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1 Overview

In last lecture we covered Game Tree Evaluation.

In this lecture, we are going to explore 3 interesting problems:

• Treaps

• Balls and Bins

• Coupon Collector Problem

2 Treaps

Problem Definition: We must construct a randomized data structure with the properties of a
binary search tree and heap.

Construction: First, we assign a random weight to each element. In a recursive manner, we pick
the smallest weight as the root and propagate nodes to the left or right subtree based on their
random weight.

Operations: Each insert and remove operation on the treap must preserve the weighted structure.
The treap supports dynamic operations, meaning that the state is a randomly constructed BST at
all times.

Does this remind you of anything else? Quicksort! We similarly pick a random element and split
into left and right partitions.

We know that the runtime of quicksort is Σx∈Tdepth(x), meaning an average time complexity of
O(n log n).

Maximum Depth Analysis: We must show that the maximum depth is O(log n) with high
probability =⇒ Quick sort is O(n log n). This analysis will be rather simple and not so tight.

We will be able to show that the depth, with high probability, is 1− 1
nc , where c is a constant!
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Let us define d(x) as the depth of some element x and l as the “layer”.

Pr[max d(x) ≥ l] ≤ n−maxx∈X Pr[d(x) ≥ l]

It suffices to show that depth of x for all x is O(log n). Let x be random element. We first start
out with k1 = n in x’s subtree at layer 1. After picking an element: ki elements in x’s subtree at
layer i. Let ki = 0 if x is at layer before i. d(x) is max i such that ki ≥ 1. We know, therefore,
that:

Pr[d(x) ≥ l] = Pr[kl ≥ 1] (at layer l there is at least 1 element)

Can we show that kl is large with small probability?

k1 = n

Pr[k2 <
3
4k1] ≥

1
2 , regardless of x

If partitioned element is between the first and third quartile elements it always works, and the
probability of having that is 1

2 .

For all i, Pr[ki ≤ 3
4ki−1] ≥ 1

2 , regardless of choices made in ALL previous rounds.

Define zi to be 1 if ki ≤ 3
4ki for all i and 0 otherwise.

Pr[zi] ≥ 1
2 (same conditioned on all previous z)

Pr[kl ≥ 1] ≥ Pr[Σl
i=1zi ≤ log 4

3
n]

Chernoff Bound: We may now attempt to use a Chernoff Bound. We know that the expected
sum is at least l

2 .

Pr[Σl
i=1zi ≤ E − ( l2 − log 4

3
n)] ≤ exp(−

2( l
2
−log 4

3
n)2

l ) =⇒ If l is big (greater than 8c log n, this

value becomes e−
l
8 and probability of failure is n−c).

We may conclude that the depth, therefore, is order of log n.

Can we really conclude this though? We have a “small” issue. We can only apply Chernoff Bound
on events that are independent. However, z events are not independent → how do we solve this?
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This statement is independent: Pr[zi] ≥ 1
2 (same conditioned on all previous z); The one half is

guaranteed no matter what happens prior.

Possible Solutions:

1. Find a statement of Chernoff that handles it! (Consult literature)

2. Use Azuma’s Inequality (involves martingales): Left as exercise to reader (go on wikipedia)

3. Use Stochastic Domination

Ex: Stochastic Domination

Given all z variables, Pr[zi|previous z′s] ≥ 1
2

There exists variables y coupled to z, joint distribution, such that:
yi < zi and Pr[yi|previous y′s] = 1

2

The y variables are independent and therefore Chernoff bound applies to yi.

Additionally, the sum probability of z is less than sum probability of y, and therefore the original
conclusion holds.

3 Coupon Collector

Problem Statement: There are n distinct Pokemon cards. There are cereal boxes that come
with a random Pokemon card. How many cereal boxes does one need to buy to “catch them all”?

Ti = time it takes to get the ith new item

Expected Value: We know that E[T1] = 1, E[Tn] = n. At the ith item there are (n+1− i) good
items, meaning:

E[Ti] =
n

n+1−i

E[ΣTi] = n( 1n + 1
n−1 + 1

n−2 · · ·+ 1) = n ·Hn = Θ(n log n)

We will revisit this problem later!
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4 Balls and Bins

Problem Statement: We randomly put n balls into n bins: what happens? What are some
properties about how the balls are distributed across the bins?

Some questions to address:

1. What is the max load of a bin with high probability?
2. What is the average load over balls?

Question 1: Max Load

Max load is at most n (obviously)

What about with high probability?

Union bound max load: Pr[maxxi ≥ l] ≤ n · P[xi ≥ l]

Additive Chernoff bound:

zi = 1 if ball i lands in bin 1.

x1 = Σz

Pr[x1 ≥ 1 + t] ≤ e−
2t2

n , t =
√
n log n with high probability

Multiplicative Chernoff bound:

Pr[x1 ≥ (1 + t)l] ≤ e−
t2

2+t , e−
t
2 ≤ n−c for t = O(log n)

Bennett’s inequality can give a better bound!

Direct calculation:

Pr[x1 ≥ l] ≤
(
n
l

)
1
nl

Bound binomial coeff: (nk )
k ≤

(
n
k

)
≤ ( enk )k

Pr[x1 ≥ l] ≤ ( enl )
l 1
nl = ( el )

l
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Pr[xi ≥ l] ≤ n · ( el )
l

( el )
l ≤ n−c

l log( le) = c log n

l = logn
log logn

LHS = A logn
log logn(log log n− log log log n+ log A

e ) = Θ(logn) ... black magic

maxxi = O( logn
log logn) with high probability.

We will explore problem 2 next lecture!
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