
[5371N Lecture 10

LMZ : Self- attention
,

Transformers

Announcements
-

- A 2 due

- A} out
,
due in 2 weeks

- Bias in embs response due

Recap_ Language models :

PIT / = Plwilw , .
. .Wi-d

i -- l

n -gran Lns
: Pfw)= Phil vi.n-ii-Y.it

-1=1

Store probabilities explicitly (model as
categorical distributions/
Estimation : count + normalize

Neural LMS :

predict with - - - wit

DANS ? FFNNS ?

Today
- RNNS and their shortcomings
- (self) - attention

RNNs- encode a sequence of vectors

sequentially by tracking a
"hidden

state
"

" summary
" of

T
,

Tz J
,

the
sea

-

- →☒→

Forfeit 9 PCwalwi.ws

⇒ ☐ ☐ = softmat
Wu W

} (UT ,)

Elmannetwork@RNNce1ld-dim.h
-

i - i"+→Ti
i

w-ihi-tanhlww-i-vhi.it
W : dxlwordembl matrix] parameters
✓ : did

Key properly : params don't depend
on sequence length
⇒ can scale to arbitrarily
long inputs

However
,
it's position - sensitive !

Training P(Wu Iw ,
wz Ws)

wir wir wir

d⇒# loss (NLL)9

back
prop

updates to W,v accumulate over

whole sequence
Hard to learn ! ⇒ Long short-term

memory
net

(LSTM)

Shortomiysofftvtte
"

forgetfulness
"

= hard to track

information over many steps

Ii = tan - + Vñi -c)
Ti = VII. , hi =Év(

i -Aww
,

j=l

LSTM : "gates
" to control what

parts of the vector change

0th) sequential dependence

RHP-
"

ii. E. Is
F- F-☐i
W

,

W
2 W

3

I
}

"

context -aware
" word embedding

for word Wz

I
,
blends Tz (context) w/ wz

(word 3)

RNN (see of vectors) ⇒ seq of vectors

aware of context

stack these layers

Ti t : T :

←÷
I , that I Can increase

depth
on r r
W

,
W
2 W

}

☒ ☒e
#~x
W

,
W z

W
}

=
Transformer : layer that contextualizes

words based on other words in

the sequence

(e ,

'

,ei,e 's / =Transformer (e , ,ez,ej

Running example :

suppose we have seqs of As

and Bs of length 4
if all its → next is A

if any B → next is B

AAAAA predict next char

ABHA B- using this sequence
BAA BB that came before

BAA%?;
B hard for Runs

to predict

Amentia = allows us to do

" random access
"

on the context

to retrieve info we need

"

souped up
" DAN , will

add order

information next time

ki Ci

keys : embedding of the sequence

query : vector representing what
we want to find

Assume key A-- [
'

o]e*B=[g) ↳
(word embeddings)

[ill :) to]
A A B A

query : what we want to find

find Bs ! *goal µ9=19] "

B
"

TTÉA
Attention will compute a distribution

over the tokens so far with

higher weight for things that
match q

steps ① Compute score for
each key based on query

Si = kitq
5 ! O o , o 9=10 I]

I :] 191%1
A A B A

② Softmax scores to get probs .

d- = sottmax (5)
[o o to] Assume e.=3

I ↳eÉ+I~£
[% 116 '

Ii %)

Inn
.

③ Compute the output

output -_ { ✗ ie ; weighted sum
of ei

= :c:] -1 :-C :] -12-[91+1,4]
=L :D

Compare to DAN :

E. I :] -14C:/ ← If :] -4C:) -1%:]

(E) weights the B more highly

Ideally want:

[8) if all As ✓

[9) if any B E) ✗

let q=[0 to]

Softmax [0 0 10 o]
b

o o lo probs .

Decouple keys + queries from

embeddings

Embedding matrix F- =¥¥[&§)
target e

(EFÉ) (woe) B

- d e-- [:]
WK=I WE 10 -I b

(keep [d) I:)) 9=1%1

Parameters wk and W" will
let us learn how to query

sef-atxnti.me
very

word is a key and query

simultaneously
do one attention computation per
word ⇒ contextualized embeddings
for each word

F- : same embs
, seq

ten ✗ d
[D="

K : same
, seq

ten xD

Q : seq ten ✗ d C rather than I ✗d)

Scores 5- QKT
9 a C

lenxlen Ienxd dxlen

Sij = q:(ith row of Q)
- Kj (jth row of K)

] all pairs of qs
4 [and Ks

4

for now : K=E
Q=E i s

w.ru#:jciiiiii--f;i.i*

