2

2.2 Non-deterministic

Now consider non-deterministic methods for evaluating the marking at the root of the tree. Recall
that non-deterministic algorithms take in an input and a polynomial sized advice string. If the
correct answer is 1, there exists a choice of advice string that causes acceptance. If the correct
answer is 0, there does not exist an advice string that causes acceptance.

Algorithm 2 Non-deterministic (or randomized) algorithm for deciding the marking of a given
node x
Input: A node x, advice string (or random string) y of the same length as x
Output: The marking of x with advice string y

if x is a leaf then
Return 1 if the player whose turn it is wins the end state and 0 otherwise

if y[0] = 0 then
first ← x.left, second ← x.right

else if y[0] = 1 then
first ← x.right, second ← x.left

if Algorithm 2(first, y[1 :])=0 then
Return 1

else if Algorithm 2(second, y[1 :])=0 then
Return 1

else
Return 0

Note that this algorithm is again correct because it exactly computes the NAND of the two children.
The advice string does not change our answer, only the order we examine the children in.

To consider the runtime of the algorithm, we define the following values:

W (i) := time to evaluate the marking of a node i levels above the root,

when given a correct advice string and the correct value at this node is green

L(i) := time to evaluate the marking of a node i levels above the root,

when given a correct advice string and the correct value at this node is red

We would like to solve this recursion. Note that if a node is green then at least one child is red.
The advice string can tell us which of those nodes to check, and we get W (i) ≤ L(i− 1). However,
if a node is red we must check that both children are green, which requires 2W (i− 1) work. Thus,
we get W (i) ≤ L(i − 1) ≤ 2W (i − 2). Rolling out this recursion, we get W (i) ≤ 2i/2. (Note that
2i/2 ≤ 2 · 2(i−2)/2 = 2i/2.)

Thus, overall work required to evaluate the root is 2k/2. Since it’s a complete binary tree of k levels,
N = 2k and this means overall time is O(

√
N), a factor of

√
N faster than the deterministic time

algorithm took on such inputs.

3

2.3 Randomized

Non-deterministic algorithms aren’t something we can generally evaluate easily, since it requires
extra knowledge of the advice string. Thus, we will consider a modification of Algorithm 2 where y
is chosen randomly, rather than being an advice string specific to the input x. Note that previous
correctness analyses apply here, so we need only analyze the expected runtime.

Now let W (i) be the expected time to evaluate that a winning node at level i above the root is
winning, where the randomness is over the choice of string y. Likewise, let L(i) be the expected
time to evaluate that a winning node at level i above the root is winning. Note that we still have
L(i) = 2W (i−1), as a losing evaluation can only be obtained by checking that both child branches
are winning.

This leaves us with bounding W (i). If both children are red, then the random string doesn’t matter
andW (i) costs only L(i−1). If one child is red and one child is green, with probability 1/2, we check
the red branch first and obtain cost L(i− 1). With probability 1/2, we check the green branch first
and obtain cost W (i−1)+L(i−1). Thus, total expected cost is 1

2L(i−1)+
1
2(L(i−1)+W (i−1)) =

L(i− 1) + 1
2W (i− 1). Since costs are non-negative, this is no less than L(i− 1) and the worst case

instance has one green and one red child, so we need only analyze that case.

Thus, overall we have W (i) ≤ L(i− 1) + 1
2W (i− 1) ≤ 2W (i− 2) + 1

2W (i− 1). We would now like
to solve this recursion, and we can do so using matrices. Consider the following equation:

[
1
2 2
1 0

] [
W (i− 1)
W (i− 2)

]
=

[
W (i)

W (i− 1)

]
Note that this equation requires W (i) = 2W (i− 2) + 1

2W (i− 1) and W (i− 1) = W (i− 1), both of
which must be true according to our analysis. Unrolling this equation to the base case, we get the
following equation.

[
1
2 2
1 0

]k−1 [
W (1)
W (0)

]
=

[
W (k)

W (k − 1)

]
The base cases are W (0) = 1 and L(0) = 1. W (1) is 1

2 · L(0) +
1
2(L(0) +W (0)) = 1.5. Thus, our

overall equation is

Ay =

[
1
2 2
1 0

]k−1 [3
2
1

]
=

[
W (k)

W (k − 1)

]
.

