CS 388R: Randomized Algorithms, Fall 2023
Lecture 5: Treaps, Coupon Collector, Balls and Bins
Prof. Eric Price
Scribe: Gary Wang, Pranav Venkatesh
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In last lecture we covered Game Tree Evaluation.

In this lecture, we are going to explore 3 interesting problems:

- Treaps
- Balls and Bins
- Coupon Collector Problem

2 Treaps

Problem Definition: We must construct a randomized data structure with the properties of a binary search tree and heap.

Construction: First, we assign a random weight to each element. In a recursive manner, we pick the smallest weight as the root and propagate nodes to the left or right subtree based on their random weight.

Operations: Each insert and remove operation on the treap must preserve the weighted structure. The treap supports dynamic operations, meaning that the state is a randomly constructed BST at all times.

Does this remind you of anything else? Quicksort! We similarly pick a random element and split into left and right partitions.

We know that the runtime of quicksort is $\Sigma_{x \in T} \operatorname{depth}(x)$, meaning an average time complexity of $O(n \log n)$.

Maximum Depth Analysis: We must show that the maximum depth is $O(\log n)$ with high probability \Longrightarrow Quick sort is $O(n \log n)$. This analysis will be rather simple and not so tight.

We will be able to show that the depth, with high probability, is $1-\frac{1}{n^{c}}$, where c is a constant!

Let us define $\mathrm{d}(\mathrm{x})$ as the depth of some element x and l as the "layer".
$\operatorname{Pr}[\max d(x) \geq l] \leq n-\max _{x \in X} \operatorname{Pr}[d(x) \geq l]$

It suffices to show that depth of x for all x is $O(\log n)$. Let x be random element. We first start out with $k_{1}=n$ in x's subtree at layer 1. After picking an element: k_{i} elements in x's subtree at layer i. Let $k_{i}=0$ if x is at layer before $i . d(x)$ is max i such that $k_{i} \geq 1$. We know, therefore, that:
$\operatorname{Pr}[d(x) \geq l]=\operatorname{Pr}\left[k_{l} \geq 1\right]$ (at layer l there is at least 1 element)

Can we show that k_{l} is large with small probability?
$k_{1}=n$
$\operatorname{Pr}\left[k_{2}<\frac{3}{4} k_{1}\right] \geq \frac{1}{2}$, regardless of x

If partitioned element is between the first and third quartile elements it always works, and the probability of having that is $\frac{1}{2}$.

For all $i, \operatorname{Pr}\left[k_{i} \leq \frac{3}{4} k_{i-1}\right] \geq \frac{1}{2}$, regardless of choices made in ALL previous rounds.

Define z_{i} to be 1 if $k_{i} \leq \frac{3}{4} k_{i}$ for all i and 0 otherwise.
$\operatorname{Pr}\left[z_{i}\right] \geq \frac{1}{2}$ (same conditioned on all previous z)
$\operatorname{Pr}\left[k_{l} \geq 1\right] \geq \operatorname{Pr}\left[\Sigma_{i=1}^{l} z_{i} \leq \log _{\frac{4}{3}} n\right]$

Chernoff Bound: We may now attempt to use a Chernoff Bound. We know that the expected sum is at least $\frac{l}{2}$.
$\operatorname{Pr}\left[\Sigma_{i=1}^{l} z_{i} \leq E-\left(\frac{l}{2}-\log _{\frac{4}{3}} n\right)\right] \leq \exp \left(-\frac{2\left(\frac{l}{2}-\log _{\frac{4}{3}} n\right)^{2}}{l}\right) \Longrightarrow$ If l is big (greater than $8 c \log n$, this value becomes $e^{-\frac{l}{8}}$ and probability of failure is n^{-c}).

We may conclude that the depth, therefore, is order of $\log n$.

Can we really conclude this though? We have a "small" issue. We can only apply Chernoff Bound on events that are independent. However, z events are not independent \rightarrow how do we solve this?

