
CS 388R: Randomized Algorithms, Fall 2023 September 11th, 2023

Lecture 6: Power of Two Choices

Prof. Eric Price Scribe: Alexia Atsidakou, Alekhya Kuchimanchi

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed treaps, coupon collector, and balls and bins. We found the maximum
load and the average load over balls for the balls and bins problem. We found that if we randomly
throw n balls into n bins the maximum load is with high probability O( logn

log logn).

In this lecture we discuss the Power of Two Choices. In the Balls and Bins problem we were only
given one choice of a random bin to throw a ball into. If we are given two random bins we expect
that the maximum load should be lowered, so in this lecture we aim to answer by how much the
maximum load is lowered. Given that each successive ball goes in the less loaded bin out of two
random bins we will show that the expected maximum load is O(log log n) with probability at least
1− n−c.

2 Problem Statement

We have n balls that are thrown into n bins in the following manner:

• For each successive ball we pick two bins uniformly at random.

• The ball is placed into the bin that contains the smaller number of balls (the lighter bin).

• If both bins have the same number of balls, then we break the tie arbitrarily (put the ball in
either of the bins).

Maximum Load: We want to find the maximum number of balls that is placed in a bin. We
define Xj = the load of bin j at the end of the process. Then, the goal is to find E[maxjXj ]. We
further define some notation:

• vi(t) := the number of bins at height ≥ i after inserting t balls, iϵ[n].

• ht := height of the tth ball inserted, tϵ[n]. Notice that h1 = 1 always.

We introduce some quantities βi, representing an upper bound for the fraction of bins with a height
of at least i. The quantities βi satisfy

• β4 = 1/4
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• βi+1 = 2β2
i , ∀i ≥ 4

Lemma 1. We have that vi(t) ≤ βin w.h.p ∀t, and for i ≥ 4 and such that β2
i n ≥ 3c log n.

We first assume that Lemma 1 holds and discuss how we can obtain a bound on the maximum
load. At a given point where vi(t) ≤ βin, i.e. there are at most βin bins at height i, the probability
that a ball is placed at height at least i+ 1 is bounded as follows

P (ball is placed at height ≥ i+ 1) =

(
βin

n

)2

= β2
i ,

because we need to sample twice from bins with height at least i. Then, for the expected number
of balls at height at least i+ 1 we have

E (# balls at height ≥ i+ 1) = β2
i n(considering both bins).

This implies that
E (# bins at height ≥ i+ 1) ≤ β2

i n.

Then, with high probability, the number of bins at height at least i+ 1 is bounded by 2β2
i n.

How small is βi: As the layers increase, we can see that βi decays faster. In general, by the
conditions for βi we have that βi = 2−(2i−4+1) ≈ 2−2i . Then, for i = O(log log n) we have βi <

1
n .

This indicates that the maximum load of a bin is O(log log n), which is significantly better than
the bound of O( logn

log logn) that was obtained for the Balls and Bins problem. Next, we complete the
gaps in the proof sketch.

3 Formal Proof

3.1 Proof of Lemma 1

We prove the claim via induction on the height i.

Basis. The base case is when i = 4. In that case we trivially have v4(n) ≤ 1/4. This is because
we have a total of n balls, thus we can have at most n/4 bins containing ≥ 4 balls.

Inductive Step. We define the event Qi = {vi(n) ≤ βin}. Suppose that Qi holds with high
probability. We need to show that Qi+1 holds with high probability. The challenge here is that the
inductive hypothesis only holds with high probability, i.e. P (Qi) ≥ 1− n−c for some c.

The probability of placing a ball at height at least i + 1 at any time t given the state at t − 1
is

P (ht ≥ i+ 1 | State at time t− 1) =

(
vi(t− 1)

n

)2

,
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since in order to place a ball at height at least i+1 we need to sample (both times) from bins with
height at least i, which are vi(t− 1) in number.

