
CS371N:	Natural	Language	Processing	
Lecture	11:	Transformers	for	Language	

Modeling,	Implementa?on

Greg	DurreB

Mul?-Head	Self-ABen?on

Mul?-Head	Self	ABen?on

Vaswani	et	al.	(2017)

‣ Mul?ple	“heads”	analogous	to	different	convolu?onal	filters

‣ Let	E	=	[sent	len,	embedding	dim]	be	the	input	sentence.	This	will	be	
passed	through	three	different	linear	layers	to	produce	three	mats:

‣ Query	Q	=	EWQ:	each	token	“chooses”	what	to	aBend	to

‣ Keys	K	=	EWK:	these	control	what	each	token	looks	like	as	a	“target”

‣ Values	V	=	EWV:	these	vectors	get	summed	up	to	form	the	output

dim	of	keys

Self-ABen?on
Alammar,	The	Illustrated	Transformer

Self-ABen?on
Alammar,	The	Illustrated	Transformer

sent	len	x	hidden	dim
Z	is	a	weighted	combina?on	of	V	rows

sent	len	x	sent	len	(aBn	for	
each	word	to	each	other)

ABen?on	Maps
‣ Example	visualiza?on	of	
aBen?on	matrix	A	(from	
assignment)

‣ Each	row:	distribu?on	over	
what	that	token	aBends	to.	
E.g.,	the	first	“v”	aBends	very	
heavily	to	itself	(bright	yellow	
box)

‣Your	task	on	the	HW:	assess	
if	the	a2en3ons	make	sense

Mul?-head	Self-ABen?on
Alammar,	The	Illustrated	TransformerJust	duplicate	the	whole	

computa?on	with	different	
weights:

Mul?-head	Self-ABen?on

Transformers

Architecture
‣ Alternate	mul?-head	self-aBen?on	with	
feedforward	layers	that	operate	over	each	
word	individually

‣ Residual	connec?ons	in	the	model:	input	of	a	
layer	is	added	to	its	output

‣ Layer	normaliza?on:	controls	the	scale	of	
different	layers	in	very	deep	networks	(not	
needed	in	A4)

‣ These	feedforward	layers	are	where	most	
of	the	parameters	are

Dimensions

Vaswani	et	al.	(2017)

‣ Vectors:	dmodel

‣ Queries/keys:	dk	,	always	smaller	than	dmodel

‣ Values:	separate	dimension	dv	,	
output	is	mul?plied	by	WO	which	
is	dv	x	dmodel	so	we	can	get	back	to	
dmodel	before	the	residual

dmodel

dk dk dv

dv	->	dmodel

dmodel

dinternal

dmodel

‣ FFN	can	explode	the	dimension	with	W1	
and	collapse	it	back	with	W2

Transformer	Architecture

dmodel

dmodel

dmodel

‣ From	GPT-3;	dhead	is	our	dk

‣ From	Vaswani	et	al.

Transformer	Architecture

Credit:	Stephen	Roller	on	TwiBer

Transformers:	Posi?on	Sensi?vity

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ If	this	is	in	a	longer	context,	we	want	words	to	aBend	locally

‣ But	transformers	have	no	noBon	of	posiBon	by	default

Transformers:	Posi?on	Sensi?vity

‣ Encode	each	sequence	posi?on	as	an	integer,	add	it	to	the	word	
embedding	vector

‣ Why	does	this	work?

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

+ + + +

Transformers
Alammar,	The	Illustrated	Transformer

W
or
ds

Embedding	dim

‣ Alterna?ve	from	Vaswani	et	al.:	sines/cosines	of	different	frequencies	
(closer	words	get	higher	dot	products	by	default)

Transformers:	Complete	Model

Vaswani	et	al.	(2017)

‣ Original	Transformer	paper	presents	an	
encoder-decoder	model

‣ Right	now	we	don’t	need	to	think	about	both	
of	these	parts	—	will	return	in	the	context	of	
MT

‣ Can	turn	the	encoder	into	a	decoder-only	
model	through	use	of	a	triangular	causal	
aBen?on	mask	(only	allow	aBen?on	to	
previous	tokens)

