CS 388R: Randomized Algorithms, Fall 2023

September 18th, 2023

Lecture 8: Bloom Filters

Prof. Eric Price

Scribe: Aaryan Prakash, Mark Wen

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Bloom Filters

A bloom filter is a randomized datastructure to represent a set. We want to be able to insert elements into a set and query if the element exists in the set. Using a hash table, we require O(1) time per operation and O(n) words of space. If our elements come from a set of size U, we need to store log U bits per element, so the space complexity is actually $O(n \log U)$.

For a deterministic algorithm, we cannot get a better bound. There are $\binom{U}{n}$ possible sets. We can bound the log of the number of sets by

$$\log \left(\frac{U}{n} \right)^n \le \log \binom{U}{n} \le \log \left(\frac{eU}{n} \right)^n,$$

which are both $\Theta(n \log U)$ if $u \gg n^2$. If we have less than that many bits, we have to get the wrong answer sometimes.

To build a randomized algorithm, we introduce some probability of failure. Specifically, if $x \in S$, then we always return 1. However, if $x \notin S$, we return 0 with probability $\geq 1 - \delta$. This allows us to build a data structure with space complexity $O(n \log \frac{1}{\delta})$.

Bloom filters are useful because we can first run queries on RAM, and then verify on disk if we get a 1. Another example is Chrome checking for malicious websites. A bloom filter of malicious websites is locally stored, and if we get a positive, a request was sent to Google servers to verify that it is a true positive.

1.1 Data Structure Description

We pick hash functions h_1, \ldots, h_k uniformly at random from the set of hash functions. To insert an element, we just set 1 to all of the k hash outputs. To query, we check if each of the k hash outputs are set and return 1 if every bit is set.

Because we want everything to fit on disk, we want to find a k that makes m small. Given n, m, k, we want to find the false positive rate and then optimize from there.

Let Y_j denote if the *j*th bit is set. For all locations j,

$$\mathbb{P}[Y_j = 0] = \mathbb{P}[\text{none of } h_\ell(x_i) = j]$$
$$= \mathbb{P}[h_1(x_1) \neq j]^{nk}$$
$$= \left(1 - \frac{1}{m}\right)^{nk}$$
$$= e^{-nk/m} + \widetilde{O}(nk/m^2)$$
$$\approx e^{-nk/m}.$$

Let $Y = \sum_{j=1}^{m} \mathbf{1}_{Y_j=1}$. The expected value of this is $m(1 - e^{-nk/m})$. If we could apply the Chernoff bound, we would get that $Y = \mathbb{E}[Y] \pm \sqrt{m + \log(1/\delta)}$, which tells us that $Y = (1 - e^{-nk/m}m + o(m))$. The issue is that the different Y_i s are not independent. If some Y_i is 1, then Y_j is less likely to be 1. Thus, we cannot use the Chernoff bound.

1.2 Negative Association

Definition 1. A set of random variables $X_1, \ldots, X_n \in \mathbb{R}$ is negatively associated (N.A.) if for all non-decreasing functions $f(X_I)$ and $g(X_{\overline{I}})$, where I is some index set, then

$$\mathbb{E}[f(X_I)g(X_{\overline{I}})] \le \mathbb{E}[f(X_I)]\mathbb{E}[g(X_{\overline{I}})].$$

If X_1, \ldots, X_n are N.A., then the sum satisfies the standard Chernoff bounds. To prove the Chernoff bound, we have $\mathbb{E}[e^{\lambda \sum X_i}] = \prod \mathbb{E}[e^{\lambda X_i}]$ for some $\lambda > 0$. This changes to an inequality when the variables are N.A.

Proposition 2. If $X_1, \ldots, X_n \in \{0, 1\}$ and the sum is always 1, then X is N.A.

Proof. WLOG assume f(0) = g(0) = 0. Therefore, $f(X_I)g(X_{\overline{I}}) = 0$ always since one of the sets will be all zeros.

Proposition 3. Monotonic functions of disjoint sets of N.A. variables are N.A. themselves.

Proposition 4. If X and Y are independent and separately N.A., then (X, Y) is jointly N.A.

Suppose we throw n balls into [m]. $Z_{ij} = 1$ if ball i went to bin j. We define $Y_j = \max_i Z_{ij}$. $Z_{1,j}$ is N.A., since it only equals 1 for one value of j. This is true for all i, so $\{Z_{ij}\}$ is N.A. all together. Since Y is computed by a monotonic function on disjoint subsets of N.A. random variables, Y is N.A. as well, and thus using the Chernoff bound was actually valid.

1.3 Performance Analysis

Let z = nk/m. Suppose $x \notin S$ We know that the probability the query returns 1 is $(1 - e^{-z})^k$. To minimize this probability, we want the minimum over all values of k. This is equivalent to minimizing $(1 - e^{-z})^{zm/n}$, which we can show is minimized at $z = \ln 2$. Therefore, we want to pick $k = \frac{m}{n} \ln 2$. Plugging this into the probability, we get a failure rate of $2^{-\frac{m}{n}\ln 2} \approx 0.618^{m/n}$. For example, if m = 8n and $k = 6 \approx 8 \ln 2$, then we get a failure probability of 2%. If m = 9.6n and k = 7, we get a failure probability of 1%. Increasing it up to m = 20n and k = 14, we get 7×10^{-5} error. Compared to hash tables, we can have much greater utilization. If we have 4n words and 64 bits per word, then we use 256n bits in total.

2 Counting Bloom Filter

To support deletion, Y_i needs to be the number of elements that hash to bucket *i*. Inserting increments the count, and deletion decrements the count. To query, we check if all the bins are at least 1. If we store ℓ bits per bin, we are fine as long as we never overflow.

For the same $k = \frac{m}{n} \ln 2$, the probability that we overflow is $\mathbb{P}[Y_j \ge t]$ for some t. There are $\binom{nk}{t}$ hash outputs, and each of them have a $\frac{1}{m^t}$ chance of going in that bucket. This is bounded by $\left(\frac{enk}{tm}\right)^t = \left(\frac{e\ln 2}{t}\right)^t$. For t = 16, this probability is at most 1.4×10^{-15} , and we multiply by m to union bound the probability of any failure happening. If $m < 10^{10}$, then the probability of overflow is still at most 1.4×10^{-5} with 4 bits per counter.

3 Problems with Bloom Filters

- 1. We need k fully-independent random hash functions.
- 2. This is not cache efficient if the table doesn't fit in the cache.
- 3. We assumed that queries are independent of randomness, but we could get many queries that always are false positives.
- 4. We tried to use for sending anonymous data by sending a bloom filter of the user's data along with some noise, but this still reveals information.