Recall that we can write the first matrix, which we denote A, as (λ1v1v
⊺
1 + λ2v2v

⊺
2), where λi are

the eigenvalues of A and vi are the corresponding orthonormal eigenvectors of A. Since v1, v2 span
R2, we can write y as y1v1 + y2v2 for some y1, y2. Then we have

(λ1v1v
⊺
1 + λ2v2v

⊺
2)

k(y1v1 + y2v2) = (λk
1v1v

⊺
1 + λ2v2v

⊺
2)(y1v1 + y2v2)

= y1λ
k
1v1 + y2λ

k
2v2,

4

where we have used the fact that orthogonality of v1, v2 implies v1v
⊺
2 = v2v

⊺
1 = 0. This implies that

the overall cost W (i) is a constant times λk
1 plus a constant times λk

2. Thus, we need only find the
eigenvalues of A and take the larger one to get an asymptotic bound. Recall that the eigenvalues
of A are the values for which det(A− λI) = 0. For this choice of A, these are the values for which

−1
2λ + λ2 − 2 = 0, which is when λ = 1±

√
32

4 . The larger is the positive value, so we have overall

time O(
(
1±

√
32

4

)k
) = O(

(
1±

√
32

4

)logN
) ≈ O(20.753k) = O(N0.753), which is somewhere between the

runtime obtained by the non-deterministic algorithm and the runtime obtained by the deterministic
algorithm.

3 Complexity of randomized algorithms

Recall that in complexity theory, we consider languages, or subsets of the binary strings. First, we
review standard non-randomized complexity theory classes.

• A language L is in the class P (polynomial time) if there exists a deterministic polynomial
time algorithm A such that for any string x, A(x) = 1 if and only if x ∈ L.

• A language L is in the class NP (non-deterministic polynomial time) if there exists a non-
deterministic polynomial time algorithm A(·, ·) such that

– for any string x ∈ L there exists polynomial-sized string y such that A(x, y) accepts
– for any x /∈ L, A(x, y) = 0 for all y.

We call y the advice string and A should run in time polynomial in |x|, |y|.

We will expand our set of classes to include problems with polynomial time randomized algorithms.
Here U is the uniform distribution over all binary strings of the relevant length.

• ZPP: (Zero error polynomial expected time) L ∈ ZPP if there exists an expected polyno-
mial time algorithm A(·, ·) such that for all binary strings y that are of size p(|x|) for some
polynomial p, A(x, y) is 1 if x ∈ L and 0 otherwise.

– If x ∈ L, Py∼U [A(x, y) = 1] = 1

– If x /∈ L, Py∼U [A(x, y) = 1] = 0

Additionally, expy∼U [time(A(x, y))] is polynomial in |x|, where time(A(x, y)) is the amount
of time that A(x, y) takes to run.

• RP (randomized polynomial time/one-sided error): L ∈ RP if there exists a polynomial time
algorithm A(·, ·) such that

– If x ∈ L, Py∼U [A(x, y) = 1] ≥ 1/2

– If x /∈ L, Py∼U [A(x, y) = 1] = 0

Note that any polynomial error in the case that x ∈ L can be increased to error at most 1/2
using only a polynomial number of repetitions.

5

class fraction of advice strings
that accept for x ∈ L

fraction of advice strings
that accept for x /∈ L

runtime

ZPP 1 1 expected polynomial
RP ≥ 1/2 0 polynomial
coRP 1 ≤ 1/2 polynomial
BPP ≥ 2/3 ≤ 1/3 polynomial
PP > 1/2 ≤ 1/2 polynomial

NP at least 1 string 0 polynomial
coNP 0 at least one string polynomial

Table 1: Overview of complexity classes discussed in lecture

• coRP (complement of RP): L ∈ coRP if there exists a polynomial time algorithm A(·, ·) such
that

– If x ∈ L, Py∼U [A(x, y) = 1] = 0

– If x /∈ L, Py∼U [A(x, y) = 1] ≤ 1/2

Note that any polynomial error in the case that x ∈ L can be increased to error at most
1/2 using only a polynomial number of repetitions. Additionally, coRP contains exactly the
complements of all languages in RP.

