
[ 5371N Lecture 10

LMZ : Self- attention
,

Transformers

Announcements
-

- A 2 due

- A} out
,
due in 2 weeks

- Bias in embs response due

Recap_ Language models :

PIT / = Plwilw , .
. .Wi-d

i -- l

n -gran Lns
: Pfw )= Phil vi.n-ii-Y.it

-1=1

Store probabilities explicitly (model as
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Estimation : count + normalize
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Key properly : params don't depend
on sequence length
⇒ can scale to arbitrarily
long inputs

However
,
it's position - sensitive !

Training P(Wu Iw ,
wz Ws)
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updates to W,v accumulate over

whole sequence
Hard to learn ! ⇒ Long short-term

memory
net

(LSTM)
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forgetfulness
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= hard to track

information over many steps
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LSTM : "gates
" to control what

parts of the vector change

0th ) sequential dependence
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context -aware
" word embedding

for word Wz

I
,
blends Tz (context) w/ wz

( word 3)

RNN ( see of vectors) ⇒ seq of vectors

aware of context

stack these layers
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Transformer : layer that contextualizes

words based on other words in

the sequence
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Running example :

suppose we have seqs of As

and Bs of length 4
if all its → next is A

if any B → next is B

AAAAA predict next char

ABHA B- using this sequence
BAA BB that came before

BAA%?;
B hard for Runs

to predict



Amentia = allows us to do

" random access
"

on the context

to retrieve info we need

"

souped up
" DAN , will

add order

information next time

ki Ci

keys : embedding of the sequence

query : vector representing what
we want to find

Assume key A-- [
'

o ]e*B=[g) ↳
(word embeddings)
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query : what we want to find

find Bs ! *goal µ9=19 ] "

B
"

TTÉA
Attention will compute a distribution

over the tokens so far with

higher weight for things that
match q

steps ① Compute score for
each key based on query
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② Softmax scores to get probs .

d- = sottmax (5)
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③ Compute the output
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Compare to DAN :

E. I :] -14C:/ ← If :] -4C:) -1%:]

(E) weights the B more highly

Ideally want:

[8) if all As ✓

[9) if any B E) ✗

let q=[ 0 to]

Softmax [ 0 0 10 o ]
b

o o lo probs .



Decouple keys + queries from

embeddings

Embedding matrix F- =¥¥[&§)
target e
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(keep [d) I:)) 9=1%1

Parameters wk and W" will
let us learn how to query



sef-atxnti.me
very

word is a key and query

simultaneously
do one attention computation per
word ⇒ contextualized embeddings
for each word

F- : same embs
, seq

ten ✗ d
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K : same
, seq

ten xD

Q : seq ten ✗ d C rather than I ✗d)



Scores 5- QKT
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