
CS 388R: Randomized Algorithms, Fall 2023 2023-09-13

Lecture 7: Cuckoo Hashing

Prof. Eric Price Scribe: Marlan McInnes-Taylor

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

We have thus far examined two types of hashing: Standard and Two-Choice. Two-Choice Hashing
offers a better upper bound compared to Standard Hashing in the high probability lookup case.
Today, we will examine Cuckoo Hashing [PR01], which offers an even better bound in the high
probability lookup case.

1.1 Bounds

Standard Two-Choice Cuckoo

Keys n n n
Space O(n) O(n) O(n)

Expected lookup O(1) O(1) O(1)

Worst case lookup O
(

log(n)
loglog(n)

)
O(loglog(n)) O(1)

Expected insertion O(1) O(1) O(1)
Worst case insertion O(1) O(1) O(log(n))

2 Problem Setting

In Two-Choice hashing we utilized the balls and bins analogy. We shall reframe our conceptualiza-
tion in terms of a graph. Think of T-C-H ball insertion as edge insertion into a random graph.

(TCH) hash m balls into n bins → (Cuckoo) insert m random edges in a directed n-vertex graph

3 Algorithm

Cuckoo hashing utilizes two hash functions, as well as an eviction mechanism in its scheme. Each
location in the hash table can contain at most one item.

1



Let:

T be a table

x be an item to insert

h1(·), h2(·) be hash functions s.t. ∀x h1(x) ̸= h2(x)

3.1 Insertion

For each x :

1. Compute h1(x), h2(x)

2. Check if T [h1(x)], T [h2(x)] are occupied.

3. Insert x into the table such that:

• If both indices are unoccupied, randomly select one of the indices for insertion

• If only one index is unoccupied, insert at that index

• If both locations already contain an element, then randomly evict one element, call it
x′, from either location and insert x in its place.

4. If the insertion caused an eviction, reinsert x′

5. Continue until all elements are placed successfully

Occasionally, the algorithm cannot place every element into the table; in other words it is stuck
in an insertion/eviction loop. Graphically, this occurs when the vertices and edges form a barbell.
This triggers a table rebuild, where new hash functions are selected, and all elements are rehashed.

4 Analysis

Let:

G = (V,E) be a graph representing the Cuckoo hash table

m be the number of edges/items

n be the number of vertices/indices

The insertion procedure will be analyzed in a graphical context by first examining how often we
must rebuild our hash table, followed by how costly a rebuild is in terms of time.

Need to show:

• Pr[a cycle in G], which will bound the barbell and thus rebuild probability

• Good time to build table

2



4.1 Lookup

For any given lookup, we simply check two indices(vertices), so the worst case lookup cost is O(1).

4.2 Rebuild Occurrence

A rebuild is triggered whenever an item cannot be inserted into the table. As mentioned in Section
3, this occurs when the graph contains a barbell, which in this application is two cycles connected
by a single edge. Therefore, we will use cycle existence to bound our rebuild occurrence.

4.2.1 Length k cycle existence

Pr[a length k cycle exists] = (# length k cycles) · Pr[particular length k cycle exists]

=

[(
n
k

)
· k!

2k

]
·

(
m(
n
2

))k

≤
[(

n

k

)
(k − 1)!

]
·

(
m(
n
2

))k

≤ nk ·

(
m(
n
2

))k

=

(
2m

n− 1

)k

While this suffices to bound the probability of encountering a particular length k cycle, our barbell
bound must account for cycles of any length.

Note: Pr[given edge exists] = 1−
(
1− 1

(n2)

)m

≤ m

(n2)

4.2.2 Barbell existence

Pr[a barbell exists] ≤
n∑

k=2

Pr[length k cycle exists]

≤
n∑

k=2

(
2m

n− 1

)k

≤
(

2m

n− 1

)2

The final inequality is due to the k = 2 term dominating the summation. Therefore if we have
n = 15m vertices in our graph, the probability of rebuilding is at most 1

49 .

3



4.3 Build Time

Intuitively, the time to build the table should be bounded by the time spent inserting each item.

E[time to build table] ≤
m∑
i=1

E[time to place item i]

≤
m∑
i=1

E[size of component touched by item i]

Claim: For any fixed vertex v, E[size of component containing v ] = O(1).

To further the analysis, consider the Erdős-Renyi model G(n, p), where n denotes the number of
vertices in the graph, and p denotes the (independent) probability an edge is included in the graph.
Using this framework, we can characterize the size of a connected component in the graph using
the Galton-Watson branching process [WG75]. For any given vertex v there are at most n − 1
possible neighbors, each with probability p. For any vertex u connected to v, it can also have n− 1
possible neighbors, and so forth. This structure can be thought of as an infinite tree.

Let:

f(n, p) be the expected component size of a given vertex

Where:

f(n, p) ≤ 1 + (n− 1)p · f(n− 1, p)

= 1 + p(n− 1) + p2(n− 1)(n− 2) + p3(n− 1)(n− 2)(n− 3) + ...

≤ 1 + np+ (np)2 + (np)3 + ...

≤ 1

1− np

Recall: Pr[given edge exists] = 1−
(
1− 1

(n2)

)m

≤ m

(n2)

Utilizing the above probability, we have:

f(n, p) ∽
1

1− 2m
n

= O(1)

Therefore, for a table being built with m items, each with an expected insertion time of O(1), we
have a build time of O(m).

4



References

[PR01] Rasmus Pagh, Flemming Friche Rodler. Cuckoo Hashing. Algorithms — ESA
2001., Lecture Notes in Computer Science, vol 2161, Springer, Berlin, Heidelberg, 2001.
https://doi.org/10.1007/3-540-44676-1 10

[ER60] Paul Erdős, Alfréd Rényi. On the evolution of random graphs. Publications of the Mathe-
matical Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

[WG75] Henry William Watson, Francis Galton. On the probability of the extinction of families.
The Journal of the Anthropological Institute of Great Britain and Ireland, 4:138-144, 1875.

5


	Overview
	Bounds

	Problem Setting
	Algorithm
	Insertion

	Analysis
	Lookup
	Rebuild Occurrence
	Length k cycle existence
	Barbell existence

	Build Time


