CS371N: Natural Language Processing Lecture 11: Transformers for Language Modeling, Implementation

Multi-Head Self-Attention

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let E = [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
 - Query $Q = EW^{Q}$: each token "chooses" what to attend to
 - Keys K = EWK: these control what each token looks like as a "target"
 - → Values V = EW^V: these vectors get summed up to form the output

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

dim of keys
Vaswani et al. (2017)

Attention Maps

h

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to. E.g., the first "v" attends very heavily to itself (bright yellow box)
- Your task on the HW: assess if the attentions make sense

heir average albedo g d

	Transformer Architecture						
1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit	
8	OPT setups						
9	760M	4.3E+15	35%	44%	14.8%	5.8%	
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%	
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%	
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%	
13	13B	4.1E+17	22%	69%	6.9%	1.6%	
14	30B	9.0E+17	20%	74%	5.3%	1.0%	
15	66B	9.5E+17	18%	77%	4.3%	0.6%	
16	175B	2.4E+18	17%	80%	3.3%	0.3%	
				Credit:	Stephe	n Rolle	

$\underbrace{\text{Word probs}}_{\text{N}} P(w|\text{context}) = \frac{\exp(\mathbf{w} \cdot \mathbf{h}_i)}{\sum_{w'} \exp(\mathbf{w'} \cdot \mathbf{h}_i)}$ equivalent to $P(w|\text{context}) = \operatorname{softmax}(W\mathbf{h}_i)$ W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Transformer Language Modeling

<text>

A Small Problem with Transformer LMs

This Transformer LM as we've described it will *easily* achieve perfect accuracy. Why?

With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences
- Next: machine translation and seq2seq models (conditional language modeling)