Transformer	Language	Modeling

What	do	Transformers	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predic?on	(like	predic?ng	the	next	word	for	language	modeling)

the		movie		was			great

‣ Like	RNNs,	Transformers	can	be	viewed	as	a	transforma?on	of	a	
sequence	of	vectors	into	a	sequence	of	context-dependent	vectors

Transformer	Language	Modeling

I							saw				the				dog

hi

P (w|context) = exp(w · hi)P
w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	matrix;	linear	layer	in	PyTorch	(rows	
are	word	embeddings)

equivalent	to

word	probs

Training	Transformer	LMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shioed	by	one,

I							saw				the				dog		running

‣ Allows	us	to	train	on	predic?ons	across	several	?mesteps	simultaneously	
(similar	to	batching	but	this	is	NOT	what	we	refer	to	as	batching)

Training	Transformer	LMs

I							saw				the				dog

Total	loss	=	sum	of	nega?ve	log	
likelihoods	at	each	posi?on

P(w|context)

loss	=	—	log	P(w*|context)

loss_fcn	=	nn.NLLLoss()	
loss	+=	loss_fcn(log_probs,	ex.output_tensor)

[seq	len,	num	output	classes] [seq	len]

‣ Batching	is	a	liBle	tricky	with	NLLLoss:	need	to	collase	[batch,	seq	len,	num	
classes]	to	[batch	*	seq	len,	num	classes].	You	do	not	need	to	batch

Batched	LM	Training
I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣ Mul?ple	sequences	and	mul?ple	
?mesteps	per	sequence

looked	very	excited	to	be

A	Small	Problem	with	Transformer	LMs

<s>							I							saw				the				dog

‣ With	standard	self-aBen?on:	“I”	aBends	to	“saw”	and	the	model	is	
“chea?ng”.	How	do	we	ensure	that	this	doesn’t	happen?

I							saw				the				dog		running

‣ This	Transformer	LM	as	we’ve	described	it	will	easily	achieve	perfect	
accuracy.	Why?

ABen?on	Masking

<s>							
I							
saw				
the				
dog

‣ We	want	to	prohibit

‣ We	want	to	mask	out	everything	in	red	(an	upper	triangular	matrix)

<s>							I							saw				the				dog

Query	words

Key	words

Implemen?ng	in	PyTorch

‣ nn.TransformerEncoder	can	be	built	out	of	nn.TransformerEncoderLayers,	
can	accept	an	input	and	a	mask	for	language	modeling:

‣You	cannot	use	these	for	Part	1,	only	for	Part	2

#	Inside	the	module;	need	to	fill	in	size	parameters	
layers	=	nn.TransformerEncoderLayer([...])	
transformer_encoder	=	nn.TransformerEncoder(encoder_layers,	num_layers=[...])	
[.	.	.]	
#	Inside	forward():	puts	negative	infinities	in	the	red	part	
mask	=	torch.triu(torch.ones(len,	len)	*	float('-inf'),	diagonal=1)	
output	=	transformer_encoder(input,	mask=mask)

LM	Evalua?on

‣ Accuracy	doesn’t	make	sense	—	predic?ng	the	next	word	is	generally	
impossible	so	accuracy	values	would	be	very	low

‣ Evaluate	LMs	on	the	likelihood	of	held-out	data	(averaged	to	
normalize	for	length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity:	exp(average	nega?ve	log	likelihood).	Lower	is	beBer
‣ Suppose	we	have	probs	1/4,	1/3,	1/4,	1/3	for	4	predic?ons
‣ Avg	NLL	(base	e)	=	1.242					Perplexity	=	3.464	<==	geometric	mean	of	
																																																																																									denominators

Takeaways

‣ Transformers	are	going	to	be	the	founda?on	for	the	much	of	the	rest	
of	this	class	and	are	a	ubiquitous	architecture	nowadays

‣ Many	details	to	get	right,	many	ways	to	tweak	and	extend	them,	but	
core	idea	is	the	mul?-head	self	aBen?on	and	their	ability	to	
contextualize	items	in	sequences

‣ Next:	machine	transla?on	and	seq2seq	models	(condi?onal	language	
modeling)

