## CS371N: Natural Language Processing Lecture 11: Transformers for Language Modeling, Implementation

## Greg Durrett

TEXAS
The University of Texas at Austin

## Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let $E=$ [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
- Query $Q=E W Q$ : each token "chooses" what to attend to
- Keys $K=E W^{K}$ : these control what each token looks like as a "target"
- Values $V=E W^{v}$ : these vectors get summed up to form the output

Attention $(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V \quad \mathrm{dim}$ of keys

## Multi-Head Self-Attention




## Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to. E.g., the first " $v$ " attends very heavily to itself (bright yellow box)
- Your task on the HW: assess if the attentions make sense
heir average albedo



## Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Attention head \#0

x


Alammar, The Illustrated Transformer
attention head \#1


## Multi-head Self-Attention



Transformers

## Dimensions

- Vectors: $d_{\text {model }}$
- Queries/keys: $d_{k}$, always smaller than $d_{\text {mode }}$
- Values: separate dimension $d_{v}$, output is multiplied by $W^{\circ}$ which is $d_{v} \times d_{\text {model }}$ so we can get back to $d_{\text {model }}$ before the residual
- FFN can explode the dimension with $W_{1}$ and collapse it back with $W_{2}$

$$
\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}
$$

Vaswani et al. (2017)


## Architecture

- Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$
\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}
$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not



## Transformer Architecture

$$
\begin{array}{c|cccccc} 
& N & d_{\mathrm{model}} & d_{\mathrm{ff}} & h & d_{k} & d_{v} \\
\hline \text { base } & 6 & 512 & 2048 & 8 & 64 & 64
\end{array}
$$

- From Vaswani et al.

| Model Name | $n_{\text {params }}$ | $n_{\text {layers }}$ | $d_{\text {model }}$ | $n_{\text {heads }}$ | $d_{\text {head }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GPT-3 Small | 125 M | 12 | 768 | 12 | 64 |
| GPT-3 Medium | 350 M | 24 | 1024 | 16 | 64 |
| GPT-3 Large | 760 M | 24 | 1536 | 16 | 96 |
| GPT-3 XL | 1.3 B | 24 | 2048 | 24 | 128 |
| GPT-3 2.7B | 2.7B | 32 | 2560 | 32 | 80 |
| GPT-3 6.7B | 6.7 B | 32 | 4096 | 32 | 128 |
| GPT-3 13B | 13.0 B | 40 | 5140 | 40 | 128 |
| GPT-3 175B or "GPT-3" | 175.0 B | 96 | 12288 | 96 | 128 |

- From GPT-3; $d_{\text {head }}$ is our $d_{k}$

|  |  | Tran | mer | Arch | itect | ure |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | description | FLOPs / update | FLOPS <br> MHA | FLOPS <br> FFN | FLOPS attn | $\begin{array}{r} \% \\ \text { FLOPS } \\ \text { logit } \\ \hline \end{array}$ |
|  | 8 | OPT setups |  |  |  |  |  |
|  | 9 | 760M | $4.3 \mathrm{E}+15$ | 35\% | 44\% | 14.8\% | 5.8\% |
|  | 10 | 1.3B | $1.3 \mathrm{E}+16$ | 32\% | 51\% | 12.7\% | 5.0\% |
|  | 11 | 2.7B | $2.5 \mathrm{E}+16$ | 29\% | 56\% | 11.2\% | 3.3\% |
|  | 12 | 6.7B | 1.1E+17 | 24\% | 65\% | 8.1\% | 2.4\% |
|  | 13 | 13B | $4.1 \mathrm{E}+17$ | 22\% | 69\% | 6.9\% | 1.6\% |
|  | 14 | 30B | $9.0 \mathrm{E}+17$ | 20\% | 74\% | 5.3\% | 1.0\% |
|  | 15 | 66B | $9.5 \mathrm{E}+17$ | 18\% | 77\% | 4.3\% | 0.6\% |
|  | 16 | 175B | $2.4 \mathrm{E}+18$ | 17\% | 80\% | 3.3\% | 0.3\% |
| Credit: Stephen Roller on Twitter |  |  |  |  |  |  |  |

## Transformers: Position Sensitivity

The ballerina is very excited that she will dance in the show.

- If this is in a longer context, we want words to attend locally
- But transformers have no notion of position by default


## Transformers: Position Sensitivity



- Encode each sequence position as an integer, add it to the word embedding vector
- Why does this work?


## Transformers

Alammar, The Illustrated Transformer

- Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)



Transformer Language Modeling

## Transformer Language Modeling



- W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)


## Training Transformer LMs



- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)



## Training Transformer LMs



P(w|context)
*loss $=-\log P\left(w^{*} \mid\right.$ context $)$
Total loss = sum of negative log likelihoods at each position

## loss_fcn = nn.NLLLoss()

loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num output classes] [seq len]

Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch

## A Small Problem with Transformer LMs

- This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

- With standard self-attention: " $\mid$ " attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?


## Attention Masking

- We want to prohibit

Key words


- We want to mask out everything in red (an upper triangular matrix)


## LM Evaluation

- Accuracy doesn't make sense - predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

$$
\frac{1}{n} \sum_{i=1}^{n} \log P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
$$

- Perplexity: exp(average negative log likelihood). Lower is better
- Suppose we have probs $1 / 4,1 / 3,1 / 4,1 / 3$ for 4 predictions
- Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators


## Implementing in PyTorch

- nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:
\# Inside the module; need to fill in size parameters
layers $=$ nn.TransformerEncoderLayer ([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
\# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
- You cannot use these for Part 1, only for Part 2


## Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences
- Next: machine translation and seq2seq models (conditional language modeling)

