
CS371N:	Natural	Language	Processing

Lecture	13:	Subword	Tokenization,	

Decoders,	Decoding

Greg	Durret

Announcements

‣ A3	due	Thursday

‣ A2	back	soon

Recap:	BERT Today

‣ GPT-2/GPT-3:	decoders,	which	are	able	to	actually	generate	text

‣ Prompting:	a	new	way	of	using	large	language	models	without	taking	
any	gradient	steps

‣ Decoding	methods	for	getting	outputs	from	these	models

‣ Subword	tokenization

Subword	Tokenization

Handling	Rare	Words

‣ Words	are	a	difficult	unit	to	work	with.	Why?	What	becomes	harder	
about	LMs	(e.g.,	the	assignment)	when	you	have	100,000+	words?

‣ Character-level	models	were	explored	extensively	in	2016-2018	but	
simply	don’t	work	well	—	becomes	very	expensive	to	represent	
sequences

‣ Some	answers:	the	final	matrix	multiply	and	softmax	start	to	dominate	
the	computation,	many	params,	still	some	words	you	haven’t	seen,	
doesn’t	take	advantage	of	morphology,	…

Subword	Tokenization

‣ Subword	tokenization:	wide	range	of	schemes	that	use	tokens	that	are	
between	characters	and	words	in	terms	of	granularity

Sennrich	et	al.	(2016)

_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

‣ These	“word	pieces”	may	be	full	words	or	parts	of	words

‣ _	indicates	the	word	piece	starting	a	word	(can	think	of	it	as	the	space	
character).	

Subword	Tokenization

‣ Subword	tokenization:	wide	range	of	schemes	that	use	tokens	that	are	
between	characters	and	words	in	terms	of	granularity

Sennrich	et	al.	(2016)

_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

Output:	_le	_port	ique	_éco	taxe	_de	_Pont	-	de	-	Bui	s

‣ These	“word	pieces”	may	be	full	words	or	parts	of	words

‣ Can	achieve	transliteration	with	this,	subword	structure	makes	some	
translations	easier	to	achieve

Byte	Pair	Encoding	(BPE)

‣ Start	with	every	individual	byte	(basically	character)	as	its	own	symbol

Sennrich	et	al.	(2016)

‣ Count	bigram	character	
cooccurrences

‣ Merge	the	most	frequent	pair	of	
adjacent	characters

‣ Doing	8k	merges	=>	vocabulary	of	around	8000	word	pieces.	Includes	
many	whole	words

‣ Most	SOTA	NMT	systems	use	this	on	both	source	+	target

Byte	Pair	Encoding	(BPE)

Bostrom	and	Durrett	(2020)

‣ BPE	produces	less	linguistically	plausible	units	than	another	technique	
based	on	a	unigram	language	model:	rather	than	greedily	merge,	find	
chunks	which	make	the	sequence	look	likely	under	a	unigram	LM

‣ Unigram	LM	tokenizer	leads	to	slightly	better	BERT

‣ What	do	you	see	here?

What’s	in	the	token	vocab? Tokenization	Today

‣ All	pre-trained	models	use	some	kind	of	subword	tokenization	with	a	
tuned	vocabulary;	usually	between	50k	and	250k	pieces	(larger	
number	of	pieces	for	multilingual	models)

‣ As	a	result,	classical	word	embeddings	like	GloVe	are	not	used.	All	
subword	representations	are	randomly	initialized	and	learned	in	the	
Transformer	models

GPT

OpenAI	GPT/GPT2

‣ GPT2	(March	2019):	trained	on	40GB	of	text

Radford	et	al.	(2019)

‣ Very	large	language	models	using	the	Transformer	architecture

‣ Straightforward	left-to-right	language	model,	trained	on	raw	text

‣ Because	it's	a	language	model,	we	can	generate	from	it

approximate	size	of	BERT

GPT-2

OpenAI	GPT2 slide	credit:	OpenAI

‣ How	was	this	generated?	We’ll	come	back	to	this	in	a	few	minutes

Pre-Training	Cost	(with	Google/AWS)

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

‣ GPT-2	(as	reported	in	other	work):	$25,000

‣ BERT:	Base	$500,	Large	$7000

‣ This	is	for	a	single	pre-training	run…developing	new	pre-training	
techniques	may	require	many	runs

‣ Fine-tuning	these	models	can	typically	be	done	with	a	single	GPU	(but	
may	take	1-3	days	for	medium-sized	datasets)

Scaling	Up:	GPT-3

Brown	et	al.	(2020)

‣ 175B	parameter	model:	96	layers,	96	heads,	12k-dim	vectors

‣ Trained	on	
Microsoft	Azure,	
estimated	to	
cost	roughly	
$10M

‣ GPT-4	may	be	
“mixture	of	experts”	
combining	several	
similar-sized	models

Decoding	Methods

Decoding	Strategies

‣ LMs	place	a	distribution	P(yi	|y1,	…,	yi-1)

‣ seq2seq	models	place	a	distribution	P(yi	|	x,	y1,	…,	yi-1)

‣ Generation	from	both	models	looks	similar;	how	do	we	do	it?

