CS 371 N Lecture 11
Transformers, Transformer
Language Modeling
Announcements

- A3 due in 9 days

Recap Attention over a sequence of n tokens with embeddings $e_{1} \ldots e_{n}$
(1) Form keys $=W^{k} e_{i}$

$$
\text { query }=q
$$

(2) Scores $s_{i}=k_{i}{ }^{\top} q$

(3) Attention weights (probs) $\alpha=$ softmax (s)
(4) Result (output) $=\left\{\alpha_{i} e_{i}\right.$
weill throw a matrix here later

Today

- Self-attention recap
- Exercises
- Multi-head self-attention
- Transformers
- Language modeling

Self-attention
Idea : all words are now keys and queries simultaneously
$\left.\begin{array}{ll}E: \text { seq len } x d & \text { matrix } \\ W^{k}: d x d & K=E\left(W^{k}\right)^{T}\end{array}\right] \begin{aligned} & \text { same } \\ & \text { as } \\ & \text { before }\end{aligned}$
$Q:$ seq len $x d \quad\left(Q=E\left(W^{Q}\right)^{\top}\right)$
scores

$$
S=Q K^{\top} \quad S_{i j}=q_{i} \cdot K_{j}
$$

lenxlen
$A=$ softmax (S) by rows
distribution A_{i} for each word's query qi

Ex $A=\left[\begin{array}{ll}1 & 0\end{array}\right] \quad B=\left[\begin{array}{ll}0 & 1\end{array}\right]$
$A B \in$ sequence "buosted"identity

$$
\begin{aligned}
& E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]_{\leftarrow A}^{\leftarrow A} \quad W^{K}=\left[\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right] \\
& Q=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]^{\kappa} \text { (Gre says) } \quad \text {-Find } B_{s}^{\prime \prime} \\
& K=E\left(W^{K}\right)^{K}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right]=\left[\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right]
\end{aligned}
$$

Last step: I weilined
$S=Q K^{\top}$ Output $=A E \underset{\text { of }}{\text { sum }} \underset{\text { on }}{\text { on }}$

$$
=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right]=\left[\begin{array}{cc}
0 & 10 \\
0 & 10
\end{array}\right]
$$

$$
A=\text { softmax }(5)=\left[\begin{array}{lll}
0 & 10 \\
0 & 10
\end{array}\right] \rightarrow s m \rightarrow\left[\begin{array}{ll}
0 & 0.999 \\
0 & 0.999
\end{array}\right]
$$

- Big K made our probs. peaked
- Q had B for each row \Rightarrow prob on B

$$
\begin{aligned}
& A A B A \quad W^{k}=\left[\begin{array}{ll}
10 & 0 \\
0 & 0
\end{array}\right] \\
& E=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \\
& S=\left[\begin{array}{llll}
0 & 0 & 10 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 10 & 0
\end{array}\right] \quad \begin{array}{lll}
\text { Softmax } & {\left[\begin{array}{ll}
0 & 0 \\
10 & 0
\end{array}\right]} \\
\rightarrow \text { high prob on } B
\end{array}
\end{aligned}
$$

S: for word i, how much does it "attend" to word;

Mary had 4 apples, Jane had 3 . How many total?

12 words
12×12 matrix