• BPP (bounded probabilistic time): L ∈ BPP if there exists a polynomial time algorithm
A(·, ·) such that

– If x ∈ L, Py∼U [A(x, y) = 1] ≥ 2/3

– If x /∈ L, Py∼U [A(x, y) = 1] ≤ 1/3

Note that any polynomial error can be decreased to error at most 1/3 using a polynomial
number of repetitions and taking the majority answer. This class is the most commonly used
in complexity theory.

• PP (probabilistic polynomial time): L ∈ PP if there exists a polynomial time algorithm A(·, ·)
such that

– If x ∈ L, Py∼U [A(x, y) = 1] > 1/2

– If x /∈ L, Py∼U [A(x, y) = 1] ≤ 1/2

This class is actually quite overpowered and thus not frequently used in complexity theory.
The Hamiltonian cycle is in fact contained in this class. (Imagine picking a random permu-
tation of vertices and checking if you have a Hamiltonian cycle, and then flipping a coin and
outputting the result if it is not. There is a slightly higher than 1/2 probability of outputting
1 if there is a Hamiltonian cycle (at least 1/2 + 1/n!) and exactly 1/2 probability if there is
not one.)

To summarize these classes, see the following chart.

6

3.1 Containment of classes

Note that the we know the following holds:

P ⊆ ZPP = RP ∩ coRP ⊆ RP ⊆ BPP.

Note that we cannot show that the containment is strict for any of the above, and in fact it is often
hypothesized (but not known) that P = BPP . However, we do not even know if NP contains BPP
or vice versa.

Here are a few arguments for the above containments:

• P ⊆ ZPP , as we can always ignore our random string and run a polynomial time algorithm
if we have one

• ZPP = RP ∩ coRP .

– ZPP ⊆ RP ∩ coRP : Take a ZPP algorithm and terminate after 2 times the expected
time. Output the given answer if it is done. If it has not terminated, output 1 to create
a coRP algorithm and 0 to create an RP algorithm.

– RP ∩ coRP ⊆ ZPP : Run the coRP algorithm and the RP algorithm for the given
problem. In a constant number of expected runs, either the RP algorithm will output
1, which implies x ∈ L or the coRP algorithm will output 0, which implies x /∈ L.

– RP ⊆ BPP , as any RP algorithm is automatically a BPP algorithm as well if you
just boost the probability of correct answers to 2/3, which can be done by running the
algorithm a constant number of times.

Finally, recall that P/poly is the class of polynomial time “algorithms with advice” (or non-uniform
polynomial computation). In particular, it is the class of languages that have a polynomial time
algorithm A(·, ·) such that for any n ∈ N, there exists yn such that for all x ∈ {0, 1}n, A(x, yn) is 1
if and only if x ∈ L. (Additionally, yn must have size polynomial in n.) Note that the relationship
between P/poly and NP is also unknown.

Theorem 1 (Adelman’s Theorem). BPP ⊆ P/poly

Proof. Consider a language L ∈ BPP. We have an algorithm A(·, ·) such that for any x, A(x, y)
is correct for at least 1 − δ of the strings y ∈ {0, 1}p(n) for some polynomial p(n) where n = |x|.
The probability that A gives the wrong answer on x for a randomly chosen y is at most δ, so by
the union bound the probability that a given choice of y gives the wrong answer on some x is at
most δ · 2n, as there are 2n inputs of length n. If we set δ < 1/2n, this probability is smaller than
1, so there exists some string that does not give the wrong answer on any input. (Note that the
probability of the BPP algorithm succeeding can be boosted to 1− δ by running it repeatedly and
taking the majority answer/using Chernoff bounds.)

7

References

[A78] Leonard Adleman. Two Theorems on Random Polynomial Time. Proceedings of the Nine-
teenth Annual IEEE Symposium on Foundations of Computer Science, pp. 75-83, 1978.

[BG81] Charles H. Bennet, John Gill. Relative to a random oracle A, PA ̸= NPA ̸= coNPA with
probability 1. J. Comput. Syst. Sci., 10(1):96–113, 1981.

[M95] Rajeev Motwani, Prabhakar Raghavan. “Game-theoretic Techniques”. Randomized Alo-
gorithms. Cambrige University Press, pp. 28-30, 1995.

8