‣ Option	1:	max	yi	P(yi	|y1,	…,	yi-1)	—	take	greedily	best	option

‣ Option	2:	use	beam	search	to	find	the	sequence	with	the	highest	prob.

Beam	Search

Decoding	Strategies

‣ LMs	place	a	distribution	P(yi	|y1,	…,	yi-1)

‣ seq2seq	models	place	a	distribution	P(yi	|	x,	y1,	…,	yi-1)

‣ Generation	from	both	models	looks	similar;	how	do	we	do	it?

‣ Option	1:	max	yi	P(yi	|y1,	…,	yi-1)	—	take	greedily	best	option

‣ Option	2:	use	beam	search	to	find	the	sequence	with	the	highest	prob.

‣ Option	3:	sample	from	the	model;	draw	yi	from	that	distribution

‣ When	should	we	use	these	different	approaches?

Decoding	Strategies

Holtzman	et	al.	(2019)

‣ Beam	search	degenerates	and	starts	
repeating.	If	you	see	a	fragment	
repeated	2-3x,	it	has	very	high	
probability	to	keep	repeating

‣ Story	generation	(this	is	with	GPT-2):

‣ Sampling	is	too	noisy	—	
introduces	many	grammatical	
errors

Degeneration

Holtzman	et	al.	(2019)

P(/	|	…	México)	and	P(Universidad	|	…	México	/)	—	these	probabilities	may	be	
low.	But	those	are	just	2/6	words	of	the	repeating	fragment

‣ Beam	search	fails	because	the	model	is	
locally	normalized

P(Nacional	|	…	Universidad)	is	high

P(Autónoma	|	…	Universidad	Nacional)	is	high

P(de	|		…	Universidad	Nacional	Autónoma)	is	high

P(México	|	Universidad	Nacional	Autónoma	de)	is	high

‣Each	word	is	likely	given	the	previous	words	but	the	sequence	is	bad

‣ Let’s	look	at	all	the	individual	decisions	
that	get	made	here

Drawbacks	of	Sampling

Holtzman	et	al.	(2019)

‣ Sampling	is	“too	random”

P(y	|	…	they	live	in	a	remote	desert	uninterrupted	by)

0.01				roads

0.01				towns

0.01				people

0.005		civilization

…
0.0005			town

Good	options,	maybe	accounting	for	90%	of	
the	total	probability	mass.	So	a	90%	chance	of	
getting	something	good

Long	tail	with	10%	of	the	mass

Nucleus	Sampling

Holtzman	et	al.	(2019)

‣ Define	a	threshold	p.	Keep	the	most	probable	options	account	for	p%	
of	the	probability	mass	(the	nucleus),	then	sample	among	these.

‣ To	implement:	sort	options	by	probability,	truncate	the	list	once	the	
total	exceeds	p,	then	renormalize	and	sample	from	it

P(y	|	…	they	live	in	a	remote	desert	uninterrupted	by)

0.01				roads

0.01				towns

0.01				people

0.005		civilization
cut	off	after	p%	of	mass

renormalize	and	sample

Decoding	Strategies

Holtzman	et	al.	(2019)

‣ LMs	place	a	distribution	P(yi	|y1,	…,	yi-1)

‣ seq2seq	models	place	a	distribution	P(yi	|	x,	y1,	…,	yi-1)

‣ Option	1:	max	yi	P(yi	|y1,	…,	yi-1)	—	take	greedily	best	option

‣ Option	2:	use	beam	search	to	find	the	sequence	with	the	highest	prob.

‣ Option	3:	sample	from	the	model;	draw	yi	from	that	distribution

‣ Option	4:	nucleus	sampling

‣ How	to	generate	sequences?