This statement is independent: $\operatorname{Pr}\left[z_{i}\right] \geq \frac{1}{2}$ (same conditioned on all previous z); The one half is guaranteed no matter what happens prior.

Possible Solutions:

1. Find a statement of Chernoff that handles it! (Consult literature)
2. Use Azuma's Inequality (involves martingales): Left as exercise to reader (go on wikipedia)
3. Use Stochastic Domination

Ex: Stochastic Domination

Given all z variables, $\operatorname{Pr}\left[z_{i} \mid\right.$ previous $\left.z^{\prime} s\right] \geq \frac{1}{2}$

There exists variables y coupled to z, joint distribution, such that:
$y_{i}<z_{i}$ and $\operatorname{Pr}\left[y_{i} \mid\right.$ previous $\left.y^{\prime} s\right]=\frac{1}{2}$

The y variables are independent and therefore Chernoff bound applies to y_{i}.
Additionally, the sum probability of z is less than sum probability of y, and therefore the original conclusion holds.

3 Coupon Collector

Problem Statement: There are n distinct Pokemon cards. There are cereal boxes that come with a random Pokemon card. How many cereal boxes does one need to buy to "catch them all"?
$T_{i}=$ time it takes to get the $i^{t h}$ new item

Expected Value: We know that $E\left[T_{1}\right]=1, E\left[T_{n}\right]=n$. At the $i^{\text {th }}$ item there are $(n+1-i)$ good items, meaning:
$E\left[T_{i}\right]=\frac{n}{n+1-i}$
$E\left[\Sigma T_{i}\right]=n\left(\frac{1}{n}+\frac{1}{n-1}+\frac{1}{n-2} \cdots+1\right)=n \cdot H_{n}=\Theta(n \log n)$

We will revisit this problem later!

4 Balls and Bins

Problem Statement: We randomly put n balls into n bins: what happens? What are some properties about how the balls are distributed across the bins?

Some questions to address:

1. What is the max load of a bin with high probability?

2 . What is the average load over balls?

Question 1: Max Load

Max load is at most n (obviously)

What about with high probability?

Union bound max load: $\operatorname{Pr}\left[\max x_{i} \geq l\right] \leq n \cdot \mathbb{P}\left[x_{i} \geq l\right]$

Additive Chernoff bound:

$z_{i}=1$ if ball i lands in bin 1.
$x_{1}=\Sigma z$
$\operatorname{Pr}\left[x_{1} \geq 1+t\right] \leq e^{-\frac{2 t^{2}}{n}}, \mathrm{t}=\sqrt{n \log n}$ with high probability

Multiplicative Chernoff bound:

$\operatorname{Pr}\left[x_{1} \geq(1+t) l\right] \leq e^{-\frac{t^{2}}{2+t}}, e^{-\frac{t}{2}} \leq n^{-c}$ for $t=O(\log n)$

Bennett's inequality can give a better bound!

Direct calculation:

$\operatorname{Pr}\left[x_{1} \geq l\right] \leq\binom{ n}{l} \frac{1}{n^{l}}$

Bound binomial coeff: $\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}$
$\operatorname{Pr}\left[x_{1} \geq l\right] \leq\left(\frac{e n}{l}\right)^{l} \frac{1}{n^{l}}=\left(\frac{e}{l}\right)^{l}$
$\operatorname{Pr}\left[x_{i} \geq l\right] \leq n \cdot\left(\frac{e}{l}\right)^{l}$
$\left(\frac{e}{l}\right)^{l} \leq n^{-c}$
$l \log \left(\frac{l}{e}\right)=c \log n$
$l=\frac{\log n}{\log \log n}$

LHS $=\frac{A \log n}{\log \log n}\left(\log \log n-\log \log \log n+\log \frac{A}{e}\right)=\Theta(\log n)$... black magic
$\max x_{i}=O\left(\frac{\log n}{\log \log n}\right)$ with high probability.

We will explore problem 2 next lecture!

References

[AMS99] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci., 58(1):137-147, 1999.