We fix some height i. We define Yt = 1{ht ≥ i+ 1 ∩ vi(t− 1) ≤ βin}. Then we have that

P (Yt = 1) = P (ht ≥ i+ 1 ∩ vi(t− 1) ≤ βin) ≤ P (ht ≥ i+ 1 | vi(t− 1) ≤ βin) =

(
βin

n

)2

= β2
i .

regardless of the state at time t− 1. Moreover, we further have E
(∑

t∈[n] Yt

)
≤ nβ2

i .

The random variables Yt are not independent. However, we can have Yt = 1 only when event
vi(t − 1) ≤ βin holds. Moreover, conditioned on the latter, the probability that Yt is 1 is always
bounded by β2

i . Therefore, although the variables Yt are not independent, we can use stochastic
dominance in order to apply a multiplicative Chernoff bound, i.e. there exist some variables Zt

such that P (Zt = 1 | Z1, ..., Zt−1) = β2
i ,∀t and

∑
t Yt ≤

∑
t Zt. Then we have that

P

∑
t∈[n]

Yt ≥ (1 + ϵ)β2
i n

 ≤ P

∑
t∈[n]

Zt ≥ (1 + ϵ)β2
i n

 ≤ e
− ϵ2

2+ϵ2
β2
i n.

Using ϵ = 1 we obtain P
(∑

t∈[n] Yt ≥ 2β2
i n

)
≤ e−

1
3
β2
i n.

When Qi holds, i.e. when vi(n) ≤ βin, we have vi(t) ≤ βin, ∀t ∈ [n]. In that case, for any t, we
have Yt = 1 if ht ≥ i+ 1. Therefore we can bound∑

t∈[n]

Yt = #balls at height at least i+ 1

≥ #bins with height at least i+ 1

= vi+1(n).

Then, we have that

P
(
Q̄i+1

)
= P

(
Q̄i+1 ∩Qi

)
+ P

(
Q̄i+1 ∩ Q̄i

)
≤ P

(
vi+1(n) > 2β2

i n ∩Qi

)
+ P

(
Q̄i

)
≤ P

∑
t∈[n]

Yt > 2β2
i n ∩Qi

+ P
(
Q̄i

)

≤ P

∑
t∈[n]

Yt > 2β2
i n

+ P
(
Q̄i

)
.

Both terms in the above bound are small: by the inductive hypothesis P
(
Q̄i

)
≤ n−c. Moreover,

we showed that P
(∑

t∈[n] Yt > 2β2
i n

)
≤ e−

1
3
β2
i n, which is small for a large enough βi. For instance,

if β2
i n ≥ 3c log n, we have e−

1
3
β2
i n ≤ n−c. Therefore, we showed that the Qi+1 holds with high

probability.

By induction, we conclude that for all i ≥ 4 and s.t. β2
i n ≥ 3c log n we have that vi(n) ≤ βin with

high probability.
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Note: We would like to find for which heights i a condition such as β2
i n ≥ 3c log n is satisfied. Using

the above observation that βi ≈ 2−2i we obtain that the condition is satisfied for i = O(log log n).

Let h∗ be the height satisfying the above condition. Next, we will show that the probability of
having a larger height that h∗ is small.

3.2 Bound For a Larger height

Notice that for h∗ = O(log log n) is a height such that vh∗(n) ≤ O(log n) with high probability. We
define the event Yt = {ball is placed at height at least h∗+1 ∩ vh∗(n) ≤ O(log n)}. Then, we have
that

P (max height ≥ h∗ + c) ≤ P

∑
t∈[n]

Yt ≥ c

+ P (vh∗(n) > O(log n)) .

We know that by definition of h∗ we have P (vh∗(n) > O(log n)) ≤ n−c. The other term can be
bounded as follows: Having

∑
t∈[n] Yt ≥ c means that c times out of n a ball was placed on a bin

with height ≥ h∗ + 1. Thus,

P

∑
t∈[n]

Yt ≥ c

 ≤
(
n

c

)(
O(log n)

n

)2c

≤
(en

c

)c
(
O(log n)

n

)2c

≤
(
eO(log2 n)

nc

)c

≤ n−c/2.

Therefore, we conclude that for all constants c ≥ 1, there exists c′ such that the maximum load is
bounded by c′ log logn under two choices, with probability 1− n−c.

4