GPT-3

Story	completion	demo: 
Different	decoding	strategies

Preview:	Prompting,	In-Context	
Learning

Pre-GPT-3:	Fine-tuning

Brown	et	al.	(2020)

‣ Fine-tuning:	this	is	the	
“normal	way”	of	doing	
learning	in	models	like	
GPT-2

‣ Requires	computing	the	
gradient	and	applying	a	
parameter	update	on	
every	example

‣This	is	super	expensive	
with	175B	parameters

GPT-3:	Few-shot	Learning

Brown	et	al.	(2020)

‣ This	procedure	
depends	heavily	
on	the	examples	
you	pick	as	well	as	
the	prompt	
(“Translate	English	
to	French”)

‣ GPT-3	proposes	an	alternative:	in-context	learning.	Just	uses	the	off-the-
shelf	model,	no	gradient	updates

GPT-3

Brown	et	al.	(2020)

‣ Key	observation:	
few-shot	learning	
only	works	with	
huge	models!

GPT-3

Brown	et	al.	(2020)

‣ Sometimes	very	impressive,	(MultiRC,	ReCoRD),	sometimes	very	bad

‣ Results	on	other	datasets	are	equally	mixed	—	but	still	strong	for	a	
few-shot	model!

Prompts

Brown	et	al.	(2020)

‣ In	the	GPT-2	paper,	“tl;dr:”	(too	long;	didn't	read)	is	mentioned	as	a	
prompt	that	frequently	shows	up	in	the	wild	indicating	a	summary

‣ Prompts	can	help	induce	the	model	to	engage	in	certain	behavior

‣ tl;dr	is	an	indicator	that	the	model	should	“switch	into	summary	mode”	
now	—	and	if	there	are	enough	clean	instances	of	tl;dr	in	the	wild,	
maybe	the	model	has	been	trained	on	a	ton	of	diverse	data?

‣ Good	prompt	+	a	few	training	examples	in-context	=	strong	task	
performance?

Prompting
‣ Current	training:	GPT-3	trained	on	the	web

‣ Current	testing:	feed	in	a	very	specific	prompt	and/or	a	set	of	in-
context	examples

‣ Two	goals:
1.	Unify	pre-training	and	testing	phases

2.	Exploit	data	for	downstream	tasks	—	why	are	we	trying	to	do	question	
answering	while	ignoring	all	of	the	existing	QA	datasets?

‣ RLHF/instruction	tuning:	fine-tune	on	supervised	tasks	after	pre-
training	(more	after	midterm)

‣Let’s	see	how	an	instruction-tuned	GPT-3	works

Prompts

Brown	et	al.	(2020)

Prompting	demo: 
QA,	Math	QA,	etc.

Ethical	Issues

Bias	and	Toxicity

https://toxicdegeneration.allenai.org/

‣ “Toxic	degeneration”:	systems	that	generate	toxic	stuf

‣ System	trained	on	a	big	chunk	of	the	Internet:	conditioning	on	“SJW”,	
“black”	gives	the	system	a	chance	of	recalling	bad	stuff	from	its	
training	data

Stochastic	Parrots	(about	LMs	generally)

Bender,	Gebru,	McMillan-Major,	Shmitchell	(2021)

‣ Claim	1:	environmental	cost	is	disproportionately	born	by	marginalized	populations,	
who	aren’t	even	well-served	by	these	tools

‣ Claim	2:	massive	data	is	fundamentally	challenging	to	audit,	contains	data	that	is	
biased	and	is	only	a	snapshot	of	a	single	point	in	time

‣ Claim	3	(what	we’ll	focus	on	today):	these	models	are	not	grounded	in	meaning	—	
when	they	generate	an	answer	to	a	question,	it	is	merely	by	memorizing	
cooccurrence	between	symbols

‣ Paper	(that	included	authors	at	Google	who	were	subsequently	fired)	about	dangers	of	
large	language	models

Stochastic	Parrots

Bender,	Gebru,	McMillan-Major,	Shmitchell	(2021)

‣ We	are	likely	to	assume	the	model	is	
producing	factual	information	and	
presenting	it	in	a	coherent	way,	but	this	is	
our	interpretation	we	project	on	the	
model

‣ Risks:	medical	diagnosis	(“What	do	I	have	
if	I	have	X,	Y,	and	Z	symptoms?”)	could	
seem	possible	but	cause	serious	harm

Takeaways

‣ Prompting	is	a	way	to	harness	their	power	and	learn	to	do	many	tasks	with	a	
single	model.	Can	be	done	without	fine-tuning

‣ Generative	language	models	can	do	well	at	lots	of	generation	tasks

‣ Decoding	strategy	can	matter	a	lot	(beam	search	vs.	sampling)

